JPH01203952A - Electric conductivity meter - Google Patents

Electric conductivity meter

Info

Publication number
JPH01203952A
JPH01203952A JP2988688A JP2988688A JPH01203952A JP H01203952 A JPH01203952 A JP H01203952A JP 2988688 A JP2988688 A JP 2988688A JP 2988688 A JP2988688 A JP 2988688A JP H01203952 A JPH01203952 A JP H01203952A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
metal oxide
electrical conductivity
conductivity meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2988688A
Other languages
Japanese (ja)
Other versions
JPH07107521B2 (en
Inventor
Kimiyasu Satou
佐藤 公庸
Yoshiyuki Miyaki
義行 宮木
Kazuhiro Hirao
和宏 平尾
Yukie Matsumoto
幸英 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Tosoh Corp filed Critical Permelec Electrode Ltd
Priority to JP2988688A priority Critical patent/JPH07107521B2/en
Publication of JPH01203952A publication Critical patent/JPH01203952A/en
Publication of JPH07107521B2 publication Critical patent/JPH07107521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To provide an electric conductivity meter which is stable and is highly resistant to corrosion and to obtain a good linear relation between the conductivity between electrodes to be measured and an actual salt concn. by incorporating at least any one noble metal oxide among Pt, Ir, Os, Pd, Ru and Rh on the surface of the base bodies of the metallic electrodes. CONSTITUTION:At least one or two noble metal oxides are incorporated into the coating layer of a conductive metal oxide which coats the surface of electrode base bodies to be used for the electrodes. The coating layer which contains >=1 among the oxides of Ti, Ta, Nb, Zr, Hf, Al, Si, Sn, Sb, and Bi as the metal oxide except noble metals is equally satisfactory. for example, an electrode cell consisting of a pair of the electrodes 1, 1, an intermediate chamber spacer 2, and cell frames 3, 3 is formed. The electrodes formed by coating TiO2 doped with 30mol.% RuO2 on the surface of the Ti electrode base bodies to 10mum thickness are used. The electrical conductivity meter which is stable and is highly resistant to corrosion is thereby obtd. and the god linear relation between the conductivity between the electrodes to be measured and the actual salt concn. is thereby obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解質を含有する水溶液や懸濁液中の電解質濃
度を連続的に測定するための電気伝導度計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrical conductivity meter for continuously measuring the electrolyte concentration in an aqueous solution or suspension containing an electrolyte.

電気伝導度計は、生化学物質を含有する溶液や食品など
に含まれる塩分の濃度の測定に有用であり、特に、限外
r過膜や拡散透析膜等の分離膜、およびゲル?FAによ
る生体関連物質の脱塩あるいは電気透析や逆浸透膜によ
る塩含有液の脱塩における塩濃度の測定に有効である。
Electrical conductivity meters are useful for measuring the concentration of salts contained in solutions containing biochemical substances, foods, etc., and are particularly useful for measuring the concentration of salts contained in solutions containing biochemical substances, foods, etc. It is effective for measuring salt concentration in the desalination of biological substances by FA or the desalination of salt-containing liquids by electrodialysis or reverse osmosis membranes.

[従来の技術] 従来から、塩含有液中の塩濃度を連続的に測定する方法
として、対象液中に投入した一対の電極により該対象液
の電気伝導度を測定し、それを塩濃度に換算する方法が
知られている。この測定に使用される電極の材料として
は、従来Fe、にu、Pt、Au、へg等の金属、ステ
ンレス等の合金、白金黒めつきしたpt、あるいは炭素
が使用されてきた。
[Prior Art] Conventionally, as a method for continuously measuring the salt concentration in a salt-containing liquid, the electrical conductivity of the target liquid is measured using a pair of electrodes inserted into the target liquid, and this is calculated as the salt concentration. There are known methods of conversion. As materials for the electrodes used in this measurement, metals such as Fe, U, Pt, Au, and Heg, alloys such as stainless steel, platinum black-plated PT, or carbon have conventionally been used.

