JPH01202658A - Filling material for liquid chromatography - Google Patents

Filling material for liquid chromatography

Info

Publication number
JPH01202658A
JPH01202658A JP63026761A JP2676188A JPH01202658A JP H01202658 A JPH01202658 A JP H01202658A JP 63026761 A JP63026761 A JP 63026761A JP 2676188 A JP2676188 A JP 2676188A JP H01202658 A JPH01202658 A JP H01202658A
Authority
JP
Japan
Prior art keywords
clay mineral
optically active
spherical
filling material
liquid chromatography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63026761A
Other languages
Japanese (ja)
Other versions
JP2635349B2 (en
Inventor
Akihiko Yamagishi
晧彦 山岸
Kazuo Higashikubo
東久保 和雄
Satoshi Matsumoto
聡 松本
Michihiro Yamaguchi
山口 道広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP63026761A priority Critical patent/JP2635349B2/en
Priority to CA000570892A priority patent/CA1321188C/en
Priority to EP19880306015 priority patent/EP0297901B1/en
Priority to DE8888306015T priority patent/DE3870727D1/en
Publication of JPH01202658A publication Critical patent/JPH01202658A/en
Priority to US07/588,519 priority patent/US5145578A/en
Application granted granted Critical
Publication of JP2635349B2 publication Critical patent/JP2635349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To divide various optically active substances efficiently and moreover, to enable the parcelling and refining efficiently in a short time, by using a filling material for optical division comprising a spherical clay mineral having an optically active cation between layers. CONSTITUTION:A filling material comprises a spherical clay mineral in which an optically active cation existing as ion between layers thereof is substituted in substance. Being spherical, the filling material is so high in the filling efficiency as to be used for a fast liquid chromatography. It also fully comprises a clay mineral without use of any carrier to achieve a high identifying capacity of an optical isomer. Moreover, the spherical clay mineral can be produced simply at a low cost. Thus, this filling material permits efficient division of various optically active substances and also enables parcelling and refining efficiently in a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液体クロマトグラフィー用充填剤に関する。更
に詳しくは、光学活性なカチオンを層間に有する球状の
粘土鉱物からなる新規な光学分割用の液体クロマトグラ
フィー用充填剤である。そしてこれを用いることにより
従来の光学分割用充填剤では分割が困難であった各種光
学活性な物質が効率良く分割でき、ざらに短時間で効率
よく分取精製可能な新規な液体クロマトグラフィー用充
填剤を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a packing material for liquid chromatography. More specifically, it is a novel filler for liquid chromatography for optical resolution, which is made of a spherical clay mineral having optically active cations between layers. By using this material, it is possible to efficiently separate various optically active substances that are difficult to separate with conventional optical separation packings, and it is a new packing for liquid chromatography that allows for efficient preparative purification in a relatively short period of time. It is intended to provide an agent for

[従来の技術] 光学活性な物質を光学分割する必要性は近年共々重要に
なってきた。光学分割の方法は、化学的にジアステレオ
マーを生成させ、その物理化学的性質の差を利用する方
法、酵素を用いる方法、クロマトグラフィーによる方法
などがある。このうちクロマトグラフィーによる方法は
、キラルな吸着剤の両鏡像体に対する物理的吸着、化学
的吸着および分配の差を利用するもので、オーブンカラ
ムの時代を経て、現在光学分割用の高速液体クロマトグ
ラフィーの開発が盛んに行なわれている。
[Prior Art] The need to optically resolve optically active substances has become important in recent years. Optical resolution methods include methods that chemically generate diastereomers and utilize differences in their physicochemical properties, methods that use enzymes, and methods that use chromatography. Among these methods, chromatography methods utilize the differences in physical adsorption, chemical adsorption, and distribution of chiral adsorbents to both enantiomers. is being actively developed.

光学分割用の液体クロマトグラフィー用充填剤はシリカ
ゲルや有機高分子粉末に光学活性なリガンドを吸着ある
いは化学結合させたり、高分子自体に光学活性をもたせ
たりしたものが用いられている。また粘土鉱物の層間イ
オンを光学活性な金属錯体でイオン交換して分割剤とし
て利用する方法も提案されている。
Packing materials for liquid chromatography for optical resolution are those in which optically active ligands are adsorbed or chemically bonded to silica gel or organic polymer powder, or in which the polymer itself is endowed with optical activity. A method has also been proposed in which interlayer ions of clay minerals are ion-exchanged with an optically active metal complex and used as a splitting agent.

