JPH01194235A - Manufacture of cathode-ray tube - Google Patents

Manufacture of cathode-ray tube

Info

Publication number
JPH01194235A
JPH01194235A JP1445888A JP1445888A JPH01194235A JP H01194235 A JPH01194235 A JP H01194235A JP 1445888 A JP1445888 A JP 1445888A JP 1445888 A JP1445888 A JP 1445888A JP H01194235 A JPH01194235 A JP H01194235A
Authority
JP
Japan
Prior art keywords
ray tube
baking
glare
film
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1445888A
Other languages
Japanese (ja)
Inventor
Shoko Nishizawa
西沢 昌紘
Toshio Tojo
利雄 東條
Yoshio Yoshihara
吉原 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP1445888A priority Critical patent/JPH01194235A/en
Publication of JPH01194235A publication Critical patent/JPH01194235A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the strength of a film and provide electrostatic charging preventive effect without deteriorating the electrical characteristics by coating a material, which assumes glare-proof effect and/or charging preventive effect by means of baking, over the surface of screen of a cathode-ray tube, and by baking it with laser beam. CONSTITUTION:As a material to assume glare-proof effect and/or charging preventive effect by means of baking, silica coat liquid containing ethyl silicate as main component or a mixture solution of ethyl silicate, tin oxide, and indium oxide is sprayed over the surface of a heated screen, followed by baking by means of scanning with laser beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はブラウン管の製造方法に係り、特にブラウン管
映像面表面に防眩又は防眩及び帯電防止効果を付与する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a cathode ray tube, and more particularly to a method for imparting anti-glare or anti-glare and antistatic effects to the surface of a cathode ray tube image surface.

〔従来の技術〕[Conventional technology]

従来防眩又は/及び帯電防止効果を得るには、次のよう
な方法が実施されている。すなわち5iCQa・5i(
OR)aとアルコール類又はエステル類の混合液をブラ
ウン管の完成床の映像面表面に吹付け、電気、ガス炉な
どで80〜200℃で焼成し防眩膜を形成する方法(実
公昭5O−26277)及びハロゲン化ケイ素あるいは
シリカゾル溶液にFe、Co、Ni、Cu、Agなどの
ハロゲン化物又は硝酸又は硫酸塩を混合した液をブラウ
ン管映像面表面に吹き付けた後200℃前後で焼成し防
眩及び帯電防止効果を有する膜を形成する方法などであ
る。ここでこれら被膜形成をブラウン管完成後行うのは
ブラウン管の製造プロセス中に前記被膜が損傷するのを
避けるためである。
Conventionally, the following methods have been implemented to obtain anti-glare and/or antistatic effects. That is, 5iCQa・5i(
OR) A method in which a mixed solution of a and alcohols or esters is sprayed onto the image surface of the finished floor of a cathode ray tube and baked at 80 to 200°C in an electric or gas furnace to form an anti-glare film (Jikko Sho 5O- 26277) and silicon halide or silica sol solution mixed with halides such as Fe, Co, Ni, Cu, Ag, or nitric acid or sulfate, is sprayed onto the surface of the cathode ray tube image surface and baked at around 200°C to provide anti-glare and anti-glare properties. This method includes a method of forming a film having an antistatic effect. The reason why these coatings are formed after the completion of the cathode ray tube is to avoid damage to the coating during the manufacturing process of the cathode ray tube.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した従来の方法は完成したブラウン管を高温で加熱
するとエミッション特性などの電気的特性が劣化するた
め比較的低温(200℃以下)で焼成していた。しかし
このような低温焼成では前者の方法では膜の強度が不足
し後者の方法では充分に帯電防止効果が得られないとい
う問題点を有していた。
In the conventional method described above, heating a completed cathode ray tube at a high temperature deteriorates its electrical characteristics such as emission characteristics, so it was fired at a relatively low temperature (200° C. or lower). However, in such low-temperature firing, the former method has a problem in that the strength of the film is insufficient, and the latter method does not provide a sufficient antistatic effect.

本発明は電気的特性の劣化のない状態で被膜の強度及び
帯電防止効果の確保を目的とするものである。  。
The object of the present invention is to ensure the strength and antistatic effect of the coating without deterioration of the electrical properties. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明においては、焼成す
ることにより防眩または防眩と帯電防止効果を呈する材
料をブラウン管映像面表面に塗布したのち、この塗膜を
炭酸ガスあるいはYAGレーザによって焼成するもので
ある。
In order to achieve the above object, in the present invention, a material that exhibits an anti-glare or anti-glare and antistatic effect when fired is applied to the surface of the picture surface of a cathode ray tube, and then this coating film is fired using carbon dioxide gas or a YAG laser. It is something to do.