しかしながら、Fe、(:u、およびステンレスは耐腐
食性に乏しい上、電極界面におけるインピーダンスが大
きいため正確で安定した測定が難しい。すなわち、これ
らの材料では、測定される電極間の伝導率(電極セルの
全インピーダンスの逆数)と実際の塩濃度が直線関係か
ら大ぎく外れ、伝導率から塩濃度を正確に算出すること
が難しくなってしまう。
However, Fe, (:u, and stainless steel) have poor corrosion resistance and high impedance at the electrode interface, making it difficult to make accurate and stable measurements. The relationship between the reciprocal of the total impedance of the cell) and the actual salt concentration deviates significantly from the linear relationship, making it difficult to accurately calculate the salt concentration from the conductivity.

また、Pt、Au、Agをそのまま用いた場合も電極界
面におけるインピーダンスが大きく同様な問題が生じる
。一方、白金黒電極は乾燥状態にすると性状が変化し易
い。さらにPtや八Uは高価であり、安価で簡便な機器
への使用に不向きである。
Further, when Pt, Au, and Ag are used as they are, the impedance at the electrode interface is large and a similar problem occurs. On the other hand, the properties of platinum black electrodes tend to change when kept in a dry state. Furthermore, Pt and 8U are expensive and unsuitable for use in inexpensive and simple equipment.

炭素電極は機械的強度に乏しいことが問題である。The problem with carbon electrodes is that they have poor mechanical strength.

[発明が解決しようとする課題] 本発明の目的は、これら従来の電気伝導度計に比べ、安
定で耐腐食性に勝れ、しかも、測定される電極間の伝導
率と実際の塩濃度の直線関係の良い電気伝導度計を提供
することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to be more stable and corrosion resistant than these conventional electrical conductivity meters, and to be able to reduce the difference between the measured conductivity between the electrodes and the actual salt concentration. The objective is to provide an electrical conductivity meter with good linear relationship.

[課題を解決するための手段] 本発明者らは、塩含有液中の塩濃度を連続的に測定する
ための電気伝導度針の電極に、導電性金属酸化物をコー
ティングした金属を用いることにより、安定で耐腐食性
に勝れ、しかも、測定される電極間の伝導率(電極セル
の全インピーダンスの逆数)と実際の塩濃度の直線関係
の良い電気伝導度計が得られることを見い出し本発明を
完成した。
[Means for Solving the Problems] The present inventors have proposed using a metal coated with a conductive metal oxide for the electrode of an electrical conductivity needle for continuously measuring the salt concentration in a salt-containing liquid. It was discovered that an electrical conductivity meter that is stable, has excellent corrosion resistance, and has a good linear relationship between the measured conductivity between the electrodes (the reciprocal of the total impedance of the electrode cell) and the actual salt concentration was discovered. The invention has been completed.

本発明よりなる電気伝導計の特徴は、金属電極がその基
体表面に、Pt、Ir、Os、Pd、Ru及びRhの少
なくともいずれか一つの貴金属酸化物(以下単に貴金属
酸化物という)を含み、あるいはこれと共にPt、Ir
、Os、Pd、Ru及びRhの貴金属を含んでいてもよ
い、導電性金属酸化物被覆層を有するという構成をなす
ところにある。この導電性金属酸化物被覆層は更に上記
貴金属以外の導電性金属酸化物を含むものであってもよ
い。
The electrical conductivity meter according to the present invention is characterized in that the metal electrode includes a noble metal oxide (hereinafter simply referred to as noble metal oxide) of at least one of Pt, Ir, Os, Pd, Ru, and Rh on its base surface, Or along with this, Pt, Ir
, Os, Pd, Ru, and Rh, which may contain a conductive metal oxide coating layer. This conductive metal oxide coating layer may further contain a conductive metal oxide other than the above-mentioned noble metal.

以下、詳細に本発明を説明する。The present invention will be explained in detail below.

