JPH01161252A - Manufacturing apparatus for electrophotographic sensitive body - Google Patents

Manufacturing apparatus for electrophotographic sensitive body

Info

Publication number
JPH01161252A
JPH01161252A JP31863187A JP31863187A JPH01161252A JP H01161252 A JPH01161252 A JP H01161252A JP 31863187 A JP31863187 A JP 31863187A JP 31863187 A JP31863187 A JP 31863187A JP H01161252 A JPH01161252 A JP H01161252A
Authority
JP
Japan
Prior art keywords
substrate
base
photoreceptor
film
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31863187A
Other languages
Japanese (ja)
Inventor
Hiroshi Osame
浩史 納
Makoto Araki
荒木 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31863187A priority Critical patent/JPH01161252A/en
Publication of JPH01161252A publication Critical patent/JPH01161252A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Abstract

PURPOSE:To speed up raising and lowering temperature at the time of forming a film, and to obtain uniform characteristics by using a material same as a substrate for a support for holding the substrate at the prescribed position. CONSTITUTION:The support 2 for holding the cylindrical aluminum substrate 100 is made of the same material as the substrate 100 and it has an outer diameter same as that of the substrate 100, thus permitting the time required for raising and lowering temperature at the time of forming the film to be reduced as compared with the time required in the case of using the conventional ones, and the photosensitive body to be made uniform in characteristics, such as temperature distribution, to be obtained.

Description

【発明の詳細な説明】 〔概要〕 アモルファスシリコンが主構成材料である感光体を基体
上に形成するための電子写真感光体の製造装置に関し、 感光体成膜時の昇温、降温時間を短縮し且つ均一な特性
の感光体が得られるようにすることを目的とし、 アモルファスシリコンが主構成材料である感光体を基体
上に形成するための電子写真感光体の製造装置において
、前記基体を所定の位置に保持するための支持台が、前
記基体と同一の材料で形成された構成とする。
[Detailed Description of the Invention] [Summary] Relating to an electrophotographic photoreceptor manufacturing apparatus for forming a photoreceptor whose main constituent material is amorphous silicon on a substrate, the temperature rising and cooling times during photoreceptor film formation are shortened. In an electrophotographic photoreceptor manufacturing apparatus for forming a photoreceptor whose main constituent material is amorphous silicon on a substrate, the substrate is heated in a predetermined manner. A support base for holding the base body at the position is formed of the same material as the base body.

〔産業上の利用分野〕[Industrial application field]

本発明は基体の表面にアモルファスシリコンが主構成材
料である感光体を形成するための電子写真感光体の製造
装置に関する。
The present invention relates to an electrophotographic photoreceptor manufacturing apparatus for forming a photoreceptor whose main constituent material is amorphous silicon on the surface of a substrate.

アルミニウム等の円筒状基体上に形成された感光体を一
様に帯電させ、この上に印字情報に基づいてレーザ光等
を所定のパターンで照射し感光体の帯電電位を減衰させ
て潜像を形成した後、これを現像して形成されたトナー
像を記録紙に転写、定着する電子写真記録装置は周知で
あるが、この場合に使用される感光体としては、近年セ
レン系よりも、機械的強度の強いアモルファスシリコン
(a−3t)が用いられるようになってきている。
A photoconductor formed on a cylindrical substrate made of aluminum or the like is uniformly charged, and a laser beam or the like is irradiated onto the photoconductor in a predetermined pattern based on the printed information to attenuate the charged potential of the photoconductor and form a latent image. Electrophotographic recording devices that transfer and fix the formed toner image onto recording paper after forming the toner image are well known, but in recent years, mechanical photoreceptors have become more popular than selenium-based photoreceptors. Amorphous silicon (a-3t), which has strong mechanical strength, has come to be used.

本発明はこのa −3iの感光層を備えた電子写真感光
体の製造装置に適用されるものである。
The present invention is applied to an apparatus for manufacturing an electrophotographic photoreceptor equipped with this a-3i photosensitive layer.

