JPH0121108B2 - - Google Patents

Info

Publication number
JPH0121108B2
JPH0121108B2 JP14409883A JP14409883A JPH0121108B2 JP H0121108 B2 JPH0121108 B2 JP H0121108B2 JP 14409883 A JP14409883 A JP 14409883A JP 14409883 A JP14409883 A JP 14409883A JP H0121108 B2 JPH0121108 B2 JP H0121108B2
Authority
JP
Japan
Prior art keywords
rice husk
rice
combustion
fluidized bed
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14409883A
Other languages
Japanese (ja)
Other versions
JPS6036360A (en
Inventor
Naomichi Hara
Hideo Yamada
Norihiro Inoe
Shuji Tsunematsu
Senji Pponma
Junichi Kawabata
Akira Yumyama
Shohei Takeda
Yoneshiro Tazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58144098A priority Critical patent/JPS6036360A/en
Publication of JPS6036360A publication Critical patent/JPS6036360A/en
Publication of JPH0121108B2 publication Critical patent/JPH0121108B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は非晶質もみがら灰の製造方法に関する
ものである。さらに詳しくいえば、もみがらの燃
焼に流動床燃焼炉を用いることを特徴とする非晶
質もみがら灰の製造方法、料との易反応性を活用
する水硬性セメント、及び非晶質もみがら灰と石
灰原に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing amorphous rice husk ash. More specifically, a method for producing amorphous rice husk characterized by using a fluidized bed combustion furnace for burning rice husk, a hydraulic cement that takes advantage of its high reactivity with materials, and amorphous rice husk. It concerns ash and limefields.

もみがらは燃焼するとその重量の15〜20%を灰
として残す。不燃カーボンが残らないように燃焼
させると灰色から白色の灰が得られ、そのSiO2
含有率は90数%以上に達する。しかもこのSiO2
はもみがら細胞の骨格を形態として保持するため
に、多孔質かつ高比表面積で微粉砕しやすいこと
を特徴とする。
When rice husk is burnt, it leaves 15-20% of its weight as ash. When burned without leaving any non-combustible carbon, a gray to white ash is obtained, and the SiO 2
The content rate reaches over 90%. Moreover, this SiO 2
In order to maintain the structure of the rice husk cell skeleton, it is characterized by being porous, having a high specific surface area, and being easily pulverized.

本願発明者らはもみがら灰に固有なこれらの性
質がけい酸カルシウム水和物の合成用原料に最適
であることを見出し、「耐火断熱材の製造方法」
に関し、昭和56年7月23日付及び昭和57年10月7
日付で特許出願した(特願昭56−116874及び特願
昭57−177310)。
The inventors of the present application have discovered that these properties unique to rice husk ash are optimal as a raw material for the synthesis of calcium silicate hydrate, and have developed a "method for producing fireproof insulation material."
Regarding July 23, 1981 and October 7, 1982
Patent applications were filed on the following dates (Japanese Patent Application No. 116874/1983 and Patent Application No. 177310/1983).

本発明はこれらの製造方法をさらに発展させた
ものである。
The present invention further develops these manufacturing methods.

ところで、もみがら灰は上記の特徴に加えて、
その含有するSiO2は焼成温度が低いか又は焼成
時間が短いと非晶質シリカの段階に留まるが、焼
成温度が、高くかつ焼成時間が長くなるとより安
定化してクリストバライト、トリジマイトに結晶
化するという特徴を有する。いずれもシリカ原料
として汎用されるけい砂、けい石に比較すると石
灰との水熱反応性は高いが、低温温度域での反応
性を比較すると、クリストバライト、トリジマイ
トに結晶化したもみがら灰の反応性は非晶質もみ
がら灰に明らかに劣る。また高温度域で反応させ
て得られるけい酸カルシウム水和物の結晶形態を
みると、結晶質もみがら灰を使用した場合よりも
非晶質もみがら灰を使用した場合の方が、針状に
よく発達した結晶が生成しやすく、その結晶を含
む混合物を成形して得られる硬化体は高強度を示
すという長所を有する。
By the way, in addition to the above characteristics, rice husk ash has
The SiO 2 it contains remains in the amorphous silica stage when the firing temperature is low or the firing time is short, but when the firing temperature is high and the firing time is long, it becomes more stable and crystallizes into cristobalite and tridymite. Has characteristics. Both have higher hydrothermal reactivity with lime than silica sand and silica stone, which are commonly used as silica raw materials, but when comparing the reactivity in the low temperature range, the reaction of rice husk ash crystallized into cristobalite and tridymite Its properties are clearly inferior to amorphous rice husk ash. In addition, looking at the crystalline form of calcium silicate hydrate obtained by reaction in a high temperature range, it is found that when amorphous rice husk ash is used, it is more acicular than when crystalline rice husk ash is used. It has the advantage that well-developed crystals are easily formed, and a cured product obtained by molding a mixture containing the crystals exhibits high strength.

