JPH01183201A - Printed dipole antenna - Google Patents

Printed dipole antenna

Info

Publication number
JPH01183201A
JPH01183201A JP790488A JP790488A JPH01183201A JP H01183201 A JPH01183201 A JP H01183201A JP 790488 A JP790488 A JP 790488A JP 790488 A JP790488 A JP 790488A JP H01183201 A JPH01183201 A JP H01183201A
Authority
JP
Japan
Prior art keywords
magnetic field
dipole
antenna
dipole element
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP790488A
Other languages
Japanese (ja)
Other versions
JPH0574242B2 (en
Inventor
Koji Abe
紘士 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP790488A priority Critical patent/JPH01183201A/en
Publication of JPH01183201A publication Critical patent/JPH01183201A/en
Publication of JPH0574242B2 publication Critical patent/JPH0574242B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To use the title antenna in a wide band or plural frequency bands by giving the superconducting layer of a prescribed form and size between a dipole element and a dielectric substrate and providing a magnetic field generation source near the back in a direction to which a radio wave is radiated. CONSTITUTION:The conductive board or the thin film 4 of a superconducting body with the form and size larger than the dipole element 1 is installed between the dipole element 1 of a metallic thin board and the dielectric substrate 2. The magnetic field generation source (electromagnetic coil, etc.) 5 supplying a magnetic field is provided near the back in the direction to which the radio wave of the antenna is radiated, and the size of the magnetic field generated in the electromagnetic coil 5 is set larger than a critical magnetic field where the superconducting radiation element 4 comes not to show superconductivity. With switching ON/OFF the magnetic field synchronized with the frequency- switching of the radiation element 4, the size of the dipole element 1 can equally be changed and an objective radiation characteristic can be obtained with respect to the radio wave of plural frequency bands which are comparatively detached at every frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明H,UHF帯やマイクロtfjL¥W及びミリ
波帯の電波の送受信に使われるプリント化ダイポールア
ンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention H relates to a printed dipole antenna used for transmitting and receiving radio waves in the UHF band, micro TFJL\W, and millimeter wave bands.

〔従来の技術〕[Conventional technology]

従来、この種のアンテナは、プリント化ダイポールアン
テナ単体で使われる場合と、アレイアンテナを構成する
素子アンテナとして使われる場合とがあり、基本的KF
i、第3図のように構成されている。図において、(1
)はダイポール素子、(2)は誘電体基板、+3)は給
電線路である。又、この他の構成要素として屋外で使う
アンテナの場合、アンテナの全面、または放射部分をレ
ドームで榎う場合が多い。
Conventionally, this type of antenna has been used either as a single printed dipole antenna or as an element antenna constituting an array antenna.
i. It is configured as shown in Figure 3. In the figure, (1
) is a dipole element, (2) is a dielectric substrate, and +3) is a feed line. In addition, in the case of an antenna used outdoors as another component, the entire surface or the radiating portion of the antenna is often covered with a radome.

次に、各構成品の作用について説明する。(11のダイ
ポール素子は、誘電体基板(2)上の金属箔(通常は薄
い銅箔)をエツチング等によシ棒状等の所定の形状・寸
法に成形したものであり、その諸元は、使用周波数帯と
要求される放射特性(主に利得、ビーム巾、放射パター
ン、インピーダンス等)により決められる。又、誘電体
基板+21 H、ダイポール素子il1間の所定の間隔
を保持し、アンテナとしての強度を補うもので、ガラス
繊維強化テフロン等の低誘電率、低損失の材料で構成さ
れる。(3)の給電線路は送受信機から給電回路を経て
アンテすに給電する媒体であり、当該アンテナの入力端
近傍では2通常ダイポール素子(11と同様プリントに
よるマイクロストリップ線路が使われる。
Next, the function of each component will be explained. (The dipole element 11 is formed by etching a metal foil (usually a thin copper foil) on a dielectric substrate (2) into a predetermined shape and size such as a rod shape, and its specifications are as follows. It is determined by the frequency band used and the required radiation characteristics (mainly gain, beam width, radiation pattern, impedance, etc.).Also, by maintaining a predetermined spacing between the dielectric substrate +21H and the dipole element il1, it is possible to use it as an antenna. It supplements the strength and is made of a material with low dielectric constant and low loss such as glass fiber reinforced Teflon.The feed line (3) is a medium that feeds power from the transmitter/receiver to the antenna via the feed circuit. Near the input end of , two dipole elements (printed microstrip lines similar to 11 are used).