〔従来の技術〕[Conventional technology]

この製造装置としては従来プラズマCVD装置等が用い
られているが、この装置により成膜を行う場合には、感
光体の基体を真空容器内の所定位置で支持台により保持
して成膜を行っていた。この支持台には、従来基体に対
向する放電電極の端部の影響をなくすため基体と同一の
外径のものが使用され、且つステンレスが用いられてい
た。ステレスを使用しているのは、成膜する感光層への
不純物混入が少ないことや、支持台に付着した膜をエツ
チングで取り除けば再利用できること等の理由による。
Conventionally, a plasma CVD device or the like has been used as this manufacturing device, but when forming a film using this device, the substrate of the photoreceptor is held at a predetermined position in a vacuum container by a support stand and the film is formed. was. Conventionally, this support has been made of stainless steel and has the same outer diameter as the base in order to eliminate the influence of the end of the discharge electrode facing the base. The reason why stainless steel is used is that there is little contamination of impurities into the photosensitive layer being formed, and that it can be reused by removing the film attached to the support by etching.

一方、基体には、安価、軽量2機械加工が容易等の理由
によりアルミニウムが用いられている。
On the other hand, aluminum is used for the base body because it is inexpensive, lightweight, and easy to machine.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述の従来の製造装置は次の各種の欠点を有し
ていた。
However, the above-mentioned conventional manufacturing apparatus had the following various drawbacks.

(1)a−3i悪感光の成膜時には基体を150〜35
0℃に加熱することが必要であるが、ステンレス(支持
台)はアルミニウム(基体)に比べ熱容量が大きいため
、基体に温度分布ができやすく、膜質にも分布ができて
感光体の長さ方向で特性が異なるといった不都合を生じ
ていた。7(2)ステンレスの支持体を用いるため、昇
温。
(1) When forming a-3i photosensitive film, the substrate should be heated to 150 to 35
It is necessary to heat it to 0℃, but since stainless steel (supporting base) has a larger heat capacity than aluminum (substrate), it is easy to create a temperature distribution on the substrate, and the film quality is also distributed in the length direction of the photoreceptor. This caused the inconvenience that the characteristics were different between the two. 7(2) Since a stainless steel support is used, the temperature is increased.

降温にきわめて長い時間が必要であった。It took an extremely long time for the temperature to cool down.

本発明は感光体成膜時の昇温、降温時間を短縮し且つ均
一な特性の感光体を得ることのできる電子写真感光体の
製造装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus for manufacturing an electrophotographic photoreceptor that can shorten the temperature rise and fall times during photoreceptor film formation and obtain a photoreceptor with uniform characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

上述の問題点を解決するため、本発明では、アモルファ
スシリコンが主構成材料である感光体を基体上に形成す
るための電子写真感光体の製造装置において、前記基体
を所定の位置に保持するための支持台が、前記基体と同
一の材料で形成された構成とする。
In order to solve the above-mentioned problems, the present invention provides an electrophotographic photoreceptor manufacturing apparatus for forming a photoreceptor whose main constituent material is amorphous silicon on a substrate. The support base is made of the same material as the base body.

〔作用〕[Effect]

従来支持台にステンレスを用いた理由の1つである「感
光層への不純物の混入が少ない」は、支持台の材質を基
体と同じにするため問題にならない。また、もう1つの
理由である「再利用可」についても、支持台を基体と同
じ安価なアルミニウムにすれば、使い捨てにしても、ス
テンレスをエツチングする場合と比べてコスト的に十分
見合うようになる。
One of the reasons for conventionally using stainless steel for the support base, ``less contamination of impurities into the photosensitive layer'', is not a problem because the support base is made of the same material as the base. Another reason for ``reusability'' is that if the support is made of the same inexpensive aluminum as the base, even if it is disposable, it will be more cost-effective than etching stainless steel. .

〔実施例〕〔Example〕

以下、図面に関連して本発明の詳細な説明する。 The invention will now be described in detail in conjunction with the drawings.

第1図に第1の実施例を示す。FIG. 1 shows a first embodiment.

第1図は高周波電源を用いた電子写真感光体の製造装置
の構造概要説明図で、図中、100はアルミニウム製の
円筒状基体、■は真空容器、2は支持台である。支持台
2は、基体100と同一のアルミニウムで形成され、該
基体100と同一の外径を有している。
FIG. 1 is a schematic structural diagram of an apparatus for manufacturing an electrophotographic photoreceptor using a high-frequency power source. In the figure, 100 is an aluminum cylindrical base, ■ is a vacuum container, and 2 is a support stand. The support base 2 is made of the same aluminum as the base 100 and has the same outer diameter as the base 100.

この製造装置による感光体の成膜は次のように行われる
Film formation on a photoreceptor using this manufacturing apparatus is performed as follows.

