JPH0118244B2 - - Google Patents

Info

Publication number
JPH0118244B2
JPH0118244B2 JP14580480A JP14580480A JPH0118244B2 JP H0118244 B2 JPH0118244 B2 JP H0118244B2 JP 14580480 A JP14580480 A JP 14580480A JP 14580480 A JP14580480 A JP 14580480A JP H0118244 B2 JPH0118244 B2 JP H0118244B2
Authority
JP
Japan
Prior art keywords
pressure
oil
turbine
valve
oil pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14580480A
Other languages
Japanese (ja)
Other versions
JPS5770907A (en
Inventor
Yasuhiko Ootahara
Akihisa Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14580480A priority Critical patent/JPS5770907A/en
Publication of JPS5770907A publication Critical patent/JPS5770907A/en
Publication of JPH0118244B2 publication Critical patent/JPH0118244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/20Lubricating arrangements using lubrication pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/12Closed-circuit lubricating systems not provided for in groups F01M1/02 - F01M1/10
    • F01M2001/123Closed-circuit lubricating systems not provided for in groups F01M1/02 - F01M1/10 using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/12Closed-circuit lubricating systems not provided for in groups F01M1/02 - F01M1/10
    • F01M2001/126Dry-sumps

Description

【発明の詳細な説明】 本発明は密閉式タービン軸受の潤滑装置に係
り、特に緊急時にも軸受に対して確実に給油する
潤滑装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lubricating device for a sealed turbine bearing, and particularly to a lubricating device that reliably supplies oil to the bearing even in an emergency.

回転機械において、ロータを支える軸受部に潤
滑材となる潤滑油を送り、安全な運転を確保する
ことはきわめて重要なことである。潤滑油を送る
ためには、油ポンプが必要であるが、この油ポン
プは、回転機械の回転軸に直結した回転軸駆動の
ものと、別配置となる電動機駆動のものとがあ
る。尚回転軸直結の油ポンプであつても回転機停
止時の回転数降下時には、電動機駆動のポンプが
必要となる。したがつて、電動機の電源が何らか
の事故で遮断されてしまつた場合、回転機械を緊
急停止すると共に、あらかじめ準備されたバツク
アツプ電源によつて、バツクアツプ用の電動機駆
動油ポンプを動かし、回転機械が完全に停止する
まで軸受に潤滑油を供給して、機械の安全停止を
確保することが行なわれている。このとき、通常
の電源は、交流電源として一般動力用の電源を用
い、バツクアツプ電源としては、バツテリーもし
くは、急速起動の可能なデイーゼルエンジンで駆
動される発電機の電源を用いている。
In rotating machines, it is extremely important to supply lubricating oil to the bearings that support the rotor to ensure safe operation. An oil pump is required to send lubricating oil, and there are two types of oil pumps: those driven by a rotating shaft that is directly connected to the rotating shaft of the rotating machine, and those driven by an electric motor that are located separately. Even if the oil pump is directly connected to the rotating shaft, an electric motor-driven pump is required when the rotational speed drops when the rotating machine is stopped. Therefore, if the power to the electric motor is cut off due to some kind of accident, the rotating machine will be brought to an emergency stop, and the backup electric motor-driven oil pump will be operated using the backup power source prepared in advance, so that the rotating machine can be completely turned off. To ensure safe stopping of the machine, lubricating oil is supplied to the bearing until the machine stops. At this time, as a normal power source, a power source for general power is used as an AC power source, and as a backup power source, a battery or a power source of a generator driven by a diesel engine capable of rapid startup is used.