又2図には表してないが、他の構成要素としてのレドー
ムは9本アンテナを屋外で使用する場合。
Although not shown in Figure 2, the radome is another component when using nine antennas outdoors.

雨滴や湿気が誘電体基板(2)や給電線路(3)に侵入
しないように設けるものであり、材質としては、気密を
保持しながら、電波に対し反射や透過損失を来たさない
誘電体が使用される。
It is installed to prevent raindrops and moisture from entering the dielectric substrate (2) and power supply line (3), and the material is a dielectric that maintains airtightness and does not cause reflection or transmission loss to radio waves. is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のプリント化ダイポールアンテナは基本的には1以
上のように構成されているため、このアンテナを広帯域
(例えば数10チ以上の帯域)や複数の周波数帯で用い
ようとすると固定の寸法諸元に対し、使用周波数が広が
るため、利得、ビーム巾、放射パターン、インピーダン
ス等の放射e性が帯域内で著しく異ったものとなり、所
定の放射特性を維持できず、これを維持しようとすると
高くて10〜2(1以内程度の帯域でしか使えない課題
があった。
Conventional printed dipole antennas are basically configured with one or more antennas, so if you try to use this antenna in a wide band (for example, a band of several tens of inches or more) or multiple frequency bands, you will have to use fixed dimensional specifications. On the other hand, because the frequency used is widened, the radiation characteristics such as gain, beam width, radiation pattern, impedance, etc. will differ significantly within the band, making it impossible to maintain the specified radiation characteristics, and trying to maintain this will result in high There was a problem that it could only be used in a band of 10 to 2 (1 or less).

この発明け、上記のような課題を解消するためになされ
たもので、特に広帯域または複数の周波数帯で使用でき
るプリント化ダイポールアンテナを得ることを目的とす
るものである。
This invention was made to solve the above-mentioned problems, and in particular, it is aimed at obtaining a printed dipole antenna that can be used in a wide band or in a plurality of frequency bands.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るプリント化ダイポールアンテナは、金属
の薄板で構成されるダイポール素子と誘電体基板との間
に、上記金属のダイポール素子より大きい形状・寸法の
超電導体(例えばBa−Y−Cu−0系や有機化合物)
の薄板または薄膜を装着したものであシ、更に当該アン
テナの電波を放射する方向の後方近傍に、磁界を供給す
る磁界発生源(電磁コイル等)を備えたものである。
In the printed dipole antenna according to the present invention, a superconductor (for example, Ba-Y-Cu-0 systems and organic compounds)
The antenna is equipped with a thin plate or thin film, and is further equipped with a magnetic field generation source (such as an electromagnetic coil) for supplying a magnetic field near the rear of the antenna in the direction in which radio waves are radiated.

〔作用〕[Effect]

この発明におけるプリント化ダイポールアンテナは、金
属薄板のダイポール素子と誘電体基板との間に所定の形
状と寸法の超電導体層を設け、を波の放射される方向の
後方近傍に、磁界発生源を備えることにより、E&界が
超電導体の臨界磁界HCよシ低いか、又は印加されない
場合には、超電導体層が導体として働き、!気的にはダ
イポール素子の形状・寸法が大きくなったように動作し
、臨界磁界HC以上の磁界を加えた時には、超電体層が
超電導性を失い誘電体として動作するため、電気的にけ
、ダイポール素子の大きさが、金属薄板と同一であるよ
うにしたものである。
The printed dipole antenna of the present invention includes a superconductor layer having a predetermined shape and dimensions between a dipole element made of a thin metal plate and a dielectric substrate, and a magnetic field generation source located near the rear of the wave radiation direction. By providing, when the E & field is lower than the critical magnetic field HC of the superconductor or is not applied, the superconductor layer acts as a conductor and! Electrically, it operates as if the shape and dimensions of the dipole element had become larger, and when a magnetic field higher than the critical magnetic field HC is applied, the superelectric layer loses its superconductivity and operates as a dielectric, resulting in electrical damage. , the size of the dipole element is the same as that of the thin metal plate.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図によ勺説明する。第
1図は本発明のプリント化ダイボールナンテナの断面を
示す図であ91図において、(l)はダイポール素子、
(2)は誘電体基板、(3)は給電線路。
An embodiment of the present invention will be explained below with reference to FIG. FIG. 1 is a cross-sectional view of the printed die-ball naantenna of the present invention. In FIG. 91, (l) is a dipole element;
(2) is a dielectric substrate, and (3) is a power supply line.

