JPH01189496A - Loop tube heat transfer device - Google Patents

Loop tube heat transfer device

Info

Publication number
JPH01189496A
JPH01189496A JP965688A JP965688A JPH01189496A JP H01189496 A JPH01189496 A JP H01189496A JP 965688 A JP965688 A JP 965688A JP 965688 A JP965688 A JP 965688A JP H01189496 A JPH01189496 A JP H01189496A
Authority
JP
Japan
Prior art keywords
heat
hydrogen
heat transfer
fluid
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP965688A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP965688A priority Critical patent/JPH01189496A/en
Publication of JPH01189496A publication Critical patent/JPH01189496A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To expand the applicability range and diversify the fields of application by producing as an internal pressure differential between the heat-absorbing and heat-releasing sections, which is indispensable to spontaneous circulation of a heat-carrying fluid, a pressure differential between the equilibrium hydrogen pressure of a hydrogen-occluded alloy generated by a high temperature at the heat-absorbing section and that generated by a low temperature at the heat-releasing section. CONSTITUTION:The heat-carrying fluid employed is a fluid obtained by mixing hydrogen gas with a designated fluid in the liquid state which consists of a fluid forming a disperse system with addition of a designated finely pulverized hydrogen-occluded alloy. This heat- carrying fluid is given, despite changes in phase, an internal pressure differential due to equilibrium hydrogen pressure between the heat-absorbing and heat-releasing sections; the release of hydrogen produces pressure waves so that a pressure chamber formed by a circulation direction control means 2 develops breathing and the circulation direction control means 2 itself a vibration between opening and closure, thus the heat-carrying fluid 4 gaining a vigorous propulsive force enabling it to circulate through a loop type conduit. Carried by the circulating flow, the hydrogen-occluded powder alloy, as it passes the heat-absorbing section 1-H, releases hydrogen and simultaneously absorbs a quantity of heat as latent heat, whereas, as it passes the heat-releasing section 1-C, it absorbs hydrogen and simultaneously releases a quantity of heat as latent heat. The circulating fluid absorbs also sensible heat at the heat-absorbing section 1-H and releases sensible heat at the heat-releasing section 1-C.

Description

【発明の詳細な説明】 イ6発明の目的 〔産業上の利用分野〕 本発明はループ管型ヒートパイプ及びこれに類似する熱
伝達装置の性能を改善する為の新規な構造に関する。又
本発明は水素吸蔵合金の温度−平衡水素圧特性と熱量の
吸収放熱特性を有効に利用する熱伝達装置の構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A.6 OBJECTS OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel structure for improving the performance of loop tube heat pipes and similar heat transfer devices. The present invention also relates to the structure of a heat transfer device that effectively utilizes the temperature-equilibrium hydrogen pressure characteristics and heat absorption and heat radiation characteristics of a hydrogen storage alloy.

〔従来技術〕[Prior art]

発明者は特願昭62−155747号において「ループ
型細管ヒートパイプ」を、又特願昭62−266265
号において「熱伝達装置」を提案し実用に供しつつある
。それ等は何れも第1図に例示の一部断面略図の如く、
曲管部を有する管自身の両端末が相互に連結されてルー
プ管型コンテナlが形成されてあり、該コンテナにおけ
る少なくとも1個所には受熱部1−Hが、他の少なくと
も1個所には放熱部1−Cが設けられ、それ等は夫々加
熱手段H及び冷却手段Cによって受熱及び放熱せしめら
れる様構成されてあり、コンテナ内には所定の熱搬送流
体4の所定量が封入されてあり、該熱搬送流体4はその
ループ状流路内の少なくとも1個所に設けられてある循
環方向規制手段2と受放熱部間の温度差の相互作用によ
り一定の方向に自発的に循環しながら受熱部1−Hから
放熱部1−Cに熱量を輸送する熱伝達装置である点にお
いて共通である。又原則的には熱搬送流体の少なくとも
一部は気液2相の相変化を伴ないながら循環する点にお
いても共通である。この様な熱伝達装置における循環方
向規制手段が逆止め弁である場合は図における3の破線
で示されてある部分のコンテナ内又はコンテナ外周に電
磁的手段又は磁気的手段によって弁体の振動を制御する
ことによりその性能を向上せしめることが出来る点にお
いても共通である。この様な熱伝達装置の熱伝達は熱担
体である熱搬送流体の循環によって行なわれるのである
が、その循環流発生の原理は次の如くであり、受放熱部
間温度差により自然発生するものであった。
The inventor has published a "loop type thin tube heat pipe" in Japanese Patent Application No. 155747/1982, and also in Japanese Patent Application No. 266265/1982.
In this issue, we proposed a ``heat transfer device'' and are putting it into practical use. All of them are shown in the partially cross-sectional diagram shown in FIG.
Both ends of the pipe itself having a curved pipe part are connected to each other to form a loop pipe type container l, and at least one part of the container has a heat receiving part 1-H, and at least one other part has a heat dissipating part. A section 1-C is provided, which are configured to receive and radiate heat by heating means H and cooling means C, respectively, and a predetermined amount of a predetermined heat transfer fluid 4 is sealed in the container. The heat transfer fluid 4 circulates spontaneously in a certain direction due to the interaction of the temperature difference between the circulation direction regulating means 2 provided at at least one location in the loop-shaped flow path and the heat receiving/radiating section. They are common in that they are heat transfer devices that transport heat from 1-H to heat radiating section 1-C. Furthermore, they are also common in that, in principle, at least a portion of the heat transfer fluid circulates while undergoing a phase change between gas and liquid. If the circulation direction regulating means in such a heat transfer device is a check valve, vibration of the valve body is controlled by electromagnetic means or magnetic means inside the container or around the container in the area indicated by the broken line 3 in the figure. They are also common in that their performance can be improved by controlling them. Heat transfer in such a heat transfer device is carried out by the circulation of a heat carrier fluid, which is a heat carrier.The principle of generating the circulation flow is as follows. Met.

(a)複数の循環方向規制手段によってループ管型コン
テナ内部は複数の圧力室に分割されてあるとみなすこと
が出来る。該各圧力室における熱搬送流体(少なくとも
その一部分は2相凝縮性流体)の蒸発、凝縮速度及びそ
れにより発生する飽和蒸気圧は均等ではない。又コンテ
ナ内壁面における潜熱及び顕熱の授受熱量及びそれによ
る温度変化も不均等である。これ等の不均等により夫々
の圧力室内の全圧力には差異が生じる。この圧力差は循
環方向規制手段に開閉作動を発生せしめる。−旦開閉作
動が発生すると一方の圧力室内の蒸気は断熱膨張せしめ
られ、他方の圧力室内の蒸気は断熱圧縮せしめられ、側
圧力室には温度及び内圧の急変が生じる。この様な作動
は逐次下流側の圧力室にも波及し、各圧力室は自然発生
的に呼吸作用と循環方向規制手段の開閉振動作用を発生
する。
(a) The inside of the loop tube type container can be considered to be divided into a plurality of pressure chambers by the plurality of circulation direction regulating means. The evaporation and condensation rates and the resulting saturated vapor pressures of the heat transfer fluid (at least a portion of which is a two-phase condensable fluid) in each pressure chamber are not equal. Furthermore, the amount of latent heat and sensible heat transferred and received on the inner wall surface of the container and the resulting temperature changes are also uneven. These inequalities cause differences in the total pressure within each pressure chamber. This pressure difference causes the circulation direction regulating means to open and close. - Once the opening/closing operation occurs, the steam in one pressure chamber is adiabatically expanded, the steam in the other pressure chamber is adiabatically compressed, and a sudden change in temperature and internal pressure occurs in the side pressure chamber. Such an operation successively spreads to the pressure chambers on the downstream side, and each pressure chamber spontaneously generates a breathing action and an opening/closing vibration action of the circulation direction regulating means.