〔作用〕[Effect]

炭酸ガスあるいはYAGレーザを使用することによって
塗膜及びブラウン管ガラスの極く表面をガラスに歪を与
えないでしかも電気的な特性の低下もなしに高温で短時
間に焼成することができる。
By using carbon dioxide gas or a YAG laser, the coating film and the very surface of the cathode ray tube glass can be fired at high temperatures in a short time without causing distortion to the glass or deteriorating its electrical characteristics.

〔実施例〕〔Example〕

以下実施例を持って本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例1 14形0.31mmピッチのフェースガラス透過率57
%のカラーデイスプレィ管の映像面表面を中性洗剤でよ
く洗浄し工業用水で1分間流水洗浄を行い充分中性洗剤
を除去した後、脱イオン水でリンスする。これを0.3
μsの塵埃除去フィルターを通した乾燥空気を吹付は乾
燥する。このカラーデイスプレィ管の映像面表面に縦ビ
ーム幅50膿横ビーム幅2■の平行ビームの炭酸ガスレ
ーザ(出射出力10W)を走査速度90 nu/see
でコの字運動をさせて全面を2回照射して表面温度を6
0℃にした後エチルシリケイトを主成分とするシリカコ
ート液(市販名 ニレサンコート液:旭硝子社製)を流
量5 mQ/see、液と空気の容積比1:3で50a
aの距離からスプレーガンでパネル表面に約1μmの厚
さに吹き付けた後前記ビーム幅の出射出力100Wの炭
酸ガスレーザを走査スピード70 mm/seeで2回
照射した。この時前記膜の温度は約600℃に達してい
た。これを冷却し、通常200℃程度に加熱する現在行
われている電気又はガス加熱炉方式のものとの特性を比
較すると下表のようになった。
Example 1 Face glass transmittance of 14 type 0.31 mm pitch 57
% color display tube was thoroughly washed with a neutral detergent, rinsed with running industrial water for 1 minute to thoroughly remove the neutral detergent, and then rinsed with deionized water. This is 0.3
Dry by blowing dry air through a μs dust removal filter. A parallel beam carbon dioxide laser (output power 10 W) with a vertical beam width of 50 cm and a horizontal beam width of 2 cm was scanned at a scanning speed of 90 nu/see on the image surface of the color display tube.
Make a U-shaped motion and irradiate the entire surface twice to bring the surface temperature to 6.
After the temperature was lowered to 0°C, a silica coating liquid containing ethyl silicate as a main component (commercial name Nire Sun Coat Liquid: manufactured by Asahi Glass Co., Ltd.) was applied at a flow rate of 5 mQ/see and a volume ratio of liquid to air of 1:3.
After spraying the panel surface to a thickness of about 1 μm from a distance of a, the panel surface was irradiated twice with a carbon dioxide laser having the beam width and output power of 100 W at a scanning speed of 70 mm/see. At this time, the temperature of the film had reached about 600°C. A comparison of the characteristics with the current electric or gas heating furnace method, which cools this and heats it to about 200° C., shows the results shown in the table below.

この結果を見ると耐消ゴム及び耐沸騰水強度のいずれも
が大幅に向上している。この原因は一般にこの種のシリ
カコートと呼ばれる方式のSiとガラス界面の接着はシ
ロキサン結合をメインとしその1部OH基の構造を持つ
と言われている。このOH基の量が少ない程強度が向上
する。レーザで焼成するとガラスとシリカコート膜の結
着部分が高温に加熱されるため脱OH基反応が起ってシ
ロキサン結合の割合が多くなるためと考えられている。
The results show that both the eraser resistance and boiling water resistance are significantly improved. The reason for this is generally said to be that the adhesion between Si and the glass interface in this type of silica coating system is mainly composed of siloxane bonds, and a portion thereof has a structure of OH groups. The smaller the amount of OH groups, the higher the strength. It is thought that this is because when firing with a laser, the bonded portion between the glass and the silica coated film is heated to a high temperature, which causes a reaction to remove OH groups and increases the proportion of siloxane bonds.