本発明の電気伝導度計は、電極(あるいは、これを組込
んだセル)と、インピーダンスを測定するための回路よ
り構成される。ここで、電極は少なくとも2つ必要であ
り、適当な間隔をおいてセル等の担持体に固定される。
The electrical conductivity meter of the present invention is composed of an electrode (or a cell incorporating the electrode) and a circuit for measuring impedance. Here, at least two electrodes are required, and they are fixed to a carrier such as a cell at an appropriate interval.

インピーダンスを測定するための回路は、通常、電極に
電場をあたえるための電源(通常は交流を用いる)とブ
リッジ回路から構成することができる(参考文献、日本
化学命綱、「新実験化学講座5」丸善369〜372ペ
ージ)が、これに限定されることなく、例えばブリッジ
回路を使用しないで、固定抵抗と電極セルとを直列に接
続し、これに定電圧を与え、電極セルに生じる電圧降下
を測定してもよい。
A circuit for measuring impedance can usually consist of a power source (usually using alternating current) and a bridge circuit to apply an electric field to the electrode (References, Nippon Kagaku Lifeline, "New Experimental Chemistry Course 5") Maruzen (pp. 369-372), for example, without using a bridge circuit, connects a fixed resistor and an electrode cell in series, applies a constant voltage to this, and reduces the voltage drop that occurs in the electrode cell. May be measured.

本発明で電極に用いる金属基体の表面をコーティングす
る導電性金属酸化物の被覆層は、上述の如く貴金属酸化
物、あるいはこれと共に貴金属を含んでいてもよい導電
性金属酸化物の層として形成される。上記の貴金属元素
として、Ru、Os、Rh、 Ir、Pd、Ptの一つ
又は二つ以上が選択される。また被覆層は貴金属以外の
金属酸化物として〃、Ti、Ta、Nb、Zr、)If
、AjZ 、Si、Sn、Sb、Biの酸化物のうちの
一つ以上を含むものであってもよい。導電性金属酸化物
の被覆層に含まれる貴金属酸化物は、該貴金属酸化物以
外の貴金属、あるいはこれら貴金属以外の導電性金属酸
化物の含有割合を、95重量零以下、好ましくは90重
量を以下、最適には80重量零以下とする範囲で与えら
れることがよい。貴金属の含有割合が95重量零4Wよ
り多くなると、被覆層の機械的強度の低下、及び基体と
の接着強度の低下、更にコストが高くなる問題があり、
また貴金属以外の導電性金属酸化物の含有割合が95重
量x 1yより多くなると、電極のインピーダンスが大
きくなる問題がある。
The conductive metal oxide coating layer that coats the surface of the metal substrate used in the electrode in the present invention is formed as a layer of a noble metal oxide or a conductive metal oxide that may contain a noble metal as described above. Ru. As the above noble metal element, one or more of Ru, Os, Rh, Ir, Pd, and Pt is selected. In addition, the coating layer is made of metal oxides other than noble metals (Ti, Ta, Nb, Zr, ) If
, AjZ, Si, Sn, Sb, and Bi oxides. The noble metal oxide contained in the conductive metal oxide coating layer has a content ratio of noble metals other than the noble metal oxide or conductive metal oxides other than these noble metals of 95% by weight or less, preferably 90% by weight or less. , it is best to give it within a range of 80 weight zero or less. When the content ratio of the noble metal is more than 95% weight zero 4W, there are problems such as a decrease in the mechanical strength of the coating layer, a decrease in adhesive strength with the substrate, and an increase in cost.
Furthermore, if the content of conductive metal oxides other than noble metals exceeds 95 weight x 1y, there is a problem that the impedance of the electrode increases.

上記被覆層の層厚みは、通常は0.1〜20μm程度、
好ましくは0.5〜10μ亀程度がよい。
The layer thickness of the above-mentioned coating layer is usually about 0.1 to 20 μm,
Preferably, the thickness is about 0.5 to 10 μm.

