JPH01186180A - Manufacture of electrostatic absorbent sheet - Google Patents

Manufacture of electrostatic absorbent sheet

Info

Publication number
JPH01186180A
JPH01186180A JP1149688A JP1149688A JPH01186180A JP H01186180 A JPH01186180 A JP H01186180A JP 1149688 A JP1149688 A JP 1149688A JP 1149688 A JP1149688 A JP 1149688A JP H01186180 A JPH01186180 A JP H01186180A
Authority
JP
Japan
Prior art keywords
sheet
thermoplastic
parts
elastomer
conductive carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1149688A
Other languages
Japanese (ja)
Inventor
Keiji Kasahara
敬次 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abisare Co Ltd
Original Assignee
Abisare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abisare Co Ltd filed Critical Abisare Co Ltd
Priority to JP1149688A priority Critical patent/JPH01186180A/en
Publication of JPH01186180A publication Critical patent/JPH01186180A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost of an electrostatic adsorbent sheet, by adding a conductive carbon to its contents which mainly consists of a thermoplastic resin and a thermoplastic elastomer. CONSTITUTION:The adsorbent sheet is used as a triple compounded sheet which integrates an insulating material, electrodes and a surface sheet. The principle contents of this sheet are thermoplastic synthetic resins and thermoplastic elastomer, and it is formed to be held a certain volumetric characteristic resistance by adding the conductive carbon. Moreover, this manufacturing procedure is as follows. Firstly the conductive carbons are heated and diffused in a certain ratio to the thermoplastic elastomer. Then the thermoplastic resins are compounded to the aforementioned elastomer, finally by applying the sheet processing and the adsorbent sheet is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は静電力を利用して紙やフィルムなどを吸着保持
する合成樹脂製の静電吸着用シート及びその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrostatic adsorption sheet made of synthetic resin that uses electrostatic force to adsorb and hold paper, film, etc., and a method for manufacturing the same.

(従来技術) 従来、静電吸着用シートを開示するものとして、特公昭
55−20830号、特公昭57−58872号及び実
公昭53−13389号公報等があり、それらは熱可塑
性樹脂単体又は該樹脂と合成ゴムとを主成分とするもの
である。
(Prior Art) Conventionally, there are Japanese Patent Publications No. 55-20830, Japanese Patent Publication No. 58872-1987, and Japanese Utility Model Publication No. 13389-1989 as disclosing sheets for electrostatic adsorption, and these sheets are made of thermoplastic resin alone or The main components are resin and synthetic rubber.

又、上記公報から明らかなように静電吸着用シートにお
いては、誘電率や体積固有抵抗値が吸着性能上重要な要
素であることが知られる。
Further, as is clear from the above publication, it is known that dielectric constant and volume resistivity are important factors in terms of adsorption performance in electrostatic adsorption sheets.

(発明が解決しようとする課題) しかしながら、上記熱可塑性合成樹脂及び合成ゴムを主
成分とする場合は、製造上の問題として加工内容による
影響を受けやすいため、製品間で体積固有抵抗値等のバ
ラ付きが多く、不良率が非常に高いとともに精度の高い
値のシートを得るには困難が多かった。
(Problem to be solved by the invention) However, when the above-mentioned thermoplastic synthetic resin and synthetic rubber are used as main components, it is easy to be affected by the processing content as a manufacturing problem, so the volume resistivity value etc. may vary between products. There was a lot of variation, the defective rate was very high, and it was difficult to obtain sheets with highly accurate values.

特に体積固有抵抗値が106〜1014Ω1程度のレベ
ルで、ある所定値のシートとして製造するのは困難であ
った。
In particular, it was difficult to manufacture a sheet with a specific volume resistance value of about 10 6 to 10 14 Ω1.