[発明が解決しようとする問題点] これらの光学分割用の充填剤ではそれぞれの充填剤に応
じて光学分割される物質が限られており、また分割も完
全でない場合が多い。ざらにリガンドの脱離や充填剤の
膨潤などにより耐久性に問題があり、長期の使用が困難
な場合も多い。
[Problems to be Solved by the Invention] With these fillers for optical resolution, the substances that can be optically resolved are limited depending on each filler, and the resolution is often incomplete. Furthermore, there are problems with durability due to detachment of the ligand and swelling of the filler, and long-term use is often difficult.

金属錯体・粘土付加物を利用する場合(特開昭6l−2
04138)では粘土鉱物の粒径、粒度分布やその不定
形な形状のため高速液体クロマトグラフィー用充填剤と
しての利用は難しく、バッチ法やオーブンカラムで用い
なければならず、効率よい分割ができない。またこの付
加物をシリカゲルなどに付着させた吸着剤(特開昭6l
−204562)では高速液体クロマトグラフィー用充
填剤として利用できるものの、光学分割に必要とされる
金属錯体・粘土付加物の全充填剤に対する割合は小ざく
、吸着サイトが少ないため、多くの物質は吸着きれずに
溶出することから適用できる物質は極めて限られている
。また、適用できる物質でも、溶離液に対する溶解度を
減少させて充填剤に対する吸着力を増すために、その溶
離液に水を含まなければならないという欠点を持ってい
る。
When using metal complexes/clay adducts (Unexamined Japanese Patent Publication No. 61-2
04138), it is difficult to use it as a packing material for high performance liquid chromatography due to the particle size, particle size distribution, and irregular shape of the clay mineral, and it must be used in a batch method or an oven column, and efficient separation is not possible. In addition, an adsorbent made by adhering this adduct to silica gel etc.
-204562) can be used as a packing material for high-performance liquid chromatography, but the proportion of the metal complex/clay adduct required for optical resolution in the total packing material is small and there are few adsorption sites, so many substances are adsorbed. The substances that can be applied are extremely limited because they elute without being washed out. Moreover, even the applicable substances have the disadvantage that water must be included in the eluent in order to reduce the solubility in the eluent and increase the adsorption power to the filler.

本発明者らは、このような事情に鑑み鋭意研究を重ねた
結果、球状の粘土鉱物を製造することに成功し、次いで
該球状粘土鉱物の層間イオンを光学活性なカチオンに実
質的に置換したものを液体クロマトグラフィー用充填剤
として用いると、多くの光学活性な物質を効率良く分離
できること、長期に渡って使用可能であること等を見出
し、これらの知見に基づいて本発明を完成するに到った
As a result of intensive research in view of the above circumstances, the present inventors succeeded in producing a spherical clay mineral, and then substantially replaced the interlayer ions of the spherical clay mineral with optically active cations. The present inventors have discovered that many optically active substances can be efficiently separated and can be used for a long period of time when used as a packing material for liquid chromatography, and based on these findings, they have completed the present invention. It was.

[問題点を解決するための手段] すなわち本発明は、粘土鉱物の層間イオンが光学活性な
カチオンで実質的に置換きれてなる球状の粘土鉱物から
なる光学分割用の液体クロマトグラフィー用充填剤を提
供するものである。
[Means for Solving the Problems] That is, the present invention provides a packing material for liquid chromatography for optical resolution consisting of a spherical clay mineral in which the interlayer ions of the clay mineral are substantially replaced by optically active cations. This is what we provide.

以下、本発明の構成について詳述する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明に用いる粘土鉱物は、スメクタイト属に属する層
状ケイ酸塩鉱物で、球状の粘土鉱物が製造できるものな
らなんでも良いが、−大粒子の小きいものが好ましく、
このような意味から合成サボナイトであるスメクトン(
クニミネ工業社製)や合成へクトライトであるラポナイ
ト(ラボルテ社製)が特に好ましい。
The clay mineral used in the present invention is a layered silicate mineral belonging to the genus smectite, and any clay mineral that can produce spherical clay minerals may be used, but - those with small large particles are preferable;
In this sense, the synthetic sabonite smectone (
Particularly preferred are Kunimine Kogyo Co., Ltd.) and synthetic hectorite Laponite (Laborte Co., Ltd.).