導電性を付与する手段としては、特に限定されることは
ないが、一般的には、熱処理による固体反応、あるいは
出発原料を塩として、塩の熱分解による方法が利用でき
る。又は、以下に述べるが、導電性酸化物の合成と基体
金属へのコーティングを同時に行なえる手段を採用して
も良い。
The means for imparting conductivity is not particularly limited, but in general, a solid reaction using heat treatment or a method using a salt as a starting material and thermal decomposition of the salt can be used. Alternatively, as will be described below, it is also possible to adopt a method that allows the synthesis of the conductive oxide and the coating on the base metal at the same time.

また、導電性金属酸化物をコーティングする電極基体と
しては、Ti、Ta、Nb、Zrのうちのいずれかある
いはこれらの基合金が利用できる。通常Tiが好ましく
使用される。この理由は、これら金属材料が化学的に安
定であり、しかも伝導度測定時に印加される直流又は交
流電源波形に対して電気化学的に安定であり、更には、
導電性金属酸化物と良好な接着強度を保てることに起因
している。
Further, as the electrode base coated with the conductive metal oxide, any one of Ti, Ta, Nb, and Zr or a base alloy thereof can be used. Usually Ti is preferably used. The reason for this is that these metal materials are chemically stable and electrochemically stable against the DC or AC power waveform applied during conductivity measurement.
This is due to the ability to maintain good adhesive strength with conductive metal oxides.

導電性金属酸化物をコーティングする手段としては、種
々の技術が応用できる。例えば、導電性金属酸化物を予
め合成し粉体とした後、適当な無機あるいは有機バイン
ダーを少量加えてペースト状とし、基体金属上に印刷焼
成する方法、あるいは導電性金属酸化物の出発原料を塩
として、塩の混合溶液を基体金属上に塗布乾燥後、熱分
解により導電性酸化物の合成と基体金属へのコーティン
グを同時に行なう方法、更にはPVD、 CVDを活用
する方法が考えられる。
Various techniques can be applied to coat the conductive metal oxide. For example, a method is to synthesize a conductive metal oxide in advance and turn it into a powder, then add a small amount of an appropriate inorganic or organic binder to form a paste, and then print and bake it on a base metal. As a salt, a method can be considered in which a mixed solution of the salt is applied onto the base metal, dried, and then a conductive oxide is simultaneously synthesized by thermal decomposition and coated on the base metal, and a method using PVD or CVD is also considered.

表1に各種電極材料の単極の交流インピーダンス測定値
を示した。
Table 1 shows the unipolar AC impedance measurements of various electrode materials.

表  1  単極の交流インピーダンスこれらは、伝導
度の測定で常用される交流周波数1 kHzでの測定で
あり、電極の有効面積2cm2.3規定硫酸水溶液、4
0℃において測定された。単極のインピーダンスは、電
極表面層の抵抗、電極−溶液界面の抵抗及びキャパシタ
ンスで構成される複雑な関係で成り立っており、一般的
には複素平面上にベクトルとして取り扱われる。インピ
ーダンスの大きさは、このベクトルの長さの絶対値に相
当するものである。表1から明らかなように本発明に適
用されるNo3の導電性酸化物被覆を有する電極のイン
ピーダンスは非常に小さいことが示されている。このこ
とは、導電性酸化物層の電気抵抗が非常に小さく、且つ
導電性酸化物−溶、液界面に存在する電気化学的抵抗も
非常に小さいことによるものと理解される。
Table 1 AC impedance of a single pole These are measurements at an AC frequency of 1 kHz, which is commonly used in conductivity measurements, and the effective area of the electrode is 2 cm.
Measured at 0°C. The impedance of a single pole is made up of a complex relationship consisting of the resistance of the electrode surface layer, the resistance of the electrode-solution interface, and the capacitance, and is generally treated as a vector on a complex plane. The magnitude of impedance corresponds to the absolute value of the length of this vector. As is clear from Table 1, the impedance of the electrode No. 3 having the conductive oxide coating applied to the present invention is extremely small. This is understood to be due to the fact that the electrical resistance of the conductive oxide layer is very low, and the electrochemical resistance present at the conductive oxide-solution/liquid interface is also very low.