この呼吸作用は熱搬送流体に一定方向の推進力を与える
This breathing action provides a directional driving force to the heat transfer fluid.

(b)各受熱部に発生する核沸騰には蒸発と突沸とが混
在し、突沸は熱搬送流体内に圧力波(又は衝撃波)を発
生せしめる。この圧力波は上流側循環方向規制手段を瞬
時に閉鎖せしめ、下流側循環方向規制手段を瞬時に開放
する。この急激な開閉は更に2次的な圧力波を発生し逐
次下流側圧力室に波及しながらループ管型コンテナ内を
高速度で循環する。この様な圧力波は各受熱部でランダ
ムに且つ連続して発生するので循環方向規制手段は振動
状態の開閉作動をm続し、熱搬送流体に推進力を与える
。この様な圧力波による循環方向規制手段の開閉振動は
循環方向規制手段の配設部が1個所であっても発生ずる
(b) The nucleate boiling that occurs in each heat receiving section includes both evaporation and bumping, and bumping generates pressure waves (or shock waves) in the heat transfer fluid. This pressure wave instantaneously closes the upstream circulation direction regulating means and instantaneously opens the downstream circulation direction regulating means. This rapid opening/closing further generates secondary pressure waves, which circulate at high speed within the loop tube type container while sequentially spreading to the downstream pressure chamber. Since such pressure waves are generated randomly and continuously in each heat-receiving section, the circulation direction regulating means continues to open and close in a vibrating state, thereby providing a driving force to the heat-carrying fluid. Such opening/closing vibration of the circulation direction regulating means due to pressure waves occurs even if the circulation direction regulating means is disposed at only one location.

(c)凝縮性流体は受熱部にて気化し高い飽和蒸気圧を
発生し、放熱部にて凝縮液化し低い飽和蒸気圧を発生す
る。従ってこの圧力差によって熱搬送流体は受熱部から
放熱部に向って推進力が与えられる。一方熱搬送流体の
移動は循環方向規制手段により規制されてあるから規制
方向の下流側のみに移動が可能である。即ちループ管型
コンテナ内の熱搬送流体は受熱部からそれより下流に位
置する放熱部に向って循環せしめられる。この作用はル
ープ管型コンテナ内に設けられてある循環方向規制手段
が1個所であっても且つループ内に設けられてある受放
熱部が多数であっても同様に作用する。又この場合放熱
部が受熱部の上流側近距離にあっても熱搬送流体は逆流
することは不可能で遠距離の下流放熱部に向って推進さ
れる。この様な受放熱部間内圧の差により発生する循環
流はループ管型熱伝達装置作動の基礎となっている。
(c) The condensable fluid is vaporized in the heat receiving section to generate a high saturated vapor pressure, and condensed and liquefied in the heat radiating section to generate a low saturated vapor pressure. Therefore, this pressure difference provides a driving force to the heat transfer fluid from the heat receiving section to the heat radiating section. On the other hand, since the movement of the heat transfer fluid is regulated by the circulation direction regulating means, it can only move downstream in the regulated direction. That is, the heat transfer fluid within the loop tube type container is circulated from the heat receiving section to the heat radiating section located downstream thereof. This effect works in the same way even if there is only one circulation direction regulating means provided in the loop tube type container, and even if there are many heat receiving and radiating parts provided in the loop. In this case, even if the heat radiating section is located close to the upstream side of the heat receiving section, the heat transfer fluid cannot flow backwards and is propelled toward the far downstream heat radiating section. The circulating flow generated by such a difference in internal pressure between the heat receiving and discharging parts is the basis of the operation of the loop tube type heat transfer device.

(d)上記各作用により一旦循環が開始された熱搬送流
体には強い慣性が与えられ、これにより循環方向規制手
段開閉時には圧力室内の上流端と下流端には膨張部と圧
縮部を生じて開閉振動を増幅せしめ循環推進力を強化せ
しめる。
(d) Due to the above actions, strong inertia is imparted to the heat transfer fluid once circulation has started, and as a result, an expansion part and a compression part are created at the upstream and downstream ends of the pressure chamber when the circulation direction regulating means is opened and closed. It amplifies the opening/closing vibration and strengthens the circulation propulsion force.

上記の如くして自然発生的に生じる熱搬送流体の循環流
は(a) (b) (c)何れの推進要因であっても基
本的には循環方向規制手段(逆止め弁の場合は弁体)の
開閉振動によって発生せしめられる。即ち強力な推進力
発生の為には閉になることが必要であり、該推進力によ
り充分な流量を得る為には開になる必要があり、循環流
発生には開閉振動が必須条件となる。又閉となっている
間も循環流が継続する為には圧力室内流体は気液2相状
態又は真空泡混合状態である必要があり、これらによる
クツション作用が開閉振動を円滑ならしめる。
The circulating flow of the heat transfer fluid that naturally occurs as described above is caused by (a), (b), and (c) any of the driving factors, but basically the circulation direction regulating means (in the case of a check valve, the valve It is generated by the opening/closing vibration of the body. In other words, in order to generate a strong propulsive force, it is necessary to close, and in order to obtain a sufficient flow rate from the propulsive force, it is necessary to open, and opening and closing vibration is an essential condition for generating circulating flow. . In order for the circulation flow to continue even while the valve is closed, the fluid within the pressure chamber must be in a gas-liquid two-phase state or in a vacuum foam mixture state, and the cushioning action of these smooths out the opening and closing vibrations.

循環方向規制手段2としては各種の手段があるがその例
の一部を第2図(イ) (t+)に示す。(イ)は通常
の球弁型逆止弁であり、2−1は弁座、2−2は球状弁
体、2−3はストー/パである。この型は逆上作用が確
実であり、又弁座、弁体の材料を強磁性体とすることに
より、外部から電磁的手段及び磁気的手段により弁体2
−2の開閉振動を制御することが出来る利点がある。然
し長年月の間には弁体2−2、ストッパ2−3の磨耗に
よる故障発生に留意する必要がある。(ロ)は循環方向
規制ノズル2−4のゆるやかな断面縮小方向の流れに対
しては流体抵抗が零に近く、逆方向の急激な断面縮小を
する流れに対しては大きな流体抵抗を示すことにより循
環方向を矢印の方向に規制する。
There are various types of circulation direction regulating means 2, some of which are shown in FIG. 2(a) (t+). (A) is a normal ball valve type check valve, 2-1 is a valve seat, 2-2 is a spherical valve body, and 2-3 is a stopper/pa. This type is reliable in reverse action, and by using ferromagnetic material for the valve seat and valve body, the valve body can be moved from the outside by electromagnetic means or magnetic means.
There is an advantage that the opening/closing vibration of -2 can be controlled. However, it is necessary to pay attention to the occurrence of failures due to wear of the valve body 2-2 and stopper 2-3 over many years. In (b), the fluid resistance is close to zero against the flow in the direction of gradual cross-section reduction of the circulation direction regulating nozzle 2-4, and large fluid resistance is exhibited against the flow with rapid cross-section reduction in the opposite direction. The circulation direction is regulated in the direction of the arrow.