本充填剤に用いられる光学活性なカチオンとしては、光
学活性な部位を有する金属錯体、アミノ酸、四級アンモ
ニウム塩、アルカロイド等があげられるが、なかでも光
学活性な金属錯体が特に好ましい。
Examples of the optically active cation used in the present filler include metal complexes having an optically active site, amino acids, quaternary ammonium salts, alkaloids, etc. Among them, optically active metal complexes are particularly preferred.

金属錯体は、金属イオンと配位子とからなるが、配位子
の置換に対し不活性であり、配位構造に基づく光学活性
を有するものであればよい。なかでも錯体自体の光学分
割が容易で、使用中にラセミ化も変質もせず安定で、光
学活性体の分割能の高いものが好ましい。金属イオンと
してはニッケル、ルテニウム、コバルト、鉄、銅などが
、配位子としては1.10−フェナントロリン、2.2
’−ビピリジン、アミノ酸など一般的なものが用いられ
る。
The metal complex is composed of a metal ion and a ligand, and may be any complex as long as it is inert to substitution of the ligand and has optical activity based on the coordination structure. Among these, preferred are complexes that are easy to optically resolve, are stable without racemization or deterioration during use, and have a high ability to resolve optically active forms. Metal ions include nickel, ruthenium, cobalt, iron, copper, etc., and ligands include 1.10-phenanthroline and 2.2
Common compounds such as '-bipyridine and amino acids are used.

本発明に係る充填剤を得る簡便な方法としてはまず球形
の粘土鉱物を得、その後層間の交換可能なイオンを光学
活性なカチオンで置換する方法があげられる。
A simple method for obtaining the filler according to the present invention is to first obtain a spherical clay mineral, and then replace the exchangeable ions between the layers with optically active cations.

球形の粘土鉱物を得るには噴霧乾燥法によるのが良い。Spray drying is preferably used to obtain spherical clay minerals.

これを用いることにより、簡便で比較的粒径の整った球
形の粘土鉱物が得られる。すなわち、粘土鉱物を水性溶
媒中に分散してゲル化し、しかる後に該分散液を噴霧乾
燥する方法である。
By using this, it is possible to easily obtain a spherical clay mineral with a relatively uniform particle size. That is, this is a method in which clay minerals are dispersed in an aqueous solvent, gelled, and then the dispersion is spray-dried.

上記ゲルを調製するにあたっては粘土鉱物の濃度が20
重量%以下になるようにすることが望ましく、特に望ま
しくは1〜10重量%である。20重量%を越える濃度
ではゲル粘度が高く、噴霧乾燥時の噴霞ノズルへの液の
送りが難しく、またノズルの目づまり等が生じてしまう
。また上記ゲルの調製に際しては、粘土鉱物が十分に分
散、fff−Jするように十分撹拌することが好ましい
。分散、膨潤が不十分な場合は噴霧乾燥時にノズルの目
づまりや、得られた球状粘土鉱物がふぞろいとなる場合
があり好ましくない。
In preparing the above gel, the concentration of clay mineral is 20
It is desirable that the amount is less than 1% by weight, and particularly preferably 1 to 10% by weight. If the concentration exceeds 20% by weight, the gel viscosity is high, making it difficult to feed the liquid to the spray nozzle during spray drying, and clogging the nozzle. Further, when preparing the above gel, it is preferable to sufficiently stir the gel so that the clay mineral is sufficiently dispersed and fff-J. If the dispersion and swelling are insufficient, the nozzle may become clogged during spray drying, and the obtained spherical clay mineral may become uneven, which is not preferable.

噴霧乾燥に際しては、ディスクタイプや加圧ノズル式、
2流体ノズル式などの一般的噴霧乾燥法が適用できる。
For spray drying, disc type, pressure nozzle type,
A general spray drying method such as a two-fluid nozzle method can be applied.

