JPH01162178A - Superconductive magnetism detector - Google Patents

Superconductive magnetism detector

Info

Publication number
JPH01162178A
JPH01162178A JP32063487A JP32063487A JPH01162178A JP H01162178 A JPH01162178 A JP H01162178A JP 32063487 A JP32063487 A JP 32063487A JP 32063487 A JP32063487 A JP 32063487A JP H01162178 A JPH01162178 A JP H01162178A
Authority
JP
Japan
Prior art keywords
magnetic field
current
superconductor
size
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32063487A
Other languages
Japanese (ja)
Inventor
Akira Nishiura
西浦 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP32063487A priority Critical patent/JPH01162178A/en
Publication of JPH01162178A publication Critical patent/JPH01162178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To give an output corresponding to the size of magnetic field, by arranging the sectional area of a superconductive member not to be uniform in a flowing direction of current. CONSTITUTION:The sectional area of a superconductive member 2 is made ununiform in a flowing direction of current, thereby to make different the current density in each section of the member. Accordingly, the size of a critical magnetic field is varied along the flowing direction of the current. Thus, a superconductive magnetism detector is constructed. The length of a section which is transformed to a paraconductive state is changed corresponding to the size of the magnetic field, so that the magnetism detector can be obtained in a simple construction which can measure the size of the magnetic field, with having an output characteristic corresponding to the size of the magnetic field. By changing the applying manner of the sectional area of the superconductive member 2 along the flowing direction of the current, various kinds of characteristics can be added.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超伝導体が臨界磁場を境として超伝導状態お
よび常伝導状態のそれぞれに転移することを利用した磁
気検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic detector that utilizes the transition of a superconductor into a superconducting state and a normal conducting state with a critical magnetic field as the boundary.

〔従来の技術〕[Conventional technology]

超伝導体は超伝導性を示す転移温度以下の状態にあって
も、これに加えられる磁場が臨界磁場といわれる超伝導
体固有の大きさを超えると常伝導状態に転移する。また
逆に磁場が#−臨界磁場以下に減少すると上記と逆方向
の転移を示す、最近急速に開発が進められている高温超
伝導体はほとんどが常伝導状態で高い抵抗値を示すので
、臨界磁場近傍における大きな抵抗値の変化を利用する
磁気検出器が提案されている。
Even if a superconductor is in a state below the transition temperature where it exhibits superconductivity, it will transition to a normal conduction state if the magnetic field applied to it exceeds a magnitude unique to the superconductor called the critical magnetic field. On the other hand, when the magnetic field decreases below the #-critical magnetic field, most high-temperature superconductors, which have been rapidly developed in recent years, show a transition in the opposite direction to the above, and exhibit high resistance values in the normal conduction state. Magnetic detectors have been proposed that utilize large changes in resistance near a magnetic field.

この検出器は電流を流した超伝導体の示す上記の抵抗値
の大きな変化を利用して、臨界磁場近傍における磁場の
ステップ状の変化を検出するようにしたもので、磁気検
出スイッチとして利用される。
This detector is designed to detect step-like changes in the magnetic field in the vicinity of the critical magnetic field by utilizing the above-mentioned large changes in the resistance value of the superconductor when a current is passed through it, and is used as a magnetic detection switch. Ru.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような磁気検出スイッチとしての磁気検出器は臨界
磁場近傍の比較的大きな磁場の変化による抵抗値の2値
的な変化を検出して、電圧の2値出力として与えるもの
なので、磁場の大きさに対応する出力を得ることができ
なかった。
A magnetic detector such as this magnetic detection switch detects a binary change in resistance value due to a relatively large change in the magnetic field near the critical magnetic field, and provides it as a binary output of voltage, so the magnitude of the magnetic field I couldn't get the corresponding output.

この発明は超伝導磁気検出器の上記の欠点を解消して、
磁場の大きさに対応する出力を与えることが可能な超伝
導磁気検出器を提供することを目的とする。
This invention solves the above-mentioned drawbacks of superconducting magnetic detectors, and
An object of the present invention is to provide a superconducting magnetic detector capable of providing an output corresponding to the magnitude of a magnetic field.