例えば、熱可塑性のアクリル系合成樹脂に導電性力−ボ
ン(カーボンブラック)及びその他の添加剤を順次に配
合した後、シート加工した場合においては、抵抗値が1
0601未満では導電性カーボンの配合率に比例した抵
抗値のシートを定量的に得ることができたが、106〜
1014Ω1の範囲では得られたシートの抵抗値のバラ
付きが非常に多かった。
For example, when a thermoplastic acrylic synthetic resin is sequentially blended with conductive carbon black and other additives and then processed into a sheet, the resistance value is 1.
At less than 0601, it was possible to quantitatively obtain a sheet with a resistance value proportional to the blending ratio of conductive carbon, but at 106~
In the range of 1014Ω1, the resistance values of the obtained sheets varied greatly.

上記現象は前記樹脂に合成ゴム(例えばニトリル・ブタ
ジェン・ラバー)を加えた場合も同様であった。
The above phenomenon was the same when synthetic rubber (for example, nitrile butadiene rubber) was added to the resin.

この理由として、カーボンブラックを高分子化合物に分
散させた場合の導電機構は、非常に複雑であり、いろい
ろな説が提唱されているが、−膜内には次の2説が多く
理解されている。
The reason for this is that the conduction mechanism when carbon black is dispersed in a polymer compound is extremely complex, and various theories have been proposed. There is.

■鎖状に連なったカーボン粒子鎖(ストラフチャー)に
よる導電通路説。
■Conductive path theory due to carbon particle chains connected in a chain (strafture).

■分散したカーボン粒子のギャップを電子がジャンプし
て、電気が流れるトンネル効果説。
■Tunnel effect theory where electrons jump through the gaps between dispersed carbon particles and electricity flows.

この為、導電性カーボンの基本的必要特性として、次の
ような要素が挙げられる。
For this reason, the following elements are listed as the basic required characteristics of conductive carbon.

1、ストラフチャー(カーボン粒子鎖)が発達している
1. Struffure (carbon particle chains) is developed.

2、粒子径が小さい。2. Particle size is small.

3、表面積が大きい(細孔が多いか、中空状である)。3. Large surface area (many pores or hollow).

4、電子を捕捉するような不純物が少ない。4. There are few impurities that trap electrons.

5、グラファイト化(結晶化)が発達している。5. Graphitization (crystallization) is developed.

従って、上記従来シートの場合は、シート化する際の温
度や圧力によりストラフチャーを分断したり、圧力によ
る表面積の変化を起し、安定したものを作り得ることが
困難であったと考えられる。
Therefore, in the case of the above-mentioned conventional sheet, it is thought that it was difficult to produce a stable sheet because the strutures were divided due to the temperature and pressure when forming the sheet, and the surface area changed due to the pressure.

又、抵抗値が10601未満のように、カーボンブラッ
クの粒子が、ある体積の中に多く分散し粒子どうしが近
くにいる状態の場合は定石的な計算値のシートを得られ
るが、10 〜1×1014Ω1のように高分子化合物
の中にカーボンブラックが少なく分散した状態の場合は
、カーボンブラックの導電特性が顕著に表われ、加工条
件を難易なものにしていたと考えられる。
Also, if the resistance value is less than 10,601, where many carbon black particles are dispersed in a certain volume and the particles are close to each other, a sheet of standard calculated values can be obtained, but it is 10 to 1. In the case where a small amount of carbon black was dispersed in the polymer compound such as ×1014Ω1, the conductive properties of carbon black were evident, making the processing conditions difficult.

而して本発明が解決しようとする課題は、前記従来不具
合を解消し、所望の体積固有抵抗値を正確に実現した吸
着用シートを得ることにある。
The problem to be solved by the present invention is to solve the above-mentioned conventional problems and to obtain an adsorption sheet that accurately realizes a desired volume resistivity value.

又、本発明の他の課題は得られるシート間の抵抗値のバ
ラ付きを少なくするとともにコストダウンを図るシート
の製造方法を提供することである。
Another object of the present invention is to provide a sheet manufacturing method that reduces variation in resistance values between sheets and reduces costs.