いずれの場合も噴霧時の入口空気温度は、粘土鉱物が3
00℃位までは熱的に十分安定であることから、150
〜300℃程度の広い温度範囲が設定できる。また排気
温度はノズルからの噴霧流量などによって規定きれるが
、大旨100℃前後で良い。こうして得られる球状粘土
鉱物の粒子径は2〜20μmである。この球状粘土鉱物
は必要に応じて通常の乾式分級法により分級して用いら
れる。
In either case, the inlet air temperature during spraying is 3.
Since it is thermally stable enough up to about 00℃, 150℃
A wide temperature range of ~300°C can be set. Further, the exhaust temperature can be determined by the flow rate of the spray from the nozzle, etc., but in general, it is sufficient to be around 100°C. The particle size of the spherical clay mineral thus obtained is 2 to 20 μm. This spherical clay mineral is used after being classified by an ordinary dry classification method, if necessary.

粘土鉱物の層間には、通常ナトリウムイオンが存在し、
粘土鉱物全体を電気的に中和しているが、この層間イオ
ンは交換性であり、容易に他のカチオンと置き換えるこ
とができる。このカチオン交換容量は粘土鉱物の種類に
よっても異なるが、粘土鉱物100g当り大兄60から
150ミリ当量である。
There are usually sodium ions between the layers of clay minerals,
Although the entire clay mineral is electrically neutralized, the interlayer ions are exchangeable and can be easily replaced with other cations. This cation exchange capacity varies depending on the type of clay mineral, but is 60 to 150 milliequivalents per 100 g of clay mineral.

層間カチオンの交換方法としては、水や有機溶媒に光学
活性なカチオンの塩を溶解し、そこに球状の粘土鉱物を
分散し、撹拌する。あるいは球状の粘土鉱物を有機溶媒
に分散し、そこに光学活性なカチオンの塩を溶解しても
よい。その後、粘土鉱物を分離し、洗浄し、しかる後に
乾燥すればよい。
As a method for exchanging interlayer cations, an optically active cation salt is dissolved in water or an organic solvent, spherical clay minerals are dispersed therein, and the mixture is stirred. Alternatively, spherical clay minerals may be dispersed in an organic solvent, and an optically active cation salt may be dissolved therein. Thereafter, the clay minerals may be separated, washed, and then dried.

有機溶媒としては、エタノール、メタノール又はアセト
ンなど一般的なものが用いられる。
As the organic solvent, common solvents such as ethanol, methanol or acetone are used.

製造時の球状粘土鉱物の濃度は特に制限はないが、20
重呈%以上になると撹拌が困難となり、イオン交換が行
なわれ難くなる。分散液中の光学活性なカチオンの量は
、粘土鉱物のカチオン交換容量以上であることが望まし
い。イオン交換反応を行なう際の分散液の゛温度は何度
でもよく、通常室温で充分である。乾燥温度は光学活性
なカチオンの分解温度以下であれば何度でもよい。
There is no particular limit to the concentration of spherical clay minerals during production, but
When the concentration exceeds %, stirring becomes difficult and ion exchange becomes difficult to perform. The amount of optically active cations in the dispersion is desirably greater than or equal to the cation exchange capacity of the clay mineral. The temperature of the dispersion during the ion exchange reaction may be any temperature, and room temperature is usually sufficient. The drying temperature may be any temperature as long as it is below the decomposition temperature of the optically active cation.

本発明に係る充填剤を用いて光学分割するにおいて、そ
の対象物質は光学活性を有する物質で溶媒に可溶なもの
であればいかなるものであっても良く、アミノ酸などの
不斉炭素を分子内に有する多くの有機化合物、1,1°
−ビー2−ナフトール、2,2“−ジアミノー1,1°
−ビナフチルなどの軸性キラリティーを有する化合物、
フェニルシクロヘキシルスルホキシドなどのへテロ原子
を不斉中心とする化合物、ヘキサヘリセンなどの縮合ベ
ンゼン環、トリス(アセチルアセトナト)コバルト(I
ll )などの金属錯体などがあげられる。
In optical resolution using the packing material according to the present invention, the target substance may be any optically active substance as long as it is soluble in a solvent. Many organic compounds with 1,1°
-B-2-naphthol, 2,2"-diamino-1,1°
- Compounds with axial chirality such as binaphthyl,
Compounds with an asymmetric center at a heteroatom such as phenylcyclohexyl sulfoxide, fused benzene rings such as hexahelicene, tris(acetylacetonato)cobalt(I
Examples include metal complexes such as ll).

