JPH01190251A - Linear motor - Google Patents

Linear motor

Info

Publication number
JPH01190251A
JPH01190251A JP1081588A JP1081588A JPH01190251A JP H01190251 A JPH01190251 A JP H01190251A JP 1081588 A JP1081588 A JP 1081588A JP 1081588 A JP1081588 A JP 1081588A JP H01190251 A JPH01190251 A JP H01190251A
Authority
JP
Japan
Prior art keywords
conductor
movable element
linear motor
viscoelastic resin
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1081588A
Other languages
Japanese (ja)
Inventor
Sadaaki Mori
森 貞明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1081588A priority Critical patent/JPH01190251A/en
Publication of JPH01190251A publication Critical patent/JPH01190251A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a movable element producing little noise by laminating conductors or said conductor and a ferromagnetic body and by interposing a viscoelastic resin between respective layers for constituting said movable element. CONSTITUTION:A secondary side movable element 2 is not an integral conductor but is divided into two layers of a movable element upper conductor 2a and lower conductor 2b to form a sandwich structure having a viscoelastic resin 5 between said two layers. Said conductor 2 is normally a 1-5 mm aluminum or copper material plate and the viscoelastic resin 5 is an acrylic high polymer material or the like and has a thickness of several ten mus- several hundred mus. Thus, because a large damping effect for changing vibrational energy into heat energy is given by the viscoelastic resin 5 when a resonance phenomenon occurs, it is possible to prevent the generation of such remarkable noise and vibration as those known heretofore even if the movable element 2 resonates.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は搬送機器の駆動源等として利用がされるリニア
モータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a linear motor used as a drive source for conveyance equipment, etc.

(従来の技術) リニアモータは高加速、低減速の特徴もあり搬送システ
ムの駆動源として用いられる。このリニアモータは一次
側と称する給電側であり励磁側となる部分と、非給電側
である二次側とから成る。
(Prior Art) Linear motors have the characteristics of high acceleration and low deceleration, and are used as a drive source for conveyance systems. This linear motor consists of a part called a primary side which is a power feeding side and is an excitation side, and a secondary side which is a non-power feeding side.

そして、−次側は鉄心と巻線から成っていて、その鉄心
はスロットを打抜いて積層され、スロットには巻線が幾
重にも巻かれ配置されており、その巻線は同一の構造で
、一定の間隔で空間的にづれたいくつかのコイルから成
っている。また二次側はリニアモータの形状によって非
磁性導体であるアルミニウムや銅などの単一導体かある
いは強磁性体と組合せた複合導体から構成される。こう
した構成において、その−次側の巻線に交流電流を流す
とレンツの右ねじの法則に従って磁束を発生し、これに
より二次側の表面にこの磁束によってうず電流がながれ
るとともに、磁束が巻線の配置により時間とともに移動
する進行磁界となっていることから磁束変化によろうず
電流が推力を発生する。リニアモータには通常、片側式
と両側式とがあり、前者は一次側を単体としていて、二
次側にアルミニウムや銅の板状の単一導体かこれらに鋼
板のような強磁性体を裏打ちしたリアクションプレート
とする場合があり、後者には一次側のスロット部が一枚
の導体に対し向い合うように対置されているものである
The next side consists of an iron core and a winding, and the iron core is laminated with slots punched out, and windings are wound around the slots in multiple layers, and the windings have the same structure. , consisting of several coils spatially spaced at regular intervals. Depending on the shape of the linear motor, the secondary side may be made of a single non-magnetic conductor such as aluminum or copper, or a composite conductor combined with a ferromagnetic material. In such a configuration, when an alternating current is passed through the secondary winding, a magnetic flux is generated according to Lenz's right-handed screw law, and this magnetic flux causes an eddy current to flow on the surface of the secondary side, and the magnetic flux also flows through the winding. Due to the arrangement of the magnetic field, it becomes a traveling magnetic field that moves with time, so the wax current generates thrust due to changes in magnetic flux. There are usually two types of linear motors: one-sided type and two-sided type. The former has a single primary side, and the secondary side is a single conductor made of aluminum or copper plate, or is lined with a ferromagnetic material such as a steel plate. In some cases, a reaction plate is used, and the latter has a slot portion on the primary side facing a single conductor.