1411ri超電導体放射素子、(5)は磁界発生源、
具体的には電磁コイルである。
1411ri superconductor radiation element, (5) is a magnetic field generation source,
Specifically, it is an electromagnetic coil.

illのダイポール素子、(21H誘電体基板、(3)
の給電線路は、第3囚で説明した従来のプリント化ダイ
ポールアンテナと同様のものであシ、再説明は省略する
ill's dipole element, (21H dielectric substrate, (3)
The feed line is the same as the conventional printed dipole antenna explained in the third case, and will not be explained again.

ダイポール素子111と誘電体基板(210間に設けら
れた超電体放射素子(4)は、ダイポール素子(1)よ
シ大きい形状寸法を有し比較的小さい臨界磁界1(cで
超電導性が破れる材料を用い、その厚さはスキンデイブ
スの2倍程度あれば充分である。また。
The superelectric radiation element (4) provided between the dipole element 111 and the dielectric substrate (210) has a larger shape and dimension than the dipole element (1), and its superconductivity is broken by a relatively small critical magnetic field 1 (c). It is sufficient to use a material whose thickness is about twice that of Skin Dave's.Also.

超電導体放射素子(4)が導電体として動作する場合は
、ダイポール素子illとは電気的に導通した状態にあ
る。(5)のNMiコイルで発生する磁界の大きさは、
超電導放射素子(4)が、超電導性を示さなくなる臨界
磁界以上とする。
When the superconductor radiating element (4) operates as a conductor, it is electrically connected to the dipole element ill. The magnitude of the magnetic field generated by the NMi coil in (5) is
The magnetic field is set to be above a critical magnetic field at which the superconducting radiation element (4) no longer exhibits superconductivity.

以上のようにアンテナを構成すると、アンテナを励機す
る周波数が例えば、  4GH2帯、  6GH2帯の
ように比較的離れた2周波であったとしても。
When the antenna is configured as described above, even if the frequencies used to excite the antenna are two relatively distant frequencies, such as the 4GH2 band and the 6GH2 band.

両it制御器で切り換えながら使用する分には。As long as you use it while switching between both IT controllers.

ダイポール素子(1)と誘電体基板(2)との間に設け
らた超電導体放射素子(4)に上記周波数句り換えに同
期させた磁界を0N10FFすることによシ、ダイポー
ル素子(1)の大きさを等測的に可変にして画周波数帯
で所定の放射特性を実現することができる。
By applying a 0N10FF magnetic field synchronized to the frequency switching to the superconductor radiation element (4) provided between the dipole element (1) and the dielectric substrate (2), the dipole element (1) is generated. It is possible to realize a predetermined radiation characteristic in the image frequency band by varying the size isometrically.

即ち、低い周波数f1のときには、磁界を印加せず、高
い周波数f2のときには、臨界磁界以上の磁界を印加す
れば低い周波数では、超電導体放射素子(4)が導電体
として動作し9等価的放射素子の大きさは、ダイポール
素子(1)に超電導体放射素子(4)の形状・寸法を加
えたものとなり、一方、高い周波数では超電導状態が破
れ、ダイポール素子Tllだけが放射素子として動作す
る。
That is, if no magnetic field is applied at low frequency f1, and a magnetic field greater than the critical magnetic field is applied at high frequency f2, the superconductor radiating element (4) operates as a conductor at low frequency, resulting in 9 equivalent radiation. The size of the element is the dipole element (1) plus the shape and dimensions of the superconductor radiating element (4). On the other hand, at high frequencies, the superconducting state is broken and only the dipole element Tll operates as a radiating element.

