JPH01172382A - Charge-transfer complex of fulvalene derivative with iodine - Google Patents

Charge-transfer complex of fulvalene derivative with iodine

Info

Publication number
JPH01172382A
JPH01172382A JP62328898A JP32889887A JPH01172382A JP H01172382 A JPH01172382 A JP H01172382A JP 62328898 A JP62328898 A JP 62328898A JP 32889887 A JP32889887 A JP 32889887A JP H01172382 A JPH01172382 A JP H01172382A
Authority
JP
Japan
Prior art keywords
iodine
atom
formula
derivative
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62328898A
Other languages
Japanese (ja)
Inventor
Mitsuo Takahashi
三雄 高橋
Yoshiaki Kawasaki
由明 川崎
Yasuhiro Kimura
康弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP62328898A priority Critical patent/JPH01172382A/en
Publication of JPH01172382A publication Critical patent/JPH01172382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

NEW MATERIAL:A charge-transfer compelx, expressed by formula I (X1-X8 are sulfur, selenium or tellurium; R1-R4 are 3-10C alkyl, 6-20C aryl, etc., having secondary or tertiary carbon atom) and/or formula II (A1-A4 are H, Cl, alkyl, or I; m1 and m2 are integers of 3-10; n is 2-100) and consisting of 2-15mol. iodine based on 1mol. fulvalene derivative having partially or wholly crosslinked carbon atoms. USE:An active material of positive poles in solid electrolytic cells or batteries. PREPARATION:For example, lumps of sodium are added in small portions to ice-cold methanol and bis(carbonyldithio)tetrathiafulvalene is added thereto and reacted. Benzyl bromide is then dripped and reacted therewith to provide tetrathiabenzyltetrathiafulvalene, which is subsequently mixed with iodine and heated to afford the aimed charge-transfer complex of the fulvalene derivative with the iodine.

Description

【発明の詳細な説明】 L11匹三1上1 本発明は、リチウム、ナトリウム、アルミニウム、マグ
ネシウム等の軽金属を負極活物質に用いた固体電解質電
池の正極活物質として有用な、フルバレン誘導体とヨウ
素の電荷移動錯体に関する。
DETAILED DESCRIPTION OF THE INVENTION L11 31 1 The present invention provides a method of combining fullvalene derivatives and iodine, which are useful as positive electrode active materials of solid electrolyte batteries using light metals such as lithium, sodium, aluminum, and magnesium as negative electrode active materials. Concerning charge transfer complexes.

支i旦ゑ■ 固体電解質電池は、正極活物質、負極活物質及び電解質
のすべてが固体であるために、液漏れの心配がなく、又
、薄型電池に容易に作成することができるなどの利点を
有し、心臓のペースメーカー用電源や、コンピュータの
メモリーバックアップ用電源として利用され、またその
利用技術、用途も広がりつつある。
Solid electrolyte batteries have the advantage of not having to worry about liquid leakage because the positive electrode active material, negative electrode active material, and electrolyte are all solid, and they can be easily made into thin batteries. It is used as a power source for cardiac pacemakers and as a memory backup power source for computers, and its usage technology and applications are also expanding.

正極活物質としてヨウ素、負極活物質として、例えば、
リチウムを用いた電池では、リチウムとヨウ素の反応に
よって正極と負極の界面に生成したしiIが固体電解質
の役割を果たす。しかし、ヨウ素は電気電導率が低く、
ヨウ素をそのまま正極として用いた場合には、電池の内
部抵抗が著しく大きくなってしまう。そこでヨウ素を電
子供与体と混合して電気伝導率の高い電荷移動錯体を生
成させ、この電荷移動錯体を固体電解質電池の正極活物
質として用いることがGUTMANN等LJ 、 E 
lectrochem、 Soc、 、  114.3
23(1967)及び115. 359(1968) 
”)により発表されて以来、8梗の正極活物質としての
電荷移動錯体が研究されている。
Iodine is used as a positive electrode active material, and as a negative electrode active material, for example,
In batteries using lithium, iI generated at the interface between the positive electrode and the negative electrode by the reaction between lithium and iodine serves as a solid electrolyte. However, iodine has low electrical conductivity,
If iodine is used as it is as a positive electrode, the internal resistance of the battery will increase significantly. Therefore, GUTMANN et al. have proposed mixing iodine with an electron donor to generate a charge transfer complex with high electrical conductivity, and using this charge transfer complex as a positive electrode active material for solid electrolyte batteries.
lectrochem, Soc, 114.3
23 (1967) and 115. 359 (1968)
”), charge transfer complexes have been studied as positive electrode active materials.

