JPH01191252A - Load distributed control system - Google Patents

Load distributed control system

Info

Publication number
JPH01191252A
JPH01191252A JP63015087A JP1508788A JPH01191252A JP H01191252 A JPH01191252 A JP H01191252A JP 63015087 A JP63015087 A JP 63015087A JP 1508788 A JP1508788 A JP 1508788A JP H01191252 A JPH01191252 A JP H01191252A
Authority
JP
Japan
Prior art keywords
load
processing elements
processing element
processing
display means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63015087A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishikawa
勉 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63015087A priority Critical patent/JPH01191252A/en
Publication of JPH01191252A publication Critical patent/JPH01191252A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To considerably reduce the overhead by comparing loads of all processing elements with only adjacent processing elements and performing local load distribution where the load of a processing element is moved to adjacent processing elements only when this load is two or more larger than loads of adjacent processing elements. CONSTITUTION:A distribution direction determining means 5 compares the value indicated by a load quantity display means 4 in a corresponding processing element with values of load quantity display means 4 in adjacent processing elements; and only when the former is two or more larger than a minimum value of values indicated by load quantity display means 4 in all adjacent processing elements, a load sending/receiving means 6 is instructed to distribute one load to the adjacent processing element in the direction indicating the minimum value. The load sending/receiving means 6 sends one load stored in a buffer 3 or receives the sent load to store it in the buffer 3 for the purpose of distributing the load to the adjacent processing element in the direction designated by a distribution direction determining means 5. Thus, loads are distributed in parallel, and they are quickly distributed.

Description

【発明の詳細な説明】 (1)発明の属する技術分野 本発明はネットワーク結合型の並列プロセッサシステム
における負荷分散制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention relates to a load distribution control method in a network-coupled parallel processor system.

(2)従来の技術 LSI技術の発展に支えられ、最近多数の処理要素をネ
ットワーク状(処理要素相互をリンクにより結合するも
ので、リング、アレイ、トリー。
(2) Conventional technology Supported by the development of LSI technology, a large number of processing elements have recently been connected in the form of networks (processing elements are interconnected by links, such as rings, arrays, and trees).

ハイパキューブ等各種の結合形態がある)に結合した並
列プロセッサシステムの研究・開発が活発化してきてい
る。このような並列プロセッサシステムの応用には、各
処理要素が割り当てられた仕事を処理する過程で次の新
たな仕事を発生し、かつその仕事がいずれの処理要素で
処理されてもよいような応用分野がある(自然言語処理
や知識処理等のAI処理に多くみられる)、この種の応
用では、いかにして各処理要素に常時、均等に仕事(以
下負荷と呼ぶ)を割り当てるか、すなわち各処理要素が
休止状態にならないようにいかに負荷を分散するかが大
きな課題となる。この制御は一般に負荷分散制御と呼ば
れている。
Research and development of parallel processor systems coupled to hypercubes (there are various coupling forms such as hypercubes) is becoming more active. Applications of such parallel processor systems include applications in which each processing element generates new work in the process of processing the assigned work, and the work can be processed by any processing element. In this type of application, there are many fields (often seen in AI processing such as natural language processing and knowledge processing). A major challenge is how to distribute the load so that processing elements do not go into a dormant state. This control is generally called load distribution control.

従来この種のシステムにおける負荷分散制御は。Conventional load distribution control in this type of system.

処理要素とは独立に負荷分散制御装置を設け、該装置が
全処理要素の負荷の状況を監視し、いずれかの処理要素
の負荷が重くなった場合には負荷が軽い(負荷待ちの休
止状態を含む)処理要素にそれを分散させることにより
実現されていた。ここで、具体的な負荷の分散法として
は、該制御装置が負荷が重い処理要素から実際に負荷を
収集して負荷の軽い処理要素にそれを分配する方法と、
該制御装置が負荷の重い処理要素に負荷の軽い処理要素
番号を知らせて実際の負荷の移動に当ってはその間の処
理要素を中継して行う(処理要素間のリンクを利用)方
法とがある。
A load distribution control device is provided independently of the processing elements, and this device monitors the load status of all processing elements, and if the load on any processing element becomes heavy, the load is reduced (inactive state waiting for load). This was achieved by distributing it to processing elements (including Here, specific load distribution methods include a method in which the control device actually collects the load from processing elements with a heavy load and distributes it to processing elements with a light load;
There is a method in which the control device notifies a processing element with a heavy load of a processing element number with a light load, and when actually moving the load, the processing elements in between are relayed (using links between processing elements). .

