JPH01197679A - Superconducting magnetometer - Google Patents

Superconducting magnetometer

Info

Publication number
JPH01197679A
JPH01197679A JP63023142A JP2314288A JPH01197679A JP H01197679 A JPH01197679 A JP H01197679A JP 63023142 A JP63023142 A JP 63023142A JP 2314288 A JP2314288 A JP 2314288A JP H01197679 A JPH01197679 A JP H01197679A
Authority
JP
Japan
Prior art keywords
photoelectric converter
current signal
converter
feedback
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63023142A
Other languages
Japanese (ja)
Inventor
Makoto Kikuchi
誠 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63023142A priority Critical patent/JPH01197679A/en
Publication of JPH01197679A publication Critical patent/JPH01197679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To make induction by an external magnetic field difficult by providing a photoelectric converter, an optical fiber of necessary length, a nonmagnetic photoelectric converter, etc. CONSTITUTION:This magnetometer is equipped with the photoelectric converter 12 which converts the current signal from a phase detector 7 which is passed through a feedback resistance 9 and the high frequency current signal from an RF oscillator 8 at the same time, the optical fiber 13 which transmits the output light of this converter 12 by necessary length, and the nonmagnetic photoelectric converter 14 which converts the output light from the fiber 13 into a current signal. Then the converter 14 is arranged nearby a feedback modulating coil 3 within the range wherein an extremely small magnetic noise exerts no adverse influence, and the output light from the fiber 13 is converted into the current signal, which is sent to a coil 3. Thus, the feedback modulated current signal transmitted by the system of the converter 12, fiber 13, and converter 14 is not induced by the external electromagnetic field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は航空機等に搭載して地磁気程度の弱磁界を高
感度で測定する超伝導磁力計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting magnetometer that is mounted on an aircraft or the like and measures a weak magnetic field similar to that of earth's magnetism with high sensitivity.

〔従来の技術〕[Conventional technology]

第2図は従来の超伝導磁力計の一実施例を示す構成図で
、(1)はジョセフソン接合、(2)は超伝導リング、
(3)は帰還変調コイル、(4)は電池、(5)は可変
抵抗、(6)は増幅器、C7)は位相検波器、(8)は
RF発振器、(9)\は帰還抵抗、αGは8Q、Uより
 (’5uper QUa−mt um工nterfe
rence Device)センナ部、 (111は帰
還変調信号伝送線である。尚、この発明に関連しない構
成品は省略しである。超伝導リング(2)はここでは2
つのトンネル型ジョセフソン接合(1)をもつ高温超伝
導体で2例えば、 Y−Ba−cu−oの酸化物系のも
のであシ、その形状は約200μm×200umの正方
形でそのリング幅は約20μm、厚さは約10μmの平
面型なものである。帰還変調コイル(3)は上記超伝導
リング(2)と同じ物質で、その形状も上記超伝導リン
グ(2)と同一で、後述する位相検波器(71の出力を
帰還抵抗(9)を介した帰還電流と、RF発振器(8)
からの変調電流をトランス結合によシ上記超伝導リング
(2)に帰還変調信号伝送線Uを介して伝達する。電池
(4)と可変抵抗(5)は前記超伝導リング(2)の動
作点を設定する。増幅器(6)は低雑音増幅器でj記超
伝導リング(2)の出力を所要の信号対雑音比を維持し
て増幅する。位相検波器(71は上記増幅器(6)の出
力をここでは100 KHzのRF発振器(8)の出力
信号を基準信号として位相検波する。ここでは2.ジョ
セフソン接合(11,超伝導リング(2)及び帰還変調
コイル(3)で構成される部分をSQUよりセンサ部α
1と称することにする。
Figure 2 is a configuration diagram showing an example of a conventional superconducting magnetometer, in which (1) is a Josephson junction, (2) is a superconducting ring,
(3) is a feedback modulation coil, (4) is a battery, (5) is a variable resistor, (6) is an amplifier, C7) is a phase detector, (8) is an RF oscillator, (9)\ is a feedback resistor, αG is from 8Q, U ('5uper QUa-mt um engineering interfe
(111 is a feedback modulation signal transmission line. Components not related to this invention are omitted. The superconducting ring (2) is 2 here.
A high-temperature superconductor with two tunnel-type Josephson junctions (1), for example, an oxide-based Y-Ba-cu-o, whose shape is a square of about 200 μm x 200 μm, and its ring width is It is a flat type with a thickness of about 20 μm and a thickness of about 10 μm. The feedback modulation coil (3) is made of the same material as the superconducting ring (2) and has the same shape as the superconducting ring (2). feedback current and RF oscillator (8)
The modulated current from the superconducting ring (2) is transmitted to the superconducting ring (2) via the feedback modulated signal transmission line U by transformer coupling. A battery (4) and a variable resistor (5) set the operating point of the superconducting ring (2). The amplifier (6) is a low noise amplifier and amplifies the output of the jth superconducting ring (2) while maintaining a required signal-to-noise ratio. A phase detector (71) detects the phase of the output of the amplifier (6) using the output signal of the 100 KHz RF oscillator (8) as a reference signal. ) and the feedback modulation coil (3) from the SQU to the sensor section α.
I will call it 1.

