JPH01126977A - Filler for crack or opening of bone - Google Patents

Filler for crack or opening of bone

Info

Publication number
JPH01126977A
JPH01126977A JP62285462A JP28546287A JPH01126977A JP H01126977 A JPH01126977 A JP H01126977A JP 62285462 A JP62285462 A JP 62285462A JP 28546287 A JP28546287 A JP 28546287A JP H01126977 A JPH01126977 A JP H01126977A
Authority
JP
Japan
Prior art keywords
sintered body
porous sintered
bone
tcp
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62285462A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Innami
印南 義之
Shoji Enomoto
榎本 昭二
Megumi Ishida
石田 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP62285462A priority Critical patent/JPH01126977A/en
Publication of JPH01126977A publication Critical patent/JPH01126977A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a filler which is made of materials all replaceable with a new bone and not easily dissolved even if in contact with a place where blood is well circulated: e.g., gum, by covering a face of a porous sintered body which makes contact with a muscular tissue with a hardly-soluble member. CONSTITUTION:A porous sintered body 3 made of beta-tricalcium phosphate (beta-TCP) has a strong affinity for a bone tissue 1 and is well absorbed in the tissue 1. This advantage, i.e., high solubility of beta-TCP, is, however, a disadvantage at the same time since beta-TCP starts dissolving when it makes contact with blood in gum 2. A filler of the invention is a double-layered body consisting of the porous sintered body 3 and a sparingly-soluble member 6. The sintered body 3 is dissolved and absorbed in an organism and is replaced with a new bone soon. But the member 6, which makes contact with a place where blood is circulated, e.g., muscle, is a hardly-soluble dense body made of beta-TCP and hydroxyapatite, thus preventing the porous sintered body 3 from dissolving before a new bone is generated.

Description

【発明の詳細な説明】 A産業上の利用分腎 本発明は、例えば骨腫瘍などによって生ずる生体の骨欠
損部及び空隙部に充填し、該所の新生骨の形成を促進し
、生体の骨組織と一体化する骨欠損部及び空隙部の充填
材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Applications The present invention is intended to fill bone defects and voids in living bodies caused by bone tumors, etc., to promote the formation of new bone at the locations, and to improve the bone structure of living bodies. The present invention relates to a filling material for bone defects and voids that integrates with tissue.

B発明の概要 主成分を生体親和性があり、孔に骨芽細胞が入り込み、
新生骨が生成されると同時に生体内に溶解吸収され、自
家骨と早急に置換される効果があるβ−リン酸三カルシ
ウムの多孔質焼結体に溶解し難い材質でできた接合体を
接合させ、新生骨ができる前にβ−リン酸三カルシウム
多孔質焼結体が、溶出しない充填材を得たものである。
B Overview of the invention The main component is biocompatible, and osteoblasts can enter the pores.
A bonded body made of a material that is difficult to dissolve is bonded to a porous sintered body of β-tricalcium phosphate, which is dissolved and absorbed in the body at the same time new bone is generated, and has the effect of rapidly replacing autologous bone. The β-tricalcium phosphate porous sintered body was obtained as a filler that does not elute before new bone is formed.

C従来の技術 従来、生体における骨欠損部を補綴する場合、自家骨を
採取して移植することが行われていた。
C. Prior Art Conventionally, when prosthesizing a bone defect in a living body, autologous bone has been harvested and transplanted.

しかしながら、自家前採取は、採骨のための手術と移植
のための手術と手術回数が増えること、患者に与える苦
痛が大きいことなどの欠点があった。
However, autologous pre-harvesting has disadvantages such as an increased number of surgeries for bone collection and transplantation, and greater pain for the patient.

そこで、生体の硬組織代替物質として、合金及び有機物
が用いられてきた。だが、生体内で溶解、劣化による毒
性、異物反応などの問題点があった。
Therefore, alloys and organic substances have been used as hard tissue substitutes for living organisms. However, there were problems such as dissolution in living organisms, toxicity due to deterioration, and foreign body reactions.