上述した電子供与体としては、下記式(III)で表わ
されるテトラデアフルバレン(以下、TTFと略す)が
良く知られており、ヨウ素と電荷移動錯体を形成し、良
電導性を示す。固体電解質電池の内部抵抗を減少させる
ために、このTTFとヨウ素の電荷移動9体を正極活物
質として用いることが特開昭55−161370に開示
されている。
As the above-mentioned electron donor, tetradeafulvalene (hereinafter abbreviated as TTF) represented by the following formula (III) is well known, forms a charge transfer complex with iodine, and exhibits good electrical conductivity. In order to reduce the internal resistance of a solid electrolyte battery, the use of this charge transfer material of TTF and iodine as a positive electrode active material is disclosed in JP-A-55-161370.

[l5lljV夾旦よユ亙工A二1」 しかし、前記特開昭55−161370に開示されてい
るTTF−ヨウ素電荷移動錯体は、良電導性及び低ヨウ
素蒸気圧を示すものの、この錯体を正極活物質として用
いて得られた固定電解質電池は、放電容量がなお不十分
であった。
However, although the TTF-iodine charge transfer complex disclosed in JP-A-55-161370 exhibits good conductivity and low iodine vapor pressure, this complex cannot be used as a positive electrode. The fixed electrolyte battery obtained using this as the active material still had insufficient discharge capacity.

その原因としては、例えば、リチウムを負極活物質とし
て用いた場合、正極側で起こる電気化学反応 TTF−1+e−→TTFi   +l−2x    
      2x−1 ヤ、正極側、p4極側にそれぞれ生成したI−。
The cause of this is, for example, when lithium is used as the negative electrode active material, the electrochemical reaction TTF-1+e-→TTFi +l-2x occurs on the positive electrode side.
2x-1, I- generated on the positive electrode side and the p4 electrode side, respectively.

1i+が結合してLiIを生成する反応1i”+l−→
しii が十分に進行しない事が考えられる。
Reaction 1i”+l−→ in which 1i+ combines to produce LiI
It is possible that ii is not progressing sufficiently.

問題点を解決するための 段 本発明者等は、前述の如き問題点を解決することを目的
として種々の電子供与体−ヨウ素電荷移動錯体の正極活
物質としての有用性について検討した結果、 下記式<I) で表わされる新規なフルバレン誘導体、又は、下記式(
II) で表わされるc  、c  、c  、c  の一部又
は全部が架橋された新規なフルバレン誘導体はヨウ素と
電荷移動錯体を容易に形成し、該電荷移動9体を正極活
物質として得られた固体電解質電池は保存性が良く、正
極活物質の利用率が大きく、又、放電容態も大きいこと
を見出し、本発明をなすに至った。
Steps to Solve the Problems The inventors of the present invention have investigated the usefulness of various electron donor-iodine charge transfer complexes as positive electrode active materials with the aim of solving the above-mentioned problems, and have developed the following. A novel fullvalene derivative represented by the formula <I) or the following formula (
II) A novel fullvalene derivative in which c , c , c , and c are partially or entirely crosslinked easily forms a charge transfer complex with iodine, and the charge transfer 9 complex was obtained as a positive electrode active material. It was discovered that solid electrolyte batteries have good storage stability, high utilization rate of positive electrode active material, and high discharge capacity, and have led to the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