第7図に示す従来例はこの中の両側式リニアモータの構
造概念図である。給電側である一次側が固定子、非給電
側である二次側が可動子となっている。図中、1aは上
部固定子、1bが下部固定子であり、両固定子間にはあ
る空隙を介して、単一導体である板状の可動子2が固定
子面に対した巻線の配線方向に平行に移動可能に設けら
れている。上部固定子1 a s下部固定子1bにはス
ロット3が打抜かれていて、そこには一定の間隔で空間
的にづれた巻線4が一定の間隔で巻かれて配置されてい
る。この巻線に給電することで、前記リニアモータの動
作原理から電磁力が二次側である可動子2に発生し、可
動子2が運動することになる。
The conventional example shown in FIG. 7 is a structural conceptual diagram of a double-sided linear motor among these. The primary side, which is the power feeding side, is the stator, and the secondary side, which is the non-power feeding side, is the movable element. In the figure, 1a is an upper stator, 1b is a lower stator, and a plate-shaped movable element 2, which is a single conductor, connects the windings to the stator surface through a certain gap between both stators. It is provided so as to be movable in parallel to the wiring direction. Slots 3 are punched out in the upper stator 1 a s and the lower stator 1 b, in which windings 4 are arranged, spatially offset at regular intervals, wound at regular intervals. By supplying power to this winding, electromagnetic force is generated in the movable element 2, which is the secondary side, based on the operating principle of the linear motor, and the movable element 2 moves.

(発明が解決しようとする課題) リニアモータの一次側にはこれまで正弦波交流が給電さ
れてきたが最近では搬送の効率化から可変速機能を要求
されだしたのに対応してインバータ電源から給電する例
が多くなり出した。リニアモータでは正弦波交流によっ
て駆動した場合においても基本波をはじめ各種高調波磁
束が発生する。それに加えてインバータ駆動ではキャリ
ア成分が入り込み、これらが可動子2に電磁加振力とし
て作用する。もともと可動子2は平板で単純な形状とな
っているので固有振動数も多く構造的に振動を減衰させ
ることもなくこのような電磁加振力が作用し、それが共
振となると著しく大きな騒音を発生する要素をもってい
た。リニアモータのインバータ駆動では速度制御のため
キャリア周波数を変化させることからどうしても可動子
2の共振域に入り込み耳障りな音を発生する場合が多か
った。
(Problem to be solved by the invention) Up until now, the primary side of a linear motor has been supplied with sine wave alternating current, but in response to the recent demand for a variable speed function to improve the efficiency of conveyance, an inverter power source has been used to There are many cases where electricity is supplied. In a linear motor, even when driven by a sine wave alternating current, various harmonic magnetic fluxes including a fundamental wave are generated. In addition, in the inverter drive, carrier components enter, and these act on the movable element 2 as electromagnetic excitation force. Since the movable element 2 is originally a flat plate with a simple shape, it has a high natural frequency and is not structurally attenuated by the electromagnetic excitation force, and when it resonates, it produces a significantly large noise. It had elements that occur. When a linear motor is driven by an inverter, the carrier frequency is changed for speed control, which often causes the carrier frequency to enter the resonance range of the movable element 2 and generate a harsh sound.

そこで本発明の目的はインバータにより過変速駆動され
た場合にも騒音の少ないリニアモータの(課題を解決す
るための手段) すなわち本発明は、積層鉄心のスロットに巻線を収納し
て成り進行磁界を発生する固定子と、固定子の発生した
進行磁界を受けて移動する可動子とから構成されるリニ
アモータにおいて、導体を積層し、または導体と強磁性
体とを積層してそれぞれの層間に粘弾性樹脂を介在させ
て可動子を構成することに特徴を有する。
Therefore, the object of the present invention is to provide a linear motor that produces less noise even when over-speed driven by an inverter. In a linear motor, which is composed of a stator that generates a The feature is that the mover is constructed with a viscoelastic resin interposed therebetween.