この場合には磨耗部分が無いので熱搬送流体が微粉末分
散型の液体であっても長寿命が保証出来る利点があり、
又循環流体の慣性により流量流速を大きくすることが出
来る利点もあるが、逆止力が弱いので初期推進力が弱い
欠点がある。(II)の場合には前記の弁体開閉振動作
用は循環方向規制ノズル2−4の先端部における流体が
弁体と類似の振動を生ずるものと考えてよい。
In this case, there is no wear part, so even if the heat transfer fluid is a fine powder dispersed liquid, it has the advantage of guaranteeing a long life.
Although there is an advantage that the flow velocity can be increased due to the inertia of the circulating fluid, there is a disadvantage that the initial propulsive force is weak because the check force is weak. In the case of (II), the above-mentioned valve body opening/closing vibration action can be considered to be caused by the fluid at the tip of the circulation direction regulating nozzle 2-4 producing vibration similar to that of the valve body.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特願昭62−155747号及び特願昭62−2662
65号に係るループ管型熱伝達装置はコンテナ内に封入
されてある熱搬送流体が上記の如く自発的に循環して熱
搬送が行なわれるのであるが、その作動には次の如き問
題点があった。
Patent Application No. 155747/1982 and Patent Application No. 2662/1982
In the loop tube type heat transfer device according to No. 65, heat transfer is carried out by spontaneously circulating the heat transfer fluid sealed in the container as described above, but its operation has the following problems. there were.

(a)受熱部温度が低い場合及び熱入力が小さい場合に
作動が困難である。
(a) Operation is difficult when the temperature of the heat receiving part is low and when the heat input is small.

ループ管コンテナが細管である場合管内圧力損失が大き
いのでコンテナ内圧を上昇させる必要がある。同様に受
熱部の水位が放熱部の水位より大幅に高い場合重力に打
勝って熱搬送流体を循環せしめる必要がある。その為に
コンテナ内圧を上昇させる必要がある。循環方向規制手
段が逆止め弁型であり、弁体の質量が大きく、又は比重
が大きい場合充分な開閉振動を与える為にはコンテナ内
圧を上昇せしめる必要がある。同様に受熱部と放熱部の
距離が長い場合にもコンテナ内圧を上昇せしめる必要が
ある。これ等の場合には受熱部温度が低い場合及び熱入
力が小さい場合はコンテナ内圧が不足になり作動が困難
となる。−例として内径2fl、全長20m、20ター
ンの蛇行ループ管型熱伝達装置の各ターン毎に夫々長さ
l OOmmO受熱部及び放熱部を配設した場合に熱搬
送流体が純水の場合の実測結果では熱入力50W以下、
受熱部温度50°C以下で作動困難が認められ、熱搬送
流体がフレオン11の場合は熱入力30W以下、受熱部
温度40℃以下で作動困難が認められた。
If the loop tube container is a thin tube, the pressure loss inside the tube is large, so it is necessary to increase the internal pressure of the container. Similarly, if the water level in the heat receiving section is significantly higher than the water level in the heat dissipating section, it is necessary to overcome gravity and circulate the heat transfer fluid. Therefore, it is necessary to increase the internal pressure of the container. If the circulation direction regulating means is a check valve type and the valve body has a large mass or a large specific gravity, it is necessary to increase the internal pressure of the container in order to provide sufficient opening/closing vibration. Similarly, when the distance between the heat receiving part and the heat radiating part is long, it is necessary to increase the container internal pressure. In these cases, if the temperature of the heat receiving part is low or the heat input is small, the internal pressure of the container will be insufficient and operation will be difficult. - As an example, actual measurement when the heat transfer fluid is pure water when the inner diameter is 2fl, the total length is 20m, and each turn has a length of lOOmmO heat receiving section and heat dissipating section in a 20-turn meandering loop tube type heat transfer device. The results show that the heat input is less than 50W.
Difficulty in operation was observed when the heat receiving part temperature was below 50°C, and when the heat transfer fluid was Freon 11, it was found to be difficult to operate when the heat input was below 30 W and the heat receiving part temperature was below 40°C.

(b)従来型のヒートパイプに比較して受熱部と放熱部
との間の温度差が大きい。
(b) The temperature difference between the heat receiving part and the heat radiating part is large compared to a conventional heat pipe.

熱搬送流体に循環推進力を与える為には単にコンテナ内
圧を増加せしめるだけでなく受放熱部間の内圧差が必要
であり、その為には受放熱部間の温度差が必要である。
In order to provide a circulation propulsion force to the heat transfer fluid, it is necessary not only to simply increase the internal pressure of the container, but also to create an internal pressure difference between the heat receiving and radiating parts, and for this purpose, a temperature difference between the heat receiving and radiating parts is required.

この温度差は従来型ヒートパイプの作動液蒸気の移動に
必要な温度差より必然的に大きいものとなる。この温度
差は熱入力が大きい場合でも熱入力に比例して増加する
必要はなく比較的小さな増加で良い。従ってループ管型
熱伝達装置の熱搬送時の熱抵抗は小入力、低′IjL領
域においては従来型ヒートパイプより大きく (悪<)
、大入力、高温領域においては従来型ヒートパイプより
小さくなる(良好となる)特性がある。
This temperature difference is necessarily greater than the temperature difference required to move the working fluid vapor in a conventional heat pipe. Even when the heat input is large, this temperature difference does not need to increase in proportion to the heat input, and may be increased by a relatively small amount. Therefore, the thermal resistance of the loop tube type heat transfer device during heat transfer is larger than that of the conventional heat pipe in the small input and low IjL region (bad <).
, it has the characteristics of being smaller (better) than conventional heat pipes in large input and high temperature regions.

前記内径2鶴の蛇行ループ型熱伝達装置の実測値は放熱
部温度18℃において純水熱搬送流体の場合、熱入力5
0W受熱部温度50℃における熱抵抗は0,64℃/W
であり、tsoow、78℃においては0.04℃/W
であった。又同様にフレオン11の場合30W、40℃
における熱抵抗は0.73’C/Wであり、1500W
、85℃においては0.045”c/Wであった。これ
に対して内径21の受熱部20本と同断面積を有する内
径9鶴の従来型ヒートパイプの場合は純水作動液50W
、40℃における熱抵抗は0.44℃/Wであり、15
00W、 120“Cにおいて0.068℃/Wであっ
た。同様にフレオン11作動液30W、35℃における
熱抵抗は0.57℃/Wであり100OW、110℃に
おいては0.092℃/Wであった。
The actual measured value of the above-mentioned meandering loop type heat transfer device with an inner diameter of 2 mm is a heat input of 5 when the temperature of the heat dissipation part is 18°C and the heat transfer fluid is pure water.
Thermal resistance at 0W heat receiving part temperature 50℃ is 0.64℃/W
and 0.04℃/W at tsoow, 78℃
Met. Similarly, in the case of Freon 11, 30W, 40℃
The thermal resistance at 1500W is 0.73'C/W.
, 0.045"c/W at 85℃.On the other hand, in the case of a conventional heat pipe with an inner diameter of 9 mm and the same cross-sectional area as 20 heat receiving parts with an inner diameter of 21 mm, the pure water working fluid was 50 W.
, the thermal resistance at 40°C is 0.44°C/W, and 15
It was 0.068°C/W at 00W and 120"C. Similarly, the thermal resistance at 30W and 35°C of Freon 11 working fluid was 0.57°C/W, and 0.092°C/W at 100OW and 110°C. Met.