C問題点を解決するための手段〕 この発明は超伝導体の臨界磁場の大きさが超伝導体中を
流れる電流の電流密度に依存することに着目したもので
、超伝導体の断面積が電流の流れる方向に不均一である
ようにしたものである。
Means for Solving Problem C] This invention focuses on the fact that the magnitude of the critical magnetic field of a superconductor depends on the current density of the current flowing through the superconductor. The current is non-uniform in the direction of flow.

〔作用〕[Effect]

超伝導体の断面積が電流の流れる方向に不均一であれば
、それに応じて電流の方向に沿う各部の電流密度も不均
一となり、超伝導状態から常伝導状態に転移している部
分の長さが磁場の大きさに応じて変化する。これによっ
て磁場の大合さに応じた抵抗値を得ることができるので
、定電流を与えて磁場に応じた出力電圧を得ることがで
きる。
If the cross-sectional area of a superconductor is non-uniform in the direction of current flow, the current density at each part along the current direction will also be non-uniform, and the length of the part transitioning from the superconducting state to the normal conducting state will vary accordingly. The magnetic field changes depending on the magnitude of the magnetic field. This makes it possible to obtain a resistance value that corresponds to the magnitude of the magnetic field, so it is possible to apply a constant current and obtain an output voltage that corresponds to the magnetic field.

〔実施例〕〔Example〕

第1図はこの発明による超伝導磁気検出器の実施例の平
面図である・、絶縁体としての基板l上に厚さ一定の超
伝導体1p142が形成され、その両端に通常の金属薄
膜電極3が設けられている。金属薄膜電極3は基板lの
隅にはワイヤボンディング川パッド4.5が形成され、
これらに接続された図示されていない外部電極を介して
超伝導体WtWAに定電流が与えられ、またその際金属
薄膜電極間に発生する電圧が測定される。
FIG. 1 is a plan view of an embodiment of a superconducting magnetic detector according to the present invention.A superconductor 1p142 of constant thickness is formed on a substrate l serving as an insulator, and ordinary metal thin film electrodes are formed on both ends of the superconductor 1p142. 3 is provided. The metal thin film electrode 3 has wire bonding pads 4.5 formed at the corners of the substrate l;
A constant current is applied to the superconductor WtWA via external electrodes (not shown) connected to these, and the voltage generated between the metal thin film electrodes is measured.

超伝導体薄膜2は電流の流れる方向にその幅が直線的に
変化しており、上記の方向の断面積は不均一となってお
り、膜の厚さが一定であることから幅に対応した変化を
示す、このため金属薄膜電極3を介して超伝導体WiM
42に電流を流すと、その流れる方向に沿う各部で電流
密度が異なってくる。
The width of the superconductor thin film 2 changes linearly in the direction of current flow, and the cross-sectional area in the above direction is non-uniform, and since the thickness of the film is constant, the width changes linearly in the direction of current flow. For this reason, the superconductor WiM via the metal thin film electrode 3
When a current is passed through 42, the current density differs in each part along the direction of flow.

この状態で超伝導体薄膜2に磁場が加わると、断面積が
小で電流密度の大きな部分すなわち幅の狭い部分はど臨
界磁場が小であることからこの幅の狭い部分から常伝導
状態に転移する。常伝導状態に転移した部分の広さは、
加わった磁場の強さならびに流れる電流の大きさに依存
する。超低導薄1!l 2全体の抵抗値は上記のように
常伝導状態に転移した部分の広さによって変化するので
、超低導薄M42に定電流を与えれば、電極3の間には
磁場の大きさに対応した出力電圧を生じ、この電圧を測
定して磁場の大きさを測定することができる。
When a magnetic field is applied to the superconductor thin film 2 in this state, the critical magnetic field is small in the narrow section where the cross-sectional area is small and the current density is high, i.e., the narrow section transitions to the normal conduction state. do. The area that has transitioned to the normal conduction state is
It depends on the strength of the applied magnetic field and the magnitude of the current flowing. Ultra low conductivity 1! As mentioned above, the resistance value of the entire 2 changes depending on the width of the part that has transitioned to the normal conduction state, so if a constant current is applied to the ultra-low conductivity thin M42, the resistance value between the electrodes 3 corresponds to the magnitude of the magnetic field. produces an output voltage that can be measured to determine the magnitude of the magnetic field.