このように、導電性酸化物をコーティングした電極は電
極界面のインピーダンスが非常に小さいので2極法によ
る液体の電気伝導度測定に用いても十分な精度で液抵抗
の逆数としてのその値を決定できる。
In this way, the electrode coated with a conductive oxide has a very small impedance at the electrode interface, so even if it is used to measure the electrical conductivity of a liquid using the two-electrode method, its value as the reciprocal of the liquid resistance can be determined with sufficient accuracy. can.

さらに上記電極は4電極法による液体の電気伝導度測定
(参考文献、日本化学金線、「新実験化学講座5」丸善
367〜376ページ)に用いることもできる。この場
合、通電用電極あるいは電位差測定用プローブ電極とし
て使用すれば、強酸等腐食性の液体に対しても安定に、
電気伝導度を測定することが可能となる。
Furthermore, the above electrode can also be used for measuring the electrical conductivity of a liquid by the four-electrode method (reference literature, Nippon Kagaku Kinsen, "New Experimental Chemistry Course 5" Maruzen pp. 367-376). In this case, if used as a current-carrying electrode or a probe electrode for potential difference measurement, it can be used stably against corrosive liquids such as strong acids.
It becomes possible to measure electrical conductivity.

本発明の電気伝導度計で塩濃度測定にともされる対象液
としては、多糖類、アミノ酸誘導体、オリゴペプチド、
蛋白質、核酸関連物質、酸素、抗生物質を始めとする生
化学物質、動物や植物からの生体抽出物、食品添加物な
どの溶液や、液状の食品(ジュース、スープ、牛乳、コ
ーヒー、醤油等)などがあげられる。
The target liquid used for salt concentration measurement with the electrical conductivity meter of the present invention includes polysaccharides, amino acid derivatives, oligopeptides,
Solutions of proteins, nucleic acid-related substances, oxygen, biochemical substances including antibiotics, biological extracts from animals and plants, food additives, and liquid foods (juice, soup, milk, coffee, soy sauce, etc.) etc.

本発明の電気伝導度計は、上記の対象液を限外r適法、
拡散透析法、電気透析法、ゲルー過法等により脱塩する
際、塩濃度を連続的に測定し、その値(または相対値)
を表示し、あるいは更にそれに基づいて装置の運転をコ
ントロールするために用いることができる。特に、本電
気伝導度計を用いれば、測定値が正確で安定しているた
め、確度の高いコントロールができ、また、Ptのよう
に高価な金属を多く使用しないで安価で経済的である。
The electrical conductivity meter of the present invention is characterized in that the above-mentioned target liquid is
When desalting by diffusion dialysis, electrodialysis, gel filtration, etc., the salt concentration is continuously measured and its value (or relative value)
It can be used to display or further control the operation of the device based on it. In particular, if this electrical conductivity meter is used, the measured values are accurate and stable, so highly accurate control is possible, and it is inexpensive and economical because it does not use a large amount of expensive metals such as Pt.

さらに、電極を対象液のりザーバーに設置せず、対象液
が流れる配管の一部に設置すれば、液量の増減の影響を
受けないので、さらに安定した測定値が得られる。
Furthermore, if the electrode is installed not in the target liquid reservoir but in a part of the piping through which the target liquid flows, it will not be affected by increases or decreases in the amount of liquid, so more stable measured values can be obtained.

[実 施 例] 次に実施例により本発明を説明するが、本発明は実施例
に限定されるものではない。
[Examples] Next, the present invention will be explained with reference to Examples, but the present invention is not limited to the Examples.

実施例1 第1図に示すように、一対の電極1.1、中間室スペー
サ2、セル枠3,3よりなる電極セルを作成した。電極
としてはRuO2を30n+ou零ドープしたTiO2
を、Ti電極基体の表面に厚さ10μmにコーティング
したものを用いた。
Example 1 As shown in FIG. 1, an electrode cell consisting of a pair of electrodes 1.1, an intermediate chamber spacer 2, and cell frames 3, 3 was prepared. The electrode is TiO2 doped with 30n+ou of RuO2.
was coated on the surface of a Ti electrode base to a thickness of 10 μm.