成膜に際しては、まず真空容器1内で支持台2に基体1
00を外周面をそろえてセットし、ポンプ3,4,5.
6を適宜使用して真空容器1内を真空排気する。そして
、支持台2を基体100ごと回転機構7により回転させ
、ヒータ8により基体100を150〜350℃に加熱
する。次に、シラン系原料ガス(Si)lt、 5iz
L等)、炭化水素系ガス(CH4,CJi、C3He、
CzHz等)及びドーピング用のジボランガス(B2H
2)等を必要に応じボンベ9.10.11等から流量計
12. 1’3. 14を介して放電電極15の内側に
設けられた噴出口16より導入する。そして、高周波電
源17より高周波電力を供給し、放電電極15と基体1
00の間でグロー放電を起こしてガスをプラズマ状に分
解し、基体100上に薄膜を形成する。
When forming a film, first, a substrate 1 is placed on a support 2 in a vacuum container 1.
00 with their outer circumferential surfaces aligned, and set pumps 3, 4, 5.
6 as appropriate to evacuate the inside of the vacuum container 1. Then, the support stand 2 is rotated together with the base body 100 by the rotation mechanism 7, and the base body 100 is heated to 150 to 350° C. by the heater 8. Next, silane-based raw material gas (Si) lt, 5iz
L, etc.), hydrocarbon gases (CH4, CJi, C3He,
CzHz, etc.) and diborane gas for doping (B2H
2) etc. from cylinders 9, 10, 11, etc. as necessary to flow meters 12. 1'3. 14 and is introduced from a spout 16 provided inside the discharge electrode 15. Then, high frequency power is supplied from the high frequency power source 17 to connect the discharge electrode 15 and the base 1.
00 to cause a glow discharge to decompose the gas into plasma, forming a thin film on the substrate 100.

以上の手順でa−3i悪感光を作製したところ、支持台
にステンレスを用いた従来の場合と比較して、昇温時間
2時間が0.5時間に、降温時間3時間が1時間にそれ
ぞれ短縮され、しかも温度分布が一定であった。また感
光体特性も、従来基体端部の特性が基体中央部に比べ劣
っていたものが一定の特性となった。
When we created the a-3i illuminant using the above procedure, the heating time was 2 hours to 0.5 hours, and the temperature cooling time was 3 hours to 1 hour, compared to the conventional case where stainless steel was used for the support base. It was shortened, and the temperature distribution was constant. Furthermore, the characteristics of the photoreceptor, which had conventionally been inferior at the ends of the substrate compared to the center of the substrate, have become constant.

第2図乃至第6図に第2の実施例を示す。A second embodiment is shown in FIGS. 2 to 6.

第2図はマイクロ波電源を用いた電子写真感光体の製造
装置の構造概要説明図(第2図(a)は要部平面図、第
2図(b)は全体概要を示す正面図)で、図中、31は
真空容器、32は支持台、33.37はバルブ、34は
支持台32を回転させるためのモータ、35はヒータ電
源36に接続されるヒータ、38はマイクロ波電源、3
9は導波管、40はマイクロ波通過用の窓、41は真空
容器31と支持台32に保持される基体100との間に
形成されて同軸型空胴共振器を構成するプラズマ室、4
2.42’はマグネット、21.21’は超伝導材から
成り矢印方向に移動可能な超伝導リングである。支持台
32は、前例と同様に、アルミニウムで形成されて基体
100と同一の外径を有している。
Figure 2 is an explanatory diagram of the structure of an electrophotographic photoreceptor manufacturing apparatus using a microwave power source (Figure 2 (a) is a plan view of the main parts, and Figure 2 (b) is a front view showing the overall outline). In the figure, 31 is a vacuum container, 32 is a support base, 33.37 is a valve, 34 is a motor for rotating the support base 32, 35 is a heater connected to a heater power source 36, 38 is a microwave power source, 3
9 is a waveguide; 40 is a window for microwave passage; 41 is a plasma chamber formed between the vacuum container 31 and the base 100 held on the support base 32 to constitute a coaxial cavity resonator;
2.42' is a magnet, and 21.21' is a superconducting ring made of superconducting material and movable in the direction of the arrow. The support stand 32 is made of aluminum and has the same outer diameter as the base body 100, as in the previous example.