第1図は、従来技術によるタービンの潤滑油系
統を示すものである。1は油タンク(潤滑材溜
め)であり、潤滑油はこの中に溜められる。この
油タンク1の容量は油タンク1に戻つてきた油の
内部にまき込んだ気泡が十分消えてから主油ポン
プ2に吸引されるよう、5分〜10分程度タンク中
に潤滑油が滞留できるように設定される。油タン
ク1中の潤滑油は、主オイルポンプ2によつてタ
ービン7の軸受6へ送りこまれる。軸受6にいく
前に、まず、油クーラ4を通り、適切な油温とな
るよう冷却される。次に、潤滑油フイルタ5を通
して、潤滑油中のごみをとり、軸受部へごみが流
れ込んで損傷を与えることを防止する。このよう
にして、潤滑油はタービン7の軸受6へ送られ
る。主油ポンプ2の吐出圧が高くなりすぎると、
潤滑油配管及び油クーラ4の内圧が設計値をこえ
て危険であるから設計圧力以上に上昇しないよ
う、主油ポンプ2の吐出側と油タンク1の入口側
に連通する配管を設け、この配管に安全弁8を設
置している。即ち、圧力が設計値以上に上ると安
全弁8が開いて、油タンク1に油を戻してしま
う。また、軸受6に送る潤滑油の圧力も軸受部雰
囲気圧力に対し一定圧力だけ高くしておくことが
重要である。なぜなら、軸受部に流れる流量は、
軸受部雰囲気圧力と給油圧力との圧力差の平方根
に比例するため、給油圧力が必要以上に上ると潤
滑油量が流れすぎ、また給油圧力が下りすぎると
必要な量の潤滑油が流れない。そこで圧力調整弁
9が設けられている。圧力調整弁9の上流側の圧
力が上ると弁を絞り、圧力が下ると弁を開け、圧
力調整弁9下流の圧力、即ち、軸受6への給油圧
力を一定とする。勿論主油ポンプ2の吐出圧が、
ほぼ一定とみられるタービンの場合は、この圧力
調整弁9のかわりに、オリフイスで絞ることとし
たり、あるいは、主油ポンプ2の吐出圧がそのま
まで十分適当な値であるときには何も設けない場
合もある。バツクアツプ油ポンプ3は、主油ポン
プ2と並列に入れておき、主油ポンプ2が何らか
の原因で停止した場合、その吐出圧の低下を圧力
スイツチ10で検知して、起動スイツチ11を作
動させてバツクアツプ油ポンプ3を起動する。主
油ポンプ2が突然停止するのは、主油ポンプ2の
電源を喪失する場合がほとんどであるから、バツ
クアツプ油ポンプ3の電源は主油ポンプ2の電源
とは別な電源としておく。蒸気あるいは水を用い
る蒸気タービン、水タービンあるいは燃焼ガスを
用いるガスタービンにおいては、タービンはラビ
リンスタイプパツキング、あるいはメカニカルシ
ールでシールされ、軸受部は大気と通じている
か、もしくは、軸受箱の中に設置された軸受では
空気抽出器により大気圧よりわずかに負圧となつ
ている。したがつてこの軸受部雰囲気圧力は主油
ポンプ2の運転・停止、いいかえれば、一般動力
用電源の喪失にかかわらずほぼ一定である。した
がつて、主油ポンプ2の吐出圧に対し、バツクア
ツプ油ポンプ3の吐出圧は同等か、もしくは、軸
受焼付きを防止するために必要な最小限の油を送
るに足るものであればよい。
FIG. 1 shows a conventional turbine lubricating oil system. 1 is an oil tank (lubricant reservoir) in which lubricating oil is stored. The capacity of this oil tank 1 is set such that the lubricating oil remains in the tank for about 5 to 10 minutes so that the air bubbles that have gotten into the oil that has returned to the oil tank 1 have disappeared sufficiently before it is sucked into the main oil pump 2. It is set so that it can be done. The lubricating oil in the oil tank 1 is pumped to the bearing 6 of the turbine 7 by the main oil pump 2. Before reaching the bearing 6, the oil first passes through an oil cooler 4 and is cooled to an appropriate oil temperature. Next, the lubricating oil is passed through a lubricating oil filter 5 to remove dust from the lubricating oil to prevent dust from flowing into the bearing and causing damage. In this way, lubricating oil is sent to the bearing 6 of the turbine 7. If the discharge pressure of main oil pump 2 becomes too high,
In order to prevent the internal pressure of the lubricating oil piping and oil cooler 4 from rising above the design pressure, which is dangerous, a piping is provided that communicates with the discharge side of the main oil pump 2 and the inlet side of the oil tank 1. A safety valve 8 is installed at the That is, when the pressure rises above the design value, the safety valve 8 opens and oil is returned to the oil tank 1. Furthermore, it is important that the pressure of the lubricating oil sent to the bearing 6 is set higher than the atmospheric pressure of the bearing portion by a certain amount. This is because the flow rate flowing into the bearing section is
Since it is proportional to the square root of the pressure difference between the bearing atmospheric pressure and the oil supply pressure, if the oil supply pressure increases more than necessary, too much lubricating oil will flow, and if the oil supply pressure decreases too much, the required amount of lubricating oil will not flow. A pressure regulating valve 9 is therefore provided. When the pressure on the upstream side of the pressure regulating valve 9 increases, the valve is throttled, and when the pressure decreases, the valve is opened, and the pressure downstream of the pressure regulating valve 9, that is, the oil supply pressure to the bearing 6, is kept constant. Of course, the discharge pressure of the main oil pump 2 is
In the case of a turbine where the pressure is considered to be almost constant, an orifice may be used instead of the pressure regulating valve 9, or if the discharge pressure of the main oil pump 2 is at a sufficiently appropriate value as it is, nothing may be provided. be. The backup oil pump 3 is installed in parallel with the main oil pump 2, and when the main oil pump 2 stops for some reason, the pressure switch 10 detects the drop in discharge pressure and activates the start switch 11. Start the backup oil pump 3. The sudden stop of the main oil pump 2 is almost always due to the loss of power to the main oil pump 2, so the power source for the backup oil pump 3 is set to be a separate power source from the power source for the main oil pump 2. In steam turbines using steam or water, water turbines, or gas turbines using combustion gas, the turbine is sealed with labyrinth-type packing or mechanical seals, and the bearings are open to the atmosphere or are installed in bearing housings. The installed bearing has a slightly negative pressure below atmospheric pressure due to the air extractor. Therefore, the atmospheric pressure of the bearing portion remains approximately constant regardless of whether the main oil pump 2 is operating or stopped, or in other words, regardless of loss of the general power source. Therefore, the discharge pressure of the backup oil pump 3 should be equal to the discharge pressure of the main oil pump 2, or sufficient to deliver the minimum amount of oil necessary to prevent bearing seizure. .