電極作製は次のようにして行なった。Electrode preparation was performed as follows.

電極の基体としてJISlf!純チタンを選定し、まず
15%硫酸水溶液、80℃、1時間の条件にて酸洗し、
基体表面の活性化処理を施した。
JISlf! as a base for electrodes! Select pure titanium and first pickle it in a 15% sulfuric acid aqueous solution at 80°C for 1 hour.
The substrate surface was activated.

所定量の四塩化チタン及び四塩化ルテニウムを10%塩
酸水溶液に溶解することで塗布液を調合し、刷毛にて基
体上に均一に塗布した。室温にて湿度がなくなるまで十
分に乾燥後、空気雰囲気の電気炉中で、450℃、20
分間の条件にて熱分解処理を行なった。この塗布、乾燥
、熱処理操作を10回繰返し、所定のコーティング厚み
とした。このようにして得られた導電性金属酸化物より
なるコーティング層の組成は、X線分析により TiO
2,30mo℃零RuO2組成であることを確認し、T
i/Ru原子比は塗布液の組成比と同一であった。また
、コーティング層の厚みは、破壊断面検査により確認し
た。
A coating solution was prepared by dissolving predetermined amounts of titanium tetrachloride and ruthenium tetrachloride in a 10% aqueous hydrochloric acid solution, and was uniformly coated onto the substrate with a brush. After sufficiently drying at room temperature until there is no humidity, heat in an electric furnace in an air atmosphere at 450°C for 20
Thermal decomposition treatment was carried out under conditions of 1 minute. This coating, drying, and heat treatment operation was repeated 10 times to obtain a predetermined coating thickness. The composition of the coating layer made of the conductive metal oxide thus obtained was determined by X-ray analysis to be TiO
Confirm that the composition is 2,30mo℃ zero RuO2, and
The i/Ru atomic ratio was the same as the composition ratio of the coating solution. Moreover, the thickness of the coating layer was confirmed by a fracture cross-section inspection.

第2図にこの電極の形状を示した。ここで電極1.1の
厚さは各々1 am、中間室スペーサ2の厚さは1.5
mm 、両者の中央部分に囲まれた対象液が流れる流路
5の孔径は1 mmとした。
Figure 2 shows the shape of this electrode. Here, the thickness of the electrodes 1.1 is 1 am each, and the thickness of the intermediate chamber spacer 2 is 1.5 am.
mm, and the pore diameter of the channel 5 through which the target liquid flows, which is surrounded by the central portion of both, was 1 mm.

このセルに40m 7分の流速で濃度の異なるいくつか
の食塩水を流し、電気伝導度(セル全体のインピーダン
スの逆数)を1 k)lzの交流電源を備えたインピー
ダンス測定回路4により測定した。これにより得られた
IMの食塩水に対する電気伝導度の比と食塩濃度との関
係を第3図の曲線Aで示した。これにより、両者はかな
りよい直線関係にあることが分る。
Several saline solutions with different concentrations were flowed through this cell at a flow rate of 40 m/7 min, and the electrical conductivity (reciprocal of the impedance of the entire cell) was measured using an impedance measuring circuit 4 equipped with a 1 k) lz AC power supply. The relationship between the electrical conductivity ratio of the IM thus obtained to the saline solution and the salt concentration is shown by curve A in FIG. This shows that there is a fairly good linear relationship between the two.