この製造装置は、本出願人の出願に係る特願昭62−1
87710号(昭和62年7月29日出願)に開示され
ている製造装置を改良したもので、この既出願のものと
は、超伝導リング2121’を設けた点と、上述のよう
に支持台の材質を設定した点で異なっている。ところで
、この種の装置においては成膜に際し、モータ34によ
り支持台32を基体100ごと回転させるとともに、該
基体100をヒータ35により所定温度に加熱する。
This manufacturing equipment is disclosed in Japanese Patent Application No. 62-1 filed by the present applicant.
This is an improved version of the manufacturing device disclosed in No. 87710 (filed on July 29, 1988), and is different from the device in this previous application in that it includes a superconducting ring 2121' and a support stand as described above. The difference is that the material is set. By the way, in this type of apparatus, when forming a film, the motor 34 rotates the support base 32 together with the base 100, and the heater 35 heats the base 100 to a predetermined temperature.

そして、プラズマ室41に導入されるシリコン原子含有
ガスを、マイクロ波電源38から導波管39゜窓40を
通り供給されるマイクロ波電力により分解してプラズマ
化し、これに外部のマグネット42゜42′に通電する
ことによって磁場を作用させる。
Then, the silicon atom-containing gas introduced into the plasma chamber 41 is decomposed and turned into plasma by microwave power supplied from the microwave power source 38 through the waveguide 39° window 40. A magnetic field is applied by energizing ′.

これにより、プラズマが基体付近に閉じ込められて基体
100上へのa −5t膜の形成が行われる。
As a result, plasma is confined near the substrate, and an a-5t film is formed on the substrate 100.

この場合、軸方向に定圧波が発生するため、プラズマに
も分布が生じ、円筒基体100の形成薄膜にむらが生じ
る。これを防ぐために、既出願の装置では、プラズマ室
内の磁束密度の分布が第3図の状態に変化するようにマ
グネット42.42’に流す電流I mag、 1. 
mag ’を第4図のようにしている。しかし、マグネ
ットは磁束密度B=8.75XIO−27(マイクロ波
周波数2.45 G11zの場合)以上9能力が必要で
あるため、n−1mag  (n :巻数)を大きくし
なければならない。I magを大きくするためには高
価な大電流電源とマグネットの冷却が問題となる。また
、nを大きくすると、電源等の装置は安価になるが、マ
グネットの自己インダクタンスがnに比例して大きくな
るため、I magを約数Hzの速い速度で変動させる
ことが困難になるという問題があった。
In this case, since a constant pressure wave is generated in the axial direction, the plasma also has a distribution, and the thin film formed on the cylindrical substrate 100 becomes uneven. In order to prevent this, in the device of the previous application, a current I mag, 1.
mag' is set as shown in Figure 4. However, since the magnet requires a magnetic flux density B of 8.75XIO-27 (for a microwave frequency of 2.45 G11z) or higher, it is necessary to have a capability of 9 or more, so n-1mag (n: number of turns) must be increased. In order to increase I mag, an expensive large current power supply and cooling of the magnet become a problem. In addition, increasing n makes devices such as power supplies cheaper, but since the self-inductance of the magnet increases in proportion to n, there is the problem that it becomes difficult to vary I mag at a fast rate of several Hz. was there.

これらの問題は本例の超伝導リング21.21’を用い
ることで解決することができる。第5図はその原理説明
図で、図のように磁界中に超伝導材から成る超伝導リン
グ21を入れると、マイスナー効果により磁束が超伝導
部材を避けて通るため、リング内に磁束が閉じ込められ
て磁束密度が上がる。従って、超伝導リング21.21
’を取り付けることで第6図のような磁束密度分布を作
ることができる。そして、この超伝導リング21゜21
′を軸線方向に往復運動させることで、マグネット42
.42’に流す電流を変動させた既出願の場合と同様の
効果が得られる。しかも、マグネソ)42.42’に流
す電流は一定で良く、マグネット42.42’の巻数を
多くして電源を小型化することができる。さらに、マグ
ネット42.42′の巻線にも超伝導線を用いれば、−
旦マグネソトを励磁してやれば電源は不要となり、非常
に有効である。
These problems can be solved by using the superconducting rings 21, 21' of this example. Figure 5 is a diagram explaining the principle. When a superconducting ring 21 made of superconducting material is inserted into a magnetic field as shown in the figure, the magnetic flux avoids the superconducting member due to the Meissner effect, so the magnetic flux is confined within the ring. magnetic flux density increases. Therefore, superconducting ring 21.21
By attaching ', it is possible to create a magnetic flux density distribution as shown in Figure 6. And this superconducting ring 21°21
' By reciprocating in the axial direction, the magnet 42
.. The same effect as in the case of the previous application in which the current flowing through 42' is varied can be obtained. Furthermore, the current flowing through the magneto 42, 42' can be kept constant, and the power supply can be made smaller by increasing the number of turns of the magnet 42, 42'. Furthermore, if superconducting wire is used for the windings of the magnets 42 and 42', -
Once the magneto is excited, no power source is required, which is very effective.