そこで現在、生体材料としてセラミックスが用いられて
いる。生体セラミックスは、アルミナ、カーボン、ジル
コニアなど、生体内で不i3 性で安定な生体不活性な
ものと、ヒドロキシアパタイト(Cats (PO4)
 a (01[) x) 、リン酸三カルシウム(Ca
3(PO4)*)など、生体内で分解、析出、反応など
を起こす生体活性な、生体親和性のよいものがある。
Therefore, ceramics are currently used as biomaterials. Bioceramics include bioinert materials such as alumina, carbon, and zirconia, which are stable and bioinert in the body, and hydroxyapatite (Cats (PO4)).
a (01[) x) , tricalcium phosphate (Ca
There are bioactive and biocompatible substances that cause decomposition, precipitation, reactions, etc. in vivo, such as 3(PO4)*).

しかし、上記の生体セラミックスでは、生体不活性なも
のは言うに及ばず、ヒドロキシアパタイトも生体内で長
期間にわたり異物として存在するという問題点があった
However, the above-mentioned bioceramics have a problem in that not only hydroxyapatite but also hydroxyapatite exists as a foreign substance in the body for a long period of time.

そこで、ヒドロキシアパタイトに比べ、短期間で吸収さ
れて、自家骨に置換されるβ−リン酸三カルシウム(以
下、β−TCPと略す)を使って最良の骨欠損部及び空
隙部充填材を得ることにした。つまり、最良の骨欠損部
及び空隙部充填材とは、毒性反応を伴わず、短期間に骨
と一体化され、さらに生体内に吸収されると同時に骨組
織の形成を促進し、最後には全て新生骨に置き換わる骨
欠損部及び空隙部充填材を得ることにした。
Therefore, compared to hydroxyapatite, β-tricalcium phosphate (hereinafter abbreviated as β-TCP), which is absorbed in a shorter period of time and replaced by autologous bone, is used to obtain the best filling material for bone defects and voids. It was to be. In other words, the best bone defect and void filling material is one that does not cause toxic reactions, integrates with bone in a short period of time, is absorbed by the body, promotes the formation of bone tissue, and finally We decided to obtain a filling material for bone defects and voids that would be completely replaced with new bone.

そこで、β−TCPを、骨組織とよくなじませるため、
多孔質焼結体として用いた。
Therefore, in order to make β-TCP blend well with bone tissue,
It was used as a porous sintered body.

一般に3次元網状セラミックスの多孔質焼結体は以下の
ようにして作られる。
Generally, porous sintered bodies of three-dimensional network ceramics are produced as follows.

■軟質ウレタンフオームにセラミック泥しようを含浸さ
せたものを乾燥した後、焼成する。
■ Soft urethane foam impregnated with ceramic slurry is dried and then fired.

■セラミツク泥しようの中にHI3.溶液を一定量入れ
、屁合し、乾燥した後、焼成する。
■HI3 in ceramic mud. A certain amount of the solution is added, mixed, dried, and fired.

■セラミツク泥しようの中に有機物のビーズの玉を入れ
混合し、乾燥した後、焼成することにより、有機物の玉
を除去する。
■ Organic beads are mixed in ceramic mud, dried, and fired to remove organic beads.

そこで、■の方法でβ−TCPの多孔質焼結体を作り、
成犬の下顎歯槽骨内に埋入し、wi織学的に長期にわな
外観察した。第7図は、埋入後すぐに撮ったレントゲン
写真の模式図であり、図において、(1)は歯槽骨、(
2)は歯槽骨(1)の上部にある歯肉、(3)は歯槽骨
に埋入されたβ−TCPの多孔質焼結体である。第8図
は、埋入後、6力月のレントゲン写真の模式図である。
Therefore, we made a porous sintered body of β-TCP using method ①.
It was implanted into the mandibular alveolar bone of an adult dog, and its structure was observed outside the trap over a long period of time. Figure 7 is a schematic diagram of an X-ray photograph taken immediately after implantation. In the figure, (1) is the alveolar bone, (
2) is the gingiva above the alveolar bone (1), and (3) is a porous sintered body of β-TCP embedded in the alveolar bone. FIG. 8 is a schematic diagram of an X-ray photograph of the hexagon after implantation.