排熱回収プラントにおける、フロン等の外部に
リークさせることを極力防止すべき媒体を用いる
タービンで、以上の従来技術による潤滑油装置を
用いると、重大な問題が発生する。それを以下に
述べる。
If the above-mentioned conventional lubricating oil device is used in a turbine in an exhaust heat recovery plant that uses a medium whose leakage of fluorocarbons or the like to the outside should be prevented as much as possible, a serious problem will occur. This will be explained below.

排熱回収プラントとは、工場などで蒸気や高温
ガスを用いて、比較的高温のまま排出する場合、
排出煙突などにボイラを用い、フロンなどの熱媒
体をもつてその熱を回収し、有効利用するもので
ある。熱回収して気化した、フロンなどの熱媒体
はタービンに導かれてタービンを駆動し、凝縮器
で、冷却媒体(海水や淡水など水が多い)で冷却
されて液化し、また排熱回収ボイラーに戻る。
An exhaust heat recovery plant is a plant that uses steam or high-temperature gas to discharge heat at a relatively high temperature.
A boiler is used in the exhaust chimney, and the heat is recovered and used effectively using a heat medium such as fluorocarbons. The heat carrier, such as fluorocarbons, which has been recovered and vaporized, is led to a turbine to drive the turbine, and in the condenser, it is cooled by a cooling medium (often water such as seawater or fresh water) and liquefied, and then the waste heat recovery boiler Return to

第2図は、フロンを用いてタービンを駆動す
る、排熱回収プラントの一例である。フロン蒸気
は、流量制御弁14を経て、タービン7A内で仕
事をし、タービン7Aを駆動する。排気は凝縮器
15で冷却されて凝縮する。このフロンの凝縮に
より、タービン排気圧が下げられ、タービン入口
圧との圧力差で、フロンはタービン7Aを流れる
わけである。冷却は、冷却水ポンプ16で供給さ
れる冷却水でなされる。フロン液は、フロンポン
プ17で熱交換器19で熱を吸収し、気化して蒸
気となつて、流量制御弁14へ導かれる。流量制
御弁14は、速度制御器13によつて、タービン
速度の要求値からの偏差で開閉する。これによ
り、タービン速度が制御される。このプラントの
例では、排ガス等の熱源からの熱回収は一度油で
行なつて、その高温になつた油とフロンとを、更
に熱交換器19で熱交換する。熱交換して、温度
の下つた油は、油ポンプ18により排熱回収ボイ
ラー20へ送られ、熱源から熱を吸収し、温度が
上ると熱交換器19でフロンを熱し、フロン蒸気
を発生させる。フロンをタービン7Aを動かす作
動媒体とするのは、フロンの沸点は比較的低く、
たとえば工場の煙突などの排熱を利用して蒸気
(200℃〜300℃で真圧蒸気となる)をつくること
ができ、排熱の有効利用が可能なためである。こ
のタービン7Aでは、シール22でタービン内か
らのフロンリークを防止し、その外に軸受6をお
いている。
FIG. 2 is an example of an exhaust heat recovery plant that uses fluorocarbons to drive a turbine. The freon vapor passes through the flow rate control valve 14, performs work within the turbine 7A, and drives the turbine 7A. The exhaust gas is cooled and condensed in a condenser 15. The condensation of this fluorocarbon lowers the turbine exhaust pressure, and due to the pressure difference with the turbine inlet pressure, the fluorocarbon flows through the turbine 7A. Cooling is performed using cooling water supplied by a cooling water pump 16. The fluorocarbon liquid absorbs heat in the heat exchanger 19 by the fluorocarbon pump 17, evaporates into steam, and is guided to the flow rate control valve 14. The flow control valve 14 is opened and closed by the speed controller 13 depending on the deviation of the turbine speed from the required value. This controls the turbine speed. In this example of a plant, heat is recovered from a heat source such as exhaust gas using oil, and then the heated oil and fluorocarbon are further heat exchanged in a heat exchanger 19. After heat exchange, the oil whose temperature has dropped is sent to the exhaust heat recovery boiler 20 by the oil pump 18, where it absorbs heat from the heat source, and when the temperature rises, the heat exchanger 19 heats the fluorocarbon to generate fluorocarbon vapor. . The reason why fluorocarbons are used as the working medium for operating the turbine 7A is that the boiling point of fluorocarbons is relatively low.
This is because, for example, exhaust heat from factory chimneys can be used to create steam (which becomes vacuum steam at 200°C to 300°C), making it possible to effectively utilize the exhaust heat. In this turbine 7A, a seal 22 prevents freon leakage from inside the turbine, and a bearing 6 is placed outside of the seal 22.

このシール22にはメカニカルシールとラビリ
ンス型シールがある。リーク量はメカニカルシー
ルの方が少ないが、軸径が100mmをこえるように
なると、メカニカルシールでも十分にリークを防
止することは困難である。シールの問題は回転す
るロータが、静止体であるタービンケーシングか
ら外に出ているためにできるのであるから、ロー
タをも含めてタービンカバー21で完全に囲い、
密封することにより、このフロンリークの問題を
根本から解決することができる。
This seal 22 includes a mechanical seal and a labyrinth type seal. Mechanical seals have less leakage, but when the shaft diameter exceeds 100mm, even mechanical seals cannot sufficiently prevent leaks. The seal problem is caused by the fact that the rotating rotor is outside the turbine casing, which is a stationary body, so it is necessary to completely surround the rotor with the turbine cover 21.
By sealing, the problem of fluorocarbon leakage can be fundamentally solved.