すなわち、シリカ原料としては非晶質もみがら
灰の方が格段に優れているが、しかし現実に利用
できるもみがら灰をみると均質な非晶質もみがら
灰を大量に得ることは極めて困難である。たとえ
ば、野積焼成で得られる白い灰はSiO2含有率は
90%以上と高いが高温下に保持された時間が長い
ためクリスストバライトやトリジマイトに結晶化
してしまつている。逆にくん炭状に焼かれて、黒
つぽいもみがら灰は非晶質シリカを主とするが、
未燃物を多く含みSiO2含有率は低く、しかも品
質のばらつきが大きいため、工業用シリカ原料に
は適しない。もみがらを燃料とする「もみがら燃
焼炉」も数種実用化されているが、これらは熱効
率に重点をおいた設計になつているため燃焼温度
が高く、従つて排出されるもみがら灰はクリスト
バライトやトリジマイトに結晶化している。
In other words, amorphous rice husk ash is much better as a raw material for silica, but looking at the rice husk ash that can actually be used, it is extremely difficult to obtain a large amount of homogeneous amorphous rice husk ash. be. For example, the white ash obtained from open firing has a SiO 2 content of
Although it is high at over 90%, it has been kept at high temperatures for a long time, so it has crystallized into cristobalite and tridymite. On the other hand, the black rice husk ash that is burnt into a charcoal-like form is mainly composed of amorphous silica.
It is not suitable as an industrial silica raw material because it contains a lot of unburnt material, has a low SiO 2 content, and has a wide variation in quality. Several types of "rice husk combustion furnaces" that use rice husks as fuel have been put into practical use, but these are designed with emphasis on thermal efficiency, so the combustion temperature is high, and the rice husk ash discharged is It crystallizes into cristobalite and tridymite.

本発明者らはかかる現状に鑑み、かつ、種々も
みがらの燃焼について実験、検討した結果、流動
床燃焼法が非晶質もみがら灰の製造法として最適
であることを見出し本発明を完成するに至つた。
In view of the current situation, and as a result of conducting experiments and studies on the combustion of various rice husks, the present inventors have found that the fluidized bed combustion method is the most suitable method for producing amorphous rice husk ash, and have completed the present invention. It came to this.

本発明の骨子はもみがらの燃焼温度と燃焼雰囲
気下における滞留時間を如何に正確にコントロー
ルするかにある。均質かつ未燃分の極めて少ない
非晶質もみがら灰を得るには燃焼温度はできるだ
け低く滞留時間はできるだけ短縮しなければなら
ない。もみがらの発熱量は3300kcal/Kgに過ぎず
しかもタール分、灰分が多いので通常の燃焼法で
これらの条件を満足することは不可能である。
The gist of the present invention is how to accurately control the combustion temperature of rice husks and the residence time in the combustion atmosphere. In order to obtain homogeneous amorphous rice husk ash with extremely low unburned content, the combustion temperature must be as low as possible and the residence time must be as short as possible. The calorific value of rice husk is only 3,300 kcal/Kg, and it contains a lot of tar and ash, so it is impossible to satisfy these conditions using normal combustion methods.

ただし熱容量の大きい熱媒体粒子で流動床を形
成させる流動床燃焼方式を用いると非晶質もみが
ら灰を得るに必要な上記の燃焼条件を容易に達成
できる。
However, by using a fluidized bed combustion method in which a fluidized bed is formed using heat carrier particles having a large heat capacity, the above combustion conditions necessary to obtain amorphous rice husk ash can be easily achieved.