従来の負荷分散制御は以上のように、専用の装置が集中
的に負荷の状態の監視、具体的な負荷の収集・分配、あ
るいは分散の指示を行っているため、これらの動作は各
処理要素に対し逐次的にしかなされず、システムにおけ
る処理要素数が多くなった場合にはこの負荷分散制御が
大きなオーバヘッドとなり、処理要素数比例のシステム
性能が得られないという欠点があった。
As described above, in conventional load distribution control, a dedicated device centrally monitors the load status, collects and distributes the load, and gives instructions for distribution, so these operations are performed by each processing element. However, when the number of processing elements in the system increases, this load distribution control becomes a large overhead and system performance proportional to the number of processing elements cannot be obtained.

(3)発明の目的 本発明の目的は1以上の欠点を解決し、処理要素数が多
いシステムにおいても迅速な負荷分散を実現できる制御
方式を提供することにある。
(3) Purpose of the Invention The purpose of the present invention is to provide a control method that solves one or more drawbacks and can achieve quick load distribution even in a system with a large number of processing elements.

(4)発明の構成 (4−1)  発明の特徴と従来の技術との差異本発明
は、負荷の監視1分散制御機構を各処理要素内に設け、
各処理要素が該機構により局所的な負荷分散を並列的に
行うことにより、実効的にシステム全体の負荷分散を実
現するものである。
(4) Structure of the invention (4-1) Features of the invention and differences from the conventional technology The present invention provides a load monitoring 1 distributed control mechanism in each processing element,
Each processing element uses this mechanism to perform local load distribution in parallel, thereby effectively realizing load distribution for the entire system.

具体的には、各処理要素は該機構により、自内の負荷が
該処理要素にリンクにより物理的に結合されているすべ
ての処理要素の最小負荷より2以上大きいときのみ最小
負荷を持つ処理要素に対し1つの負荷を分散させる。す
なわち1本発明は負荷分散を局所的、並列的、かつ迅速
、単純に制御することを最も主要な特徴とする。従来の
技術とは負荷分散制御用の機構の設置態様、負荷状態の
監視B様、具体的な負荷の分散態様が異なる。
Specifically, each processing element has the minimum load only when the internal load is two or more greater than the minimum load of all processing elements physically connected to the processing element by a link. Distribute one load to the other. That is, one of the main features of the present invention is to control load distribution locally, in parallel, quickly, and simply. This method differs from the conventional technology in the manner in which the mechanism for load distribution control is installed, the manner in which the load status is monitored B, and the specific manner in which the load is distributed.

(4−2)  実施例 第1図は本発明をリング結合型の並列プロセッサシステ
ムに適用した場合の実施例であり2図ではそのうちの3
つの処理要素のみを示している。
(4-2) Embodiment FIG. 1 shows an embodiment in which the present invention is applied to a ring-coupled parallel processor system.
Only one processing element is shown.