(課題を達成するための手段) 斯る本発明の静電吸着用シートは、熱可塑性合成樹脂と
熱可塑性エラストマーとを主成分とし、それに導電性カ
ーボンを含有せしめて所定の体積固有抵抗値を有するこ
とを特徴とし、その製造方法は、先ず熱可塑性エラスト
マーに導電性カーボンを所定の配合比で加熱分散させ、
その侵、前記エラストマーに熱可塑性合成樹脂を配合し
た後シート加工を施こして吸着用シートを成形すること
を特徴とする。
(Means for Achieving the Object) The electrostatic adsorption sheet of the present invention has a thermoplastic synthetic resin and a thermoplastic elastomer as main components, and contains conductive carbon therein to achieve a predetermined volume resistivity value. The method for manufacturing the same is as follows: First, conductive carbon is heated and dispersed in a thermoplastic elastomer at a predetermined blending ratio;
The method is characterized in that the elastomer is blended with a thermoplastic synthetic resin and then subjected to sheet processing to form an adsorption sheet.

熱可塑性合成樹脂は、ポリウレタンやメタクリル酸エス
テルあるいは塩化ビニル系、アクリル系。
Thermoplastic synthetic resins include polyurethane, methacrylic acid ester, vinyl chloride, and acrylic.

スチロール系などの合成樹脂などを用い、熱可塑性エラ
ストマーには、前記樹脂に対し適合性2分散性のよいも
の、例えばポリエチレン系、ポリウレタン系、オレフィ
ン系、ポリエステル系などのエラストマーを用いる。
A synthetic resin such as a styrene resin is used, and the thermoplastic elastomer is one having good compatibility and bidispersibility with the resin, such as a polyethylene-based, polyurethane-based, olefin-based, polyester-based elastomer.

導電性カーボンとしては、カーボンブラック等を用い、
この配1合率により、シートの体積固有抵抗値が決定さ
れる。
As the conductive carbon, carbon black or the like is used,
This mixing ratio determines the volume resistivity value of the sheet.

上記製造方法において、先に熱可塑性エラストマーに導
電性カーボンを配合し、加熱分散させる工程は、該エラ
ストマーが常温では樹脂又はゴム状であり、高温では液
状になる性質に着目したものであり、これにより該工程
においてエラストマーの流動性が活性化し、さほどに強
い圧力をかけなくとも導電性カーボンを均一に分散させ
ることが容易となる。
In the above manufacturing method, the step of first blending conductive carbon into a thermoplastic elastomer and dispersing it by heating focuses on the property that the elastomer is resin or rubber-like at room temperature and becomes liquid at high temperatures. This activates the fluidity of the elastomer in this step, making it easy to uniformly disperse the conductive carbon without applying very strong pressure.

又、前記エラストマーは合成ゴムと違って再利用が可能
であり、これにより合成樹脂を配合する前の前記工程後
に抵抗値がバラ付いた不良シートが発見されたときに、
その再使用に供し得る。シート加工は熱ロールによる圧
延成型、押出成型。
Also, unlike synthetic rubber, the elastomer can be reused, so when a defective sheet with varying resistance values is discovered after the step before compounding the synthetic resin,
It can be subjected to reuse. Sheet processing involves rolling and extrusion using hot rolls.

あるいは射出成型などによる。Or by injection molding.

上記導電性カーボンを配合分散させた熱可塑性エラスト
マーに合成樹脂を配合する際には、必要に応じて適宜に
顔料、安定剤、可塑剤、滑剤、老化防止剤などの添加剤
を添加配合せしめる。
When blending a synthetic resin with the thermoplastic elastomer in which the conductive carbon is blended and dispersed, additives such as pigments, stabilizers, plasticizers, lubricants, anti-aging agents, etc. are appropriately added and blended as necessary.