前記の式(I)中、X −x はそれぞれ独立して硫黄
原子、セレン原子又はテルル原子を表わす。R−Rとし
ては空間的に嵩高い置換基が好ましく、それぞれ独立し
て2級もしくは3級の炭素原子を有する炭素@3〜10
個、好ましくは3〜6個のアルキル基、2級もしくは3
級の炭素原子を有する炭M@3〜10個、好ましくは3
〜6個のアルケニル基、又は、炭素数6〜20個、好ま
しくは6〜15個のアリール基もしくはアラルキル基を
表わす。
In the above formula (I), X −x each independently represents a sulfur atom, a selenium atom or a tellurium atom. R-R is preferably a spatially bulky substituent, each independently having a secondary or tertiary carbon atom @3 to 10 carbon atoms.
, preferably 3 to 6 alkyl groups, secondary or tertiary
Carbon atoms having 3 to 10 carbon atoms, preferably 3
~6 alkenyl groups, or aryl or aralkyl groups having 6 to 20 carbon atoms, preferably 6 to 15 carbon atoms.

上述したアルキル基のうち、特に好まし1いものとして
、 上記アルケニル基としては、 上記アリール基としては、 上記アラルキル基としては、 が例示される。
Among the above-mentioned alkyl groups, the following are particularly preferred as the alkenyl group, the aryl group as the aralkyl group, and the following as the aralkyl group.

前記式(I[)中、X −X は、それぞれ独立して硫
黄原子、セレン原子又はテルル原子を表わし、A  −
A  はそれぞれ独立して水素原子、塩素原子、臭素原
子又はヨウ素原子を表わし、m。
In the formula (I[), X −X each independently represents a sulfur atom, a selenium atom, or a tellurium atom, and A −
A each independently represents a hydrogen atom, a chlorine atom, a bromine atom or an iodine atom, and m.

およびm は、それぞれ独立して3〜10、好ましくは
3〜6の整数をnは2〜100の数を表わす。
and m each independently represent an integer of 3 to 10, preferably 3 to 6, and n represents a number of 2 to 100.

式(I)で表わされるフルバレン誘導体はC1〜Cの一
部又は全部が、炭素数的3〜10のアルキレン鎖で架橋
されており、その分子量は約1.000〜5万であるこ
とが好ましい。
In the fulvalene derivative represented by formula (I), some or all of C1 to C are crosslinked with an alkylene chain having 3 to 10 carbon atoms, and the molecular weight is preferably about 1,000 to 50,000. .

本発明の前記式(I)のフルバレン誘導体又は、式(I
[)のフルバレン誘導体とヨウ素との電荷移動錯体は、
法式(I)のフルバレン誘導体1モル、又は、法式(I
I)のフルバレン誘導体の構成モノマー単位1モルに対
して、ヨウ素を2〜15モル、好ましくは5〜10モル
加えて均一に混合した後、そのままあるいは40〜80
℃で5〜10時間加熱する方法、又はジクロロメタン、
テトラクロロエタンなどの溶媒に式(I)又は(I[)
のフルバレン誘導体とヨウ素を上述した混合割合で溶解
し、その後、溶媒を蒸発させる方法などにより得ること
ができる。
The fullvalene derivative of the formula (I) of the present invention or the formula (I)
The charge transfer complex between the fullvalene derivative and iodine in [) is
1 mol of the fullvalene derivative of formula (I), or 1 mol of the fullvalene derivative of formula (I)
After adding 2 to 15 mol, preferably 5 to 10 mol, of iodine to 1 mol of constituent monomer units of the fulvalene derivative in I) and mixing uniformly, it can be added as is or with 40 to 80 mol of iodine.
℃ heating method for 5 to 10 hours, or dichloromethane,
Formula (I) or (I[) in a solvent such as tetrachloroethane
It can be obtained by a method such as dissolving the fulvalene derivative and iodine at the above-mentioned mixing ratio and then evaporating the solvent.

前記式(I)及び(I[)で表されるフルバレン誘導体
は、例えば、G、 5aito et、 at、、 C
hem。
The fullvalene derivatives represented by formulas (I) and (I[) are, for example, G, 5aito et, at, C
hem.