この場合、何らかの原因で冷却水ポンプ16が
停止すると、冷却水を喪失するため、凝縮器15
にてフロンが凝縮できず、このため、タービン内
圧力が上昇し、タービンカバー21により密閉さ
れているため、シール22を通じて、タービンカ
バー21内の圧力も上昇する。こうなると、ター
ビン7Aを緊急停止することになるがタービン7
Aが完全に停止するまでは、軸受6へタービンケ
ーシング内の圧力を上回る圧力で潤滑油を給油し
てやらねばならない。
In this case, if the cooling water pump 16 stops for some reason, the cooling water will be lost, so the condenser 15
The fluorocarbons cannot be condensed, so the pressure inside the turbine increases, and since the turbine cover 21 is hermetically sealed, the pressure inside the turbine cover 21 also increases through the seal 22. If this happens, the turbine 7A will have to be stopped urgently, but the turbine 7
Until A completely stops, lubricating oil must be supplied to the bearing 6 at a pressure higher than the pressure inside the turbine casing.

冷却水ポンプ16が停止する原因として、通常
最も多いのは、冷却水ポンプ16を駆動している
モータの電源が地絡等で断たれることである。こ
の電源は、主油ポンプ2の電源とも共通であるの
が従来の例であるから、バツクアツプ油ポンプ3
を起動して潤滑油を送ることになる。前述の理由
から、この油ポンプ3の吐出圧は、主油ポンプ2
の吐出圧と違つてタービンカバー21内圧力に対
し、給油圧力を加えた吐出圧を持たなければなら
ない。
The most common reason for the cooling water pump 16 to stop is usually that the power to the motor driving the cooling water pump 16 is cut off due to a ground fault or the like. In the conventional example, this power source is also common to the power source of the main oil pump 2, so the back-up oil pump 3
will be activated to send lubricant. For the reasons mentioned above, the discharge pressure of this oil pump 3 is lower than that of the main oil pump 2.
The discharge pressure must be the sum of the internal pressure of the turbine cover 21 and the oil supply pressure.

この対策としては、バツクアツプ油ポンプ3の
吐出圧を予め高く設定しておくことが考えられ
る。しかし、この場合、潤滑油配管は軸受に至る
まで、バツクアツプ油ポンプ3吐出圧にあわせた
ものとし、主油ポンプ2の吐出口につながる配管
とは全く別にしなければならない。なぜならば、
第1図にて示すごとく、この主油ポンプ2吐出口
につながる配管は過度の圧力上昇を防ぐために、
安全弁・圧力調整弁9等がついているからであ
る。このように、油配管を二系統設けることは、
配管費用を増加させるだけでなく、軸受が二つの
給油配管を組み入れられる大きさにしなければな
らないという欠点がある。またバツクアツプ油ポ
ンプ3が起動した際、直ちに油が軸受6内へ送り
こまれるよう、バツクアツプ油ポンプ3の停止・
待機中も配管内に油を充満しておかねばならない
不都合がある。更にこの配管内に空洞が残つてい
ると、油の供給が遅れ、また、油と同時に気泡を
軸受6に送つてしまうという問題がある。
As a countermeasure against this problem, it is possible to set the discharge pressure of the backup oil pump 3 to be high in advance. However, in this case, the lubricating oil piping up to the bearing must be matched to the discharge pressure of the backup oil pump 3, and must be completely separate from the piping connected to the discharge port of the main oil pump 2. because,
As shown in Figure 1, the piping connected to the main oil pump 2 outlet is designed to prevent excessive pressure rise.
This is because a safety valve, pressure regulating valve 9, etc. are included. In this way, providing two lines of oil piping means
In addition to increasing piping costs, the disadvantage is that the bearing must be sized to accommodate two oil supply lines. In addition, when the backup oil pump 3 is started, the backup oil pump 3 is stopped and the oil is immediately sent into the bearing 6.
There is an inconvenience that the piping must be filled with oil even during standby. Furthermore, if a cavity remains in this piping, there is a problem in that oil supply is delayed and air bubbles are sent to the bearing 6 at the same time as oil.

本発明は上記欠点を改善し、最も単純なシステ
ムで、給油圧力上昇能力を持つ潤滑油装置を提供
することを目的とするものである。
It is an object of the present invention to improve the above-mentioned drawbacks and provide a lubricating oil device having the ability to increase oil supply pressure using the simplest system.

本発明の特徴は軸受に潤滑材を循環せしめる系
統と、この系統に設けた主ポンプ装置と、主ポン
プ装置の吸込側系統に設けた潤滑材溜めと、主ポ
ンプ装置の吐出側系統に設けた逆止弁及び圧力調
整弁とよりなる密閉式タービン軸受の潤滑材循環
系統において、前記主ポンプ装置をバイパスする
バイパス系統に設けた補助ポンプ装置と、補助ポ
ンプ装置の吐出側系統に設けた逆止弁と、電源遮
断時補助ポンプ装置を駆動する検知装置と、圧力
調整弁をバイパスするバイパス系統と、このバイ
パス系統に設けかつ電源遮断時作動するバイパス
弁とよりなる密閉式タービン軸受の潤滑装置にあ
る。
The features of the present invention include a system for circulating lubricant through the bearings, a main pump device provided in this system, a lubricant reservoir provided in the suction side system of the main pump device, and a lubricant reservoir provided in the discharge side system of the main pump device. In a lubricant circulation system for a sealed turbine bearing comprising a check valve and a pressure regulating valve, an auxiliary pump device provided in a bypass system that bypasses the main pump device, and a non-return check provided in a discharge side system of the auxiliary pump device. A lubricating device for a sealed turbine bearing comprising a valve, a detection device that drives an auxiliary pump device when the power is cut off, a bypass system that bypasses the pressure regulating valve, and a bypass valve that is installed in the bypass system and operates when the power is cut off. be.