本発明は上記(a) (b)の問題点を解決しループ管
型熱伝達装置の小人力低温時性能を改善すると共に受放
熱部間の温度差を小ならしめる。
The present invention solves the above-mentioned problems (a) and (b), improves the low-temperature performance of the loop tube heat transfer device, and reduces the temperature difference between the heat receiving and radiating parts.

口9発明の構成 〔問題点解決の為の手段〕 本発明における問題点解決の手段は水素吸蔵合金の特性
の有効利用にある。利用されるその特性は平衡水素圧の
温度依存特性及び水素吸放出時における吸放熱特性の2
特性である。
9. Structure of the Invention [Means for Solving the Problems] The means for solving the problems in the present invention lies in the effective use of the characteristics of the hydrogen storage alloy. The characteristics used are the temperature dependence of equilibrium hydrogen pressure and the heat absorption and release characteristics during hydrogen absorption and release.
It is a characteristic.

本発明においては該2特性を有効に利用する手段として
受熱部の高温による水素放出時の高い平衡水素圧と放熱
部の水素吸収時の低い平衡水素圧とにより熱搬送流体に
循環方向規制手段が規制する方向に11ト進力を与え、
熱搬送流体に自然発生的に循環流を発生せしめるか、自
然発生的に循環する熱搬送流体の循環力を補助する。又
受熱部における水素放出時の吸熱特性により受熱能力を
補助し又放熱部における水素吸収時の放熱特性により放
熱能力を補助する。
In the present invention, as a means to effectively utilize these two characteristics, a means for regulating the circulation direction of the heat transfer fluid is provided by a high equilibrium hydrogen pressure when hydrogen is released due to the high temperature of the heat receiving part and a low equilibrium hydrogen pressure when hydrogen is absorbed by the heat dissipating part. Gives 11 points of momentum in the direction of regulation,
A circulating flow is generated naturally in the heat transfer fluid, or a circulating force of the heat transfer fluid is assisted. In addition, the heat receiving ability is assisted by the heat absorption characteristic when hydrogen is released in the heat receiving section, and the heat radiating ability is assisted by the heat radiating characteristic when hydrogen is absorbed in the heat radiating section.

上記の利用手段の適用方式としては2種類の適用方式が
あり、熱搬送流体に分散混入されループ管コンテナ内を
循環する水素吸蔵合金の微粉末に平衡水素圧を発生せし
める方式とループ管コンテナ内壁面に形成されてある水
素吸蔵合金層に平衡水素圧を発生せしめる方式とがある
There are two types of application methods for the above-mentioned utilization methods: a method in which equilibrium hydrogen pressure is generated in the fine powder of hydrogen storage alloy that is dispersed in the heat transfer fluid and circulated in the loop pipe container, and There is a method in which equilibrium hydrogen pressure is generated in a hydrogen storage alloy layer formed on the wall surface.

〔作 用〕[For production]

通常の凝縮性流体は熱搬送流体として又は熱搬送流体に
混合して使用する場合、その固有の沸点によって作動温
度領域が制限される。又作動温度領域内における飽和蒸
気圧によって性能に大きな差異が生じる。これに対し水
素吸蔵合金を上述の如き手段にて利用する場合はその成
分の種類及び配合割合によって、作動する温度領域を一
20℃から400℃の如き広い範囲内で自在に選択する
ことが出来る。又その温度領域内で発生する平衡水素圧
を数10気圧に至る高圧から0.5気圧の如き低圧に至
る範囲で選択することが出来る。
Conventional condensable fluids, when used as heat transfer fluids or mixed with heat transfer fluids, have a limited operating temperature range due to their inherent boiling points. Also, there is a large difference in performance depending on the saturated vapor pressure within the operating temperature range. On the other hand, when hydrogen storage alloys are used in the manner described above, the operating temperature range can be freely selected from a wide range of 120°C to 400°C, depending on the types and proportions of the components. . Further, the equilibrium hydrogen pressure generated within the temperature range can be selected from a high pressure of several tens of atmospheres to a low pressure of 0.5 atmospheres.

従って本発明に係るループ管型熱伝達装置は従来のヒー
トパイプや従来のループ管型熱伝達装置では充分に性能
を発揮せしめることが不可能であったり、困難であった
一20℃〜40℃及び250℃〜300℃の温度領域・
において、それ等を補完して高性能熱伝達を可能にする
。又受放熱部間に充分に大きな内圧差を与えることが容
易となるので、従来良好な性能を得ることが困難であっ
た内径1謁以下のループ管型熱伝達装置の提供も容易と
なる。又同−の内径であっても従来より受放熱部間の距
離を充分に長距離化したループ管型熱伝達装置の提供も
可能となる。又充分な受放熱部間の内圧差は熱搬送流体
の循環流速流量を大きくすることが出来るから、同一内
径の場合でも従来より大容量低熱抵抗のループ管型熱伝
達装置の構成が可能となる。又更に特筆すべき作用とし
て、温度−平衡水素圧曲線が急傾斜する合金を選択する
ことにより、受放熱部間の温度差が小さい場合でも充分
な内圧差が得られ、良好な性能を発揮するループ管型熱
伝達装置を提供することが出来る。
Therefore, the loop tube type heat transfer device according to the present invention cannot achieve sufficient performance with conventional heat pipes or conventional loop tube type heat transfer devices. and temperature range from 250℃ to 300℃・
, it complements them to enable high-performance heat transfer. Furthermore, since it becomes easy to provide a sufficiently large internal pressure difference between the heat receiving and dissipating parts, it becomes easy to provide a loop tube type heat transfer device with an inner diameter of 1 mm or less, which has been difficult to achieve in the past. Furthermore, even with the same inner diameter, it is possible to provide a loop tube type heat transfer device in which the distance between the heat receiving and radiating parts is sufficiently increased compared to the conventional one. In addition, since a sufficient internal pressure difference between the heat receiving and dissipating parts can increase the circulation flow rate of the heat transfer fluid, it is possible to construct a loop tube type heat transfer device with a larger capacity and lower thermal resistance than before even if the inner diameter is the same. . Another noteworthy feature is that by selecting an alloy with a steep temperature-equilibrium hydrogen pressure curve, a sufficient internal pressure difference can be obtained even when the temperature difference between the heat receiving and dissipating parts is small, and good performance can be achieved. A loop tube type heat transfer device can be provided.

水素吸蔵合金は水素の放出時に大量の熱量を吸収し、水
素の吸収時に大量の熱量を放出するから、熱搬送流体の
循環による顕熱の熱輸送能力に加えて、水素吸放出の潜
熱授受により、本発明に係るループ管型熱伝達装置は極
めて高性能の総合熱伝達能力が得られると共に従来技術
の問題点の総てを解決することが出来る。
Hydrogen storage alloys absorb a large amount of heat when releasing hydrogen, and release a large amount of heat when absorbing hydrogen, so in addition to the heat transport ability of sensible heat due to the circulation of the heat transfer fluid, it is possible to absorb and release latent heat by absorbing and releasing hydrogen. The loop tube type heat transfer device according to the present invention provides an extremely high overall heat transfer capability and can solve all of the problems of the prior art.