Lett、、 44t(j9aa)又は、G、 5ai
to、 J、 5ynth。
Lett, 44t (j9aa) or G, 5ai
to, J, 5ynth.

Org、 Chet Jpn、、旦502(1987)
の方法によって合成する事ができる。
Org, Chet Jpn,, Dan502 (1987)
It can be synthesized by the following method.

(I)については、例えば、水冷メタノール中にアルゴ
ン気流下ナトリウム塊を加えた後、V Aでビス(カル
ボニルジチオ)テトラチアフルバレン(IV)を加え、
そのまま4時間放置し、化合物(V)にする。連続して
、この化合物(V)に炭@数3乃至10のハロゲン化ア
ルキル、炭素数3乃至10のハロゲン化アルケニル、炭
素数6乃至20のハロゲン化アリール及び炭素!!!6
乃至20のハロゲン化アラルキルを加え、”J ’fA
で一晩反応させ目的とする化合物(Vl)を得る。
For (I), for example, add a sodium lump in water-cooled methanol under a stream of argon, then add bis(carbonyldithio)tetrathiafulvalene (IV) at VA;
Leave as it is for 4 hours to form compound (V). This compound (V) is successively added with carbon@alkyl halide having 3 to 10 carbon atoms, alkenyl halide having 3 to 10 carbon atoms, aryl halide having 6 to 20 carbon atoms, and carbon! ! ! 6
to 20 aralkyl halides are added, and "J' fA
The mixture is reacted overnight to obtain the desired compound (Vl).

(II)については、例えば、ナトリウムメ1−キシト
を溶解した水冷ジメチルホルムアミド(DHF)にアル
ゴン気流下空温で化合物(IV)を加え、そのまま4時
間攪拌し、化合物(V)にする。続いて、炭素数m1及
び/又はm2のジハロゲン化アルキレンを加え、空温で
一晩反応して化合物〈■)を得る。
For (II), for example, compound (IV) is added to water-cooled dimethylformamide (DHF) in which sodium meth-1-oxyto is dissolved at air temperature under an argon stream, and the mixture is stirred for 4 hours to form compound (V). Subsequently, a dihalogenated alkylene having m1 and/or m2 carbon atoms is added and reacted overnight at air temperature to obtain compound (■).

史 以下実施例でさらに詳しく説明するが、本発明は実施例
により限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in more detail in Examples below, but the present invention is not limited by the Examples.

実施例1 テトラチアベンジルテトラチアフルバレン(
以下TTC(b)TTFと略記 する)とヨウ素の電荷移動錯体の合成 水冷メタノール50Id、中に、アルゴン気流下1.3
グのナトリウム塊を少量ずつ加えた後、室温に戻し30
分間放置した。この溶液にビス(カルボニルジチオ)テ
トラチアフルバレン(Jy、下TTCOと略記する)5
gを加え、空温にて4時間攪拌した。
Example 1 Tetrathiabenzyltetrathiafulvalene (
Synthesis of a charge transfer complex of TTC(b) (hereinafter abbreviated as TTF) and iodine in water-cooled methanol 50Id under an argon atmosphere for 1.3 min.
After adding the sodium lumps from
Leave it for a minute. Add 5 bis(carbonyldithio)tetrathiafulvalene (Jy, hereinafter abbreviated as TTCO) to this solution.
g was added thereto, and the mixture was stirred at air temperature for 4 hours.

次いで、臭化ベンジル8dを滴下し空温で一晩放置し、
テトラチアベンジルテトラチアフルバレンを得た。生成
物をアセトニトリルから再結晶し、2.8gの精製品を
得た。
Next, benzyl bromide 8d was added dropwise and left overnight at air temperature.
Tetrathiabenzyltetrathiafulvalene was obtained. The product was recrystallized from acetonitrile to obtain 2.8 g of purified product.

生成物については、F D −M S (ffi/S)
測定により、692(M  >、また、’H−NMR(
δ。
For the product, F D −M S (ffi/S)
By measurement, 692 (M >, and 'H-NMR (
δ.