実施例2 14形0.31mmピッチのフェースガラス透過率57
%のカラーデイスプレィ管を実施例1と同じ方法で洗浄
乾燥プレヒートを行い表面温度を40℃にした後エチル
シリケイトと酸化スズ、酸化インジウムなどの導電性物
質を含んだ液(市販名コルコートEC920ニコルコー
ト社製、またはニレサンコートEC液:旭硝子社製)を
流Jf 7 m!/sec、液と空気の容積比1:3で
50amの距離からスプレーガンでパネル表面に約1μ
閣の厚さに吹き付けた微粒子膜(平均粒子径40−)を
前記ビーム幅と出射出力を持つ炭酸ガスレーザで実施例
1と同じように加熱した。これを冷却し従来のガス又は
電気炉加熱のものと性能を比較した。但し加熱回数は実
施例1の3倍の6回である。
Example 2 Face glass transmittance of 14 type 0.31 mm pitch 57
% color display tube was washed, dried, and preheated in the same manner as in Example 1 to bring the surface temperature to 40°C, and then treated with a liquid containing ethyl silicate and conductive substances such as tin oxide and indium oxide (commercial name: Colcoat EC920 Nicol). Flow Jf 7 m! /sec, with a liquid to air volume ratio of 1:3, spray approximately 1μ onto the panel surface from a distance of 50am with a spray gun.
The fine particle film (average particle diameter: 40 -) sprayed to the thickness of the surface was heated in the same manner as in Example 1 using a carbon dioxide laser having the beam width and output power described above. This was cooled and its performance was compared with conventional gas or electric furnace heating. However, the number of times of heating was six times, three times that of Example 1.

テストA:耐消ゴム性(MIL−C−675Cによる条
件で傷が見える回数) テストロ:耐沸騰水性(沸騰水中につけ30分後のグロ
ス値の変化量、小さい 程良好) テストC:耐アルカリ性(PHIIのアンモニア液に2
4時間つけた後のグロ ス値の変化量) テストDニー40℃〜70℃74時間のサイクルテスト
300時間後の抵抗の 変化量(小さい程良好) この結果からも分るように耐久性が良くかつ表面抵抗も
低い。この理由は低温焼成の条件では導電物質が酸化物
になりにくくこの膜が吸着している吸着水中でイオン伝
導的な動きをするものと考えられる。これに反しレーザ
による高温焼成膜は膜とフェースガラスの表面を効率良
く高温に加熱するので酸化物になり易く電子伝導性が出
るものと著えられる。
Test A: Eraser resistance (number of scratches visible under conditions according to MIL-C-675C) Testro: Boiling water resistance (change in gloss value after immersing in boiling water for 30 minutes, the smaller the better) Test C: Alkali resistance (PHII 2 in ammonia solution
Change in gloss value after 4 hours of wear) Test D knee 40°C to 70°C 74 hour cycle test Change in resistance after 300 hours (the smaller the better) As you can see from this result, the durability is good. It also has low surface resistance. The reason for this is thought to be that under low-temperature firing conditions, the conductive substance is difficult to turn into an oxide, and this film moves in an ion-conductive manner in the adsorbed water. On the other hand, a film fired at a high temperature using a laser efficiently heats the surface of the film and the face glass to a high temperature, so it is said that the film easily becomes an oxide and exhibits electron conductivity.

実施例3 実施例1,2と同じように14形カラーデイスプレイ管
を洗浄乾燥後炭酸ガスレーザでプレヒート後前記ニレサ
ンコート液に酸化アンチモンと酸化スズを主成分とする
ゾル溶液(商品名 セラメーズ二二木化学社II!りを
体積比で10%混合し実施例2と同じスプレー条件で1
.0μm厚の微粒子膜を作り波長1.06pのYAGレ
ーザ(この膜のYAGレーザの吸収率は70%である)
を実施例1と同じような平行ビームで照射出力60W走
査スピード40 m1secで6回照射して冷却後膜の
性能を調べた。その結果を下表に示す、なおYAGレー
ザを使用すると前記した波長を吸収する物質の濃度を変
える事によって膜とパネルフェースに侵入するビームの
深さを制御し熱加工歪が出ない条件でより高温焼成でき
る特徴を有している。
Example 3 A 14-inch color display tube was washed and dried in the same manner as in Examples 1 and 2, and then preheated with a carbon dioxide laser. A sol solution containing antimony oxide and tin oxide as main components (product name: Cerames Ninigi Chemical) was added to the Nire Sun Coat solution. Mix 10% of the company II!ri by volume and spray under the same spray conditions as Example 2.
.. Create a fine particle film with a thickness of 0 μm and use a YAG laser with a wavelength of 1.06p (the YAG laser absorption rate of this film is 70%).
was irradiated six times with the same parallel beam as in Example 1 at an irradiation output of 60 W and a scanning speed of 40 ml sec, and the performance of the film was examined after cooling. The results are shown in the table below. When using a YAG laser, the depth of the beam penetrating the film and panel face can be controlled by changing the concentration of the substance that absorbs the wavelengths mentioned above, under conditions that do not cause thermal processing distortion. It has the characteristic of being able to be fired at high temperatures.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】[Claims] 1、焼成することにより防眩または防眩と帯電防止効果
を呈する材料をブラウン管映像面表面に塗布する工程と
、塗布後レーザー光線によって前記塗膜を焼成する工程
とを有するブラウン管の製造方法。
1. A method for producing a cathode ray tube, which comprises the steps of: applying a material that exhibits anti-glare or anti-glare and antistatic effects when fired on the surface of the picture surface of the cathode ray tube; and after application, firing the coating film with a laser beam.
JP1445888A 1988-01-27 1988-01-27 Manufacture of cathode-ray tube Pending JPH01194235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1445888A JPH01194235A (en) 1988-01-27 1988-01-27 Manufacture of cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1445888A JPH01194235A (en) 1988-01-27 1988-01-27 Manufacture of cathode-ray tube