次に本発明の一実施例を第3図によつて説明す
る。31は主ポンプ装置となる主油ポンプ32の
吸込側配管51に設けた油タンク、33は主油ポ
ンプ32の吐出側配管52に設けた逆止弁、34
は潤滑材となる潤滑油を冷却する油クーラ、35
は潤滑油中のごみを取除くフイルター、36は密
閉式のタービン37を支持する軸受、38は軸受
36への給油圧力を一定にする圧力調整弁、39
は主油ポンプ32の吐出側を油タンク31の入口
側を連通する配管53に設けた安全弁、40はタ
ービン37の凝縮器で、この凝縮器40にはター
ビン37の排気を凝縮するため冷却水ポンプ59
により冷却水が送られる。41は主油ポンプ32
をバイパスする配管54に設けた補助ポンプ装置
となる歯車式のバツクアツプ油ポンプで、このバ
ツクアツプ油ポンプ41の容量は主油ポンプ32
と同等かもしくは軸受36の焼付きを防止するた
めに必要な最少限の容量を有している。42はバ
ツクアツプ油ポンプ41の吐出側配管54に設け
た逆止弁、43は凝縮器40に設けたタービン3
7の排気上昇圧力を検知する圧力スイツチ、44
はタービン37の圧力が急上昇すると圧力調整弁
38が全閉するのでこの圧力調整弁38をバイパ
スする配管55に設けた開閉作動のバイパス弁、
45はバツクアツプ油ポンプ41の吐出側と吸込
側をつなぐ試験配管56に設けた開閉作動の圧力
逃し弁であり、この圧力逃し弁45と上記安全弁
39は同じ圧力で作動するように設定されてい
る。46は前記試験配管56に設けた止め弁、4
7は主油ポンプ32の吐出低下圧力を検知する圧
力スイツチで、この圧力スイツチ47あるいは圧
力スイツチ43の信号で起動スイツチ48を開閉
作動し、これによつてバツクアツプ油ポンプ41
を作動する。49は圧力スイツチ43の信号で作
動する空気弁であり、空気弁49の作動でこの系
統57に連らなるバイパス弁44及び止め弁46
を作動する。50は軸受36をバイパスする配管
58に設けた高圧逃し弁である。すなわち従来の
安全弁(第1図の8)に相当するものである。
Next, one embodiment of the present invention will be described with reference to FIG. 31 is an oil tank provided in the suction side piping 51 of the main oil pump 32 serving as the main pump device; 33 is a check valve provided in the discharge side piping 52 of the main oil pump 32; 34
is an oil cooler that cools lubricating oil, 35
36 is a bearing that supports the sealed turbine 37; 38 is a pressure regulating valve that keeps the oil supply pressure to the bearing 36 constant; 39
Reference numeral 40 indicates a safety valve provided in a pipe 53 that communicates the discharge side of the main oil pump 32 with the inlet side of the oil tank 31; 40 indicates a condenser for the turbine 37; pump 59
Cooling water is sent by. 41 is the main oil pump 32
This is a gear-type backup oil pump that serves as an auxiliary pump device installed in a piping 54 that bypasses the main oil pump 32.
It has a capacity equivalent to or the minimum capacity necessary to prevent seizure of the bearing 36. 42 is a check valve provided in the discharge side pipe 54 of the backup oil pump 41, and 43 is a turbine 3 provided in the condenser 40.
Pressure switch for detecting the exhaust rising pressure of No. 7, 44
When the pressure of the turbine 37 suddenly increases, the pressure regulating valve 38 is fully closed, so a bypass valve that operates to open and close is provided in the piping 55 that bypasses the pressure regulating valve 38.
Reference numeral 45 denotes a pressure relief valve that opens and closes, and is installed in a test pipe 56 that connects the discharge side and suction side of the backup oil pump 41. This pressure relief valve 45 and the safety valve 39 are set to operate at the same pressure. . 46 is a stop valve provided in the test pipe 56;
Reference numeral 7 denotes a pressure switch that detects the reduced discharge pressure of the main oil pump 32. A starting switch 48 is opened and closed by a signal from this pressure switch 47 or pressure switch 43, thereby starting the backup oil pump 41.
operate. 49 is an air valve that is activated by a signal from the pressure switch 43, and when the air valve 49 is activated, a bypass valve 44 and a stop valve 46 connected to this system 57 are activated.
operate. 50 is a high pressure relief valve provided in a pipe 58 that bypasses the bearing 36. That is, it corresponds to the conventional safety valve (8 in FIG. 1).

次に電源遮断によるバツクアツプ油ポンプ41
の起動について説明する。
Next, backup oil pump 41 due to power cutoff
This section explains how to start the .