実施例2 実施例1で作製した電気伝導度計の電極部分をINの塩
酸に24時間浸した後、実施例1と同様な測定を行りた
ところ、電極セルの全インピーダンスは±1%以内の誤
差で再現された。
Example 2 After immersing the electrode part of the conductivity meter produced in Example 1 in IN hydrochloric acid for 24 hours, the same measurements as in Example 1 were performed, and the total impedance of the electrode cell was within ±1%. Reproduced with an error of

比較例1 実施例1において電極の材質を5LIS316とした他
は実施例1と同様に電極セルを作成し、その電気伝導度
(セル全体のインピーダンスの逆数)と食塩濃度との関
係を求めた。この結果を第3図の曲線Bで示した。曲線
Aに比べかなり大きく上に凸の曲線となっていることが
分る。
Comparative Example 1 An electrode cell was prepared in the same manner as in Example 1 except that the electrode material was 5LIS316, and the relationship between its electrical conductivity (reciprocal of the impedance of the entire cell) and salt concentration was determined. This result is shown by curve B in FIG. It can be seen that the curve is considerably larger and more convex than curve A.

また、実施例2と同様に電極部分をINの塩酸の24時
間浸した後食塩水を流してインピーダンスの測定をした
ところ、全く不安定で測定不能であった。
Further, in the same manner as in Example 2, the impedance was measured by soaking the electrode portion in IN hydrochloric acid for 24 hours and then pouring saline solution, but it was completely unstable and measurement was impossible.

[発明の効果] 本発明により、簡単な装置で生化学物質等の水溶液中の
塩分濃度を正確に測定することが可能になった。このた
め、分離膜やゲルを用いた脱塩プロセルの制御を大変安
価な装置で高精度に行うことが可能となる。
[Effects of the Invention] The present invention has made it possible to accurately measure the salt concentration in an aqueous solution of a biochemical substance or the like using a simple device. Therefore, it becomes possible to control the desalting process using a separation membrane or gel with high precision using a very inexpensive device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である電気伝導度計の電極セ
ル部分の概略図を示し、第2図(a)。 (b)はこれに使用された電極の形状を示す。 第3図は本発明の実施例1及び比較例の電気伝導度計を
用いて行った食塩水の電気伝導度測定の結果であり、I
Mの食塩水に対する電気伝導度比を食塩濃度に対してプ
ロットしたものである。 1・・・電8i     2・・・中間室スペーサ3・
・・セル枠 4・・・インピーダンス測定回路 5・・・流路 食塩濃度CM)
FIG. 1 shows a schematic diagram of an electrode cell portion of an electrical conductivity meter according to an embodiment of the present invention, and FIG. (b) shows the shape of the electrode used for this. Figure 3 shows the results of measuring the electrical conductivity of saline water using the electrical conductivity meters of Example 1 and Comparative Example of the present invention.
The electrical conductivity ratio of M to saline is plotted against the salt concentration. 1... Electric 8i 2... Intermediate chamber spacer 3.
... Cell frame 4 ... Impedance measurement circuit 5 ... Channel salt concentration CM)

Claims (1)

【特許請求の範囲】 1 金属電極がその基体表面に、Pt、Ir、Os、P
d、Ru及びRhの少なくともいずれか一つの貴金属酸
化物を含み、あるいはこれと共にPt、Ir、Os、P
d、Ru及びRhの貴金属を含んでいてもよい、導電性
金属酸化物被覆層を有することを特徴とする溶液中の電
解質濃度測定用の電気伝導度計。 2 上記貴金属酸化物を含む導電性金属酸化被覆層が、
更にTi、Ta、Nb、Zr、Hf、Al、Si、Sn
、Sb及びBiから選択された少なくとも一つの金属酸
化物を含む請求項1に記載の電気伝導度 計。 3 金属電極の基体が、Ti、Ta、Nb、Zrあるい
はこれらの基合金のいずれかであることを特徴とする請
求項1に記載の電気伝導度計。
[Claims] 1. The metal electrode has Pt, Ir, Os, Pt on its base surface.
d, contains at least one noble metal oxide of Ru and Rh, or together with Pt, Ir, Os, Pt.
An electrical conductivity meter for measuring electrolyte concentration in a solution, characterized by having a conductive metal oxide coating layer that may contain noble metals such as d, Ru, and Rh. 2 The conductive metal oxide coating layer containing the noble metal oxide is
Furthermore, Ti, Ta, Nb, Zr, Hf, Al, Si, Sn
2. The electrical conductivity meter according to claim 1, comprising at least one metal oxide selected from , Sb, and Bi. 3. The electrical conductivity meter according to claim 1, wherein the base of the metal electrode is made of Ti, Ta, Nb, Zr, or a base alloy thereof.
JP2988688A 1988-02-10 1988-02-10 Electric conductivity meter Expired - Lifetime JPH07107521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2988688A JPH07107521B2 (en) 1988-02-10 1988-02-10 Electric conductivity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2988688A JPH07107521B2 (en) 1988-02-10 1988-02-10 Electric conductivity meter