図中、1は処理要素、2は負荷を処理し又負荷を発生す
るプロセッサ、3は処理待ちの負荷を蓄積するバッファ
(プロセッサ2で発生されただちに処理できない負荷は
ここに収容しておく)、4はバッファ3に蓄積されてい
る負荷の数を常時計数し表示する負荷量表示手段、5は
自処理要素内の負荷量表示手段4の示す値と該処理要素
にリンクにより物理的に結合されたすべての処理要素(
以下隣接処理要素と呼ぶ)内の負荷量表示手段4の値と
を比較し、自内の負荷量表示手段4の示す値がすべての
隣接処理要素内の負荷量表示手段4のその最小値を示す
方向の隣接処理要素に対し1つの負荷を分散すべく負荷
送受手段6に指示する分散方向決定手段である。負荷送
受手段6は分散方向決定手段5によって指定された方向
の隣接処理要素に負荷分散のため、バッファ3に蓄積さ
れている1つの負荷を送出し、あるいは送出されてきた
負荷を受信しバッファ3に収容する。
In the figure, 1 is a processing element, 2 is a processor that processes a load or generates a load, 3 is a buffer that accumulates loads waiting to be processed (loads that cannot be processed immediately after being generated by the processor 2 are stored here), Reference numeral 4 indicates a load amount display means for constantly counting and displaying the number of loads accumulated in the buffer 3, and 5 indicates a value indicated by the load amount display means 4 within its own processing element and is physically coupled to the processing element by a link. All processing elements (
The value of the load amount display means 4 in the adjacent processing element (hereinafter referred to as an adjacent processing element) is compared, and the value indicated by the load amount display means 4 within itself is equal to the minimum value of the load amount display means 4 in all adjacent processing elements. This is a distribution direction determining means that instructs the load transmitting/receiving means 6 to distribute one load to adjacent processing elements in the indicated direction. The load transmitting/receiving means 6 transmits one load accumulated in the buffer 3 or receives the transmitted load and transfers the load to the buffer 3 in order to distribute the load to the adjacent processing elements in the direction specified by the distribution direction determining means 5. to be accommodated.

第2図は本発明の動作説明図であり、四角で示した処理
要素内の数値はその処理要素の負荷の数(負荷量表示手
段4の示す値)を表わしている。
FIG. 2 is an explanatory diagram of the operation of the present invention, and the numerical value within the processing element indicated by a square represents the number of loads of that processing element (value indicated by the load amount display means 4).

図中のPE、は夫々上記処理要素1に対応するものであ
る。
PE in the figure corresponds to the processing element 1 described above.

以下2両図に従って本発明の詳細な説明する。The present invention will be described in detail below with reference to the two figures.

本発明において負荷分散制御は全処理要素で非同期的に
行われてもよいが、ここでは説明を簡単にするため全処
理要素で一斉にかつ一定周期で同期をとって行うものと
する。時刻t0では各処理要素の負荷は第2図i)の状
態であったとする。このとき処理要素PEIの分散方向
決定手段5は。
In the present invention, load distribution control may be performed asynchronously on all processing elements, but here, to simplify the explanation, it is assumed that all processing elements are performed simultaneously and synchronously at a constant cycle. Assume that at time t0, the load on each processing element is in the state shown in FIG. 2 i). At this time, the dispersion direction determining means 5 of the processing element PEI.

自己の負荷が「5」で、隣接処理要素の負荷の最小値「
O」 (処理要素PE、の負荷)より2以上大きいため
、負荷送受手段6に対し処理要素PE、に1だけ負荷を
分散するよう指示する。同しく、処理要素PE、、PE
8の分散方向決定手段5はそれぞれ処理要素PE、、P
E7への負荷の分散を指示する。これに対し、処理要素
PEG。
The self load is "5" and the minimum value of the load of the adjacent processing element "
O' (the load on the processing element PE) by 2 or more, the load transmitting/receiving means 6 is instructed to distribute the load by 1 to the processing element PE. Similarly, processing elements PE, ,PE
The dispersion direction determining means 5 of 8 are respectively processing elements PE, , P
Instructs to distribute the load to E7. In contrast, the processing element PEG.

PEx、PEq、PEs、PEb、PEv、PEqは白
肉の負荷が隣接処理要素の負荷より2以上大きくないた
め、それぞれの分散方向決定手段5は負荷の分散を負荷
送受手段6に指示しない。
Since the white meat load of PEx, PEq, PEs, PEb, PEv, and PEq is not greater than the load of the adjacent processing element by two or more, the respective distribution direction determining means 5 does not instruct the load transmitting/receiving means 6 to distribute the load.

従って1時刻1.においては第2図11)のような負荷
状態となる。次にこの状態では、処理要素PE1.PE
、がそれぞれ処理要素PE2.PE、への負荷の分散を
指示される。この負荷分散の後は同図iii )の負荷
状態となり、このときは処理要素PE4から処理要素P
E3への負荷分散が行われ。
Therefore, 1 time 1. In this case, the load state is as shown in FIG. 2 (11). Next, in this state, processing element PE1. P.E.
, are respectively processing elements PE2. The PE is instructed to distribute the load to the PE. After this load distribution, the load state is as shown in iii) in the same figure, and in this case, from processing element PE4 to processing element P
Load distribution to E3 is performed.