〔実施例〕〔Example〕

第1実施例 第1実施例は本発明の基本構造における所定の熱搬送流
体として、気体水素と所定の液状流体との混合流体が使
用されてあり、該所定の液状流体は所定の水素吸蔵合金
の微粉末が分散混入されてある流体であることを特徴と
している。この適用方式の場合はループ管型コンテナに
は何等の変更も必要としない。又液状流体と水素吸蔵合
金とは水素吸蔵合金から放出される原子状活性水素の存
在の下に相互に安定であることが必須条件となる。
First Embodiment In the first embodiment, a mixed fluid of gaseous hydrogen and a predetermined liquid fluid is used as the predetermined heat transfer fluid in the basic structure of the present invention, and the predetermined liquid fluid is a predetermined hydrogen storage alloy. It is characterized by being a fluid containing dispersed fine powder. This application does not require any modifications to the loop tube container. Furthermore, it is essential that the liquid fluid and the hydrogen storage alloy are mutually stable in the presence of atomic active hydrogen released from the hydrogen storage alloy.

例えばヘンタン(C9H12)、ヘキサン(c6111
4)、ヘプタン(C7HI 6)等の液状メタン列炭化
水素は化学的に極めて安定であり、殆ど総ての水素吸蔵
合金に対し上記必須条件を満足すると共に熱搬送流体と
しての適切な物性を有している。従って適切な水素吸蔵
合金との組合わせを選択することにより、ループ管型熱
伝達装置の構造、適用条件に適した平衡水素圧を発生す
る熱搬送流体を配合することが出来る。
For example, hentane (C9H12), hexane (c6111
4) Liquid methane series hydrocarbons such as heptane (C7HI6) are chemically extremely stable, satisfy the above essential conditions for almost all hydrogen storage alloys, and have appropriate physical properties as heat transfer fluids. are doing. Therefore, by selecting a combination with an appropriate hydrogen storage alloy, it is possible to formulate a heat transfer fluid that generates an equilibrium hydrogen pressure suitable for the structure and application conditions of the loop tube type heat transfer device.

上記熱搬送流体においてその中に混入される気体水素は
必ずしもコンテナ内に特に注入されたものでなくても良
く水素吸蔵合金から放出されたものであっても良い。こ
の様な余剰水素は、熱搬送流体に弾力的な膨張圧縮性を
与えることにより、循環方向規制手段の開閉振動を容易
にすると共に熱搬送流体の慣性を活用して循環を円滑な
らしめる。
The gaseous hydrogen mixed into the heat transfer fluid does not necessarily need to be specifically injected into the container, and may be released from the hydrogen storage alloy. Such surplus hydrogen imparts elastic expansion and compressibility to the heat transfer fluid, thereby facilitating the opening and closing vibration of the circulation direction regulating means and smoothing the circulation by utilizing the inertia of the heat transfer fluid.

本実施例において合金粉末から放出される水素は循環に
より放熱部の冷却作用で再び吸収され消費されることは
ない。水素はその平衡水素圧と放出吸入時の潜熱を利用
されるだけである。従って混入される微粉末は少量で良
い。
In this embodiment, the hydrogen released from the alloy powder is reabsorbed by the cooling effect of the heat dissipation section through circulation and is not consumed. Hydrogen is only used by its equilibrium hydrogen pressure and latent heat during release and inhalation. Therefore, only a small amount of fine powder is needed.

又一般に水素吸蔵合金は水素吸放出時の膨張収縮により
微粉化される性質があり成型上の問題点となり、又微粉
化による熱伝導率の低下も水素吸蔵合金使用上の重要な
問題点となっていた。然し本実施例において合金の微粉
化は熱搬送流体内における分散性を改善することになり
、又熱搬送流体と微粉(水素吸蔵合金)間の熱伝達性を
改善することになり、ループ管型熱伝達装置の性能が改
善されることになる。
Additionally, hydrogen storage alloys generally have the property of being pulverized due to expansion and contraction during hydrogen absorption and release, which poses a problem in molding, and a decrease in thermal conductivity due to pulverization is also an important problem when using hydrogen storage alloys. was. However, in this example, the pulverization of the alloy improves the dispersibility within the heat transfer fluid, and also improves the heat transfer between the heat transfer fluid and the fine powder (hydrogen storage alloy), and the loop tube type The performance of the heat transfer device will be improved.

本実施例における熱搬送流体は必ずしも凝縮性2相流体
である必要はないが、2相流体の受放熱部における沸騰
凝縮は熱搬送流体を撹拌し、水素吸蔵合金粉末の分散を
良好ならしめ、且つ該流体の潜熱利用を併用出来る効果
がある。
Although the heat transfer fluid in this example does not necessarily have to be a condensable two-phase fluid, the boiling condensation of the two-phase fluid in the heat receiving and radiating section stirs the heat transfer fluid and improves the dispersion of the hydrogen storage alloy powder. In addition, there is an effect that the latent heat of the fluid can be used in combination.

本実施例における熱搬送流体はそれが相変化するしない
に拘らず、受放熱部間に平衡水素圧による内圧差を生じ
、水素放出による圧力波を生し、循環方向規制手段によ
り形成された圧力室は呼吸作用を発生し、循環方向規制
手段は開閉振動を発生し、これ等により熱搬送流体は強
力な循環推進力を得て自発的にループ型流路内を循環す
る。該循環流により水素吸蔵合金の粉末は第1図例示の
ループ管熱伝達装置における受熱部1−Hに至る毎に水
素を放出し同時に潜熱として熱量を吸収し、放熱部i−
cに至る毎に水素を吸収し、同時に潜熱として熱量を放
出する。又循環流は受熱部1−11の顕熱をも吸収し、
放熱部1−Cにて該顕熱をも放出する。即ち本実施例に
係る熱搬送流体は特別[62−155747号における
「ループ型細管ヒートパイプ」の作動液及び特願昭62
−266265号における「熱伝達装置」の熱搬送流体
と全く同等の挙動を示す。従って本実施例に係る熱伝達
装置は前述の〔従来技術〕における熱搬送流体wi環の
原理(a)(b) (c) (d)の各項と全く同一原
理によって循環する熱搬送流体により作動せしめられる
。該実施例における他の作用は〔作用〕に記載の通りで
ある。
Regardless of whether the heat transfer fluid undergoes a phase change or not, the heat transfer fluid in this embodiment generates an internal pressure difference due to the equilibrium hydrogen pressure between the heat receiving and dissipating parts, generates a pressure wave due to hydrogen release, and the pressure formed by the circulation direction regulating means. The chamber generates a breathing action, and the circulation direction regulating means generates opening/closing vibrations, whereby the heat transfer fluid obtains a strong circulation propulsion force and spontaneously circulates within the loop-shaped channel. Due to the circulating flow, the hydrogen storage alloy powder releases hydrogen every time it reaches the heat receiving part 1-H in the loop tube heat transfer device illustrated in FIG.
Each time it reaches c, it absorbs hydrogen and at the same time releases heat as latent heat. The circulating flow also absorbs the sensible heat of the heat receiving part 1-11,
The sensible heat is also released in the heat radiation section 1-C. That is, the heat transfer fluid according to this embodiment is specially adapted to the working fluid of the "loop type capillary heat pipe" in No. 62-155747 and the patent application No. 62
It exhibits exactly the same behavior as the heat transfer fluid of the "heat transfer device" in No.-266265. Therefore, the heat transfer device according to this embodiment uses a heat transfer fluid that circulates according to the same principle as the heat transfer fluid wi ring principle (a), (b), (c), and (d) in the above-mentioned [prior art]. be activated. Other effects in this example are as described in [Effects].