もみがら用流動床燃焼炉の一例を第1図に示
す。熱媒体粒子1を炉体2の下部より送風機3を
通じて送入される空気Aで流動させながら、もみ
がらが自燃可能な温度にまず予熱ヒーター4で予
備加熱しておく。ついで加熱された流動床中に側
面からもみがらホツパー5を経てもみがらフイー
ダー6でもみがらBを連続供給してやる。燃焼温
度は流動床中に挿入した熱電対7でモニターしな
がら、かつ熱電対7の示度にもみがら供給速度を
連動させることで燃焼温度の制御を行う。熱電対
の示度により操作盤8を経由してもみがらフイー
ダーに連結された変速駆動装置9を制御すること
でもみがらの供給速度を制御するのが望ましい。
An example of a fluidized bed combustion furnace for rice husk is shown in Fig. 1. The heating medium particles 1 are first preheated by a preheating heater 4 to a temperature at which the rice husks can self-combust while being made to flow with air A introduced from the lower part of the furnace body 2 through a blower 3. Next, rice hulls B are continuously fed into the heated fluidized bed from the side through a rice hull hopper 5 and a rice hull feeder 6. The combustion temperature is controlled by monitoring the combustion temperature with a thermocouple 7 inserted into the fluidized bed and by interlocking the rice hull supply rate with the reading of the thermocouple 7. It is preferable to control the feed rate of rice hulls by controlling a variable speed drive device 9 connected to the rice hulls feeder via an operation panel 8 based on the thermocouple readings.

実験では予備加熱に電熱を利用したが、他の熱
源も当然に使用可能である。なお燃焼が始まると
予備加熱は停めてよい。炉体下部より送入される
空気は流動床用及び燃焼空気の両方に用いられ
る。空気の流量は流動床中におけるもみがら灰の
滞留時間を決定する主要因であるのみならず燃焼
温度にも大きく関係するので、流量計10でモニ
ターしながらもみがら供給速度と関連させて制御
する必要がある。また熱媒体砂の粒径、密度等は
もみがらの滞留時間等を考慮して決定した流速に
おいて熱媒体砂が十分良く流動化し、系外に飛び
出さないように選定する必要がある。
In the experiment, electric heat was used for preheating, but other heat sources can of course be used. Note that once combustion begins, preheating may be stopped. Air introduced from the bottom of the furnace body is used both for the fluidized bed and for combustion air. The flow rate of air is not only the main factor that determines the residence time of rice husk in the fluidized bed, but also has a great relationship with the combustion temperature, so it is controlled in relation to the rice husk feeding rate while being monitored by the flow meter 10. There is a need. In addition, the particle size, density, etc. of the heat transfer sand must be selected so that the heat transfer sand is sufficiently fluidized at the flow rate determined by taking into account the residence time of the rice husks, etc., and does not fly out of the system.

もみがら灰Pは排気に随伴し炉内を上昇してサ
イクロン11で補集される。装置外に排出される
排気Eはほとんど無色である。
The rice husk P accompanies the exhaust gas, rises inside the furnace, and is collected by the cyclone 11. The exhaust gas E discharged outside the device is almost colorless.

第1図に示す装置を用いてもみがらの燃焼を行
うと、もみがら供給開始後極めて短時間に燃焼は
定常状態に達し、しかも定常状態時の燃焼温度の
変動は設定温度±10℃という優れた精度で、
SiO2含有率が90%以上の非晶質もみがら灰を、
長時間運転しても均質かつ安定性よく得ることが
可能である。
When rice husk is burned using the apparatus shown in Figure 1, the combustion reaches a steady state in a very short time after starting to feed the rice husk, and the fluctuation in combustion temperature during steady state is as low as ±10°C from the set temperature. with high precision,
Amorphous rice husk ash with a SiO 2 content of 90% or more,
It is possible to obtain homogeneous and stable products even after long-term operation.