最終的には同図iv)のほぼ平均化された負荷状態とな
る。
Finally, the load state is approximately averaged as shown in iv) of the same figure.

以上説明したように木方式では、全処理要素がそれらの
隣接処理要素間で局所的な負荷分散を並列的に実施する
ため、従来の集中的、逐次的な制御方式に比べ、システ
ム全体の負荷分散処理が大幅に迅速化される。さらにこ
の効果はシステム内の処理要素数が増加する程大きくな
る。なお1以上の説明ではその簡単化のためリング結合
型の並列プロセッサシステムを例としたが、アレイ、ハ
イパキューブ、トリー等、他のネットワーク型並列プロ
センサにおいても本発明を適用できることはいうまでも
ない。又、第1図ではすべての手段をハードウェアで実
現する如く表現しているが。
As explained above, in the tree method, all processing elements perform local load distribution among their adjacent processing elements in parallel, so the overall system load is lower than in the conventional centralized, sequential control method. Distributed processing becomes much faster. Furthermore, this effect becomes larger as the number of processing elements in the system increases. In the above explanation, a ring-coupled parallel processor system was used as an example for the sake of simplicity, but it goes without saying that the present invention can also be applied to other network-type parallel processors such as arrays, hypercubes, trees, etc. . Also, in FIG. 1, all means are expressed as if they were realized by hardware.

これらの機能・手順をプログラム化しプロセッサ2にこ
れを実行させるようにしても本発明の効果を損うもので
はない。又、ここでは具体的な負荷の移動、隣接処理要
素への負荷の値の通知は、処理要素間のリンクを利用し
、それ専用の信号線を設けないことを想定している。
Even if these functions/procedures are programmed and the processor 2 is made to execute them, the effects of the present invention are not diminished. Further, here, it is assumed that specific load movement and notification of load values to adjacent processing elements utilize links between processing elements, and no dedicated signal lines are provided.

第3図は本発明の他の実施例であり、  1. 4゜5
は第1図と同じ、7は負荷量表示手段4の示す値が所定
値(A)以下であることを検出する小負荷検出手段、8
は同じく同手段が示す値が所定値「(A)+ネットワー
クの最大距1(L)+14以上であることを検出する大
負荷検出手段である。
FIG. 3 shows another embodiment of the present invention. 1. 4゜5
is the same as in FIG. 1, 7 is a small load detection means for detecting that the value indicated by the load amount display means 4 is less than a predetermined value (A), 8
Similarly, the large load detection means detects that the value indicated by the means is greater than or equal to the predetermined value "(A)+maximum distance of the network 1(L)+14".

ここでネットワークの最大距離(L)とは、ネットワー
ク型の並列プロセッサシステムにおける任意の2つの処
理要素間の距離(その間にある処理要素の数+1)の最
大値である。例えば、処理要素数がNの場合、リング型
ではNが偶数のときL=N/2.奇数のときL= (N
−4)/2であり、トーラス結合された2次元アレイ型
ではL=5、ハイパキューブ型ではL−1og、Nであ
る。
Here, the maximum distance (L) of the network is the maximum value of the distance between any two processing elements (the number of processing elements therebetween+1) in a network type parallel processor system. For example, when the number of processing elements is N, in a ring type, when N is an even number, L=N/2. When the number is odd, L= (N
-4)/2, L=5 for the torus-coupled two-dimensional array type, and L-1og,N for the hypercube type.