β−TCP多孔質焼結体(3)は骨組織(1)とよく馴
じみ、多孔質体の孔に骨芽細胞が入9込み、β−TCP
の表面に直接、新生骨が接している部分と、β−TCP
が吸収され、β−TCP多孔質焼結体(3)からやや離
れたところに骨組織が形成されて入る部分が認められた
The β-TCP porous sintered body (3) blends well with the bone tissue (1), and osteoblasts enter the pores of the porous body and the β-TCP
The part where new bone is in direct contact with the surface of β-TCP
was absorbed, and a portion where bone tissue was formed and entered a little distance from the β-TCP porous sintered body (3) was observed.

しかし、第8図に示すように、多孔質焼結体の上部が、
歯肉(2)中の血液により溶は出し、大きくえぐられて
いた。
However, as shown in Fig. 8, the upper part of the porous sintered body
The blood in the gums (2) had dissolved and the gums had been greatly gouged out.

すなわち、β−TCP多孔質焼結体(3)は、溶解度が
大きいという利点が、欠点として現れたのである。これ
は、多孔質焼結体の断面図から次のように考える。
That is, the advantage of high solubility of the β-TCP porous sintered body (3) appeared as a disadvantage. This can be considered as follows from the cross-sectional view of the porous sintered body.

第9図は、多孔質焼結体の断面の模式図である。FIG. 9 is a schematic cross-sectional view of the porous sintered body.

図において、(4)はβ−TCPの焼結体、(5)は連
続空孔である。図のβ−7TCP部分(3)は、セラミ
ック泥しょうが乾燥した後、焼成されたものであり、多
孔質焼結体部分は穴だらけで、密度も低く、表面積が大
きい、そのため溶解度が非常に大きい。
In the figure, (4) is a sintered body of β-TCP, and (5) is a continuous pore. The β-7TCP part (3) in the figure is made by drying and firing the ceramic slurry, and the porous sintered part is full of holes, has a low density, and has a large surface area, so it has a very high solubility. .

D発明が解決しようとする問題点 以上のように、全て新生骨と置き換わる材料として、β
−TCP多孔質焼結体が良いが、−a的な!I!!造方
法で、多孔体を作り応用しても、歯肉などの血液の循環
の多い所では、溶解量が多すぎ、使用不可能であるとい
う問題点がある。
D Problems to be Solved by the Invention As mentioned above, β
-TCP porous sintered body is good, but -a! I! ! Even if a porous body is made and applied using a manufacturing method, there is a problem that the amount of dissolution is too large in areas where blood circulation is high, such as the gums, making it unusable.

本発明は、かかる問題点を解決するためになされたもの
で、全て新生骨と置き換わる材料であり、歯肉などの血
液の循環の多い所では、溶解し難い骨欠損部及び空隙部
充填材を得ることを目的とする。
The present invention has been made to solve these problems, and provides a material for filling bone defects and voids that is completely replaceable with new bone and is difficult to dissolve in areas where there is a lot of blood circulation, such as the gums. The purpose is to

E問題点を解決するための手段 この発明に係わる骨欠損部及び空隙部充填材では、骨欠
損部や空隙部に埋入する生体セラミックスの多孔質焼結
体の筋組織に接する少なくとも一部分に溶解し難い材質
で出来た接合体を備え、多層状にしたものである。
E Means for Solving Problems In the bone defect and void filling material according to the present invention, the material dissolves in at least a portion of the porous sintered body of bioceramics that is in contact with the muscle tissue and is implanted in the bone defect or void. It has a multi-layer structure and is made of a material that is difficult to bond with.