よって、低い周波af1に合せて超電導体放射素子の外
形形状・寸法を決め、高い周波数f2に合せてダイポー
ル素子+11の寸法・諸元を決めて行けば2つの周波に
対しても、それぞれ所定の放射特性を有するプリント化
ダイポールアンテナが実現できる。
Therefore, if the outer shape and dimensions of the superconductor radiating element are determined according to the low frequency af1, and the dimensions and specifications of the dipole element +11 are determined according to the high frequency f2, the predetermined values can be obtained for each of the two frequencies. A printed dipole antenna with radiation characteristics can be realized.

なお、上記実施例では、ダイポール素子+11と誘電体
基板(2)との間に一層の超電導体放射素子141 t
−設けた例を示したが、この効果は、ダイポール素子+
11との間に誘電体をはさんでその表面に薄膜状の超電
導体放射素子(4)を設けても同様である。但し、この
場合は超電導体放射素子(4)が直接給電端と導通して
おく必要がある。
In the above embodiment, one layer of superconductor radiating element 141t is provided between dipole element +11 and dielectric substrate (2).
-Although we have shown an example where the dipole element +
The same effect can be obtained even if a dielectric material is sandwiched between the superconductor 11 and a thin film-like superconductor radiating element (4) provided on the surface of the dielectric material. However, in this case, the superconductor radiating element (4) must be directly electrically connected to the feeding end.

父1以上の説明では、超電導体放射素子(4)が−膚だ
けの例を示したが、これは第2図に示すように、多層に
なっている場合も同様で、この場合は。
In the above explanation, an example was shown in which the superconductor radiating element (4) was made of only one layer, but the same applies to the case where it has multiple layers as shown in FIG. 2, and in this case.

それぞれの層の臨界磁界の異なる材料を設ければ。By providing materials with different critical magnetic fields for each layer.

磁界の強さを多段階に可変にして印加することにより、
更に2以上の複数の周波数に対し、上記と同様の効果が
得られる。
By applying the magnetic field with variable strength in multiple stages,
Furthermore, effects similar to those described above can be obtained for a plurality of frequencies of two or more.

なお、第 図で(4a)、 (4b)、 (4C)hそ
れぞtt臨界磁界が順次大きくなる超電導体放射素子で
ある。
In addition, (4a), (4b), and (4C)h in the figure are superconductor radiating elements in which the tt critical magnetic field increases sequentially.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、一つのプリント化ダ
イポールアンテナで比較的離れた複数の周波数帯の電波
に対し、それぞれの周波数毎、所望の放射特性が得られ
るようにすることができ。
As described above, according to the present invention, it is possible to obtain desired radiation characteristics for each frequency of radio waves in a plurality of relatively distant frequency bands using one printed dipole antenna.