流動床燃焼で得られる非晶質もみがら灰は優れ
たポゾランであるから、石灰原料として生石灰、
消石灰又はポルトランドセメントを混合するだけ
で水硬性セメントになる。もみがら灰は高シリカ
質であるから得られるセメントは耐酸性に優れた
ものとなる。しかももみがら灰は多孔質であるた
めこの混合セメントを用いて作る成形硬化体は通
常のポルトランドセメントを用いた場合に比較す
ると軽量化されるという長所を有する。クリスト
バライトやトリジマイトに結晶化したもみがら灰
は常温での強度発現性に劣るが、流動床燃焼で得
られるもみがら灰は常温でも十分に硬化し強度を
発現する。加温養生でもその強度発現性は高い。
Amorphous rice husk ash obtained by fluidized bed combustion is an excellent pozzolan, so quicklime,
Hydraulic cement can be made by simply mixing slaked lime or Portland cement. Since rice husk ash has a high silica content, the resulting cement has excellent acid resistance. Moreover, since rice husk ash is porous, the molded and hardened body made using this mixed cement has the advantage of being lighter in weight than when ordinary Portland cement is used. Rice husk ash crystallized into cristobalite or tridymite has poor strength development at room temperature, but rice husk ash obtained by fluidized bed combustion hardens sufficiently and develops strength even at room temperature. Even after heating and curing, its strength development is high.

また、流動床燃焼で得られる非晶質もみがら灰
に生石灰又は消石灰を配合し、水を加えて懸濁状
になし、常圧下加熱してやると容易に水熱反応し
てけい酸カルシウム水和物を生成する。この反応
生成物を含む混合物を成形し、成形体をさらにオ
ートクレーブ養生や蒸気養生で硬化させること
で、けい酸カルシウム系材料の製造が可能であ
る。結晶化したもみがら灰は常圧下の加熱では反
応性に乏しく軽量化性また硬化性に劣る。
In addition, when quicklime or slaked lime is mixed with amorphous rice husk ash obtained by fluidized bed combustion, water is added to form a suspension, and when heated under normal pressure, a hydrothermal reaction easily occurs to form calcium silicate hydrate. generate. A calcium silicate-based material can be produced by molding a mixture containing this reaction product and further curing the molded body by autoclave curing or steam curing. Crystallized rice husk ash has poor reactivity when heated under normal pressure, and is inferior in weight reduction and hardening properties.

流動床燃焼で得られるもみがら灰に生石灰又は
消石灰を配合し、水を加えて懸濁状になしオート
クレーブ中で水熱反応させると強度発現性にすぐ
れた結晶形態を有するけい酸カルシウム水和物が
生成する。このけい酸カルシウム水和物は、又は
このけい酸カルシウム水和物を含む混合物は、成
形し、乾燥するだけで十分な強度を有する材料に
なる。
When quicklime or slaked lime is mixed with rice husk ash obtained by fluidized bed combustion, water is added to form a suspension, and the resulting product is hydrothermally reacted in an autoclave to produce calcium silicate hydrate, which has a crystalline form with excellent strength properties. is generated. This calcium silicate hydrate or a mixture containing this calcium silicate hydrate can be formed into a material having sufficient strength simply by molding and drying.

上記に述べた製造方法において、反応性、硬化
性、軽量化性、強度特性、成形性等を改善するた
めには、他の種類のけい酸原料、アルミノけい酸
原料、補強繊維、軽量充てん材及びセメント・コ
ンクリート用混和剤等を適宜併用すると有効であ
る。
In the manufacturing method described above, in order to improve reactivity, hardenability, weight reduction, strength characteristics, moldability, etc., it is necessary to use other types of silicic acid raw materials, aluminosilicate raw materials, reinforcing fibers, lightweight fillers, etc. It is effective to use admixtures for cement and concrete as appropriate.

またもみがらの燃焼熱を水熱反応や加温養生用
又は成形体の乾燥用の熱源に使用できることはい
うまでもない。
It goes without saying that the heat of combustion of rice husks can be used as a heat source for hydrothermal reactions, heating and curing, or drying of molded bodies.

次に実施例によつて本発明を詳細に説明する。 Next, the present invention will be explained in detail with reference to Examples.