(作用) 上述した様に可動子を構成する導体または導体と強磁性
体の層間に粘弾性層を介在させることにより、共振時に
は粘弾性層部にて振動エネルギーを熱エネルギーにかえ
る大幅な制振効果を与えるのでたとえ可動子が共振して
も従来のような著しい騒音及び振動を発生することを防
止できる。
(Function) As mentioned above, by interposing the viscoelastic layer between the conductor or conductor and ferromagnetic layers that make up the mover, the viscoelastic layer converts vibrational energy into thermal energy during resonance, resulting in significant vibration damping. Because of this effect, even if the movable element resonates, it is possible to prevent the occurrence of significant noise and vibration as in the conventional case.

(実施例) 以下、実施例を第1図でもって説明する。第1図は本発
明の一例を示す両側式リニアモータの構造の概念図であ
る。給電側である一次側の固定子は上部固定子1aと下
部固定子1bとから成っていて、その固定子1a、lb
が挟むように可動子2をある空隙を介して位置づけされ
ている。上固定子1a及び下固定子1b共それぞれスロ
ット3が打抜かれていてそこには一定の間隔で空間的に
づれた巻線4が一定の間隔で巻かれて配置されている。
(Example) An example will be described below with reference to FIG. FIG. 1 is a conceptual diagram of the structure of a double-sided linear motor showing an example of the present invention. The stator on the primary side, which is the power supply side, consists of an upper stator 1a and a lower stator 1b.
The mover 2 is positioned with a certain gap in between. Slots 3 are punched out in each of the upper stator 1a and the lower stator 1b, and windings 4 spaced apart from each other at regular intervals are wound therein and arranged at regular intervals.

二次側の可動子2は一体の導体でなく、可動子上部導体
2aと下部導体2bの2層に分けその中間に粘弾性樹脂
5をもつサンドイッチ構造としている。導体2は通常1
〜5關のアルミニウムもしくは銅の材料の板状のもので
あり、粘弾性樹脂5はアクリル系高分子材料などでその
厚みは数10μ〜数100μである。
The movable element 2 on the secondary side is not an integrated conductor, but has a sandwich structure in which the movable element is divided into two layers, an upper conductor 2a and a lower conductor 2b, with a viscoelastic resin 5 in between. Conductor 2 is usually 1
The viscoelastic resin 5 is made of an acrylic polymer material and has a thickness of several tens of microns to several hundreds of microns.

次に第2図と第3図でもって実施例の作用を説明する。Next, the operation of the embodiment will be explained with reference to FIGS. 2 and 3.

リニアモータの導体2には長手方向に電磁力波をうけや
すい、可動子2の導体2形状は一般に長方形板であり、
こうした形状の曲げの固有振動数は、 ここで、 a:長手方向の長さ υ:ボリアン比 bり横方向の長さ  m:長手方向の節線数t:板厚 
     n:横方向の節線数で示される。
The conductor 2 of the linear motor is susceptible to electromagnetic force waves in the longitudinal direction, and the shape of the conductor 2 of the mover 2 is generally a rectangular plate.
The natural frequency of bending in such a shape is, where: a: Length in the longitudinal direction υ: Length in the lateral direction of the Borian ratio b m: Number of nodes in the longitudinal direction t: Plate thickness
n: Indicates the number of nodes in the horizontal direction.

第2図はこのような固有振動数のモード例を示し節部6
a、6bでもって−m−3.n=1のモードを示してい
る。例えば、このモードでの固有振動数に合致する電磁
力波が導体に作用する時、導体は振動を拡大し、また電
磁力波のモードも同一であれば極めて著しい振動を生ず
ることになる。
Figure 2 shows an example of the mode of such a natural frequency.
With a, 6b-m-3. A mode where n=1 is shown. For example, when an electromagnetic force wave that matches the natural frequency of this mode acts on a conductor, the conductor will amplify its vibrations, and if the modes of the electromagnetic force waves are also the same, extremely significant vibration will occur.

しかしその共振時には可動子上部導体2aと下部導体2
bとの間に入れた粘弾性樹脂が制振力として作用する。
However, at the time of resonance, the mover upper conductor 2a and lower conductor 2
The viscoelastic resin inserted between the material and the material b acts as a damping force.

この制振力について、第3図を用いて説明する。This damping force will be explained using FIG. 3.