又、9.10は−1red  OR線、11はWire
dOR線9.10の論理積をとり1両者がactive
になっているときのみ分散方向決定手段5をactiv
eにする負荷分散制御の起動手段である。
Also, 9.10 is -1red OR line, 11 is Wire
dOR line 9. Take the logical product of 10 and 1 both are active
The dispersion direction determining means 5 is activated only when
This is the activation means for load distribution control to

一般に並列処理システムでは、全処理要素の負荷が如何
に不均一であっても、それらが大きい場合には負荷分散
を行う効果は少ない、なぜなら負荷分散の目的は休止状
態の処理要素を減少させることであり、全処理要素が所
定の負荷を持っていればその時点では負荷分散の必要性
はないといえるからである。第3図の実施例は、この点
に注目し、各処理要素の負荷が所定値A以下になった場
合のみ負荷分散を実施しようとするものである(第1図
の場合には第2図のiv)の状態になっても実際の負荷
の移動以外のすべての動作は一定周期で行われる)。さ
らに本方式では、負荷の差が2以上でないと負荷分散を
行わないため最悪の場合、全処理要素の最大負荷と最小
負荷との差がネットワークの最大距離(L)以下になっ
たとき負荷分散が行われない状態になることがある0例
えば第2図のiv)では最大負荷と最小負荷との差が2
で平衡状態となっている(この例の場合には。
In general, in parallel processing systems, no matter how uneven the load on all processing elements is, if the load is large, load balancing has little effect, because the purpose of load balancing is to reduce the number of idle processing elements. This is because if all processing elements have a predetermined load, there is no need for load distribution at that point. The embodiment shown in Fig. 3 focuses on this point, and attempts to perform load distribution only when the load of each processing element becomes less than a predetermined value A (in the case of Fig. 1, the embodiment shown in Fig. 2 Even in state iv), all operations other than actual load movement are performed at regular intervals). Furthermore, in this method, load distribution is not performed unless the load difference is 2 or more, so in the worst case, load distribution is performed when the difference between the maximum load and minimum load of all processing elements becomes less than the maximum distance (L) of the network. For example, in iv) of Figure 2, the difference between the maximum load and minimum load is 2.
is in equilibrium (in this example).

L=5であるから最悪この差が5でも負荷分散が行われ
ないことがある。例えば処理要素PR,〜PE、の負荷
がそれぞれ0,1,2,3,4.5゜4、 3. 2.
 1になったとき)。従って、負荷分散を実施するには
もう一つの条件、すなわち全処理要素の最大負荷と最小
負荷との差がL+1以上であることが必要となる。
Since L=5, in the worst case, even if this difference is 5, load balancing may not be performed. For example, the loads of processing elements PR, ~PE are 0, 1, 2, 3, and 4.5 degrees, respectively.4, 3. 2.
when it becomes 1). Therefore, in order to implement load distribution, another condition is required, namely, that the difference between the maximum load and the minimum load of all processing elements is equal to or larger than L+1.

第3図の実施例はこれら2つの条件、すなわち。The embodiment of FIG. 3 meets these two conditions, viz.

システムでの最小負荷が所定値(A)以下であり。The minimum load on the system is less than or equal to a predetermined value (A).

かつ最大負荷が(L+A+1)以上のときのみ。And only when the maximum load is (L+A+1) or more.

起動手段11により分散方向決定手段5をactive
にし負荷分散を実行するものである。具体的には本実施
例での負荷分散制御は、全処理要素のうちいずれかの処
理要素の小負荷検出手段7がA以下の小負荷を検出し、
かついずれかの処理要素の大負荷検出手段8が(L+A
+1)以上の大負荷を検出したとき、それぞれ−1re
d  OR線9,10がactiveとなり、起動手段
11を介し1分散方向決定手段5がactiveとなる
ことにより行われる。従って、同図の実施例では負荷分
散が必要かつ有効な場合のみ、それが実施されるため負
荷分散制御のオーバヘッドが第1図の実施例以上に減少
することが可能となる。
The activation means 11 activates the dispersion direction determining means 5.
It performs load balancing. Specifically, the load distribution control in this embodiment is such that the small load detection means 7 of any of the processing elements among all the processing elements detects a small load of A or less,
And the large load detection means 8 of any processing element is (L+A
When a large load of +1) or more is detected, -1re respectively.
d The OR lines 9 and 10 become active, and the 1-dispersion direction determining means 5 becomes active via the activation means 11. Therefore, in the embodiment shown in FIG. 1, load balancing is carried out only when it is necessary and effective, so that the overhead of load balancing control can be reduced more than in the embodiment shown in FIG.