上述した超電導磁力計はeLa sQ、DID 磁力計
と称されるもので、以下にこの動作原理の概要について
述べる。
The superconducting magnetometer described above is called an eLa sQ, DID magnetometer, and an outline of its operating principle will be described below.

第3図はda 8QUよりによる磁束検出方法の説明図
、第4囚は(10SQ、UIDにおける変調方式の説明
図である。衆知のように、超伝導体内では電子は対(ク
ーパー・ペア〕になって電気抵抗が零のコヒーレントな
電流が流れている。ジョセフソン接合においては電子波
に位相差が生じ、電流工は次式で表わされる。
Figure 3 is an explanatory diagram of the magnetic flux detection method using da 8QU, and the fourth figure is an explanatory diagram of the modulation method in (10SQ, UID).As is well known, in a superconductor, electrons form pairs (Cooper pairs). Therefore, a coherent current with zero electrical resistance is flowing.In the Josephson junction, a phase difference occurs in the electron waves, and the current flow is expressed by the following equation.

■=ICsinθ          (11ここにe
  Ic:超伝導臨界電流 02位相差 である。
■=ICsinθ (11 here e
Ic: Superconducting critical current 02 phase difference.

また、超伝導のリング内では、リング内磁束をΦ、磁束
量子をΦ0 (107X1 G −10Wb) ト表ワ
−iとき。
In addition, in a superconducting ring, the magnetic flux inside the ring is Φ, and the magnetic flux quantum is Φ0 (107X1 G -10Wb).

Φ=nΦo  (n:整数)(2) が成立する。2つのジョセフソン接合の超伝導臨界電流
をIC1電子波の位相差を01.θ2とすると、ジョセ
フソン効果の基本式から 工=工(Hsinθ1+ICsinσ2(3)と表わさ
れ、超伝導リングにおけるフラクソイドの量子化から。
Φ=nΦo (n: integer) (2) holds true. The superconducting critical current of two Josephson junctions is calculated by setting the phase difference of IC1 electron waves to 01. If θ2 is the basic equation of the Josephson effect, it can be expressed as H sin θ1 + IC sin σ2 (3), and from the quantization of fluxoids in the superconducting ring.

Φ 01−02:2π(−十n)(n:整数) (4)Φ0 となる。つまシ、ジョセフソン素子の両側に生ずる位相
差はリングを貫く磁束Φによって決定される。(3)式
と(4)式から、n=0のときが得られる。
Φ 01-02: 2π (-10n) (n: integer) (4) Φ0. The phase difference that occurs on both sides of the Josephson element is determined by the magnetic flux Φ that passes through the ring. From equations (3) and (4), the case when n=0 can be obtained.

dcsQ、Uよりにおいては、リング内磁束がnΦ0か
(n+−)Φ0かによって、第3図の曲fi!jIA及
び曲線Bに示したようにニーV特性が変るので2図に示
したように超伝導臨界電流工Cより若干太きい電流より
を印加しておくと、電圧Vは振幅がΔVでΦを周期関数
とする値となる。ここで、超伝導リング(2)の動作点
を第4図のD点に設定してRF発振器(7)から100
 KH2の交流磁束を加えると、その出力は変調周波数
の2倍の周波数、つまp 200 KH2成分だけであ
るが、ここに外部磁束Φが加わると100 KHz成分
が生ずる。この信号を位相検波器(7)で処理してその
出力′t−帰還変調コイル(3)に帰還すると、帰還電
流工fが外部磁束の値を示すことになシ、この値から外
部磁界の強度を知ることができる。
From dcsQ, U, depending on whether the magnetic flux in the ring is nΦ0 or (n+-)Φ0, the tune fi! in Fig. 3 is generated. Since the knee V characteristics change as shown in jIA and curve B, if a current slightly larger than the superconducting critical current C is applied as shown in Figure 2, the voltage V has an amplitude of ΔV and Φ. The value becomes a periodic function. Here, the operating point of the superconducting ring (2) is set at point D in Figure 4, and the RF oscillator (7)
When the AC magnetic flux of KH2 is added, the output is only the p 200 KH2 component, which is twice the modulation frequency, but when the external magnetic flux Φ is added thereto, a 100 KHz component is generated. When this signal is processed by the phase detector (7) and fed back to the output 't-feedback modulation coil (3), the feedback current f indicates the value of the external magnetic flux, and from this value the external magnetic field is You can know the strength.