CDCII  )より、5=3.79(s、  8H)
 、 7.19〜7.25 (m 、 20fl H>
の結果を得た。
CDCII), 5=3.79(s, 8H)
, 7.19~7.25 (m, 20 fl H>
I got the result.

得られたTTC(b)TTFとTTC(b)TTF  
1モルに対して4.8モルのヨウ素<1  )を乳鉢中
でよくすり混ぜ60℃にて約9時間加熱してTTC(b
)TTFとヨウ素との電荷移動錯体(TTC(b)TT
F・工  )を得た。
Obtained TTC(b)TTF and TTC(b)TTF
Thoroughly mix 4.8 moles of iodine (<1) per mole in a mortar and heat at 60°C for about 9 hours to obtain TTC (b).
) Charge transfer complex of TTF and iodine (TTC(b)TT
F. Engineering) was obtained.

79.6 実施例2 テトラチアイソペンチルテトラチアフルバレ
ン(以下TTC(i)TTFと 略記する)とヨウ素の電荷移動!ご体の合成 臭化ベンジル8dの変わりに、臭化イソペンチル7rr
tlを用いた以外は、実験例1と同様にしてテトラチア
イソペンチルテトラチアフルバレン2.59を得た。
79.6 Example 2 Charge transfer between tetrathiaisopentyltetrathiafulvalene (hereinafter abbreviated as TTC(i)TTF) and iodine! Instead of your synthetic benzyl bromide 8d, isopentyl bromide 7rr
Tetrathiaisopentyltetrathiafulvalene 2.59 was obtained in the same manner as in Experimental Example 1 except that tl was used.

得られたTTC(i)TTFとTTC(i) TTF 
1モルに対して4.8モルのヨウ素を用い、実施例1と
同様にしてTTC(i)TTFとヨウ素との電荷移動錯
体(TTC(i)TTF−I   )5       
    9.6 を得た。
Obtained TTC(i)TTF and TTC(i)TTF
A charge transfer complex of TTC(i)TTF and iodine (TTC(i)TTF-I) 5 was prepared in the same manner as in Example 1 using 4.8 mol of iodine per 1 mol.
9.6 was obtained.

実施例3 ポリテトラチアペンチルテトラチアフルバレ
ン(以下PTTCTTFと略 記する)とヨウ素の電荷移動錯体の合 成 氷冷したジメチルホルムアミド407にナトリウムメト
キシド1.949を溶解し、TTCo 5gを加えた。
Example 3 Synthesis of charge transfer complex of polytetrathiapentyltetrathiafulvalene (hereinafter abbreviated as PTTCTTF) and iodine 1.949 g of sodium methoxide was dissolved in ice-cooled dimethylformamide 407, and 5 g of TTCo was added.

空温で4時間攪拌した後、ジブロモペンタン5.98g
を滴下し、空温で一晩放置し、ポリテトラチアペンチル
テトラチアフルバレンを得た。得られた生成物をメタノ
ールでよく洗浄した後、黒褐色の精製品6.4gを得た
After stirring at air temperature for 4 hours, 5.98 g of dibromopentane
was added dropwise and left overnight at air temperature to obtain polytetrathiapentyltetrathiafulvalene. After thoroughly washing the obtained product with methanol, 6.4 g of a black-brown purified product was obtained.

生成物をIRにより分析したところ、2920CIA−
1にペンチル基のC−H伸縮によるピークを確認し、ま
た、原料のTTCOのカルボニル基によるピークの消失
を確認した。
When the product was analyzed by IR, it was found to be 2920CIA-
In No. 1, a peak due to C-H stretching of the pentyl group was confirmed, and the disappearance of a peak due to the carbonyl group of the raw material TTCO was confirmed.

元素分析の結果は、C:H:S:Br−34,79:2
.59: 52.10 : 10.52であった。
The result of elemental analysis is C:H:S:Br-34,79:2
.. It was 59:52.10:10.52.