而して本発明の吸着用シートは、王者一体結合される絶
縁材料、電極群1表面シートの該表面シートとして使用
に供し、あるいは他の変形構造としてはシート内に電極
群を埋設一体構造とし、表衷両面に吸1mを有するシー
トとして使用する。
Therefore, the adsorption sheet of the present invention can be used as the top sheet of the electrode group 1 top sheet using an insulating material that is integrally bonded, or as another modified structure, the electrode group can be embedded in the sheet as an integral structure. , used as a sheet with 1 m of suction on both sides.

(実施例) 次の試料A−Fを製造し、それらの体積固有抵抗値(Ω
C講)を測定した。
(Example) The following samples A-F were manufactured, and their volume resistivity values (Ω
Section C) was measured.

各試料A−Fは押出成型機により0.5mgm厚さのシ
ート材を製造し、110X10aサイズにナンブル数3
00片を作成して、その中から夫々サンプル番号10、
20.30・・・300のサンプルについて抵抗値を測
定したもので、その測定結果を第1図〜第6図に示す。
Each sample A-F was made into a sheet material with a thickness of 0.5 mgm using an extrusion molding machine, and the number number was 3 in the size of 110 x 10a.
00 pieces were created, and sample numbers 10 and 10 were created respectively.
The resistance values were measured for 300 samples, and the measurement results are shown in FIGS. 1 to 6.

試料A及びBは本発明方法により製造した実施品、試料
C−Fは熱可塑性エラストマーを含まない従来比較品で
ある。
Samples A and B are actual products manufactured by the method of the present invention, and samples C-F are conventional comparative products that do not contain a thermoplastic elastomer.

尚、抵抗値の測定法は、23℃−50%中に48時間以
上調整後、室温23℃、相対温度50%の7内にて印加
した後、60秒後に抵抗値を計測した。
The resistance value was measured by adjusting the temperature at 23° C.-50% for 48 hours or more, applying the voltage at a room temperature of 23° C. and a relative temperature of 50%, and then measuring the resistance value 60 seconds later.

計測器は、YOにOG/VA  HEWLETT−PA
CKARD4329HHIGHRESISTANCE 
 METERを使用した。
The measuring instrument is YO OG/VA HEWLETT-PA
CKARD4329HHIGH RESISTANCE
METER was used.

仄且A アセタール樹脂       60部 ウレタン系エラストマー   40部 カーボンブラック       8部 安定剤            2部 可塑剤            2部 墓且旦 アセタール樹脂       60部 ウレタン系エラストマー   40部 カーボンブラック     3.5部 安定剤            2部 可塑剤            2部 区且ぷ メタクリル樹脂       80部 カーボンブラック       7部 安定剤             2部可塑剤    
        3部 抜且旦 メタクリル樹脂       80部 カーボンブラック       3部 安定剤             2部可塑剤    
        3部 区l旦 ABS樹脂         70部 ニトリルブタジェンラバー  40部 カーボンブラック       8部 安定剤          3.5部 可塑剤            2部 基且王 ABS樹脂         70部 ニトリルブタジェンラバー  40部 カーボンブラック       4部 安定剤          3.5部 可塑剤            2部 測定結果によれば、従来比較品(試料C−F)は抵抗1
[106Ωα未満では安定したシートが得られるが(第
3図、第5図)、抵抗値106Ωαを越えてバラ付きが
大きいことが確認され(第4図。
Acetal resin 60 parts Urethane elastomer 40 parts Carbon black 8 parts Stabilizer 2 parts Plasticizer 2 parts Acetal resin 60 parts Urethane elastomer 40 parts Carbon black 3.5 parts Stabilizer 2 parts Plasticizer 2 parts Methacrylic resin 80 parts Carbon black 7 parts Stabilizer 2 parts Plasticizer
3 parts extracted methacrylic resin 80 parts carbon black 3 parts stabilizer 2 parts plasticizer
3 parts ABS resin 70 parts nitrile butadiene rubber 40 parts carbon black 8 parts stabilizer 3.5 parts plasticizer 2 parts basic ABS resin 70 parts nitrile butadiene rubber 40 parts carbon black 4 parts stabilizer 3. 5 parts plasticizer 2 parts According to the measurement results, the conventional comparative products (sample C-F) had a resistance of 1
[When the resistance value is less than 106 Ωα, a stable sheet can be obtained (Figs. 3 and 5), but when the resistance value exceeds 106 Ωα, it is confirmed that there is large variation (Fig. 4).