本実施例における熱搬送流体の循環は分散する合金微粉
末によって第2図(イ)逆止め弁における弁体2−2、
ストッパ2−3の磨耗を促進せしめる恐れがあるから、
循環方向規制手段としては第2図(0)における2−4
の如き循環方向規制ノズルを使用することが望ましい。
In this embodiment, the heat transfer fluid is circulated by dispersing the fine alloy powder as shown in FIG.
This may accelerate the wear of the stopper 2-3.
As the circulation direction regulating means, 2-4 in Fig. 2 (0) is used.
It is desirable to use a circulation direction regulating nozzle such as .

第2実施例 本実施例は第3図に例示の如く、ループ管型コンテナ1
に設けられてある受熱部1−H及び放熱部1−Cは何れ
も複数個所に設けられてあり、それ等の少なくとも各1
個所の受熱部1−Hcと放熱部IChとには何れにも加
熱手段6と冷却手段7とが共に併設されてあり、所定の
時間°毎に何れか一方が受熱部として、他方が放熱部と
して交互に作動する様構成されてあり、該交互に作動す
る受熱部と放熱部におけるコンテナ1は水素吸蔵合金層
5を内壁とする2重管構造に形成されてあることを特徴
としている。この場合の熱搬送流体は気体でも液体でも
良く又液体の場合作動温度領域において液相のみをとる
ものであっても気液2相の相変化をするものの何れであ
っても良い。但しこれ等の気体、及び液体は水素のみで
あるか、水素と他の流体との混合流体であるかの何れか
である。又該熱搬送流体は水素吸蔵合金から放出される
原子状活性水素の存在下において水素吸蔵合金と相互に
安定であることを必須条件とすることは第1実施例と同
等である。水素吸蔵合金層5を形成する合金は第1実施
例と異なり熱搬送流体の選択に対応して如何なる水素吸
蔵合金をも選択することが出来るが該合金の微粉化作用
を無視することは出来ない。従って本実施例では特に指
定はしないが微粉化作用に対する対策が構しられである
ことは当然である。その−例としては水素吸蔵合金を適
切な粉粒に形成した状態で無電解銅メツキを施した後加
圧一体化成型して2重管構造コンテナを構成する手段が
ある。
Second Embodiment In this embodiment, as illustrated in FIG.
The heat receiving section 1-H and the heat dissipating section 1-C provided in the
A heating means 6 and a cooling means 7 are attached to each of the heat receiving part 1-Hc and the heat radiating part ICh, and at every predetermined time, one of them is used as the heat receiving part and the other is used as the heat radiating part. The container 1 in the heat receiving section and the heat dissipating section which operate alternately is characterized by being formed into a double tube structure with a hydrogen storage alloy layer 5 as an inner wall. The heat transfer fluid in this case may be a gas or a liquid, and in the case of a liquid, it may be either one that takes only a liquid phase in the operating temperature range or one that undergoes a two-phase gas-liquid phase change. However, these gases and liquids are either only hydrogen or a mixed fluid of hydrogen and other fluids. Also, as in the first embodiment, the essential condition is that the heat transfer fluid is mutually stable with the hydrogen storage alloy in the presence of atomic active hydrogen released from the hydrogen storage alloy. Unlike the first embodiment, the alloy forming the hydrogen storage alloy layer 5 can be any hydrogen storage alloy depending on the selection of the heat transfer fluid, but the pulverization effect of the alloy cannot be ignored. . Therefore, although not specified in this embodiment, it is a matter of course that countermeasures against the pulverization effect should be taken. An example of this is a method in which a hydrogen storage alloy is formed into suitable powder particles, subjected to electroless copper plating, and then integrally molded under pressure to form a double-pipe structure container.

上述の如く構成されたループ管型熱伝達装置は熱搬送流
体に凝縮性2相流体が混合されてある場合は当然自発的
に循環流が発生するが、熱搬送流体が気体であっても、
液相流体であっても循環流は自発的に発生して熱伝達装
置として作動する。
In the loop tube heat transfer device configured as described above, if the heat transfer fluid is mixed with a condensable two-phase fluid, a circulating flow will naturally occur spontaneously, but even if the heat transfer fluid is a gas,
Even in a liquid phase fluid, a circulating flow is generated spontaneously and acts as a heat transfer device.

その推進力は第3図における受熱部水素吸蔵合金層5−
1で発生する高い平衡水素圧と放熱部水素吸蔵合金層5
−2で発生する低い平衡水素圧との圧力差による。その
循環方向は矢印で示した如き循環方向規制手段2の規制
する方向であり、その他の循環流発生原理は〔従来技術
〕の(a) (b) (c)(d)に記載したと同原理
による。5−1で発生した水素は5−2で吸収されるが
その推進力はループ管コンテナ内の総ての熱搬送流体を
循環方向規制手段2によって規制された方向に循環せし
める。
The driving force is the hydrogen storage alloy layer 5- in the heat receiving part in Fig. 3.
High equilibrium hydrogen pressure generated in 1 and heat dissipation hydrogen storage alloy layer 5
-2 due to the pressure difference with the low equilibrium hydrogen pressure that occurs. The circulation direction is the direction regulated by the circulation direction regulating means 2 as shown by the arrow, and the other circulating flow generation principles are the same as described in (a), (b), (c), and (d) of [Prior Art]. By principle. The hydrogen generated at 5-1 is absorbed at 5-2, and its propulsive force causes all the heat transfer fluid inside the loop pipe container to circulate in the direction regulated by the circulation direction regulating means 2.

該ループ管型熱伝達装置の作動開始時点においては水素
吸蔵合金層5−1は加熱手段6−1により加熱され冷却
手段7−1は休止して該部分のコンテナ1−H9は受熱
部として作動する。又他方の水素吸蔵合金層5−2は冷
却手段7−2によって冷却され加熱手段6−2は休止し
て該部分のコンテナ1−01は放熱部として作動する。
At the start of operation of the loop tube type heat transfer device, the hydrogen storage alloy layer 5-1 is heated by the heating means 6-1, the cooling means 7-1 is stopped, and the container 1-H9 in this part operates as a heat receiving section. do. The other hydrogen storage alloy layer 5-2 is cooled by the cooling means 7-2, the heating means 6-2 is stopped, and the container 1-01 in this portion operates as a heat radiating section.