Publications (2)

Publication Number Publication Date
JPH01203952A true JPH01203952A (en) 1989-08-16
JPH07107521B2 JPH07107521B2 (en) 1995-11-15

Family

ID=12288457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2988688A Expired - Lifetime JPH07107521B2 (en) 1988-02-10 1988-02-10 Electric conductivity meter

Country Status (1)

Country Link
JP (1) JPH07107521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707319A1 (en) * 1994-10-13 1996-04-17 General Electric Company Co-deposition of palladium during oxide film growth in high-temperature water to mitigate stress corrosion cracking
CN106352852A (en) * 2016-08-23 2017-01-25 苏州理欧电子科技有限公司 Electrode for inclination sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784782A (en) * 2016-03-18 2016-07-20 汕头市金光高科有限公司 Online detection for trace moisture of anhydrous hydrogen fluoride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707319A1 (en) * 1994-10-13 1996-04-17 General Electric Company Co-deposition of palladium during oxide film growth in high-temperature water to mitigate stress corrosion cracking
CN106352852A (en) * 2016-08-23 2017-01-25 苏州理欧电子科技有限公司 Electrode for inclination sensor

Also Published As

Publication number Publication date
JPH07107521B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US5110441A (en) Solid state ph sensor
AU720289B2 (en) Electrode for the electrochemical detection of nitric oxide
EP0429439A1 (en) Improved technique for the measurement of high purity water.
US4913780A (en) Redox electrode for determining nitrous acid and nitrosyl compounds
Chmurzyński et al. Ionic equilibria of pyridine N-oxide perchlorates in acetonitrile
JPH01203952A (en) Electric conductivity meter
Lazouskaya et al. Nafion as a protective membrane for screen-printed pH-sensitive ruthenium oxide electrodes
US3786680A (en) Voltage sensing system
Frens et al. Non-equilibrium method for the direct determination of potentials of zero charge
Brown Diffusion currents at a cylindrical wire electrode: simultaneous determination of diffusion coefficient and coulometric number
Jacobs et al. Performance of a planar differential-conductivity sensor for urea
JPS6313148B2 (en)
JP4859003B2 (en) Electrochemical determination of hydrogen peroxide
JPS59211854A (en) Metallic oxide electrode
Sadig et al. Applying a novel polymeric precursor derived by capillary-gravitational coating in fabrication of nanostructured tri-metal oxide-based pH sensing electrode
KR100927848B1 (en) The platinum black plating way that used an electrode sensor re-platinum daecheyong nonferrous metals
Lito et al. Meeting the requirements of the silver/silver chloride reference electrode
WO2017130218A1 (en) Fabrication of a plastic chip electrode cartridge comprising an ionic-liquid membrane containing silver chloride
Capelo et al. Galvanic corrosion of two non noble dental alloys
Huang et al. Studies of the chlorpheniramine solid-state ion-selective electrode
Imai et al. Multicomponent Polyelectrolyte Solutions. Part III. Determination of Activity of KCl in Potassium Polyvinylsulfonate Solutions by Use of a Cation‐Sensitive Glass Electrode
JPS5888645A (en) Measuring sensor for content of oxygen in gas
JPH07104317B2 (en) Oxygen partial pressure measuring electrode device
Nei Some milestones in the 50-year history of electrochemical oxygen sensor development
Strachan et al. THE TRANSFERENCE NUMBER, CONDUCTANCE, AND IONIZATION OF HYDRIODIC ACID AT 25°.