本充填剤を使用する際の溶R’Wは、水およびメタノー
ル、エタノールなどの極性溶媒、クロロホルムなどの非
極性溶媒、またはそれらの混合液など広く用いることが
できる。またこれらの溶離液を用いてもカチオンの溶出
はなく、本充填剤は長期に渡って使用できるものである
When using the present filler, a wide range of solvents R'W can be used, including water, polar solvents such as methanol and ethanol, nonpolar solvents such as chloroform, or mixtures thereof. Further, even when these eluents are used, cations do not elute, and the present packing material can be used for a long period of time.

[発明の効果] 本発明に係る充填剤は、球状であることを特徴としてお
り、球状であるがゆえに充填効率が高く、高速液体クロ
マトグラフィー坩充填剤として用いることができ、優れ
た理論段数が得られるという特徴を有する。また、担体
を用いておらず充填剤すべてが粘土鉱物で構成されてお
り、そのため光学異性体を識別するサイトの密度が高<
、極めて光学異性体の識別能が高い。またあらゆる溶離
液が使用でき、光学分割できる物質も極めて多いといっ
た特徴をもっている。
[Effects of the Invention] The packing material according to the present invention is characterized by being spherical, and because of its spherical shape, it has a high packing efficiency, can be used as a high-performance liquid chromatography crucible packing material, and has an excellent number of theoretical plates. It has the characteristic that it can be obtained. In addition, since no carrier is used and all the fillers are composed of clay minerals, the density of sites that identify optical isomers is high.
, has extremely high ability to discriminate optical isomers. It also has the characteristics that any eluent can be used and a large number of substances can be optically resolved.

ざらに球状の粘土鉱物は安価に簡単に製造でき、光学活
性なカチオンも例えば金属錯体なとも合成や光学分割の
容易なものが多く知られていることから、本充填剤は容
易かつ安価に得ることができるといった特徴も併せ持っ
ている。
Roughly spherical clay minerals can be easily produced at low cost, and many optically active cations, such as metal complexes, are known to be easy to synthesize and optically resolve, so this filler can be easily and inexpensively obtained. It also has the characteristic of being able to

以上のことから本充填剤は生理活性を有する物質などの
光学異性体の分析や分取に極めて有用な充填剤であると
いえる。
From the above, it can be said that the present packing material is extremely useful for the analysis and fractionation of optical isomers such as physiologically active substances.

[実施例] 次に本発明の一層の理解のために、実施例をあげて更に
詳細に説明す・る。本発明はこれらによって限定される
ものではない。
[Example] Next, in order to further understand the present invention, the present invention will be explained in more detail by giving examples. The present invention is not limited to these.

実施例1 ラポナイトXLG300gをイオン交換水101に撹拌
しながら分散させる。得られたゲルをディスク式噴霧乾
燥実験器によりディスク回転数20,000rpm。
Example 1 300 g of Laponite XLG is dispersed in ion-exchanged water 101 with stirring. The obtained gel was dried using a disk-type spray dryer at a disk rotation speed of 20,000 rpm.

入口空気温度約200℃、排気温度約110℃で噴震乾
燥したところ、2〜20μmの球状粉末が240g得ら
れた。
Spray drying was carried out at an inlet air temperature of about 200°C and an exhaust temperature of about 110°C, yielding 240 g of spherical powder with a diameter of 2 to 20 μm.

この球状粘土鉱物を乾式分級機TARBOCLASSI
FIHERTC−158(日清エンジニアリング社製)
を用いて分級し、3〜7μmの粒径の粉末を60gを得
た。
This spherical clay mineral is processed using the dry classifier TARBOCLASSI.
FIHERTC-158 (manufactured by Nisshin Engineering Co., Ltd.)
60 g of powder with a particle size of 3 to 7 μm was obtained.

エタノール500ttrtにΔ−Ni(Phen)3”
C12(Phenば1.10−フェナントロリンを示す
)5ミリモルを溶解し、ここで゛得られた分級した球状
粘土鉱物10gを分散し、4時間攪拌する。その後、濾
過し水で洗浄し、80℃で乾燥して球状粉末を得た。こ
のものの走査型電子顕微鏡写真を図1に示す。
Δ-Ni(Phen)3” in ethanol 500ttrt
5 mmol of C12 (Phen stands for 1.10-phenanthroline) is dissolved, and 10 g of the obtained classified spherical clay mineral is dispersed therein, followed by stirring for 4 hours. Thereafter, it was filtered, washed with water, and dried at 80°C to obtain a spherical powder. A scanning electron micrograph of this product is shown in FIG.