実施例 1 第1図に示す流動床燃焼炉でもみがらの燃焼を
行つた。熱媒体にはけい砂を用い、熱媒体砂を電
熱で500℃に予熱後、もみがらを供給し始め、着
火後はもみがらの燃焼熱で燃焼温度を定温に保持
するべく空気流速ともみがら供給速度をコントロ
ールした。
Example 1 Rice hulls were burned in the fluidized bed combustion furnace shown in FIG. Silica sand is used as the heat medium, and after preheating the heat medium sand to 500℃ by electric heating, rice husks are started to be supplied.After ignition, the rice husks are supplied at an air flow rate to maintain the combustion temperature at a constant temperature using the combustion heat of the rice husks. controlled the speed.

燃焼温度650℃、750℃、850℃、920℃及び1000
℃で各々サンプリングしたもみがら灰のX線回折
図を第2図に示す。回折角度16゜〜32゜の範囲に認
められるブロードな反射は非晶質シリカに帰属す
る。すなわち燃焼温度650℃から920℃という広い
範囲にわたつて非晶質シリカが得られることをこ
れらの結果は示している。燃焼温度が1000℃にな
ると非晶質シリカは一部トリジマイトTやクリス
トバライトCに結晶化した。
Combustion temperature 650℃, 750℃, 850℃, 920℃ and 1000℃
Figure 2 shows the X-ray diffraction patterns of rice husk ash sampled at ℃. The broad reflection observed in the diffraction angle range of 16° to 32° is attributed to amorphous silica. In other words, these results show that amorphous silica can be obtained over a wide range of combustion temperatures from 650°C to 920°C. When the combustion temperature reached 1000°C, some of the amorphous silica crystallized into tridymite T and cristobalite C.

なお、いずれの温度でも石英Qの存在が認めら
れたが、これは熱媒体砂が飛散混入したもので、
熱媒体砂の種類をかえる等でこの混入を妨げるこ
とは可能である。
The presence of quartz Q was observed at all temperatures, but this was due to the scattering of heat transfer sand.
It is possible to prevent this contamination by changing the type of heat transfer sand.

実施例 2 実施例1において燃焼温度750℃で得られた非
晶質シリカより成るもみがら灰を微粉砕し、その
4重量部に対して1重量部の石灰を配合、十分混
合し、水/固体比0.6として加圧成形して得られ
た成形体を20℃で3日〜28日間湿空養生したとこ
ろ、かさ比重0.9、圧縮強さは206〜224Kg/cm2
達する硬化体となり、水硬性セメントとして十分
に使用し得る特性を示した。また、養生温度を80
℃にあげると、1日間の養生で、同一かさ比重で
圧縮強さは158Kg/cm2に達した。
Example 2 The rice husk made of amorphous silica obtained in Example 1 at a combustion temperature of 750°C was finely pulverized, and 1 part by weight of lime was added to 4 parts by weight of the rice ash, mixed thoroughly, and mixed with water/ When the molded product obtained by pressure molding with a solids ratio of 0.6 was cured in a humid air at 20°C for 3 to 28 days, it became a hardened product with a bulk specific gravity of 0.9 and a compressive strength of 206 to 224 Kg/cm 2 . It showed sufficient properties to be used as a hard cement. Also, increase the curing temperature to 80
℃, the compressive strength reached 158 kg/cm 2 at the same bulk specific gravity after one day of curing.

比較のために、野積焼成で得られたクリストバ
ライト及びトリジマイトに結晶化したもみがら灰
を同一条件で成形、養生したところ、かさ比重は
1.2と大きく、しかも圧縮強さは32〜104Kg/cm2
低く、水硬性セメントとしては強度不足である。
養生温度を80℃にあげても、1日間の養生で圧縮
強さは111Kg/cm2にとどまつた。
For comparison, when rice husk ash crystallized into cristobalite and tridymite obtained by open firing was molded and cured under the same conditions, the bulk specific gravity was
1.2, and its compressive strength is low at 32 to 104 Kg/ cm2 , which is insufficient for hydraulic cement.
Even when the curing temperature was raised to 80°C, the compressive strength remained at 111 kg/cm 2 after one day of curing.