F作用 本発明においては、充填材は、多孔質焼結体と接合体の
多層になっているので、多孔質焼結体部は生体内に溶解
吸収され、自家骨と早急に置換され、さらに、筋肉など
血液の流れる部分に接している部分は、β−TCPやハ
イドロキシアパタイトの緻密体となっているので、成分
が溶解しに((、新生骨ができる前に多孔質焼結体が、
溶解し難い。
F action In the present invention, since the filling material is made up of multiple layers of porous sintered bodies and bonded bodies, the porous sintered bodies are dissolved and absorbed in the living body, quickly replaced with autologous bone, and further The parts that are in contact with areas where blood flows, such as muscles, are dense bodies of β-TCP and hydroxyapatite, so the components do not dissolve ((, before new bone is formed, the porous sintered body
Difficult to dissolve.

G:il!i例 実施例1 第1図は、本発明の一実施例を示す断面図であり、図に
おいて、(31はβ−TCPの多孔質焼結体、(6)は
多孔質焼結体(3)に接合された接合体(β−TCPか
らなる緻密な焼結体、ハイドロキシアパタイトからなる
緻密な焼結体、ハイドロキシアパタイトからなる多孔質
焼結体)である。
G:il! Example i Example 1 FIG. 1 is a sectional view showing an example of the present invention. In the figure, (31 is a porous sintered body of β-TCP, (6) is a porous sintered body (3 ) (a dense sintered body made of β-TCP, a dense sintered body made of hydroxyapatite, a porous sintered body made of hydroxyapatite).

なお、各図中同一符号は、同一または相当部分を示す。Note that the same reference numerals in each figure indicate the same or corresponding parts.

以下に、その操作を示す。Ca (Ot[) 、の懸濁
液にCaw (PO4) *となる量のH,PO4水溶
液を撹拌しながら滴下した後、数日間反応と熟成を行い
、得られた沈殴物をろ過した。その後、乾燥し、その粉
末を600℃で仮焼した。
The operation is shown below. An aqueous solution of H and PO4 in an amount of Caw (PO4)* was added dropwise to the suspension of Ca (Ot[) with stirring, and the mixture was reacted and aged for several days, and the resulting precipitate was filtered. Thereafter, it was dried and the powder was calcined at 600°C.

この粉末はX線パターンにより、β−Ca3 (POa
) *が主成分である(例えば不純物として、Ca s
 ts (PO4) s (OH) x、Ca1P20
7、α−Ca、(PO4)、、Ca5Hi (Pot)
 s  5tlzOなどのβ−Gas (POa) *
以外のCa−P−0化合物)であった。
This powder was determined by the X-ray pattern as β-Ca3 (POa
) * is the main component (for example, as an impurity, Ca s
ts (PO4) s (OH) x, Ca1P20
7, α-Ca, (PO4), Ca5Hi (Pot)
β-Gas (POa) such as s5tlzO*
Ca-P-0 compound).

この仮焼物に結合剤としてポリビニルアルコール(以下
PVAと略す)を添加し、ボールミルで7時間、微粉砕
した。これを半分に分け1.一方を接合体を作るため、
スプレーで造粒した後、直径φ5.0−1厚み2.5m
mのベレット状に金型成形した。
Polyvinyl alcohol (hereinafter abbreviated as PVA) was added as a binder to this calcined material, and the material was pulverized in a ball mill for 7 hours. Divide this in half 1. To make one zygote,
After granulation by spraying, diameter φ5.0-1 thickness 2.5m
It was molded into a pellet shape with a diameter of m.

その後、成形したベレットを900℃で仮焼しな。Thereafter, the formed pellet is calcined at 900°C.

1000〜1400℃での本焼成で約20%収縮するの
に対し、この仮焼では約1)%の収縮率であった。
While the main firing at 1000 to 1400°C caused a shrinkage of about 20%, the shrinkage rate in this calcination was about 1)%.