まず、電源が同一で主油ポンプ32と凝縮器4
0の冷却水ポンプ59が同時に停止した場合は、
主油ポンプ32の吐出圧力が低下し、凝縮器40
の圧力が上昇する。この圧力変化を圧力スイツチ
47または圧力スイツチ43で検知して空気弁4
9を開放し、配管55のバイパス弁44を開、テ
スト配管56の止め弁46を閉に夫々作動する。
同時に起動スイツチ48を介してバツクアツプ油
ポンプ41を作動し、潤滑油を配管55を経由し
てタービン37の軸受36に給油する。
First, the power source is the same, main oil pump 32 and condenser 4
If the cooling water pumps 59 of 0 stop at the same time,
The discharge pressure of the main oil pump 32 decreases, and the condenser 40
pressure increases. This pressure change is detected by the pressure switch 47 or pressure switch 43, and the air valve 4
9 is opened, the bypass valve 44 of the pipe 55 is opened, and the stop valve 46 of the test pipe 56 is closed.
At the same time, the backup oil pump 41 is operated via the start switch 48 to supply lubricating oil to the bearing 36 of the turbine 37 via the pipe 55.

また、主油ポンプ32と冷却水ポンプ59の電
源が別であり、冷却水ポンプ59のみが停止した
場合は凝縮器40の圧力が上昇する。この圧力上
昇を圧力スイツチ43で検知し、以下上記と同様
に空気弁49、バイパス弁44、止め弁46、バ
ツクアツプ油ポンプ41を作動して主油ポンプ3
2と共に軸受36に給油する。
Further, the main oil pump 32 and the cooling water pump 59 are powered by separate power supplies, and when only the cooling water pump 59 is stopped, the pressure in the condenser 40 increases. This pressure increase is detected by the pressure switch 43, and the air valve 49, the bypass valve 44, the stop valve 46, and the backup oil pump 41 are operated in the same manner as described above, and the main oil pump 3
2 as well as the bearing 36.

更に、主油ポンプ32と冷却水ポンプ59の電
源が別で、主油ポンプ32のみが停止した場合は
主油ポンプ32の吐出圧力が低下する。この圧力
低下を圧力スイツチ47で検知し、上記と同様に
空気弁49、バイパス弁44、止め弁46、バツ
クアツプ油ポンプ41を作動して軸受36に給油
する。
Further, if the main oil pump 32 and the cooling water pump 59 are powered by separate power supplies and only the main oil pump 32 is stopped, the discharge pressure of the main oil pump 32 will decrease. This pressure drop is detected by the pressure switch 47, and the air valve 49, bypass valve 44, stop valve 46, and backup oil pump 41 are operated to supply oil to the bearing 36 in the same manner as described above.

次にバツクアツプ油ポンプ41の吐出圧上昇に
ついて説明する。このバツクアツプ油ポンプ41
には大きな圧力変化に対し吐出圧変化の小さい歯
車式ポンプを使用しており、第4図のポンプ特性
を有している。この図から明らかなように吐出圧
即ちタービン37(第3図参照)の圧力が上昇
し、軸受36に開口している配管52の圧力が通
常吐出圧力Aより緊急時最大圧力Bまで上昇して
もその流量Cをほとんど低下させることなく軸受
36に給油できる。このポンプ特性はピストン式
ポンプでも得られる。
Next, the increase in the discharge pressure of the backup oil pump 41 will be explained. This backup oil pump 41
A gear type pump is used, which has a small change in discharge pressure even when a large pressure change occurs, and has the pump characteristics shown in Fig. 4. As is clear from this figure, the discharge pressure, that is, the pressure of the turbine 37 (see Figure 3) increases, and the pressure of the pipe 52 opening to the bearing 36 increases from the normal discharge pressure A to the maximum emergency pressure B. The bearing 36 can also be lubricated without substantially reducing its flow rate C. This pump characteristic can also be obtained with piston pumps.

本実施例では歯車式ポンプを用いたが遠心式ポ
ンプを用いると第5図に示すようなポンプ特性に
なる。この図より明らかな如く通常運転時の通常
吐出圧力Aのときは問題ないが、タービン37の
圧力が上昇すると緊急最大圧力Bに達する以前に
吐出流量C′が減少し、零になる。したがつてこの
遠心式ポンプを用いる場合には、これらの作用を
考慮し容量の大きいものを使用する必要がある。
In this embodiment, a gear type pump is used, but if a centrifugal type pump is used, the pump characteristics will be as shown in FIG. As is clear from this figure, there is no problem at normal discharge pressure A during normal operation, but when the pressure of the turbine 37 increases, the discharge flow rate C' decreases and becomes zero before reaching the emergency maximum pressure B. Therefore, when using this centrifugal pump, it is necessary to consider these effects and use one with a large capacity.

次に、第3図に戻りバツクアツプ油ポンプ41
の試験作動について説明する。バツクアツプ油ポ
ンプ41は、非常時確実に作動しなければならな
いため、通常運転中に定期的に試験する必要があ
る。今、主油ポンプ32の運転中にバツクアツプ
油ポンプ41を駆動すると油はテスト配管56を
流れ、圧力逃し弁45よりバツクアツプ油ポンプ
41の吸込側に戻す。
Next, returning to FIG. 3, the backup oil pump 41
The test operation will be explained. Since the backup oil pump 41 must operate reliably in an emergency, it is necessary to periodically test it during normal operation. Now, when the backup oil pump 41 is driven while the main oil pump 32 is in operation, oil flows through the test pipe 56 and is returned to the suction side of the backup oil pump 41 through the pressure relief valve 45.