なお2木刀式をプログラムによりソフト的に実現しよう
とする場合には、負荷分散処理を割込み処理ルーチンと
し、起動手段11がactiveになったときプロセッ
サ2に割込みを発生しこれに負荷分散処理を行なわせ、
それ以外のときはプロセッサ2に一般の処理だけを行わ
せるように動作させてもよい。
Note that when attempting to realize the 2-bokuto style using software, the load distribution process is made into an interrupt processing routine, and when the activation means 11 becomes active, an interrupt is generated to the processor 2, and the load distribution process is performed on this. height,
At other times, the processor 2 may be operated to perform only general processing.

(5)発明の詳細 な説明したように1本発明によれば、負荷の監視1分散
制御機構を並列プロセッサシステムを構成する全処理要
素に設け、全処理要素がそれらの隣接処理要素との間だ
けで負荷の大小を比較し。
(5) As described in detail, according to the present invention, a load monitoring system is provided with a distributed control mechanism for all processing elements constituting a parallel processor system, and all processing elements are connected to their adjacent processing elements. Just compare the size of the load.

自己の負荷が2つ以上大きいときのみ隣接処理要素に負
荷を移動させる局所的な負荷分散を行うため、システム
全体としては負荷分散が並列的に行われることになりそ
の迅速化が達成されるという利点がある。すなわち、従
来の集中的、逐次的な負荷分散制御に比べそのオーバヘ
ッドを大幅に削減でき、処理要素数相応の高いシステム
性能を実現できる利点がある。
Local load balancing is performed by moving the load to adjacent processing elements only when the load on one element is large, so load balancing is performed in parallel for the entire system, which speeds up the process. There are advantages. That is, compared to conventional centralized and sequential load distribution control, this method has the advantage of significantly reducing overhead and achieving high system performance commensurate with the number of processing elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明をリング結合型の並列プロセッサシステ
ムに適用した場合の実施例、第2図ば第1図の実施例の
動作説明図、第3図は必要かつ有効な期間のみ負荷分散
制御を行うように構成した他の実施例である。 ■=処理要素 2:プロセッサ 3:バッファ 4:負荷量表示手段 5:分散方向決定手段 6:負荷送受手段 7:小負荷検出手段 8:大負荷検出手段 9、 10 : Wired  OR線11:起動手段 特許出願人  日本電信電話株式会社
Fig. 1 shows an example in which the present invention is applied to a ring-coupled parallel processor system, Fig. 2 is an explanatory diagram of the operation of the embodiment shown in Fig. 1, and Fig. 3 shows load distribution control only during necessary and effective periods. This is another embodiment configured to perform the following. ■=Processing element 2: Processor 3: Buffer 4: Load amount display means 5: Distribution direction determining means 6: Load transmitting/receiving means 7: Small load detecting means 8: Large load detecting means 9, 10: Wired OR line 11: Starting means Patent applicant Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)多数の処理要素がネットワーク状に結合された並
列プロセッサシステムにおいて、 各処理要素に、 処理待ちになっている負荷の数を常時、係数・表示する
負荷量表示手段、 自処理要素内の該負荷量表示手段の示す値と該処理要素
に物理的に結合されているすべての少なくとも隣接処理
要素内の負荷量表示手段の示す値とを比較し、自処理要
素内の負荷をいずれの隣接処理要素に分散するか決定す
る分散方向決定手段 および隣接処理要素に自処理要素内の負荷を送出し、あ
るいはそれらからの負荷を受け取る負荷送受手段を設け
、 各処理要素に、自内の負荷量表示手段の示す値がすべて
の隣接処理要素内の負荷量表示手段の示す値の最小値に
対して予め定めた値以上大きいときのみ、その最小値を
示す方向の隣接処理要素に対し1つの負荷を分散させる ことを特徴とする負荷分散制御方式。
(1) In a parallel processor system in which a large number of processing elements are connected in a network, load amount display means for constantly displaying the number of loads waiting to be processed in each processing element as a coefficient; The value indicated by the load amount display means is compared with the value indicated by the load amount display means in at least all adjacent processing elements that are physically coupled to the processing element, and the load within the own processing element is compared to any of the adjacent processing elements. A distribution direction determining means for determining whether to distribute to a processing element and a load transmitting/receiving means for transmitting the load within the own processing element to an adjacent processing element or receiving the load from them are provided, and each processing element is provided with a load amount within the processing element. Only when the value indicated by the display means is larger than the minimum value of the load amount display means in all adjacent processing elements by a predetermined value or more, one load is applied to the adjacent processing element in the direction showing the minimum value. A load distribution control method characterized by distributing.
(2)特許請求の範囲1における各処理要素に、自内の
負荷量表示手段の値が所定値(A)以下になったことを
検出する小負荷検出手段および所定値「(A)+ネット
ワークの最大距離(L)+1」以上になったことを検出
する大負荷検出手段を設け、 全処理要素のうちいずれかの処理要素の負荷が該所定値
(A)以下になり、かつ全処理要素のうちいずれかの処
理要素の負荷が(A+L+1)以上になった場合のみ、
特許請求の範囲1記載の制御を行わせる ことを特徴とする負荷分散制御方式。
(2) Each processing element in claim 1 is provided with a small load detection means for detecting that the value of the internal load amount display means has become less than a predetermined value (A) and a predetermined value "(A) + network A large load detection means is provided to detect when the load of any one of all the processing elements becomes equal to or less than the predetermined value (A), and when the load of any one of all the processing elements becomes equal to or less than the predetermined value (A), and all the processing elements Only when the load of any of the processing elements becomes (A+L+1) or more,
A load distribution control method characterized by performing the control according to claim 1.
JP63015087A 1988-01-26 1988-01-26 Load distributed control system Pending JPH01191252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015087A JPH01191252A (en) 1988-01-26 1988-01-26 Load distributed control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015087A JPH01191252A (en) 1988-01-26 1988-01-26 Load distributed control system