Publications (1)

Publication Number Publication Date
JPH01194235A true JPH01194235A (en) 1989-08-04

Family

ID=11861603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1445888A Pending JPH01194235A (en) 1988-01-27 1988-01-27 Manufacture of cathode-ray tube

Country Status (1)

Country Link
JP (1) JPH01194235A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568657A (en) * 1990-01-09 1996-10-29 Alliedsignal Inc. Cut resistant protective glove
US6075223A (en) * 1997-09-08 2000-06-13 Thermark, Llc High contrast surface marking
US6852948B1 (en) 1997-09-08 2005-02-08 Thermark, Llc High contrast surface marking using irradiation of electrostatically applied marking materials
US7238396B2 (en) 2002-08-02 2007-07-03 Rieck Albert S Methods for vitrescent marking
US9744559B2 (en) 2014-05-27 2017-08-29 Paul W Harrison High contrast surface marking using nanoparticle materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568657A (en) * 1990-01-09 1996-10-29 Alliedsignal Inc. Cut resistant protective glove
US6075223A (en) * 1997-09-08 2000-06-13 Thermark, Llc High contrast surface marking
US6313436B1 (en) * 1997-09-08 2001-11-06 Thermark, Llc High contrast surface marking using metal oxides
US6852948B1 (en) 1997-09-08 2005-02-08 Thermark, Llc High contrast surface marking using irradiation of electrostatically applied marking materials
US6855910B2 (en) * 1997-09-08 2005-02-15 Thermark, Llc High contrast surface marking using mixed organic pigments
US7238396B2 (en) 2002-08-02 2007-07-03 Rieck Albert S Methods for vitrescent marking
US9744559B2 (en) 2014-05-27 2017-08-29 Paul W Harrison High contrast surface marking using nanoparticle materials

Similar Documents

Publication Publication Date Title
EP0705483B1 (en) Method of curing a film
US2362545A (en) Selenium rectifier and method of making it
US3898509A (en) Cathode-ray tube having lithium silicate glare-reducing coating with reduced light transmission and method of fabrication
JPH01194235A (en) Manufacture of cathode-ray tube
US5993894A (en) Method of manufacturing a conductive layer on a substrate
JPS61273835A (en) Manufacture of shadowmask
JPS61118932A (en) Manufacture of braun tube
JP3039937B2 (en) Ultra fine particles
JP2790042B2 (en) Manufacturing method of cathode ray tube
JP2685142B2 (en) Method for forming antireflection and antistatic film on display surface of cathode ray tube.
JPS63124331A (en) Manufacture of cathode ray tube having glare-proof effect and electrification-proof effect
JP3201419B2 (en) Picture tube manufacturing method
JPH06345487A (en) Antireflection film for display and production thereof
JPH0362433A (en) Manufacture of antistatic film and cathode-ray tube
JPH0249336A (en) Cathode-ray tube having non-glare and anti-static film and manufacture thereof
JP2650900B2 (en) Cathode ray tube
JPH0541156A (en) Formation of surface film of cathode-ray tube
JPH06252431A (en) Manufacture of transparent conductive film
JPH06243739A (en) Manufacture of indium-tin oxide transparent conductive film
KR100268727B1 (en) Transparent conductive film, manufacturing method thereof and cathode ray tube including the transparent conductive film
JPS6065085A (en) Lanthanum oxychloride photphor
JPH0873243A (en) High definition cathode ray tube and its production
JPH0370333B2 (en)
JP2002008461A (en) Method of manufacturing transparent conductive substrate
JPS63285841A (en) Surface treatment for electrode part of cathode-ray tube