磁場の増加および減少に対して上記の転移はそれぞれ反
対方向の特性を示すので、これによって磁場の連続的な
変化を測定することが可能となる。
This makes it possible to measure continuous changes in the magnetic field, since the above-mentioned transitions behave in opposite directions with respect to increases and decreases in the magnetic field.

この実施例による磁気検出器の出力電圧と磁場の強さと
の関係はおおむね第2図のような直線的なものとなる。
The relationship between the output voltage of the magnetic detector and the strength of the magnetic field according to this embodiment is approximately linear as shown in FIG.

この発明による磁気検出器の大きな利点の一つは超伝導
体の形状を変えて任意の出力特性を与えることができる
ことである。
One of the major advantages of the magnetic detector according to the present invention is that the shape of the superconductor can be changed to provide arbitrary output characteristics.

第3図はこの発明の第2の実施例で、第1図の実施例と
同様な構成で階段状の超低導薄115!6を形成したも
ので、その出力電圧特性は超伝導薄膜6の形状に対応し
て第4図に示すように階段状となる。さらに第5図に示
す第3の実施例では、図示のような形状の超伝導体薄膜
7が形成され、第6図のように磁場の強さによって検出
感度を異にする出力特性が得られる。
FIG. 3 shows a second embodiment of the present invention, in which a step-like ultra-low conductivity thin film 115!6 is formed with the same configuration as the embodiment shown in FIG. Corresponding to the shape of , it has a step-like shape as shown in FIG. Furthermore, in the third embodiment shown in FIG. 5, a superconductor thin film 7 having the shape shown is formed, and as shown in FIG. 6, an output characteristic in which the detection sensitivity varies depending on the strength of the magnetic field is obtained. .

第7図はこの発明の第4の実施例の外形図である。この
実施例では円錐台状の絶縁体ll上に一定の厚さの超伝
導体薄膜12を形成し、さらに両端にそれぞれ常伝導体
の金属薄膜電極13.14を設け、これらにリード線1
5.1(iを接合したものである。超伝導体1a膜12
の面積は電流の流れる方向に沿って変化しており、これ
に応じて電流密度も変化し、その変化に応じた出力特性
を示す。
FIG. 7 is an outline drawing of a fourth embodiment of the present invention. In this embodiment, a superconductor thin film 12 of a certain thickness is formed on a truncated cone-shaped insulator ll, and normal conductor metal thin film electrodes 13 and 14 are provided at both ends, respectively, and lead wires 1 are connected to these.
5.1 (i is joined.Superconductor 1a film 12
The area changes along the direction of current flow, and the current density also changes accordingly, exhibiting output characteristics in accordance with this change.

この形式のものも絶縁体の形状を変えることで任意の出
力特性を得ることができる。
With this type, arbitrary output characteristics can be obtained by changing the shape of the insulator.

このほか上記の絶縁体を用いず、超伝導体自体を第7図
と類似の形状とし、その両端に金属薄膜電極とリード線
とを設けた構成のものも同様な効果を得ることができる
In addition, a structure in which the above-mentioned insulator is not used, the superconductor itself has a shape similar to that shown in FIG. 7, and metal thin film electrodes and lead wires are provided at both ends of the superconductor can also produce similar effects.

〔発明の効果〕〔Effect of the invention〕

この発明によれば超伝導体の断面積を電流の流れる方向
に不均一なものとし、各部での電流密度を異ならせるこ
とによって、電流の流れる方−覧って臨界磁場の大きさ
が変るように超低N1.磁気検出器を構成している。こ
のため常伝導状態に転移している部分の長さが磁場の大
きさに対応して変リ、磁場の大きさに応じた出力特性を
もち磁場の大きさの測定可能な簡便な磁気検出器が得ら
れる。
According to this invention, the cross-sectional area of the superconductor is made non-uniform in the direction of current flow, and by making the current density different in each part, the magnitude of the critical magnetic field changes depending on the direction in which the current flows. Super low N1. It constitutes a magnetic detector. For this reason, the length of the part that transitions to the normal conduction state changes depending on the magnitude of the magnetic field, making it a simple magnetic detector that can measure the magnitude of the magnetic field and has output characteristics according to the magnitude of the magnetic field. is obtained.