次いで該粉末5gをパッカーとポンプを用いて、内径4
.6+*鵬および長ざ25cmのステンレススチール製
力リムに平衡スラリー法で充填し、充填カラムを作成し
た。
Then, using a packer and a pump, 5 g of the powder was added to a powder with an inner diameter of 4
.. A packed column was prepared by filling a stainless steel rim with a length of 6+* and a length of 25 cm using the balanced slurry method.

本カラムを高速液体クロマトグラフに接続し、溶離液と
してエタノールを毎分0 、2 mLで流し、ラセミの
1,1°−ビー2−ナフトールを注入した。UV検出器
を用いて250nmで検出し、クロマトグラムを得た。
This column was connected to a high-performance liquid chromatograph, ethanol was flowed as an eluent at a rate of 0.2 mL per minute, and racemic 1,1°-bi-2-naphthol was injected. Detection was performed at 250 nm using a UV detector to obtain a chromatogram.

これを第2図に示す。この図のように、溶離液に水を含
まない有機溶媒でも1,1°−と−2−ナフトールの8
体とR体が良好に分離されている。
This is shown in FIG. As shown in this figure, even if the eluent is an organic solvent that does not contain water, the 8
The body and the R body are well separated.

実施例2 実施例1で作成したカラムを用いて、同じ条件でラセミ
のトリス(アセチルアセトナト)クロム(TIE )を
分析した。このクロマトグラムを図3に示。この図のよ
うに、6体と6体が良好に分離されている。
Example 2 Using the column prepared in Example 1, racemic tris(acetylacetonato)chromium (TIE) was analyzed under the same conditions. This chromatogram is shown in Figure 3. As shown in this figure, 6 bodies and 6 bodies are well separated.

4、図の簡単な説明。4. Brief explanation of the figure.

第1図は本発明に係る液体クロマトグラフィー用充填剤
の粒子構造を示す走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph showing the particle structure of the packing material for liquid chromatography according to the present invention.

第2図は実施例1の充填剤を用いて、ラセミの1.1゛
−ビー2−ナフトールを分析した場合のクロマトグラム
である。第2図において、ビーク1は1,1°−ビー2
−ナフトールの8体を、ビーク2はR体を示している。
FIG. 2 is a chromatogram obtained when racemic 1.1''-bi-2-naphthol was analyzed using the packing material of Example 1. In Figure 2, beak 1 is 1,1° - beak 2
-8 forms of naphthol, and beak 2 shows the R form.

図3は実施例1の充填剤を用いて、ラセミのトリス(ア
セチルアセトナト)クロム(III )を分析した場合
のクロマトグラムである。第3図において、ビーク1は
トリス(アセチルアセトナト)クロム(III )の6
体を、ビーク2は6体を示している。
FIG. 3 is a chromatogram when racemic tris(acetylacetonato)chromium (III) was analyzed using the packing material of Example 1. In Figure 3, beak 1 is 6 of tris(acetylacetonato)chromium(III).
Beak 2 shows six bodies.

特許出願人 株式会社  資生堂Patent applicant Shiseido Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)粘土鉱物の層間イオンが光学活性なカチオンで実
質的に置換されてなる球状の粘土鉱物からなる液体クロ
マトグラフィー用充填剤。
(1) A packing material for liquid chromatography consisting of a spherical clay mineral in which interlayer ions of the clay mineral are substantially substituted with optically active cations.
JP63026761A 1987-07-03 1988-02-08 Packing material for liquid chromatography Expired - Lifetime JP2635349B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63026761A JP2635349B2 (en) 1988-02-08 1988-02-08 Packing material for liquid chromatography
CA000570892A CA1321188C (en) 1987-07-03 1988-06-30 Packing material for liquid chromatography
EP19880306015 EP0297901B1 (en) 1987-07-03 1988-07-01 Packaging material for liquid chromatography
DE8888306015T DE3870727D1 (en) 1987-07-03 1988-07-01 PACKING MATERIAL FOR LIQUID CHROMATOGRAPHY.
US07/588,519 US5145578A (en) 1987-07-03 1990-09-24 Packing material for liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026761A JP2635349B2 (en) 1988-02-08 1988-02-08 Packing material for liquid chromatography

Publications (2)