本例の場合も、支持台32は基体100と同一のアルミ
ニウムで形成されて基体100と同一の外径を有してい
るため、感光体成膜時の昇、降温時間を短縮するととも
に均一な特性の感光体を得ることができる・という前例
と同様の効果を得ることが可能である。
In the case of this example as well, the support stand 32 is made of the same aluminum as the base 100 and has the same outer diameter as the base 100, so that it shortens the heating and cooling times during photoreceptor film formation and provides uniform It is possible to obtain the same effect as in the previous example that a photoreceptor with special characteristics can be obtained.

この装置により基体100の表面に感光体を成膜する際
には、基体100を真空容器lの中の支持台32に保持
させ(このとき、支持台32.基体100の外周は面一
になる)で成膜する。成膜要領の概要については前述し
たが、これを補足説明すると次の通りである。
When forming a photoreceptor film on the surface of the substrate 100 using this apparatus, the substrate 100 is held on the support stand 32 in the vacuum container l (at this time, the support stand 32 and the outer periphery of the substrate 100 are flush with each other). ) to form a film. The outline of the film forming procedure has been described above, but a supplementary explanation thereof is as follows.

基体100をセットした後、真空容器31内をバルブ3
3を介して真空排気し、ヒータ35で基体100を15
0〜350℃に加熱しバルブ37を介して原料ガスを真
空容器31内に導入する。
After setting the base 100, the inside of the vacuum container 31 is opened with the valve 3.
The substrate 100 is evacuated through the heater 35 and
The raw material gas is heated to 0 to 350° C. and introduced into the vacuum container 31 via the valve 37 .

そして、マイクロ波電源38から導波管39.窓40を
通してプラズマ室41にマイクロ波を導入し、原料ガス
を分解して基体100上に薄膜を堆積させる。このとき
、マグネット42.42’には一定電流を流し、超伝導
リング21.21’はIHzの周期で4cmの距離を往
復運動させた。
Then, from the microwave power source 38 to the waveguide 39. Microwaves are introduced into the plasma chamber 41 through the window 40 to decompose the source gas and deposit a thin film on the substrate 100. At this time, a constant current was passed through the magnets 42, 42', and the superconducting ring 21, 21' was caused to reciprocate over a distance of 4 cm at a frequency of IHz.

このようにしてa −3i悪感光を作製したところ、良
質でむらのないものを短時間で得ることができた。
When the a-3i photosensitive material was produced in this manner, it was possible to obtain a good quality and uniform product in a short period of time.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、感光体成膜時の昇
温、降温時間を短縮するとともに、均一な特性の感光体
を作製することが可能である。
As described above, according to the present invention, it is possible to shorten the temperature rising and cooling times during film formation of a photoreceptor, and to produce a photoreceptor with uniform characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の高周波電源を用いた電
子写真感光体の製造装置の構造概要説明図、 第2図(a)、  (b)は本発明の第2の実施例のマ
イクロ波電源を用いた電子写真感光体の製造装置の構造
概要説明図、 第3図は本発明の第2の実施例の超伝導リングがない場
合の、プラズマ室内の磁束密度分布を示すグラフ、 第4図は同、マグネットへの供給電流の波形図、第5図
は本発明の第2の実施例の超伝導リングの原理説明図、 第6図は本発明の第2の実施例のプラズマ室内の磁束密
度分布を示すグラフで、 図中、 1.31は真空容器、 2.32は支持台、 100は基体である。
FIG. 1 is a structural schematic explanatory diagram of an apparatus for manufacturing an electrophotographic photoreceptor using a high-frequency power source according to a first embodiment of the present invention, and FIGS. 2(a) and (b) are a diagram showing a second embodiment of the present invention. Fig. 3 is a graph showing the magnetic flux density distribution in the plasma chamber in the case where there is no superconducting ring according to the second embodiment of the present invention. , Fig. 4 is a waveform diagram of the current supplied to the magnet, Fig. 5 is a diagram explaining the principle of the superconducting ring according to the second embodiment of the present invention, and Fig. 6 is a diagram showing the principle of the superconducting ring according to the second embodiment of the present invention. This is a graph showing the magnetic flux density distribution inside the plasma chamber. In the figure, 1.31 is a vacuum vessel, 2.32 is a support, and 100 is a base.