一方、ボールミルで微粉砕したセラミック泥しようの半
分を用い、固体と液体(水)の割合を1:1とした後、
PVAを一定量添加し、よく混合した。これを軟質ウレ
タンフオームのスポンジに含浸させた。
On the other hand, after using half of the ceramic slurry finely ground in a ball mill and adjusting the ratio of solid and liquid (water) to 1:1,
A certain amount of PVA was added and mixed well. A soft urethane foam sponge was impregnated with this.

仮焼体とセラミック泥しようを含浸したぬれたままのス
ポンジを結合させ、急速に乾燥して七ビの入らないよう
に室温で乾燥した後、1)50℃で焼成輸、焼結体第1
図を得た。
The calcined body and the wet sponge impregnated with ceramic slurry are combined, and after drying rapidly at room temperature to prevent any dirt from entering, the sintered body is 1) fired at 50°C and exported.
I got the diagram.

第2図は本焼結体を成犬の下顎歯槽骨内に埋入後のレン
トゲン写真の模式図である。長期にわたり、観察した結
果、歯肉(2)との接触部分においても、溶解による大
きなへこみは見られなかった。
FIG. 2 is a schematic diagram of an X-ray photograph after the present sintered body was implanted into the mandibular alveolar bone of an adult dog. As a result of long-term observation, no large dents due to dissolution were observed even in the contact area with the gingiva (2).

実施例2 Ca (0■)、の懸濁液にCat、、 (Poa) 
s (OH) tとなる量のIf、PO4水溶液を攪拌
しながら滴下した後、数日間反応と熟成を行い、得られ
た沈陵物をろ過しな。
Example 2 A suspension of Ca (0■), (Poa)
After dropping an aqueous If and PO4 solution in an amount of s (OH) t with stirring, reaction and aging were performed for several days, and the resulting precipitate was filtered.

その後、乾燥し、その粉末を600℃で仮焼した。Thereafter, it was dried and the powder was calcined at 600°C.

コノ粉末はxsパターンより、Cabs (PO4) 
* (OH) *が主成分であるCm−1’−0化合物
であった。
Kono powder is from xs pattern, Cabs (PO4)
*(OH)* was a Cm-1'-0 compound as a main component.

この仮焼物にPVAをバインダー(結合剤)として添加
し、ボールミルで4時間微粉砕後、スプレーで造粒した
。この造粒粉を直径φ4.0−1厚み1.0閣に金型成
形したベレットを950℃で仮焼した。
PVA was added as a binder to this calcined product, which was finely pulverized in a ball mill for 4 hours, and then granulated by spraying. This granulated powder was molded into a pellet having a diameter of φ4.0-1 and a thickness of 1.0 mm and calcined at 950°C.

一方、実施例1と同様にβ−TCPの粉体の入った泥し
ようをスポンジに含浸させ、ぬれたままのスポンジを作
った。
On the other hand, as in Example 1, a sponge was impregnated with slurry containing β-TCP powder to produce a wet sponge.

仮焼体とスポンジを接合した後、乾燥し、1200℃で
焼成し、第1図と同様な焼結体を得た。
After joining the calcined body and the sponge, it was dried and fired at 1200°C to obtain a sintered body similar to that shown in FIG. 1.

得られた複合体を成人の下顎歯槽骨内に埋入し、長期に
わたり、II!察した結果、歯肉との接触部分において
、溶解による大きなへこみは見られなかった。
The resulting composite was implanted into the mandibular alveolar bone of an adult and maintained over a long period of time. As a result, no large dents due to dissolution were observed in the area in contact with the gums.

実施例3 β−TCPが主成分の粉末から成るセラミック泥しよう
を含浸したスポンジに、更に、濃度の濃い(β−TCP
:水=1.5〜G、8.1)β−TCI’が主成分のセ
ラミック泥しようを刷毛で、そのスポンジ表面に塗9乾
燥後、1)50℃で焼成し、第1図と同様な焼結体を得
た。
Example 3 A sponge impregnated with ceramic slurry consisting of powder whose main component is β-TCP is
: Water = 1.5~G, 8.1) Apply ceramic slurry mainly composed of β-TCI' to the sponge surface with a brush.9 After drying, 1) Calculate at 50°C, as shown in Figure 1. A sintered body was obtained.