第3図は本発明の構成での可動子2の振動変形時の要部
拡大図であり、可動子2の構造は可動子上部導体2aと
可動子下部導体2bとの間に粘弾性樹脂5を挟在させて
いるのであるが、この構成下にて可動子下部導体2bを
内側となるような変形を示している。この時、粘弾性樹
脂5のヤング率が極端に低いうえに、上部導体2aと下
部導体2bとが厚みが同一で、材質が同一とすれば同じ
曲げ剛性であり変形の曲率も同じとなる。この結果、可
動子上部導体2aはその中心部22aを境にして上層部
21aが伸び、下層部23aが圧縮に、また、可動子下
部導体2bでも同様にその中心部22bを境にして上層
部21bが伸び下層部23bが圧縮状態となる。
FIG. 3 is an enlarged view of the main part of the movable element 2 during vibration deformation in the configuration of the present invention, and the structure of the movable element 2 is such that a viscoelastic resin 5 However, under this configuration, a deformation is shown in which the mover lower conductor 2b is placed inside. At this time, if the Young's modulus of the viscoelastic resin 5 is extremely low, and the upper conductor 2a and the lower conductor 2b have the same thickness and are made of the same material, they will have the same bending rigidity and the same curvature of deformation. As a result, the upper layer portion 21a of the mover upper conductor 2a extends with its center portion 22a as a boundary, and the lower layer portion 23a is compressed. 21b is expanded and the lower layer portion 23b is in a compressed state.

このような変形により上部導体の下層部23aの下皮部
203の端部と下部導体の上層部21bの上皮部201
の端部にずれδを生じる。導体がfなる振動数で振動す
る時にはこのずれδを1秒間にf回くり返す。粘弾性体
5はこのくり返しのづれの際、抵抗力として作用すると
ともに振動エネルギーを熱エネルギーに変化させる。
Due to such deformation, the ends of the lower skin part 203 of the lower layer part 23a of the upper conductor and the epithelial part 201 of the upper layer part 21b of the lower conductor
A deviation δ occurs at the end of the . When the conductor vibrates at a frequency f, this deviation δ is repeated f times per second. During this repeated displacement, the viscoelastic body 5 acts as a resistance force and changes vibrational energy into thermal energy.

以上のように粘弾性体5をサンドイッチ構造によるリニ
アモータの導体2は吸振性能が高いものとなる。
As described above, the conductor 2 of the linear motor with the sandwich structure of the viscoelastic body 5 has high vibration absorption performance.

次に実施例の効果について第4図を用いて説明する。リ
ニアモータの可動子2に限らず振動減衰力のある構造物
に励振力が作用する時その構造物は次のような強制振動
の拡大Mfで示す。
Next, the effects of the embodiment will be explained using FIG. 4. When an excitation force acts on a structure having a vibration damping force, not only the movable element 2 of a linear motor, the structure is represented by the following forced vibration magnification Mf.

ここで  f:振動周波数 fn:固有振動数 ζ:減衰係数 一般に構造減衰もない可動子2の導体に用いられるよう
な導電材料ではζ<10−3である。このような材料で
の共振時には第4図の(イ)のような拡大曲線を描く。
Here, f: Vibration frequency fn: Natural frequency ζ: Damping coefficient Generally, in a conductive material such as that used for the conductor of the mover 2 without structural damping, ζ<10-3. When such a material resonates, it draws an enlarged curve as shown in FIG. 4 (a).

しかし、粘弾性体5を夾み込んだ、可動子導体2ではζ
>10−’が得られる。
However, in the mover conductor 2 that includes the viscoelastic body 5, ζ
>10-' is obtained.

この結果、振動の拡大曲線は第4図の(ロ)のような状
況を示す。
As a result, the vibration expansion curve shows a situation as shown in FIG. 4 (b).

以上のように振動が大幅に下がる効果を得ることにより
リニアモータの駆動下にて、正弦波、インバータを問わ
ず電磁力波との共振時でも振動がそれほど大きくならず
、不快な共振音の発生しない、静かなリニアモータが提
供される。
By achieving the effect of significantly reducing vibration as described above, when driven by a linear motor, even when resonance occurs with electromagnetic force waves, regardless of whether it is a sine wave or an inverter, the vibration does not become so large that unpleasant resonance noise is generated. A quiet linear motor is provided.