Publication Number Publication Date
JPH01202658A true JPH01202658A (en) 1989-08-15
JP2635349B2 JP2635349B2 (en) 1997-07-30

Family

ID=12202269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026761A Expired - Lifetime JP2635349B2 (en) 1987-07-03 1988-02-08 Packing material for liquid chromatography

Country Status (1)

Country Link
JP (1) JP2635349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013046A1 (en) * 1990-02-23 1991-09-05 Daicel Chemical Industries, Ltd. Process for separating optical isomers
WO2018051826A1 (en) 2016-09-13 2018-03-22 国立研究開発法人物質・材料研究機構 Layered silicate powder granules and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204138A (en) * 1985-03-07 1986-09-10 Asahi Chem Ind Co Ltd Method of resolving optical isomer
JPS62278451A (en) * 1986-05-28 1987-12-03 Chuichi Hirayama Optically splitting agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204138A (en) * 1985-03-07 1986-09-10 Asahi Chem Ind Co Ltd Method of resolving optical isomer
JPS62278451A (en) * 1986-05-28 1987-12-03 Chuichi Hirayama Optically splitting agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013046A1 (en) * 1990-02-23 1991-09-05 Daicel Chemical Industries, Ltd. Process for separating optical isomers
US5126055A (en) * 1990-02-23 1992-06-30 Daicel Chemical Industries, Ltd. Process for separating optical isomers
USRE35919E (en) * 1990-02-23 1998-10-13 Daicel Chemical Industries, Ltd. Process for separating optical isomers
WO2018051826A1 (en) 2016-09-13 2018-03-22 国立研究開発法人物質・材料研究機構 Layered silicate powder granules and method for producing same
US11111151B2 (en) 2016-09-13 2021-09-07 National Institute For Materials Science Layered silicate powder granules and method for producing the same

Also Published As

Publication number Publication date
JP2635349B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
Qiu et al. Development of silica-based stationary phases for high-performance liquid chromatography
Kibbey et al. Preparation and characterization of covalently bound tetraphenylporphyrin-silica gel stationary phases for reversed-phase and anion-exchange chromatography
Shuang et al. Preparation and evaluation of a triazole‐bridged bis (β‐cyclodextrin)–bonded chiral stationary phase for HPLC
JP4236463B2 (en) Process for producing optically active ethyl (3R, 5S, 6E) -7- [2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl] -3,5-dihydroxy-6-heptenoate
CN110618224B (en) [ H ]2Nmim][NTf2]@ UiO-66-Br nano composite material and application thereof
JP2584498B2 (en) New crown ether compounds and separating agents
Wang et al. Homochiral iron-based γ-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography
DE69535355T2 (en) METHOD FOR SEPARATING OPTICAL ISOMERS
CN110652975B (en) (S) -BINOL derivative CSP filler and preparation method and application thereof
US5145578A (en) Packing material for liquid chromatography
JPH01202658A (en) Filling material for liquid chromatography
Lu et al. Superficial chiral etching on an achiral metal‐organic framework for high‐performance liquid chromatography enantioseparations
Ju et al. Imprinted polymers as tools for the recovery of secondary metabolites produced by fermentation
Li et al. Cellulose phenylcarbamate-derived hybrid bead-type chiral packing materials for efficient chiral recognition
JP2692862B2 (en) Packing material for liquid chromatography
Lai et al. Preparation and enantioseparation characteristics of two chiral stationary phases based on mono (6A‐azido‐6A‐deoxy)‐perphenylcarbamoylated α‐and γ‐cyclodextrin
EP0297901B1 (en) Packaging material for liquid chromatography
JP2902032B2 (en) Spherical porous carbon particles and method for producing the same
Li et al. Synthesis and characterization of cellulose derivative-based hybrid beads as chiral stationary phases for efficient chromatographic enantioseparation
Ali et al. Role of polysaccharides in chiral separations by liquid chromatography and capillary electrophoresis
JPS60155968A (en) Chromatography filler and analysis of enantiomer mixture using the same
Janjić et al. Thin-layer chromatography on polyacrylonitrile. I. Effect of the cis-trans configuration of cobalt (III) complexes on their RF values
WO2000063255A1 (en) Process for producing chitin derivative
US20060263766A1 (en) Compositions and chromatography materials for bioseparation
JP3634929B2 (en) Method for producing packing material for high performance liquid chromatography

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term