焼成体の密度の高い緻密な表面は°、厚み(1)が0.
9−であった。
The dense and precise surface of the fired body has a thickness (1) of 0.
It was 9-.

本焼結体を成人の下顎歯槽骨内に埋入した結果、長期間
にわたり、多量な材料の溶解がなく、良好であった。
When this sintered body was implanted into the mandibular alveolar bone of an adult, the results were good, with no large amount of material dissolving over a long period of time.

実施例4 今度は歯槽骨だけではな(、−段的な骨組織での応用例
を考えてみた。
Example 4 This time, we considered an example of application not only to alveolar bone but also to graded bone tissue.

第3図は多孔体の2面を緻密体で形成した焼結体を生体
内に内入した時の模式図、第4図は多孔体の両面を緻密
体で形成した焼結体を生体内に埋入した時の模式図であ
る。図において(7)は骨組織、(8)は筋組織を示し
ている。第5図は緻密体の周りを多孔質焼結体とした模
式図である。
Figure 3 is a schematic diagram of a porous body in which a sintered body with two sides made of dense material is injected into a living body. It is a schematic diagram when it is embedded in. In the figure, (7) shows bone tissue and (8) shows muscle tissue. FIG. 5 is a schematic diagram of a dense body surrounded by a porous sintered body.

これら全ての材料について、動物実験をした結果、長期
にわたり、多量な材料の溶解がな(、良好であった。
Animal experiments on all of these materials showed that large amounts of the materials did not dissolve over a long period of time.

実施例5 第6図は抜歯形状に加工した焼結体を生体内に埋入した
時の模式図である。図に示した焼結体を抜歯後、歯肉(
2)で抜歯孔が埋められる前に、埋入した。その結果、
良好な結果を得た。
Example 5 FIG. 6 is a schematic diagram when a sintered body processed into a tooth extraction shape is implanted in a living body. After removing the sintered body shown in the figure, the gingiva (
It was placed before the tooth extraction hole was filled in step 2). the result,
Good results were obtained.

また、抜歯形状の加工は、多孔質焼結体であるので加工
が容易で、ヤスリ等で加工ができる利点がある。
Further, since it is a porous sintered body, it is easy to process it into a tooth-extracted shape, and it has the advantage that it can be processed with a file or the like.

本実施例では、多孔質焼結体にβ−TCP、接合体にβ
−TCPの緻密な焼結体、またはハイドロキシアパタイ
トの緻密な焼結体、またはハイドロキシアパタイトの多
孔質焼結体を使ったが、適当な溶解度を持った生体セラ
ミックスであれば、同様な効果を得られる。
In this example, β-TCP is used for the porous sintered body, and β-TCP is used for the joined body.
-We used a dense sintered body of TCP, a dense sintered body of hydroxyapatite, or a porous sintered body of hydroxyapatite, but the same effect can be obtained if it is a bioceramic with an appropriate solubility. It will be done.