尚、主油ポンプ32の吐出圧力が所定以上に上
昇すると安全弁39が開いて配管53より油タン
ク31に油を戻し、圧力を吸収する。
Note that when the discharge pressure of the main oil pump 32 rises above a predetermined level, the safety valve 39 opens and oil is returned to the oil tank 31 from the piping 53 to absorb the pressure.

同様にタービン37の圧力が異常に上昇し、軸
受36から圧力調整弁38間の配管52内圧力が
昇常に上昇すると高圧逃し弁50が開き、油タン
ク31で圧力を吸収して安全性を確保する。
Similarly, when the pressure in the turbine 37 rises abnormally and the pressure inside the pipe 52 between the bearing 36 and the pressure regulating valve 38 rises, the high pressure relief valve 50 opens and the oil tank 31 absorbs the pressure to ensure safety. do.

また、本実施例では主油ポンプ32の吐出圧力
と凝縮器の圧力を検知してバツクアツプ油ポンプ
41を作動したが、これら圧力検知に限らず、直
接電源遮断を検知してもよいことは勿論である。
以上種々述べてきたが、要するに従来技術の安全
弁8(第1図)の場合は圧力調整弁9により軸受
6の供給油の圧力が決定されるので、安全弁8の
圧力だけ上げておいても異常時には軸受部雰囲気
圧力が上りもともと供給されなくなるのでたとえ
安全弁8の圧力を上げておいても無意味に等し
い。
Further, in this embodiment, the backup oil pump 41 is operated by detecting the discharge pressure of the main oil pump 32 and the pressure of the condenser, but it is of course possible to directly detect power cutoff in addition to detecting these pressures. It is.
As mentioned above, in the case of the safety valve 8 (Fig. 1) of the prior art, the pressure of the oil supplied to the bearing 6 is determined by the pressure regulating valve 9, so even if the pressure of the safety valve 8 is increased, it will not cause an abnormality. Sometimes, the atmospheric pressure in the bearing increases and the supply stops, so even if the pressure in the safety valve 8 is increased, it is meaningless.

本発明に於いては第3図のバイパス弁44が異
常時に開いて圧力の高い油を圧力調整弁38をバ
イパスして流すためこれに対応して高圧逃し弁5
0を設定しておくので異常時に於いても油タンク
への流れを阻止することが出来る。この異常時の
圧力を超えて圧力上昇した場は高圧逃し弁50が
作動するようにしている。即ちバイパス弁44の
機能とタイアツプして高圧逃し弁50が用をなし
ているのである。
In the present invention, the bypass valve 44 shown in FIG. 3 opens in the event of an abnormality to allow high-pressure oil to flow bypassing the pressure regulating valve 38.
Since it is set to 0, the flow to the oil tank can be blocked even in the event of an abnormality. When the pressure rises above the abnormal pressure, the high pressure relief valve 50 is activated. That is, the high pressure relief valve 50 is useful in conjunction with the function of the bypass valve 44.

本発明によれば、設備費を増大することなく緊
急時タービンの軸受に確実に給油が行なえ、その
効果は極めて大きいものである。
According to the present invention, the bearings of the emergency turbine can be reliably lubricated without increasing equipment costs, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のタービン軸受の潤滑装置を示す
系統図、第2図は排熱回収プラントを説明する系
統図、第3図は本発明密閉式タービン軸受装置の
一実施例を示す系統図、第4図は歯車式ポンプの
性能特性図、第5図は遠心式ポンプの性能特性図
である。 31……油タンク、32……主油ポンプ、33
……逆止弁、36……軸受、37……タービン、
38……圧力調整弁、41……バツクアツプ油ポ
ンプ、42……逆止弁、43……圧力スイツチ、
44……バイパス弁、45……圧力逃し弁、46
……止め弁、47……圧力スイツチ、49……起
動スイツチ、50……高圧逃し弁、54,55…
…配管、56……テスト配管、58……配管。
FIG. 1 is a system diagram showing a conventional turbine bearing lubrication device, FIG. 2 is a system diagram explaining an exhaust heat recovery plant, and FIG. 3 is a system diagram showing an embodiment of the sealed turbine bearing device of the present invention. FIG. 4 is a performance characteristic diagram of a gear type pump, and FIG. 5 is a performance characteristic diagram of a centrifugal pump. 31...Oil tank, 32...Main oil pump, 33
... Check valve, 36 ... Bearing, 37 ... Turbine,
38...Pressure regulating valve, 41...Backup oil pump, 42...Check valve, 43...Pressure switch,
44...Bypass valve, 45...Pressure relief valve, 46
... Stop valve, 47 ... Pressure switch, 49 ... Start switch, 50 ... High pressure relief valve, 54, 55 ...
...Piping, 56...Test piping, 58...Piping.