Claims (1)

【特許請求の範囲】 アモルファスシリコンが主構成材料である感光体を基体
(100)上に形成するための電子写真感光体の製造装
置において、 前記基体(100)を所定の位置に保持するための支持
台(2、32)が、前記基体(100)と同一の材料で
形成されたことを特徴とする電子写真感光体の製造装置
[Scope of Claims] An electrophotographic photoreceptor manufacturing apparatus for forming a photoreceptor whose main constituent material is amorphous silicon on a substrate (100), comprising: a device for holding the substrate (100) in a predetermined position; An apparatus for manufacturing an electrophotographic photoreceptor, characterized in that the support base (2, 32) is made of the same material as the base (100).
JP31863187A 1987-12-18 1987-12-18 Manufacturing apparatus for electrophotographic sensitive body Pending JPH01161252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31863187A JPH01161252A (en) 1987-12-18 1987-12-18 Manufacturing apparatus for electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31863187A JPH01161252A (en) 1987-12-18 1987-12-18 Manufacturing apparatus for electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01161252A true JPH01161252A (en) 1989-06-23

Family

ID=18101295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31863187A Pending JPH01161252A (en) 1987-12-18 1987-12-18 Manufacturing apparatus for electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01161252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106873A (en) * 1990-06-26 1992-04-21 Warner-Lambert Company ACAT inhibitors
US5310432A (en) * 1992-06-30 1994-05-10 Sumitomo Metal Industries, Ltd. Toothed wheel for use in automobiles and its manufacturing method
US5562785A (en) * 1994-04-22 1996-10-08 Kubota Iron Works Co., Ltd. Method for manufacturing toothed gears

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106873A (en) * 1990-06-26 1992-04-21 Warner-Lambert Company ACAT inhibitors
US5310432A (en) * 1992-06-30 1994-05-10 Sumitomo Metal Industries, Ltd. Toothed wheel for use in automobiles and its manufacturing method
US5562785A (en) * 1994-04-22 1996-10-08 Kubota Iron Works Co., Ltd. Method for manufacturing toothed gears
US5722138A (en) * 1994-04-22 1998-03-03 Kubota Iron Works Co., Ltd. Apparatus for manufacturing toothed gears

Similar Documents

Publication Publication Date Title
JPH02175878A (en) Microwave plasma cvd device having improved microwave introducing window
JPH01161252A (en) Manufacturing apparatus for electrophotographic sensitive body
JP2000073173A (en) Formation of deposited film and deposited film forming device
JP3372647B2 (en) Plasma processing equipment
JP2002241944A (en) Vacuum treatment method
JP3360090B2 (en) Plasma processing equipment
JPH01309972A (en) Thin film-forming equipment
JPH0338029A (en) Vapor growth equipment
JPH06273956A (en) Production of electrophotographic sensitive body of amorphous silicon system
JP2657531B2 (en) Method of forming amorphous silicon film
JP2019203176A (en) Cvd apparatus
JP3606399B2 (en) Deposited film forming equipment
JP2005043807A (en) Method and apparatus for manufacturing electrophotographic photoreceptor
JP2577397Y2 (en) Glow discharge decomposition equipment
JPS63255374A (en) Production of electrophotographic sensitive body
JP2609866B2 (en) Microwave plasma CVD equipment
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JPS6247486A (en) Device for producing electrophotographic sensitive body
JPS6380523A (en) Microwave plasma treatment apparatus
JP2958850B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon photoreceptor using the same
JP2620939B2 (en) Glow discharge decomposition equipment
JP2004193328A (en) Plasma treatment method
JPS624874A (en) Method for forming accumulated film and device used therefor
JP2002353148A (en) System and method for processing substrate
JPH03100175A (en) Thin film forming device