H発明の効果 本発明は、多孔質焼結体部と接合体部の多層になってい
るので、骨と接している部分は、β−TCPの多孔質焼
結体となり、骨欠損部及び空隙部に充填材として生体内
に用いた場合、生体親和性があり、孔に骨芽細胞が入り
込み、新生骨が生成されると同時に生体内に溶解吸収さ
れ、自家骨と早急に置換され、さらに、筋肉など血液の
流れる部分に接している部分は、β−TCPやハイドロ
キシアパタイトの緻密体となっているので、成分が溶解
し難く、新生骨ができる前に充填材が溶解して、充填材
の構造が損なわれることはない。
H Effects of the Invention The present invention has multiple layers of a porous sintered body part and a bonded body part, so the part in contact with the bone becomes a porous sintered body of β-TCP, eliminating bone defects and voids. When used as a filler in the body, it has biocompatibility, osteoblasts enter the pores, new bone is generated, and at the same time it is dissolved and absorbed in the body, rapidly replacing autologous bone, and The areas that are in contact with areas where blood flows, such as muscles, are dense bodies of β-TCP and hydroxyapatite, so these ingredients are difficult to dissolve, and the filling material dissolves before new bone is formed. structure is not damaged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す断面図、第2図は本
焼結体を成人の下顎歯槽骨内に埋入後のレントゲン写真
の模式断面図、第3図は多孔質焼結体の2WJを緻密体
で形成した焼結体を生体内に埋入した時の模式断面図、
第4図は多孔質焼結体の両面を緻密体で形成した焼結体
を生体内に埋入した時の模式断面図、第5図はmW!体
の周りを多孔質焼結体とした焼結体の模式断面図、第6
図は抜歯形状に加工した焼結体を生体内に埋入した時の
模式断面図、第7図はβ−TCP多孔質体全孔質体すぐ
゛に撮ったレントゲン写真の模式断面図、第8図は埋入
6力月後のレントゲン写真の模式断面図、第9図は多孔
質焼結体の断面の模式図である。 (3)は生体セラミックス多孔質焼結体、(6)は接合
体を示す。
Fig. 1 is a cross-sectional view showing one embodiment of the present invention, Fig. 2 is a schematic cross-sectional view of an X-ray photograph after the present sintered body is implanted into the mandibular alveolar bone of an adult, and Fig. 3 is a porous sintered body. A schematic cross-sectional view when a sintered body in which 2WJ of the body is formed of a dense body is implanted in a living body,
Figure 4 is a schematic cross-sectional view of a porous sintered body with both sides made of dense material implanted in a living body, and Figure 5 is mW! Schematic cross-sectional view of a sintered body with a porous sintered body surrounding it, No. 6
The figure is a schematic cross-sectional view of a sintered body processed into a tooth extraction shape and implanted in a living body. Figure 7 is a schematic cross-sectional view of an X-ray photograph taken immediately after the β-TCP porous body. FIG. 8 is a schematic cross-sectional view of an X-ray photograph 6 months after implantation, and FIG. 9 is a schematic cross-sectional view of the porous sintered body. (3) shows a bioceramic porous sintered body, and (6) shows a joined body.

Claims (6)

【特許請求の範囲】[Claims] (1)生体セラミックスであるβ−リン酸三カルシウム
の多孔質焼結体、該多孔質焼結体の筋組織に接する少な
くとも一部分に接合体を備え、多層状にしたことを特徴
とする骨欠損部及び空隙部充填材。
(1) A porous sintered body of β-tricalcium phosphate, which is a bioceramic, and a bone defect characterized by having a bonded body in at least a portion of the porous sintered body in contact with the muscle tissue to form a multilayered structure. and void filling material.
(2)前記接合体は、β−リン酸三カルシウムからなる
緻密な焼結体、またはハイドロキシアパタイトからなる
緻密な焼結体、またはハイドロキシアパタイトからなる
多孔質焼結体であることを特徴とする特許請求の範囲第
1項記載の骨欠損部及び空隙部充填材。
(2) The bonded body is characterized in that it is a dense sintered body made of β-tricalcium phosphate, a dense sintered body made of hydroxyapatite, or a porous sintered body made of hydroxyapatite. A bone defect and void filling material according to claim 1.
(3)前記β−リン酸三カルシウムからなる緻密な焼結
体の理論密度は70%〜100%とすることを特徴とす
る特許請求の範囲第2項記載の骨欠損部及び空隙部充填
材。
(3) The bone defect and void filling material according to claim 2, wherein the dense sintered body made of β-tricalcium phosphate has a theoretical density of 70% to 100%. .
(4)前記ハイドロキシアパタイトからなる緻密な焼結
体の理論密度は60%〜100%とすることを特徴とす
る特許請求の範囲第2項記載の骨欠損部及び空隙部充填
材。
(4) The bone defect and void filling material according to claim 2, wherein the dense sintered body made of hydroxyapatite has a theoretical density of 60% to 100%.
(5)前記多孔質焼結体は、抜歯根部分と同一形状に加
工したことを特徴とする特許請求の範囲第1項記載の骨
欠損部及び空隙部充填材。
(5) The bone defect and void filling material according to claim 1, wherein the porous sintered body is processed to have the same shape as the root of an extracted tooth.
(6)前記接合体の厚み(Ta)は、骨欠損部の穴の大
きさに合わせ0<Ta<5mmとし、生体セラミックス
の多孔質焼結体の厚み(Tb)は、同様に骨欠損部の穴
の大きさに合わせ0<Tb<3mmしたことを特徴とす
る特許請求の範囲第1項記載の骨欠損部及び空隙部充填
材。
(6) The thickness (Ta) of the bonded body is set to 0<Ta<5 mm in accordance with the size of the hole in the bone defect, and the thickness (Tb) of the porous sintered body of bioceramics is similarly adjusted to the size of the hole in the bone defect. The bone defect and void filling material according to claim 1, characterized in that 0<Tb<3 mm in accordance with the size of the hole.
JP62285462A 1987-11-13 1987-11-13 Filler for crack or opening of bone Pending JPH01126977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285462A JPH01126977A (en) 1987-11-13 1987-11-13 Filler for crack or opening of bone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285462A JPH01126977A (en) 1987-11-13 1987-11-13 Filler for crack or opening of bone