実施例 3 流動床燃焼で得られた非晶質シリカより成るも
みがら灰を微粉砕し、CaO/SiO2モル比が0.8に
なるように石灰原料を配合し、粉体重量の3倍量
の水を加えて懸濁状となし90℃で4時間水熱反応
させたところ、かさ高いけい酸カルシウム水和物
が生成した。このけい酸カルシウム水和物を含む
混合物を加圧成形し、成形体をさらに180℃、10
時間の水熱反応で硬化させたところ、絶乾かさ比
重0.25の軽量硬化体が得られた。
Example 3 Rice husk ash made of amorphous silica obtained by fluidized bed combustion was finely pulverized, lime raw material was blended so that the CaO/SiO 2 molar ratio was 0.8, and 3 times the powder weight was When water was added to form a suspension and the mixture was subjected to a hydrothermal reaction at 90°C for 4 hours, a bulky calcium silicate hydrate was produced. This mixture containing calcium silicate hydrate was pressure molded, and the molded body was further heated at 180°C for 10
When it was cured by a hydrothermal reaction for hours, a lightweight cured product with an absolute dry bulk specific gravity of 0.25 was obtained.

比較のために、野積焼成で得られたクリストバ
ライト及びトリジマイトに結晶化したもみがら灰
を同一条件で水熱反応、成形さらに硬化させた
が、前者に比べると90℃における水熱反応性が著
しく劣り、したがつてかさ高いけい酸カルシウム
水和物の生成量が少なく、軽量化は不十分となり
硬化体の絶乾かさ比重は0.61にとどまつた。
For comparison, rice husk ash crystallized into cristobalite and tridymite obtained by field firing was subjected to hydrothermal reaction, molding, and hardening under the same conditions, but the hydrothermal reactivity at 90°C was significantly inferior to that of the former. Therefore, the amount of bulky calcium silicate hydrate produced was small, and weight reduction was insufficient, and the absolute dry specific gravity of the cured product remained at 0.61.

実施例 4 流動床燃焼で得られた非晶質シリカより成るも
みがら灰を微粉砕し、CaO/SiO2モル比が1.1に
なるように石灰原料を配合し、粉体重量の24倍量
の水を加えて懸濁状となし、かきまぜ式オートク
レーブで190℃で8時間反応させたところ、針状
によく発達したけい酸カルシウム水和物が生成し
た。このけい酸カルシウム水和物を含む混合物を
成形し乾燥したところ、かさ比重0.17、曲げ強さ
7.2Kg/cm2、また曲げ強さをかさ比重で割つて得
られる比曲げ強さが42.2Kg/cm2の硬化体が得られ
た。
Example 4 Rice husk ash made of amorphous silica obtained by fluidized bed combustion was finely pulverized, lime raw material was blended so that the CaO/SiO 2 molar ratio was 1.1, and 24 times the weight of the powder was mixed. When water was added to form a suspension and the mixture was reacted in a stirring autoclave at 190°C for 8 hours, calcium silicate hydrate with well-developed needle shapes was produced. When this mixture containing calcium silicate hydrate was molded and dried, the bulk specific gravity was 0.17 and the bending strength was
A cured product having a specific bending strength of 42.2Kg/cm 2 obtained by dividing the bending strength by the bulk specific gravity was obtained.

比較のために、野積焼成で得られた結晶化もみ
がら灰を同一条件で水熱反応させ、成形、乾燥し
たところ、かさ比重は0.19と高く、曲げ強さは
5.4Kg/cm2、比曲げ強さは28.4Kg/cm2と低いもの
であつた。これは針状けい酸カルシウム水和物の
発達が不十分であつたためである。
For comparison, when crystallized rice husk ash obtained by field firing was hydrothermally reacted under the same conditions, molded and dried, the bulk specific gravity was as high as 0.19, and the bending strength was
The specific bending strength was as low as 5.4Kg/cm 2 and 28.4Kg/cm 2 . This is because the acicular calcium silicate hydrate was insufficiently developed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はもみがら用流動床燃焼炉の概略図であ
り、第2図は流動床燃焼炉で得られたもみがら灰
のX線回折図である。 1……熱媒体粒子、2……炉体、3……送風
機、4……予熱ヒーター、5……もみがらホツパ
ー、6……もみがらフイーダー、7……熱電対、
8……操作盤、9……変速駆動装置、10……空
気流量計、11……サイクロン、12……ホツパ
ー加圧空気、A……空気、B……もみがら、P…
…もみがら灰、E……排気、T……トリジマイ
ト、C……クリストバライト、Q……石英。
FIG. 1 is a schematic diagram of a fluidized bed combustion furnace for rice husk, and FIG. 2 is an X-ray diffraction diagram of rice husk ash obtained in the fluidized bed combustion furnace. 1... Heat carrier particles, 2... Furnace body, 3... Blower, 4... Preheating heater, 5... Rice husk hopper, 6... Rice husk feeder, 7... Thermocouple,
8...Operation panel, 9...Variable speed drive device, 10...Air flow meter, 11...Cyclone, 12...Hopper pressurized air, A...Air, B...Rice husk, P...
...Rice husk ash, E...Exhaust, T...Tridymite, C...Cristobalite, Q...Quartz.