水素吸蔵合金層5−1の水素放出能力が低下し、水素吸
蔵合金5−2の水素吸収能力が低下した時点で上記I 
 Hc、I  Chは夫々放熱部及び受熱部としてその
作動を転換せしめられる。その転換は加熱手段6−1が
休止し、冷却手段7−1が作動を開始し、冷却手段7−
2が休止し加熱手段6−2が作動を開始することによっ
て為される。その結果水素吸蔵合金層5−2における平
衡水素圧が上昇し水素が放出され、水素吸蔵合金N5−
1における平衡水素圧が低下し水素が吸収される。従っ
て放出水素は5−2から5−1に向って流れる。この場
合の循環方向は循環方向規制手段の規制する方向であり
、受放熱部の作動が交替しても熱搬送流体の循環方向は
変化しない。この点は本発明に係る熱伝達装置のみの独
特の作用であり、この性質により所定の時間毎に上記の
如き受放熱部の交替を繰返すことにより、本発明に係る
熱伝達装置の熱搬送流体は所定の方向に循環を継続し、
加熱手段Hから受熱した熱量は継続的に冷却手段Cに輸
送される。
When the hydrogen desorption ability of the hydrogen storage alloy layer 5-1 decreases and the hydrogen absorption ability of the hydrogen storage alloy 5-2 decreases, the above
The operations of Hc and ICh can be changed as a heat radiating section and a heat receiving section, respectively. The conversion is such that the heating means 6-1 stops, the cooling means 7-1 starts operating, and the cooling means 7-
This is done by stopping the heating means 6-2 and starting the operation of the heating means 6-2. As a result, the equilibrium hydrogen pressure in the hydrogen storage alloy layer 5-2 increases, hydrogen is released, and the hydrogen storage alloy N5-
The equilibrium hydrogen pressure at 1 decreases and hydrogen is absorbed. Therefore, the released hydrogen flows from 5-2 to 5-1. The circulation direction in this case is the direction regulated by the circulation direction regulating means, and the circulation direction of the heat transfer fluid does not change even if the operation of the heat receiving and radiating section is changed. This point is a unique function of the heat transfer device according to the present invention, and due to this property, by repeating the above-mentioned exchange of the heat receiving and radiating portion at predetermined intervals, the heat transfer fluid of the heat transfer device according to the present invention can be changed. continues to circulate in a given direction,
The amount of heat received from the heating means H is continuously transported to the cooling means C.

本実施例における加熱手段6−1.6−2、冷却手段7
−1.7−2はペルチェ素子を適用することにより加熱
手段と冷却手段を単一素子で兼ねさせて、小型且つ簡略
化することが出来る。即ちペルチェ効果応用の電子加熱
冷却素子は加える直流電流の方向を逆転させるだけで加
熱又は冷却にモード転換をさせることが出来る。又素子
が小型で熱容量で小さいからモード切換えに対する応答
性も良好である。
Heating means 6-1, 6-2 and cooling means 7 in this embodiment
-1.7-2 can be made smaller and simpler by using a Peltier element to serve as a heating means and a cooling means in a single element. That is, an electronic heating/cooling element using the Peltier effect can change the mode to heating or cooling simply by reversing the direction of the applied DC current. Furthermore, since the element is small and has a small heat capacity, the response to mode switching is also good.

本実施例において交互に受放熱部として作用するコンテ
ナ部1−H6及びIChは1組の温度差駆動流体ポンプ
として作動するが、第1実施例と同様に、水素吸蔵合金
の選択によって該ポンプ作用は任意の温度レベルで且つ
極めて低い温度レベルでも作動する。又受放熱部間の温
度差が小さい場合でも作動させることが出来る。該ポン
プ作用によって熱搬送流体が充分な流量流速で循環すれ
ば他の受熱部1−H及び放熱部1−Cはそれ等自身の温
度水準が低くても又それら相互間の温度差が小さくても
良好に作動し、広い温度領域で相互に熱交換することが
出来る。又第3図においては交互に作動する受放熱部I
  Hc、L  Cbは受熱部1−Hの群及び放熱部1
−Cを介してループ管の最も離隔の相互位置に設けられ
てあるが、これ等両者は隣接又は近接した位置に設けら
れてあってもその作用は同等であり熱搬送流体の循環方
向も、流量流速も変らない、この特徴は循環方向規制手
段の作用による。
In this embodiment, the container parts 1-H6 and ICh, which alternately act as heat receiving and dissipating parts, operate as a set of temperature difference-driven fluid pumps, and as in the first embodiment, the pumping action is determined by the selection of the hydrogen storage alloy. operates at any temperature level and even at very low temperature levels. Furthermore, it can be operated even when the temperature difference between the heat receiving and dissipating parts is small. If the heat transfer fluid is circulated at a sufficient flow rate by the pumping action, the other heat receiving section 1-H and heat dissipating section 1-C will have a small temperature difference between them even if their own temperature levels are low. They also work well and can exchange heat with each other over a wide temperature range. In addition, in Fig. 3, heat receiving and dissipating parts I that operate alternately
Hc, L Cb are the group of heat receiving parts 1-H and the heat radiating part 1
-C at the farthest mutual positions of the loop pipes, but even if they are installed adjacent or close to each other, their effects are the same, and the circulation direction of the heat transfer fluid is also the same. The flow velocity also does not change, and this feature is due to the action of the circulation direction regulating means.