得られたPTTCTTFとPTTCTTFの構成モノマ
ー単位1モルに対して4.8モルのヨウ素を用い、実施
例1と同様にして PTTC5TTFとヨウ素との電荷
移動錯体(PTTC5TTF・工  )を得た。
A charge transfer complex of PTTC5TTF and iodine (PTTC5TTF) was obtained in the same manner as in Example 1 using 4.8 mol of iodine per 1 mol of the constituent monomer units of the obtained PTTCTTF and PTTCTTF.

9.6 試験例 実施例1〜3で得られた各電荷移動錯体を加圧(400
1(5F/eJ)成型して直径1cIのディスク状ベレ
ットをそれぞれ作成した。更に、比較のためにテトラチ
アフルバレンとヨウ素の電荷移動錯体を加圧成型して直
径1c11のディスク状ベレットを作成した。各ディス
ク状ベレットを正極活物質に用いて、アルゴンガス雰囲
気のドライボックス内で第1図に示した固体電解質電池
をそれぞれ作成した。各固体電解質電池の放電特性をみ
るために、100にΩの抵抗を負荷した時の放電電圧の
時間変化を測定した。結果を第2図に示した。又、第1
表に各固体電解質電池の開路電圧及び初期内部抵抗を示
した。
9.6 Test Examples Each of the charge transfer complexes obtained in Examples 1 to 3 was pressurized (400
1 (5F/eJ) to produce disk-shaped pellets each having a diameter of 1 cI. Furthermore, for comparison, a charge transfer complex of tetrathiafulvalene and iodine was pressure molded to create a disk-shaped pellet with a diameter of 1c11. Using each disk-shaped pellet as a positive electrode active material, the solid electrolyte batteries shown in FIG. 1 were produced in a dry box in an argon gas atmosphere. In order to examine the discharge characteristics of each solid electrolyte battery, the time change in discharge voltage was measured when a resistance of 100Ω was loaded. The results are shown in Figure 2. Also, the first
The table shows the open circuit voltage and initial internal resistance of each solid electrolyte battery.

発明の効果 本発明のフルバレン誘導体とヨウ素の電荷移動錯体は、
固体電解質電池の放電容量を増大させることができ、固
体電解質電池の正極活物質として有用である。
Effects of the Invention The charge transfer complex of the fullvalene derivative and iodine of the present invention is
It can increase the discharge capacity of solid electrolyte batteries, and is useful as a positive electrode active material for solid electrolyte batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のフルバレン誘導体とヨウ素の電荷移
動錯体の正極活物質としての有用性を評価するために用
いた固体電解質電池を示す。図中、A、乃至A3はテフ
ロン製の容器、B1およびB2はパツキンを、Cはステ
ンレス板(集電体)、Dは正極ベレットおよびEは負極
のリチウム板を示す。 第2図は、本発明のフルバレン誘導体とヨウ素の電荷移
動錯体を正極活物質として用いて得た固体電解質電池お
よびテトラチアフルバレンとヨウ素の電荷移動錯体を正
極活物質として用いて得た固体電解質電池の放電電圧の
時間変化を示す図である。
FIG. 1 shows a solid electrolyte battery used to evaluate the usefulness of the charge transfer complex of the fulvalene derivative and iodine of the present invention as a positive electrode active material. In the figure, A to A3 are Teflon containers, B1 and B2 are gaskets, C is a stainless steel plate (current collector), D is a positive electrode pellet, and E is a negative lithium plate. Figure 2 shows a solid electrolyte battery obtained using a charge transfer complex of a fulvalene derivative and iodine of the present invention as a positive electrode active material, and a solid electrolyte battery obtained using a charge transfer complex of tetrathiafulvalene and iodine as a positive electrode active material. FIG. 3 is a diagram showing a change in discharge voltage over time.