Claims (1)

【特許請求の範囲】[Claims] 1 流動床燃焼により、もみがらを燃焼せしめる
に際し、該流動床燃焼炉の温度を650℃〜920℃と
なし、しかも該もみがらの炉内滞留時間は、でき
る限り短くすることを特徴とするもみがらの流動
床燃焼方法。
1. Rice husk characterized in that when burning rice husks by fluidized bed combustion, the temperature of the fluidized bed combustion furnace is set at 650°C to 920°C, and the residence time of the rice husks in the furnace is made as short as possible. Fluidized bed combustion method for garbage.
JP58144098A 1983-08-05 1983-08-05 Amorphous chaff ash and manufacture of hydraulic cement andforming material from chaff ash as raw material Granted JPS6036360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144098A JPS6036360A (en) 1983-08-05 1983-08-05 Amorphous chaff ash and manufacture of hydraulic cement andforming material from chaff ash as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144098A JPS6036360A (en) 1983-08-05 1983-08-05 Amorphous chaff ash and manufacture of hydraulic cement andforming material from chaff ash as raw material

Publications (2)

Publication Number Publication Date
JPS6036360A JPS6036360A (en) 1985-02-25
JPH0121108B2 true JPH0121108B2 (en) 1989-04-19

Family

ID=15354148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144098A Granted JPS6036360A (en) 1983-08-05 1983-08-05 Amorphous chaff ash and manufacture of hydraulic cement andforming material from chaff ash as raw material

Country Status (1)

Country Link
JP (1) JPS6036360A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524721B2 (en) * 2000-04-10 2010-08-18 株式会社前田先端技術研究所 Cement composition containing rice husk ash etc.
WO2011064815A1 (en) * 2009-11-25 2011-06-03 丸仙陶器原料株式会社 Rice hull ash for cement admixture
JP5682440B2 (en) * 2011-05-10 2015-03-11 住友大阪セメント株式会社 Cement production method using rice husk ash

Also Published As

Publication number Publication date
JPS6036360A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
US4341562A (en) Lightweight aggregate
USRE34775E (en) Lightweight aggregate from flyash and sewage sludge
US4238237A (en) Manufacture of cement by intergrinding carbonaceous fuel
US4123288A (en) Calcination
WO2013058931A1 (en) Solid state combustion synthesis of nano to macroscale portland cement and other high value nano particles
JPH0121108B2 (en)
EP0451964A2 (en) Method of producing a light weight building material
JPH0264077A (en) Production of formed ceramic article such as light-weight aggregate from industrial waste such as sewage sludge
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate
JPH0859311A (en) Production of solidified body from combustion ash and device therefor
JPH04349180A (en) Production of inorganic foamed granule
JPS6321244A (en) Artificial lightweight aggregate
SU1299998A1 (en) Raw mixture for producing keramzit
JPH08259292A (en) Production of fly ash type artificial aggregate
JP2625218B2 (en) Method for firing coal ash granules
KR0145123B1 (en) Manufacturing method of lightweight aggregate using tunnel kiln
JPS6348833B2 (en)
SU1447777A1 (en) Method of producing expanded clay aggregate
SU854911A1 (en) Binder for making autoclave cellular concrete and its production method
RU1791420C (en) Mass for ceramic article preparing
SU1625844A1 (en) Starting mixture for producing expanded clay aggregate
SU1497181A1 (en) Method of producing articles of building ceramics
JPS54159399A (en) Manufacture of calcium carbide
JPH0581545B2 (en)
SU486049A1 (en) Method for the production of fluxed iron ore granules in multi-zone fluidized bed furnaces