第2図において、帰還変調信号伝送線(11を流れる電
流値は、この系で地磁気程度の弱磁場を計測する場合に
は最大約±5 mA程度と微少である。。
In FIG. 2, the value of the current flowing through the feedback modulation signal transmission line (11) is very small, at a maximum of approximately ±5 mA, when measuring a weak magnetic field on the order of geomagnetism with this system.

また、第2図において、、電池(41,可変抵抗器(5
)。
In addition, in Fig. 2, a battery (41), a variable resistor (5
).

増幅器(6)2位相検波器(71,RF発振器(8)の
電子回路および電子部品は、それらが発生する磁気雑音
がac 8QUより磁力計へ悪影響を与えないよう。
The electronic circuits and electronic components of the amplifier (6), two-phase detector (71), and RF oscillator (8) ensure that the magnetic noise they generate does not have a more detrimental effect on the magnetometer than the ac 8QU.

、通常、8Q、DIDセンサ部αGから約5m以上離し
て設置されている。
, 8Q is usually installed at a distance of about 5 m or more from the DID sensor section αG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したdc 8QUより磁力計は理論上10−5ガン
マ(1ガ/マ=IQ、6)以上の高度を有するが帰還変
調電流が最大±5 mA程度と微少であり。
Although the above-mentioned DC 8QU magnetometer theoretically has an altitude of 10-5 gamma (1 ga/ma = IQ, 6), the feedback modulation current is as small as about ±5 mA at maximum.

かつこの信号を約5m以上離れた位置にある帰還変調コ
イルへ伝送しなけれはならないため、帰還変調信号伝送
線にシールドを施しても、外部からの電磁界の誘導によ
って系の作動が不安定になりやすい難点があった。特に
、このdcsQ、DID  磁力計を航空機等に搭載し
て地a気等を測定する場合には、搭載されている他の電
子機器等が発生する電磁界信号の誘導を強く受け、系を
安定に作動させることは極めて困難である難点があった
In addition, this signal must be transmitted to the feedback modulation coil located approximately 5 meters or more away, so even if the feedback modulation signal transmission line is shielded, the operation of the system may become unstable due to the induction of external electromagnetic fields. There was a problem that could easily arise. In particular, when this dcsQ, DID magnetometer is mounted on an aircraft to measure the earth's atmosphere, etc., it is strongly guided by electromagnetic field signals generated by other onboard electronic equipment, which stabilizes the system. The problem was that it was extremely difficult to operate the system.

この発明は上記のような課題を解決するためになされた
もので、外部からの電磁界の誘導を受けに<<シて作動
が安定な超伝導磁力計を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a superconducting magnetometer whose operation is stable even when subjected to external electromagnetic field induction.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る超伝導磁力計は2位相検波器からの帰還
抵抗を介した電流信号およびRy発振器から高周波電流
信号を同時に光信号に変換する光電変換器と、この光電
変換器の出力光を所要の長さ伝送する光ファイバーと、
この光ファイバーからの出力光を電流信号に変換する非
磁性光電変換器とを備えたものである。
The superconducting magnetometer according to the present invention requires a photoelectric converter that simultaneously converts a current signal from a two-phase detector via a feedback resistor and a high-frequency current signal from a Ry oscillator into an optical signal, and an output light of this photoelectric converter. an optical fiber that transmits a length of
It is equipped with a nonmagnetic photoelectric converter that converts the output light from this optical fiber into a current signal.