Claims (1)

【特許請求の範囲】[Claims] (1)下記式( I ) ▲数式、化学式、表等があります▼ (式中、X_1〜X_8は、それぞれ独立して硫黄原子
、セレン原子又はテルル原子を表わし、R_1〜R_4
は、それぞれ独立して2級もしくは3級の炭素原子を有
する炭素数3〜10個のアルキル基、2級もしくは3級
の炭素原子を有する炭素数3〜10個のアルケニル基、
又は、炭素数6〜20個のアリール基もしくはアラルキ
ル基を表わす。) で表わされるフルバレン誘導体、及び/又は下記式(I
I) ▲数式、化学式、表等があります▼ (式中、X_1−X_8はそれぞれ独立して硫黄原子、
セレン原子又は、テルル原子を表わし、A_1〜A_4
はそれぞれ独立して水素原子、塩素原子、臭素原子又は
ヨウ素原子を表わし、m_1及びm_2はそれぞれ独立
して3〜10の整数、nは、2〜100を表わす。)で
表わされ、C_1、C_2、C_3、C_4の一部又は
全部が架橋されたフルバレン誘導体と、該式( I )の
フルバレン誘導体1モル当り、もしくは、該式(II)の
フルバレン誘導体の構成モノマー単位1モル当り2〜1
5モルのヨウ素(I_2)から成る電荷移動錯体。
(1) The following formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, X_1 to X_8 each independently represent a sulfur atom, a selenium atom, or a tellurium atom, and R_1 to R_4
is an alkyl group having 3 to 10 carbon atoms each independently having a secondary or tertiary carbon atom, an alkenyl group having 3 to 10 carbon atoms having a secondary or tertiary carbon atom,
Alternatively, it represents an aryl group or an aralkyl group having 6 to 20 carbon atoms. ) and/or the following formula (I
I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, X_1-X_8 are each independently a sulfur atom,
Represents a selenium atom or a tellurium atom, A_1 to A_4
each independently represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, m_1 and m_2 each independently represent an integer of 3 to 10, and n represents 2 to 100. ), and a part or all of C_1, C_2, C_3, and C_4 are crosslinked, and the composition of the fullvalene derivative of the formula (I) per mol of the fullvalene derivative of the formula (I) or the fullvalene derivative of the formula (II) 2 to 1 per mole of monomer unit
Charge transfer complex consisting of 5 moles of iodine (I_2).
JP62328898A 1987-12-25 1987-12-25 Charge-transfer complex of fulvalene derivative with iodine Pending JPH01172382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328898A JPH01172382A (en) 1987-12-25 1987-12-25 Charge-transfer complex of fulvalene derivative with iodine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328898A JPH01172382A (en) 1987-12-25 1987-12-25 Charge-transfer complex of fulvalene derivative with iodine

Publications (1)

Publication Number Publication Date
JPH01172382A true JPH01172382A (en) 1989-07-07

Family

ID=18215323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328898A Pending JPH01172382A (en) 1987-12-25 1987-12-25 Charge-transfer complex of fulvalene derivative with iodine

Country Status (1)