電流の流れる方向に沿う超伝導体の断面積の与え方によ
って種々の特性を与えることが可能となる。
It is possible to provide various characteristics depending on how the cross-sectional area of the superconductor is given along the direction of current flow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による超伝導磁気検出器の実施例の平
面図、第2図はその実施例の出力特性を示すグラフ、第
3図、第4図、第5図、第6図はそれぞれこの発明の第
2および第3の実施例の平面図とその特性を示すグラフ
、第7図はこの発明の第4の実施例の外形図である。 1・・・基板(絶縁体)、2,6.7.12・・・超伝
導体薄膜、11・・・絶縁体。 男 1 図 罵2 記
Fig. 1 is a plan view of an embodiment of a superconducting magnetic detector according to the present invention, Fig. 2 is a graph showing the output characteristics of the embodiment, and Figs. 3, 4, 5, and 6 are respectively A plan view of the second and third embodiments of the invention and a graph showing their characteristics, and FIG. 7 is an outline diagram of the fourth embodiment of the invention. 1...Substrate (insulator), 2,6.7.12...Superconductor thin film, 11...Insulator. Man 1 Illustration 2 Comments

Claims (1)

【特許請求の範囲】 1)超伝導体が臨界磁場を境として超伝導状態および常
伝導状態のそれぞれに転移することを利用した磁気検出
器において、超伝導体の断面積が電流の流れる方向に不
均一であることを特徴とする超伝導磁気検出器。 2)特許請求の範囲第1項記載の検出器において、超伝
導体が絶縁体上に設けられた薄膜であることを特徴とす
る超伝導磁気検出器。
[Claims] 1) In a magnetic detector that utilizes the fact that a superconductor transitions into a superconducting state and a normal conducting state with a critical magnetic field as the boundary, the cross-sectional area of the superconductor is aligned in the direction of current flow. A superconducting magnetic detector characterized by non-uniformity. 2) A superconducting magnetic detector according to claim 1, wherein the superconductor is a thin film provided on an insulator.
JP32063487A 1987-12-18 1987-12-18 Superconductive magnetism detector Pending JPH01162178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32063487A JPH01162178A (en) 1987-12-18 1987-12-18 Superconductive magnetism detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32063487A JPH01162178A (en) 1987-12-18 1987-12-18 Superconductive magnetism detector

Publications (1)

Publication Number Publication Date
JPH01162178A true JPH01162178A (en) 1989-06-26

Family

ID=18123597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32063487A Pending JPH01162178A (en) 1987-12-18 1987-12-18 Superconductive magnetism detector

Country Status (1)

Country Link
JP (1) JPH01162178A (en)

Similar Documents

Publication Publication Date Title
US5574290A (en) Superconducting quantum interference device
US5625290A (en) Complex superconducting quantum interference device and circuit
US3370210A (en) Magnetic field responsive superconducting tunneling devices
US5665980A (en) Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires
JPS60160675A (en) Quasi-particle injection type superconducting element
US3564351A (en) Supercurrent devices
US3335363A (en) Superconductive device of varying dimension having a minimum dimension intermediate its electrodes
JPH01162178A (en) Superconductive magnetism detector
US3600644A (en) Superconductor-normal metal circuit elements exhibiting josephson effects
JPH0980138A (en) Squid sensor
US3549991A (en) Superconducting flux sensitive device with small area contacts
JP2698642B2 (en) Superconducting magnetoresistive element
JPS6346372B2 (en)
JPS5940590A (en) Dc squid
JPH01303769A (en) Superconducting logical circuit
JPH01303767A (en) Superconducting logical device
JP3043773B2 (en) Superconducting magnetic antenna
JPH01227482A (en) Magneto-resistive element
JPH04204069A (en) Squid fluxmeter
JP2561117B2 (en) Magnetic field detector
JPH05297093A (en) Magnetic sensor
RU2051445C1 (en) Superconductor current amplifier using josephson effect
JPH0223033B2 (en)
JPS63309875A (en) Magnetic field alarm
JPH01197677A (en) Superconducting magnetometer