Publications (1)

Publication Number Publication Date
JPH01191252A true JPH01191252A (en) 1989-08-01

Family

ID=11879060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015087A Pending JPH01191252A (en) 1988-01-26 1988-01-26 Load distributed control system

Country Status (1)

Country Link
JP (1) JPH01191252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190535A (en) * 1995-01-04 1996-07-23 Nec Corp Component processor and power distributed multiprocessor
WO2009113293A1 (en) * 2008-03-13 2009-09-17 日本電気株式会社 Computer link method and computer system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190535A (en) * 1995-01-04 1996-07-23 Nec Corp Component processor and power distributed multiprocessor
WO2009113293A1 (en) * 2008-03-13 2009-09-17 日本電気株式会社 Computer link method and computer system
JP2009223371A (en) * 2008-03-13 2009-10-01 Nec Corp Computer link method and system
US8595337B2 (en) 2008-03-13 2013-11-26 Nec Corporation Computer link method and computer system

Similar Documents

Publication Publication Date Title
JPS63316538A (en) Local area network system
JPH0583942B2 (en)
JPH01191252A (en) Load distributed control system
JPH0434640A (en) Calculation server host selecting system
JPH01166161A (en) Mutual monitoring system for multiprocessor system
JPH02224169A (en) Processing distributing system for computer system
JPS63279693A (en) Remote supervisory system
JPS61242142A (en) Communication control system
JPH04332070A (en) Computer system
JP3646346B2 (en) Abnormal processing method of computer system
JPH03296851A (en) Horizontal distribution processing system
JPH02230458A (en) Mutual monitoring method between composite electronic computer
JPS63163566A (en) Parallel computer
JPH02203696A (en) Monitor information transfer system
JP2004038715A (en) Parallel computing processing method
JPH07219803A (en) Multiplex computer control system
JPH09212471A (en) Device and method for parallel processing program execution
JPS6170837A (en) Decentralized type information processing system
JPH096637A (en) Current/standby switching system
JPH04230539A (en) System for monitoring stool for computer
JPH09114782A (en) Schedule calling processing control mechanism
JPH04363742A (en) Data processor
JPH0325655A (en) Inter-cpu control system
JPS62245472A (en) Multicomputer system
JPS62219159A (en) Control system for job request of elementary processor in parallel inference machine