Country Link
JP (1) JPH01172382A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244812A (en) * 1990-12-06 1993-09-14 British Technology Group Limited Detection of electron acceptor gases using sulfur-selenium fulvalenes
WO2005091424A1 (en) * 2004-03-18 2005-09-29 Matsushita Electric Industrial Co., Ltd. Power system and its management method
US7282298B2 (en) 2002-08-29 2007-10-16 Matsushita Electric Industrial Co., Ltd. Electrochemical device
WO2009157206A1 (en) * 2008-06-25 2009-12-30 パナソニック株式会社 Electricity storage material and electricity storage device
CN101809789A (en) * 2008-07-31 2010-08-18 松下电器产业株式会社 Accumulator material and accumulator device
WO2011099311A1 (en) * 2010-02-15 2011-08-18 パナソニック株式会社 Electrode active material for electrical storage device, electrical storage device, electronic device, and transport device
EP2590244A4 (en) * 2010-07-01 2013-08-07 Panasonic Corp Non-aqueous electrolyte secondary battery
JP2013161653A (en) * 2012-02-06 2013-08-19 Toyota Industries Corp Sulfur-based cathode active material and nonaqueous secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244812A (en) * 1990-12-06 1993-09-14 British Technology Group Limited Detection of electron acceptor gases using sulfur-selenium fulvalenes
US7282298B2 (en) 2002-08-29 2007-10-16 Matsushita Electric Industrial Co., Ltd. Electrochemical device
WO2005091424A1 (en) * 2004-03-18 2005-09-29 Matsushita Electric Industrial Co., Ltd. Power system and its management method
US7714531B2 (en) 2004-03-18 2010-05-11 Panasonic Corporation Power system and management method thereof
US8551652B2 (en) 2008-06-25 2013-10-08 Panasonic Corporation Electricity storage material and electricity storage device
WO2009157206A1 (en) * 2008-06-25 2009-12-30 パナソニック株式会社 Electricity storage material and electricity storage device
CN101809789A (en) * 2008-07-31 2010-08-18 松下电器产业株式会社 Accumulator material and accumulator device
US8945769B2 (en) 2008-07-31 2015-02-03 Panasonic Corporation Accumulator material and accumulator device
JP5437399B2 (en) * 2010-02-15 2014-03-12 パナソニック株式会社 Electrode active material for power storage device, power storage device, electronic device and transport device
CN102484253A (en) * 2010-02-15 2012-05-30 松下电器产业株式会社 Electrode active material for electrical storage device, electrical storage device, electronic device, and transport device
WO2011099311A1 (en) * 2010-02-15 2011-08-18 パナソニック株式会社 Electrode active material for electrical storage device, electrical storage device, electronic device, and transport device
EP2482370A4 (en) * 2010-02-15 2016-08-17 Panasonic Corp Electrode active material for electrical storage device, electrical storage device, electronic device, and transport device
US9650392B2 (en) 2010-02-15 2017-05-16 Panasonic Corporation Electrode active material for power storage device, power storage device, and electronic and transportation device
US8530086B2 (en) 2010-07-01 2013-09-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
EP2590244A4 (en) * 2010-07-01 2013-08-07 Panasonic Corp Non-aqueous electrolyte secondary battery
JP2013161653A (en) * 2012-02-06 2013-08-19 Toyota Industries Corp Sulfur-based cathode active material and nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
JP3525403B2 (en) Electrode materials and secondary batteries
JP3555097B2 (en) Electrode materials and secondary batteries
Yu et al. A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery
WO2020107857A1 (en) Method for preparing solid polymer electrolyte and solid secondary battery using same
US4238553A (en) Electrochemical storage cell
WO1993009092A1 (en) Bis(perfluorosulphonyl)methanes, process for preparing same and uses thereof
JPS63276803A (en) New ion conducting material
JPS63500105A (en) conductive polymer
TW200926481A (en) Electrolyte composition for storage device, and storage device using the same
US7057880B2 (en) Secondary battery and capacitor utilizing indole compounds
US4181779A (en) Cell using halogen reactive material such as organo-metallic polymer
NL8104562A (en) CHEMICAL POWER SOURCE.
JPH01172382A (en) Charge-transfer complex of fulvalene derivative with iodine
WO2010013844A1 (en) Photoelectric conversion element
JP4086898B2 (en) Low temperature dissolved lithium salt electrolytes for electrochemical cells
CN112271314A (en) Flow battery positive electrode electrolyte based on tetrathiafulvalene dicarboxylic acid ethyl ester and preparation method thereof
Zhan et al. Synthesis and properties of novel organic thiolane polymer as cathode material for rechargeable lithium batteries
JP2005002278A (en) New high energy density polyaniline derivative
JPS62225518A (en) Organic semiconductor
JPH04253771A (en) Solid polyelectrolyte and electric double-layer capacitor using same
JP2993272B2 (en) Reversible electrode
CN109516450B (en) Two-dimensional nitrogen-doped nano graphene material and application thereof
WO2023120445A1 (en) Anthraquinone active substance
JPH04301370A (en) High molecular solid electrolyte
JPS63199727A (en) Organic semiconductor