併せて、特に宇宙で使う分には太陽光が直接当たらない
ようにすれは、いわゆる冒温超電導体でも冷却の必要が
なく使用でき、又、衛星通信の分野でFi、アップリン
ク、ダウンリンクの送受両波に対し一つのプリント化ダ
イポールアンテナで対応できる等、アンテナ系全体のコ
スト軽減、スペース削減に寄与する効果は甚大である。
In addition, especially when used in space, even so-called high-temperature superconductors can be used without the need for cooling, as long as they are not directly exposed to sunlight. A single printed dipole antenna can handle both transmitting and receiving waves, which has a significant effect in reducing the cost and space of the entire antenna system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例によるプリント化ダイポ
ールアンテナを示す斜視図、第2図はこの発明の他の実
施例を示す斜視図、第3図は従来のプリント化ダイポー
ルアンテナを示す斜視図であり9図中Tllはダイポー
ル素子、(2)は誘電体基板。 (3)は給電線路、(4)は超電導体放射素子、(5)
は電磁コイルである。 なお1図中同一符号は同−又は相当部分を示す。
FIG. 1 is a perspective view showing a printed dipole antenna according to an embodiment of the present invention, FIG. 2 is a perspective view showing another embodiment of the invention, and FIG. 3 is a perspective view showing a conventional printed dipole antenna. In Figure 9, Tll is a dipole element, and (2) is a dielectric substrate. (3) is a feed line, (4) is a superconductor radiating element, (5)
is an electromagnetic coil. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 誘電体基板の両面に、それぞれ金属箔または金属薄膜よ
り成るダイポール素子がプリントされて構成されるプリ
ント化ダイポールアンテナに於いて、それぞれのプリン
ト化ダイポール素子と誘電体基板との間にダイポール素
子より大きい寸法の超電導体薄板または薄膜から成る放
射素子を一層または臨界磁界の異なるもの複数層を装着
し、且つ上記ダイポール素子の近傍に超電導体の臨界磁
界を印加・遮断できる磁界発生源を備えたことを特徴と
するプリント化ダイポールアンテナ。
In a printed dipole antenna, in which dipole elements made of metal foil or metal thin film are printed on both sides of a dielectric substrate, there is a space between each printed dipole element and the dielectric substrate that is larger than the dipole element. A radiation element made of a superconductor thin plate or thin film of different dimensions is installed in one layer or multiple layers with different critical magnetic fields, and a magnetic field generation source capable of applying and blocking the critical magnetic field of the superconductor is provided near the dipole element. Features a printed dipole antenna.
JP790488A 1988-01-18 1988-01-18 Printed dipole antenna Granted JPH01183201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP790488A JPH01183201A (en) 1988-01-18 1988-01-18 Printed dipole antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP790488A JPH01183201A (en) 1988-01-18 1988-01-18 Printed dipole antenna

Publications (2)

Publication Number Publication Date
JPH01183201A true JPH01183201A (en) 1989-07-21
JPH0574242B2 JPH0574242B2 (en) 1993-10-18

Family

ID=11678551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP790488A Granted JPH01183201A (en) 1988-01-18 1988-01-18 Printed dipole antenna

Country Status (1)

Country Link
JP (1) JPH01183201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964639A (en) * 1995-08-25 1997-03-07 Uniden Corp Diversity antenna circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964639A (en) * 1995-08-25 1997-03-07 Uniden Corp Diversity antenna circuit
US6104356A (en) * 1995-08-25 2000-08-15 Uniden Corporation Diversity antenna circuit

Also Published As

Publication number Publication date
JPH0574242B2 (en) 1993-10-18

Similar Documents

Publication Publication Date Title
US6828948B2 (en) Broadband starfish antenna and array thereof
US5815122A (en) Slot spiral antenna with integrated balun and feed
US3810183A (en) Dual slot antenna device
EP0188345B1 (en) Dual frequency band antenna system
US5187490A (en) Stripline patch antenna with slot plate
US5539414A (en) Folded dipole microstrip antenna
US7057569B2 (en) Broadband slot array antenna
US5818391A (en) Microstrip array antenna
US4772890A (en) Multi-band planar antenna array
EP1646110B1 (en) Microstrip log-periodic antenna array having grounded semi-coplanar waveguide-to-microstrip line transition
AU5955696A (en) Multiple band printed monopole antenna
US6052098A (en) Printed circuit board-configured dipole array having matched impedance-coupled microstrip feed and parasitic elements for reducing sidelobes
US6259416B1 (en) Wideband slot-loop antennas for wireless communication systems
EP0825676B1 (en) Complementary bowtie antenna
JPH08167812A (en) Array antenna system
JPH06268432A (en) Loop antenna for linearly polarized on wave
JP3002252B2 (en) Planar antenna
JP3764289B2 (en) Microstrip antenna
JPH01183201A (en) Printed dipole antenna
JPH07131235A (en) Slot antenna with dielectric resonator
JP3068149B2 (en) Microstrip array antenna
EP0414266A1 (en) Stripline patch antenna with slot plate
JP3004439B2 (en) Planar antenna
CN116315733A (en) Communication antenna
JPS63128803A (en) Structure of microstrip antenna