〔作用〕[Effect]

この発明における光電変換器と所要の長さの光ファイバ
ーおよび非磁性の光電変換器の帰還変調電流信号伝送系
により、外部からの電磁界の誘導を受けにくくする。
The feedback modulation current signal transmission system of the photoelectric converter, the optical fiber of a required length, and the nonmagnetic photoelectric converter in this invention makes it less susceptible to external electromagnetic field induction.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す構成図で。 FIG. 1 is a configuration diagram showing one embodiment of the present invention.

(Lzは光電変換器、Q3は光ファイバー、α着は非破
性光電変換器である。図中、この発明に関連しない構成
品については省略しである。光電変換器α2はここでは
AICk aA Q/G aA @の半導体素子の発光
ダイオードで860μ口に発光スペクトルのピークを有
していて2位相検波器(7)からの帰還抵抗を介した電
流信号とRF発振器からの高周波電流信号を同時に光信
号に変換する光ファイバー03は81系の光ファイバー
で、そのコアー径は約50μでその外周を厚さ約0.1
 msのナイロンで被覆してあり。
(Lz is a photoelectric converter, Q3 is an optical fiber, and α is a non-destructive photoelectric converter. In the figure, components not related to this invention are omitted. The photoelectric converter α2 is AICk aA Q A light emitting diode of /G aA @ semiconductor element has a peak of its emission spectrum at 860 μm, and simultaneously emits the current signal from the two-phase detector (7) via the feedback resistor and the high-frequency current signal from the RF oscillator. The optical fiber 03 that converts into signals is an 81-series optical fiber with a core diameter of about 50μ and an outer circumference with a thickness of about 0.1μ.
Covered with MS nylon.

全長は約5.3mで、上記光電変換器(2)の出力光を
低損失で伝送する。非磁性光電変換器α尋はGaA。
The total length is approximately 5.3 m, and the output light from the photoelectric converter (2) is transmitted with low loss. The non-magnetic photoelectric converter α fathom is GaA.

系の太陽電池で受光する半導体素子部を除いた機構部分
は全て非磁性体2例えばP・RP (FlberRei
nforced Plastiりで構成されている。こ
の非磁性光電変換器Iはその超微小の磁気雑音が悪影響
を与えてない範囲で帰還変調コイル(3)の近傍に設置
されていて、上記光ファイバー〇からの出力光を電流信
号に変換して上記帰還変調コイル(3)へ送くる。その
他の構成品の機能は第2図において説明したものと同一
である。この光電変換器C12゜光ファイバーα31よ
び非磁性光電変換器6番の系で伝送される帰還変調電流
信号は外部からの電磁界の誘導を受けない。
All mechanical parts of the system, except for the semiconductor element part that receives light from the solar cell, are made of non-magnetic material 2 such as P/RP (FlberRei
Constructed of nforced plastic. This non-magnetic photoelectric converter I is installed in the vicinity of the feedback modulation coil (3) within a range where its ultra-minute magnetic noise does not have an adverse effect, and converts the output light from the optical fiber 〇 into a current signal. and sends it to the feedback modulation coil (3). The functions of the other components are the same as those described in FIG. The feedback modulated current signal transmitted through the system of photoelectric converter C12° optical fiber α31 and nonmagnetic photoelectric converter No. 6 is not induced by an external electromagnetic field.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれは、帰還変調コイルへ伝送
する微少な電流信号を、光電変換器で光信号に変換し、
この光信号を光ファイバーで所要の距離伝送した後に、
非磁性光電変換器で電流信号に変換するので、外部から
の電磁界の誘導を受けに(くなシ2作動が安定な超伝導
出力計を得ることができる効果がある。
As described above, according to the present invention, a minute current signal transmitted to a feedback modulation coil is converted into an optical signal by a photoelectric converter,
After transmitting this optical signal over the required distance using optical fiber,
Since the signal is converted into a current signal using a non-magnetic photoelectric converter, it is possible to obtain a superconducting output meter with stable operation despite the induction of an external electromagnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図は従
来の一実施例を示す構成図、第3図はdQ 8QUより
による磁束検出方法の説明図、第4図はdcsQT]よ
り における変調方式の説明図である。 図において、(1)はジョセフソン接合、(2)は超伝
導リング、(3)は帰還変調コイル、(4)は電池、(
5)は可変抵抗、(6)は増幅器、(71は位相検波器
、(8)はRy 発振器、 <9)ul’Nl抵抗、 
(IIU SQ、TlID センサi。 allは帰還変調信号伝送線、 (12は光電変換器、
α3は光ファイバー、α尋は非磁性光電変換器である。 図中、同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing a conventional embodiment, Fig. 3 is an explanatory diagram of a magnetic flux detection method using dQ 8QU, and Fig. 4 is a dcsQT] It is an explanatory diagram of a modulation method in . In the figure, (1) is a Josephson junction, (2) is a superconducting ring, (3) is a feedback modulation coil, (4) is a battery, (
5) is a variable resistor, (6) is an amplifier, (71 is a phase detector, (8) is a Ry oscillator, <9) is a ul'Nl resistor,
(IIU SQ, TlID sensor i. all is feedback modulation signal transmission line, (12 is photoelectric converter,
α3 is an optical fiber, and αhiro is a nonmagnetic photoelectric converter. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 2つのジョセフソン接合をもつ超伝導リングと、上記超
伝導リングとトランス結合する帰還変調コイルと、上記
超伝導リングの動作点を設定する手段と、上記超伝導リ
ングの出力を増幅する増幅器と、上記増幅器からの出力
をRF発振器からの所定の高周波信号を基準信号として
位相検波する位相検波器と、上記位相検波器からの出力
を帰還抵抗を介した電流出力および上記RF発振器から
の高周波電流出力を同時に光信号に変換する光電変換器
と、上記光電変換器からの光信号を所要の距離伝送する
光ファイバーと、上記光ファイバーからの光信号を電流
信号に変換し、その電流信号を上記帰還変調コイルへ送
出する非磁性光電変換器とを備えたことを特徴とする超
伝導磁力計。
a superconducting ring having two Josephson junctions, a feedback modulation coil transformer coupled to the superconducting ring, means for setting an operating point of the superconducting ring, and an amplifier for amplifying the output of the superconducting ring; A phase detector that detects the phase of the output from the amplifier using a predetermined high frequency signal from the RF oscillator as a reference signal, a current output from the output from the phase detector via a feedback resistor, and a high frequency current output from the RF oscillator. an optical fiber that transmits the optical signal from the photoelectric converter over a required distance; and an optical fiber that converts the optical signal from the optical fiber into a current signal and transmits the current signal to the feedback modulation coil. A superconducting magnetometer characterized by comprising a non-magnetic photoelectric converter that sends a signal to a non-magnetic photoelectric converter.
JP63023142A 1988-02-03 1988-02-03 Superconducting magnetometer Pending JPH01197679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023142A JPH01197679A (en) 1988-02-03 1988-02-03 Superconducting magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023142A JPH01197679A (en) 1988-02-03 1988-02-03 Superconducting magnetometer