第6図)、本発明実施品(試料A及びB)にあっては何
れの範囲においても抵抗値のバラ付きが比較的少なく安
定したシートが得られたく第1図。
6), and in the products implementing the present invention (samples A and B), stable sheets with relatively little variation in resistance value were obtained in any range, as shown in FIG.

第2図)。Figure 2).

(効果) 本発明によれば、熱可塑性エラストマーの媒介によって
導電性カーボンの分散性が均一になり、該カーボンの配
合比を決定することにより、所望の体積固有抵抗値を有
する吸着用シートが得られる。従って、微妙な体積固有
抵抗値の範囲のものを得ることが可能となり、吸着力の
強弱を設計上で計算し、計算値に近い吸着力のシートを
得て標準化が可能となる。
(Effects) According to the present invention, the dispersibility of conductive carbon becomes uniform through the mediation of a thermoplastic elastomer, and by determining the blending ratio of the carbon, an adsorption sheet having a desired volume resistivity value can be obtained. It will be done. Therefore, it is possible to obtain a sheet with a delicate volume resistivity value, and it is possible to calculate the strength of the adsorption force in the design, obtain a sheet with an adsorption force close to the calculated value, and standardize it.

又、本発明の製造方法によれば、シート間における体積
固有抵抗値のバラ付きが少なく、従来の如くバラ付きの
多いシートを大量に製造し、それから必要なシートを選
び出す方法に較べて生産性に優れ、しかもエラストマー
の再利用が可能なことで大幅なコストダウンを図ること
ができる。
In addition, according to the manufacturing method of the present invention, there is less variation in the volume resistivity value between sheets, and productivity is improved compared to the conventional method of manufacturing a large number of sheets with a large amount of variation and then selecting the necessary sheets from them. Moreover, since the elastomer can be reused, it is possible to significantly reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明実施量の測定結果を示すグラ
フ、第3図〜第6図は比較品の測定結果を示すグラフで
ある。 特許出願人  株式会社アビサレ −a*l固真抵抗植 (j’1c77t) □働−[l*抵抗植 CnCrn) □住1m真抵抗植 須C電)
FIGS. 1 and 2 are graphs showing the measurement results of the embodiment of the present invention, and FIGS. 3 to 6 are graphs showing the measurement results of comparative products. Patent Applicant Abisare Co., Ltd.-A*L True Resistance Plant (j'1c77t) □Work-[L*Resistance Plant CnCrn) □Dwelling 1m True Resistance Plant Cn)

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性合成樹脂と熱可塑性エラストマーとを主
成分とし、それに導電性カーボンを含有せしめて所定の
体積固有抵抗値を有することを特徴とする静電吸着用シ
ート。
(1) An electrostatic adsorption sheet characterized by having a thermoplastic synthetic resin and a thermoplastic elastomer as main components, containing conductive carbon therein, and having a predetermined volume resistivity value.
(2)熱可塑性エラストマーに導電性カーボンを所定の
配合比で加熱分散させ、それに熱可塑性合成樹脂を配合
した後、シート加工を施こして成形することを特徴とす
る請求項第1項記載の静電吸着用シートの製造方法。
(2) The method according to claim 1, characterized in that conductive carbon is heated and dispersed in a thermoplastic elastomer at a predetermined blending ratio, a thermoplastic synthetic resin is blended therein, and then sheet processing is performed and molded. A method for manufacturing an electrostatic adsorption sheet.
JP1149688A 1988-01-20 1988-01-20 Manufacture of electrostatic absorbent sheet Pending JPH01186180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149688A JPH01186180A (en) 1988-01-20 1988-01-20 Manufacture of electrostatic absorbent sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149688A JPH01186180A (en) 1988-01-20 1988-01-20 Manufacture of electrostatic absorbent sheet