ハ9発明の効果 本発明に係るループ管型熱伝達装置は水素吸蔵合金の選
択によって受放熱部間の内圧差を充分に大きくすること
が出来るので、中間における受放熱部の補助を受けるこ
となく長距離の熱輸送を可能にしたり、従来困難であっ
た内径1罷以下で且つ長尺の熱伝達装置の構成を容易に
する。又従来高性能熱伝達装置が得られなかった温度領
域特に−20℃〜40℃及び250℃〜300℃の温度
領域の熱伝達装置を提供する。更に極めて小さい受放熱
部間の温度差で作動する熱伝達装置をも提供する。これ
等によりループ型細管ヒートバイブ及びループ管型熱伝
達装置の適用範囲及び利用分野を大幅に拡大せしめるこ
とが出来る。
C.9 Effects of the Invention The loop tube type heat transfer device according to the present invention can sufficiently increase the internal pressure difference between the heat receiving and dissipating parts by selecting the hydrogen storage alloy, so there is no need for assistance from an intermediate heat receiving and dissipating part. To enable long-distance heat transport and to facilitate the construction of a long heat transfer device with an inner diameter of one thread or less, which was previously difficult. Furthermore, the present invention provides a heat transfer device that operates in a temperature range in which a high-performance heat transfer device has not been available in the past, particularly in the temperature range of -20°C to 40°C and 250°C to 300°C. Furthermore, the present invention also provides a heat transfer device that operates with an extremely small temperature difference between heat receiving and radiating parts. As a result, the range of application and fields of use of the loop-type thin tube heat vibrator and the loop-tube type heat transfer device can be greatly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はループ管型熱伝達装置の一部断面による斜視図
。 第2図は循環方向規制手段を示す断面図。 第3図は第2実施例の一部断面による斜視図である。 H・・・加熱手段、C・・・冷却手段、1−H・・・受
熱部、t−C・・・放熱部、l・・・ループ管型コンテ
ナ、2・・・循環方向規制手段、2−1・・・弁座、2
−2・・・弁体、2−3・・・ストッパ、2−4・・・
循環方向規制ノズル、4・・・熱搬送流体、5・・・水
素吸蔵合金層、6・・・加熱手段、7・・・冷却手段。 特許出願人  アクトロニクス株式会社はか1名 (ループ¥型ハ(?、建、漬工) (イ) (ロ) 第 2 図 (穐4’l+fnΦ)1掩) 第3図
FIG. 1 is a partially sectional perspective view of a loop tube type heat transfer device. FIG. 2 is a sectional view showing the circulation direction regulating means. FIG. 3 is a partially sectional perspective view of the second embodiment. H... Heating means, C... Cooling means, 1-H... Heat receiving section, t-C... Heat radiating section, l... Loop pipe type container, 2... Circulation direction regulating means, 2-1... Valve seat, 2
-2... Valve body, 2-3... Stopper, 2-4...
Circulation direction regulating nozzle, 4... Heat transfer fluid, 5... Hydrogen storage alloy layer, 6... Heating means, 7... Cooling means. Patent applicant Actronics Co., Ltd. Haka 1 person (loop ¥ type c (?, construction, pickle) (a) (b) Figure 2 (Aki 4'l + fnΦ) 1 cover) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)曲管部を有する管自身の両端末が相互に連結され
てループ管型コンテナが形成されてあり、該コンテナに
おける少なくとも1個所には受熱部が、他の少なくとも
1個所には放熱部が設けられてあり、コンテナ内には所
定の熱搬送流体の所定量が封入されてあり、該熱搬送流
体はそのループ状流路内の少なくとも1個所に設けられ
てある循環方向規制手段と受放熱部間の温度差の相互作
用により一定の方向に自発的に循環しながら受熱部から
放熱部に熱量を輸送する熱伝達装置において、熱搬送流
体は気体水素であるか、気体水素と活性水素に対し安定
な他の流体の混合流体であるかの何れかであり、熱搬送
流体の自発的循環に必要な受放熱部間の内部圧力差の大
部分若しくは一部分は、ループ管上の少なくとも1個所
の受熱部の高温により発生する水素吸蔵合金の平衡水素
圧と、ループ管の他の少なくとも1個所の放熱部の低温
により発生する水素吸蔵合金の平衡水素圧との圧力差に
よって与えられてあることを特徴とするループ管型熱伝
達装置。
(1) Both ends of the pipe itself having a bent pipe part are connected to each other to form a loop pipe type container, and at least one part of the container has a heat receiving part, and at least one other part has a heat radiating part. A predetermined amount of a predetermined heat transfer fluid is sealed in the container, and the heat transfer fluid is received by a circulation direction regulating means provided at at least one location in the loop-shaped flow path. In a heat transfer device that transports heat from a heat receiving part to a heat radiating part while spontaneously circulating in a certain direction due to the interaction of temperature differences between heat radiating parts, the heat transfer fluid is gaseous hydrogen or a combination of gaseous hydrogen and active hydrogen. Most or part of the internal pressure difference between the heat receiving and dissipating parts required for spontaneous circulation of the heat transfer fluid is caused by at least one fluid on the loop pipe. It is given by the pressure difference between the equilibrium hydrogen pressure of the hydrogen storage alloy generated by the high temperature of one heat receiving part and the equilibrium hydrogen pressure of the hydrogen storage alloy generated by the low temperature of at least one other heat radiating part of the loop pipe. A loop tube type heat transfer device characterized by:
(2)所定の熱搬送流体は気体水素と所定の液状流体の
混合流体であり且つ該所定の液状流体は所定の水素吸蔵
合金の微粉末が分散混入されてある流体であることを特
徴とする特許請求の範囲第1項に記載のループ管型熱伝
達装置。
(2) The predetermined heat transfer fluid is a mixed fluid of gaseous hydrogen and a predetermined liquid fluid, and the predetermined liquid fluid is a fluid in which fine powder of a predetermined hydrogen storage alloy is dispersed and mixed. A loop tube type heat transfer device according to claim 1.
(3)コンテナに設けられてある受熱部及び放熱部は何
れも複数個所づつに設けられてあり、それ等の少なくと
も各1個所の受熱部と放熱部とには何れにも加熱手段と
冷却手段とが共に併設されてあり、所定の時間毎に何れ
か一方が受熱部として、他方が放熱部として交互に作動
する様構成されてあり、該交互に作動する受熱部と放熱
部におけるコンテナは水素吸蔵合金層を内壁とする2重
管構造に形成されてあることを特徴とする特許請求の範
囲第1項に記載のループ管型熱伝達装置。
(3) Each of the heat receiving parts and the heat radiating part provided in the container is provided in multiple places, and each of the heat receiving part and the heat radiating part at least one of them has a heating means and a cooling means. are installed together, and the structure is such that one of them operates alternately as a heat receiving section and the other as a heat radiating section at predetermined time intervals, and the containers in the heat receiving section and the heat radiating section that operate alternately contain hydrogen. 2. The loop tube type heat transfer device according to claim 1, wherein the loop tube type heat transfer device is formed in a double tube structure having an inner wall made of a storage alloy layer.
JP965688A 1988-01-21 1988-01-21 Loop tube heat transfer device Pending JPH01189496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP965688A JPH01189496A (en) 1988-01-21 1988-01-21 Loop tube heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP965688A JPH01189496A (en) 1988-01-21 1988-01-21 Loop tube heat transfer device

Publications (1)

Publication Number Publication Date
JPH01189496A true JPH01189496A (en) 1989-07-28

Family

ID=11726257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP965688A Pending JPH01189496A (en) 1988-01-21 1988-01-21 Loop tube heat transfer device

Country Status (1)

Country Link
JP (1) JPH01189496A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229102A (en) * 2004-01-13 2005-08-25 Fuji Electric Systems Co Ltd Heatsink
JP2006041355A (en) * 2004-07-29 2006-02-09 Furukawa Electric Co Ltd:The Cooling device
JP2007012924A (en) * 2005-06-30 2007-01-18 Toshiba Corp Cooling device and electronic equipment
WO2009051001A1 (en) * 2007-10-19 2009-04-23 Three Eye Co., Ltd. One-way fluid moving device
CN101957152A (en) * 2010-10-15 2011-01-26 浙江大学 Novel pulsation heat pipe for non-inclination starting operation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229102A (en) * 2004-01-13 2005-08-25 Fuji Electric Systems Co Ltd Heatsink
JP2006041355A (en) * 2004-07-29 2006-02-09 Furukawa Electric Co Ltd:The Cooling device
JP2007012924A (en) * 2005-06-30 2007-01-18 Toshiba Corp Cooling device and electronic equipment
WO2009051001A1 (en) * 2007-10-19 2009-04-23 Three Eye Co., Ltd. One-way fluid moving device
CN101957152A (en) * 2010-10-15 2011-01-26 浙江大学 Novel pulsation heat pipe for non-inclination starting operation

Similar Documents

Publication Publication Date Title
US5331817A (en) Portable self-cooling and self-heating device for food and beverage containers
Meunier Solid sorption heat powered cycles for cooling and heat pumping applications
TWI259569B (en) Micro channel heat sink driven by hydromagnetic wave pump
JP2664506B2 (en) Cooling and / or heating device by solid-gas reaction
CN104040280B (en) Cooling device
JP3158267B2 (en) Loop type meandering thin tube heat pipe
TW314584B (en)
Feng et al. Heat transfer characteristics of a novel closed-loop pulsating heat pipe with a check valve
Śmierciew et al. Analysis of application of two-phase injector in ejector refrigeration systems for isobutane
JPH01189496A (en) Loop tube heat transfer device
Yu et al. A three-dimensional oscillating heat pipe filled with liquid metal and ammonia for high-power and high-heat-flux dissipation
Liu et al. Investigation of a loop heat pipe to achieve high heat flux by incorporating flow boiling
Utaki et al. Research on a magnetic refrigeration cycle for hydrogen liquefaction
Romero et al. Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide
Shelton et al. Design analysis of the Einstein refrigeration cycle
Shelton et al. Second law study of the Einstein refrigeration cycle
JPS60171389A (en) Heat transfer device
Lu et al. Effect of cooling rate on thermal performance of an oscillating heat spreader
Mazet et al. Gravitational heat pipes for discontinuous applications
JPH0362983B2 (en)
KR20050017632A (en) Heat Pipe using Nano Fluid as working fluid
Vasiliev et al. Heat pipe applications in sorption refrigerators
JP2508308B2 (en) Adsorption refrigerator
Vasiliev Sorption machines with a heat pipe thermal control
Vasiliev Heat pipe thermal control for sorption machines