Publications (1)

Publication Number Publication Date
JPH01197679A true JPH01197679A (en) 1989-08-09

Family

ID=12102312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023142A Pending JPH01197679A (en) 1988-02-03 1988-02-03 Superconducting magnetometer

Country Status (1)

Country Link
JP (1) JPH01197679A (en)

Similar Documents

Publication Publication Date Title
JP2015501919A (en) DCSQUID-based RF magnetometer that operates over 200MHz bandwidth
US4777443A (en) Inspection apparatus based on nuclear magnetic resonance
JP2662903B2 (en) High sensitivity magnetic field detector
US6597169B2 (en) Signal detector using superconducting quantum interference device and measuring method therefore
JP2816175B2 (en) DC current measuring device
Vitale et al. Thermal magnetic noise in rf SQUIDS coupled to ferromagnetic cores
Kittel et al. High T c superconducting second-order gradiometer
JPH01199178A (en) Superconducting magnetometer
JPH01197679A (en) Superconducting magnetometer
Pascal et al. Experimental determination of optimum operating conditions of a superconducting interferometer
JPH01199179A (en) Superconducting magnetometer
US3696287A (en) Superconducting constant voltage generator
US3622881A (en) Voltage measuring apparatus employing a josephson junction
JPH01197678A (en) Superconducting magnetometer
JP2000091653A (en) Superconducting quantum interference element
Hartland Development of a cryogenic current comparator for the measurement of small currents.
FI100277B (en) Squid magnetometer
JPH01185464A (en) Superconducting magnetometer
Mück et al. Flux-bias stabilization scheme for a radio-frequency amplifier based on a superconducting quantum interference device
US3761798A (en) Superconducting circuit means
Sullivan et al. RF instrumentation based on superconducting quantum interference
Eom et al. Heterodyne wave number measurement using a double B-dot probe
JP2782901B2 (en) Squid magnetometer
JPH0449666B2 (en)
SU834627A1 (en) Magnetic field measuring device