Publications (1)

Publication Number Publication Date
JPH01126977A true JPH01126977A (en) 1989-05-19

Family

ID=17691827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285462A Pending JPH01126977A (en) 1987-11-13 1987-11-13 Filler for crack or opening of bone

Country Status (1)

Country Link
JP (1) JPH01126977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350462B1 (en) 1990-12-26 2002-02-26 Olympus Optical Co., Ltd. Hollow porous ceramic carrier for embedding in patient for sustained medicament release and method of preparation thereof
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350462B1 (en) 1990-12-26 2002-02-26 Olympus Optical Co., Ltd. Hollow porous ceramic carrier for embedding in patient for sustained medicament release and method of preparation thereof
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods

Similar Documents

Publication Publication Date Title
US6511510B1 (en) Osteoinductive ceramic materials
Costantino et al. Hydroxyapatite cement: I. Basic chemistry and histologic properties
DE3425182C2 (en) Porous osteogenetic ceramic material and process for its manufacture and its use
DE3905608C2 (en)
JP5046511B2 (en) Hard tissue substitute carrier material
JPH0156777B2 (en)
JPH078294B2 (en) Grafting material consisting of calcium hydroxide treated polymer
DE2711219A1 (en) CERAMIC MASS
JPH0359703B2 (en)
JPS63125259A (en) Calcium phosphate type porous bone filler
Suruagy et al. Physico-chemical and histomorphometric evaluation of zinc-containing hydroxyapatite in rabbits calvaria
US8475821B2 (en) Bone prosthetic material and method of manufacturing the same
JPH0254303B2 (en)
JPH0215221B2 (en)
JPH0411215B2 (en)
JPH01126977A (en) Filler for crack or opening of bone
KR102348227B1 (en) A POROUS SCAFFOLD COMPRISING A β-TRICALCIUM PHOSPHATE, A COLLAGEN, AND A POLYCARPROLACTON FOR REGENERATING THE PERIODONTAL COMPLEX, AND METHOD FOR PREPARING THE SAME
JPH0575427B2 (en)
JPS6179463A (en) Composite apatite artificial bone material
JPH0588623B2 (en)
JPH047227B2 (en)
Ku et al. The Effect of Whitlockite as an Osteoconductive Synthetic Bone Substitute Material in Animal Bony Defect Model. Materials 2022, 15, 1921
JPH0414584B2 (en)
JP2020521597A (en) Method for producing calcified tissue substitute
JPS63294864A (en) Preparation of artificial bone material