Publications (1)

Publication Number Publication Date
JPH01186180A true JPH01186180A (en) 1989-07-25

Family

ID=11779639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149688A Pending JPH01186180A (en) 1988-01-20 1988-01-20 Manufacture of electrostatic absorbent sheet

Country Status (1)

Country Link
JP (1) JPH01186180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776027B2 (en) 2000-08-17 2004-08-17 Japan Tobacco Inc. Cigarette inspection device
US7256979B2 (en) 2001-08-01 2007-08-14 Sharp Kabushiki Kaisha Ion generator, and electric apparatus and air conditioning apparatus incorporating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200604A (en) * 1985-02-28 1986-09-05 三菱電線工業株式会社 Composition for electromagnetic shield

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200604A (en) * 1985-02-28 1986-09-05 三菱電線工業株式会社 Composition for electromagnetic shield

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776027B2 (en) 2000-08-17 2004-08-17 Japan Tobacco Inc. Cigarette inspection device
US7256979B2 (en) 2001-08-01 2007-08-14 Sharp Kabushiki Kaisha Ion generator, and electric apparatus and air conditioning apparatus incorporating the same

Similar Documents

Publication Publication Date Title
Zhang et al. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability
Tang et al. Electrical behavior of carbon black‐filled polymer composites: Effect of interaction between filler and matrix
CN104098834B (en) A kind of conducting polymer composite material and preparation method thereof
Sumita et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black
US20120073388A1 (en) Force sensing compositions, devices and methods
Zhao et al. Equivalent circuit model for the strain sensing characteristics of multi-walled carbon nanotube/polyvinylidene fluoride films in alternating current circuit
Huang et al. Synergistic effect of CB and MWCNT on the strain-induced DC and AC electrical properties of PVDF-HFP composites
Boonstra et al. Electrical conductivity of rubber-carbon black vulcanizates
JPH01186180A (en) Manufacture of electrostatic absorbent sheet
Ando et al. Electrical resistivity of the polymer layers with polymer grafted carbon blacks
JPH04505941A (en) Antistatic properties - Method for producing polymer compositions with conductivity
Knite et al. Polyisoprene-multi wall carbon nanotube composite structure for flexible pressure sensor application
Thongruang et al. Electrical and mechanical properties of ternary composites from natural rubber and conductive fillers.
King et al. Electrical conductivity and rheology of carbon fiber/liquid crystal polymer composites
Guo et al. Improved antistatic properties and mechanism of silicone rubber/low-melting-point-alloy composites induced by high-temperature cyclic stretching
Knite et al. Diffusion, swelling and electrical properties of polyisoprene/multiwall carbon nanotube composites in organic solvent vapours
JPS5950252B2 (en) Hard vinyl chloride resin composition
Wu et al. Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites
Al-Hartomy et al. Some factors determining the volume resistivity of filled natural-rubber-based nanocomposites
Knite et al. Effects of plasticizer and strain on the percolation threshold in polyisoprene–carbon nanocomposites: Positron annihilation lifetime spectroscopy and electrical resistance measurements
JP3264789B2 (en) Conductive resin composition
CN112654663B (en) Composition for bipolar plate and method for manufacturing the same
DE3039852A1 (en) METHOD FOR PRODUCING PVC MOLDING MATERIALS WITH HYDROPHILIC SURFACE
KR100630805B1 (en) Composite materials for gas sensor and method for preparation of the same
CN110819118B (en) Conductive elastomer composite material for wearable device and preparation method thereof