上述した一実施例においては可動子2が2層の導体の場
合を図示したが3層であっても振動減衰効果は得られる
。この例を第5図に示す。
In the embodiment described above, the case where the movable element 2 is a two-layer conductor is illustrated, but a vibration damping effect can be obtained even if the movable element 2 is a three-layer conductor. An example of this is shown in FIG.

第5図では可動子2は可動子上部導体2aと可動子中間
部導体2cとの間と可動子中間部導体2Cと可動子下部
導体2bとの間に粘弾性樹脂5を入れて3層サンドイッ
チ構造を示す。
In FIG. 5, the mover 2 is a three-layer sandwich in which a viscoelastic resin 5 is inserted between the mover upper conductor 2a and the mover middle conductor 2c, and between the mover middle conductor 2C and the mover lower conductor 2b. Show the structure.

また、これまで例示したのはリニアモータが固定子1を
両側に配置する両側式リニアモータでの例であったが片
側式リニアモータでも同様の効果が得られる構成が出来
る。第6図にその例を示す。
Moreover, although the linear motor illustrated so far has been an example of a double-sided linear motor in which the stator 1 is disposed on both sides, a configuration in which the same effect can be obtained can be achieved with a single-sided linear motor. An example is shown in FIG.

第6図は片側式固定子ICに向い合う可動子2の面は可
動子片側導体2dがあり、その背側に鉄などから成る強
磁性体7があり、その間に粘弾性樹脂挟在させたサンド
イッチ構造となっている。
Figure 6 shows that the side of the mover 2 facing the single-sided stator IC has a mover single-side conductor 2d, and on the back side there is a ferromagnetic material 7 made of iron or the like, with a viscoelastic resin sandwiched between them. It has a sandwich structure.

[発明の効果コ 以上のようにリニアモータの可動子が導体のみであれば
2層以上にしてその間に粘弾性樹脂5をはめ込む構成に
し、可動子が導体層と強磁性体層とで層状になっている
ものにおいてその層間に粘弾性樹脂を挾むような構成に
することで、可動子に各種の電磁力波が作用しても可動
子の変形にともなう粘弾性層のずれにより共振振動を吸
収するので振動も大して拡大もせず、不快な共振音が防
止できる。
[Effects of the Invention] As described above, if the movable element of the linear motor is made of only a conductor, the structure is such that the movable element has two or more layers and the viscoelastic resin 5 is inserted between them, and the movable element is layered with a conductive layer and a ferromagnetic layer. By using a structure in which a viscoelastic resin is sandwiched between the layers, even if various electromagnetic force waves act on the mover, resonance vibrations are absorbed by the displacement of the viscoelastic layer due to the deformation of the mover. Therefore, the vibration does not increase much, and unpleasant resonance noise can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す両側式リニアモータの
構造の概念図、第2図は本発明のリニアモータの可動子
での振動モードの一例を示す図、第3図は本発明のリニ
アモータの可動子の振動による変形を説明する要部拡大
図、第4図は可動子の振動拡大状況を説明する図、第5
図は可動子を3層に積層した場合の説明図、第6図は片
側式リニアモータの実施例を示す概念図、第7図は従来
の両側式リニアモータの構造の概念図である。 1・・・上部固定子、 IC・・・片側式固定子、2・
・・可動子、 3・・・スロット、 4・・・巻線、5
・・・粘弾性樹脂、 6a、6b・・・振動の節部。 代理人 弁理士 則 近 憲 佑 同       第  子  丸  健第1If 第2図 第31!l 第41!a
FIG. 1 is a conceptual diagram of the structure of a double-sided linear motor showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of the vibration mode in the mover of the linear motor of the present invention, and FIG. 3 is a diagram showing an example of the vibration mode of the linear motor of the present invention. Fig. 4 is an enlarged view of the main part explaining the deformation due to vibration of the movable element of the linear motor.
FIG. 6 is a conceptual diagram showing an embodiment of a single-sided linear motor, and FIG. 7 is a conceptual diagram of the structure of a conventional double-sided linear motor. 1... Upper stator, IC... Single side stator, 2...
...Mover, 3...Slot, 4...Winding, 5
... Viscoelastic resin, 6a, 6b... Vibration nodes. Agent Patent Attorney Nori Ken Yudo Chika Ken Maru 1st If Figure 2 Figure 31! l No. 41! a