Claims (1)

【特許請求の範囲】[Claims] 1 軸受に潤滑材を循環せしめる系統と、この系
統に設けられた主ポンプ装置と、この主ポンプ装
置の吸込側系統に設けられた潤滑材溜めと、主ポ
ンプ装置の吐出側系統に設けられた圧力調整弁
と、主ポンプ装置をバイパスするバイパス系統に
設けられた補助ポンプ装置と、前記主ポンプ装置
駆動用の電源が遮断した時補助ポンプ装置を駆動
する検知装置とを備えた密閉式タービン軸受の潤
滑装置において、前記圧力調整弁と並列にこの圧
力調整弁をバイパスするバイパス系統を設けると
ともに、このバイパス系統にタービン内圧急上昇
時に開となるバイパス弁を設け、かつ前記圧力調
整弁の軸受側の系統と前記潤滑材溜めとの間に、
高圧逃し弁を設けたことを特徴とする密閉式ター
ビン軸受の潤滑装置。
1. A system that circulates lubricant to the bearings, a main pump device installed in this system, a lubricant reservoir installed in the suction side system of this main pump device, and a lubricant reservoir installed in the discharge side system of the main pump device. A sealed turbine bearing comprising a pressure regulating valve, an auxiliary pump device provided in a bypass system that bypasses the main pump device, and a detection device that drives the auxiliary pump device when the power source for driving the main pump device is cut off. In this lubricating system, a bypass system is provided in parallel with the pressure regulating valve to bypass the pressure regulating valve, and a bypass valve that opens when the turbine internal pressure rises is provided in the bypass system, and the bearing side of the pressure regulating valve is provided with a bypass system that bypasses the pressure regulating valve. between the system and the lubricant reservoir,
A lubricating device for a sealed turbine bearing, characterized by being equipped with a high pressure relief valve.
JP14580480A 1980-10-20 1980-10-20 Lubricating device of closed turbine bearing Granted JPS5770907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14580480A JPS5770907A (en) 1980-10-20 1980-10-20 Lubricating device of closed turbine bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14580480A JPS5770907A (en) 1980-10-20 1980-10-20 Lubricating device of closed turbine bearing

Publications (2)

Publication Number Publication Date
JPS5770907A JPS5770907A (en) 1982-05-01
JPH0118244B2 true JPH0118244B2 (en) 1989-04-05

Family

ID=15393529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14580480A Granted JPS5770907A (en) 1980-10-20 1980-10-20 Lubricating device of closed turbine bearing

Country Status (1)

Country Link
JP (1) JPS5770907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314303A (en) * 1999-04-26 2000-11-14 General Electric Co <Ge> Combined lifting force/hydraulic device for gas turbine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2388634A (en) 2002-05-15 2003-11-19 Dana Automotive Ltd Engine lubrication system having dual/auxiliary pump operation
DE102004056295B4 (en) * 2004-11-22 2014-09-04 Rolls-Royce Deutschland Ltd & Co Kg Oil supply device for an aircraft engine
DE602007010805D1 (en) * 2007-12-21 2011-01-05 Techspace Aero Sa Recirculation valve in an aircraft engine
JP2015068300A (en) * 2013-09-30 2015-04-13 三菱日立パワーシステムズ株式会社 Power generation plant
CN106968730B (en) * 2017-03-24 2018-10-02 山东中实易通集团有限公司 A kind of activation system and method for the high voltage startup oil pump with automatic oiling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314303A (en) * 1999-04-26 2000-11-14 General Electric Co <Ge> Combined lifting force/hydraulic device for gas turbine

Also Published As

Publication number Publication date
JPS5770907A (en) 1982-05-01

Similar Documents

Publication Publication Date Title
JP5214992B2 (en) Engine pre-lubricating apparatus and method
US4309870A (en) Lubricating system for a turbomachine including a method of operating same
JPS643786Y2 (en)
RU2645778C2 (en) Turbomachine lubrication system with antisiphon valve for autorotation
US4424665A (en) Lubricating system for a turbomachine including a method of operating same
US9797272B2 (en) Thermal energy recovery device and control method
US4105093A (en) Control system for pressurized lubricating system
KR100227044B1 (en) Turbine generator system
US8485222B2 (en) Systems and methods for preventing oil migration
WO1999046512A1 (en) Centrifugal compressor and shaft seal
US6481978B2 (en) System and method for protecting turbine and compressor during shutdown
US10989215B2 (en) Compressor system equipped for fugitive gas handling and fugitive gas system operating method
JPH0118244B2 (en)
US3503618A (en) Arrangement for ensuring supply of pressurized sealing fluid to shaft seals of high pressure machines to prevent gas leakage in event of failure of main oil pump
CN112523870A (en) Gas turbine lubricating oil system
CA2991931A1 (en) Apparatus and method for controlling a pressure differential across a seal of a bearing chamber
JP5173602B2 (en) Turbocharger
JPS58193997A (en) Oil throwing apparatus for fluid machine
WO2018154735A1 (en) Steam turbine system and method for starting steam turbine
JPH10252688A (en) Centrifugal compressor device and operation method therefor
JPH0255807A (en) Lubricating oil supply device for combined cycle generating plant
JPH01190925A (en) Lubricating oil feeding device for gas turbine
WO2023040184A1 (en) High temperature and high pressure-resistant internal cooling static sealing device
CN214304062U (en) Gas turbine lubricating oil system
JP2019039415A (en) Seal system