Claims (2)

【特許請求の範囲】[Claims] (1)積層鉄心のスロットに巻線を収納して成り進行磁
界を発生する固定子と、導体から成り前記進行磁界を受
けて移動する可動子とから構成されるリニアモータにお
いて、前記可動子を複数層としてそれぞれの層間に粘弾
性樹脂を介在させることを特徴とするリニアモータ。
(1) A linear motor consisting of a stator whose windings are housed in slots of a laminated core and which generates a traveling magnetic field, and a movable element which is made of a conductor and which moves in response to the traveling magnetic field. A linear motor characterized in that a viscoelastic resin is interposed between multiple layers.
(2)積層鉄心のスロットに巻線を収納して成り進行磁
界を発生する固定子と、導体と強磁性体とを積層して成
り前記進行磁界を受けて移動する可動子とから構成され
るリニアモータにおいて、前記可動子の層間に粘弾性樹
脂を介在させることを特徴とするリニアモータ。
(2) Consisting of a stator that has windings housed in slots in a laminated core and generates a traveling magnetic field, and a mover that is made of laminated conductors and ferromagnetic materials that moves in response to the traveling magnetic field. A linear motor characterized in that a viscoelastic resin is interposed between the layers of the movable element.
JP1081588A 1988-01-22 1988-01-22 Linear motor Pending JPH01190251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081588A JPH01190251A (en) 1988-01-22 1988-01-22 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081588A JPH01190251A (en) 1988-01-22 1988-01-22 Linear motor

Publications (1)

Publication Number Publication Date
JPH01190251A true JPH01190251A (en) 1989-07-31

Family

ID=11760844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081588A Pending JPH01190251A (en) 1988-01-22 1988-01-22 Linear motor

Country Status (1)

Country Link
JP (1) JPH01190251A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033156A1 (en) * 1997-12-19 1999-07-01 Minnesota Mining And Manufacturing Company Internally damped stator, rotor, and transformer and a method of making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033156A1 (en) * 1997-12-19 1999-07-01 Minnesota Mining And Manufacturing Company Internally damped stator, rotor, and transformer and a method of making
US6191510B1 (en) 1997-12-19 2001-02-20 3M Innovative Properties Company Internally damped stator, rotor, and transformer and a method of making
US6499209B1 (en) 1997-12-19 2002-12-31 3M Innovative Properties Company Internally damped stator, rotor, and transformer and a method of making

Similar Documents

Publication Publication Date Title
US5487114A (en) Magnetless speaker
Lovelace et al. Mechanical design considerations for conventionally laminated, high-speed, interior PM synchronous machine rotors
US4288709A (en) High performance stepper motor
WO2010067837A1 (en) Thrust generation mechanism, drive device, xy stage, and xyz stage
KR20030007429A (en) Composite Piezoelectric Transformer
EP2058928A2 (en) Electric machinery with a conduction winding excited magnetic poles sandwiched PM magnetic pole
JP2004088992A (en) Production of voice-coil type linear actuators, arrangement using the actuators, and the actuators
KR20020058182A (en) An integrated system of permanent magnet excited synchronous motor and non-contact power feed apparatus
JP2010141978A (en) Thrust generation mechanism
US11296587B2 (en) High force and low noise linear fine-tooth motor
JP4382437B2 (en) Linear motor
Demian et al. AC magnetic circuits using nonsegmented shifted grain oriented electrical steel sheets: Impact on induction machine magnetic noise
US5172020A (en) Magnetic core for AC electrical equipments
US6525444B2 (en) Apparatus and method utilizing amorphous metal laminates in an electric generator
JPH01190251A (en) Linear motor
US5903069A (en) Synchronous reciprocating electric machines
JPH08149726A (en) Stator for motor
JP2010158095A (en) Electric motor
JP2013034385A (en) Thrust generation mechanism
US6476532B1 (en) Magnetostrictive-compensated core of electromagnetic device
JP2003264946A (en) Stator iron core of motor
JP2000004572A (en) Linear motor
JP2001145327A (en) Armature for linear motor
JP2003116262A (en) Linear synchronous motor
He et al. Investigation on pole-pair number combinations of a two degree-of-freedom rotary-linear machine with hybrid permanent magnets