JPH01123052A - Ultralow thermal expansion alloy and production thereof - Google Patents

Ultralow thermal expansion alloy and production thereof

Info

Publication number
JPH01123052A
JPH01123052A JP28069387A JP28069387A JPH01123052A JP H01123052 A JPH01123052 A JP H01123052A JP 28069387 A JP28069387 A JP 28069387A JP 28069387 A JP28069387 A JP 28069387A JP H01123052 A JPH01123052 A JP H01123052A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
less
coefficient
expansion alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28069387A
Other languages
Japanese (ja)
Other versions
JP2796966B2 (en
Inventor
Shohachi Sawatani
沢谷 昭八
Hiroshi Kurosawa
博 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP62280693A priority Critical patent/JP2796966B2/en
Publication of JPH01123052A publication Critical patent/JPH01123052A/en
Application granted granted Critical
Publication of JP2796966B2 publication Critical patent/JP2796966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Abstract

PURPOSE:To produce an ultralow thermal expansion alloy by subjecting a low thermal expansion alloy consisting of specified amts. of principal and subsidiary components to simple heat treatment and working. CONSTITUTION:An alloy consisting of, by weight, 25.9-35% Ni, 2.0-7.0% Co, 0.001-2.0% Cr, 0.001-2.0% Ti and the balance Fe is produced. The alloy is subjected to soln. heat treatment at about 600 deg.C-the m.p., hardened or annealed and cold worked at >=about 10% working rate. The alloy is then heated at about 50-about 600 deg.C for >=1min and slowly cooled at <=1 deg.C/sec cooling rate. An ultralow thermal expansion alloy having -2.0X10<-6>-+0.5X10<-6> coefft. of thermal expansion in the wide temp. range of about -50-+100 deg.C can be produced.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は機械的強度が高く、熱膨張係数が極めて小さく
、かつ負の値をもつ超然膨張合金およびその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a non-zero expansion alloy having high mechanical strength, an extremely small coefficient of thermal expansion, and a negative value, and a method for producing the same.

〔従来技術〕[Prior art]

従来、低熱膨張係数を有する合金としてはFe63.5
 ’4 、’ Ni 36.5 %およびFe 63.
0 % 、 Ni 32.0% 、 Co 5.0%が
有り、一般計測機器に用いられている。しかし、これら
の合金は一10〜+100℃付近の熱膨張係数が+〇、
5 X 10 /’Cでしかも機械強度が46〜60に
9/70に限られている。ところが最近計測機器の部品
材料として、さらに小さな熱膨張係数ならびに負の熱膨
張係数を有すると共に機械的強度の高い合金が要求され
ろようになってきた。
Conventionally, Fe63.5 is an alloy with a low coefficient of thermal expansion.
'4, 'Ni 36.5% and Fe 63.
0%, Ni 32.0%, Co 5.0%, and is used in general measuring instruments. However, these alloys have a thermal expansion coefficient of +〇 in the vicinity of -10 to +100℃.
5 x 10 /'C, and the mechanical strength is limited to 46-60, 9/70. However, recently, alloys having a smaller coefficient of thermal expansion, a negative coefficient of thermal expansion, and high mechanical strength have been required as materials for parts of measuring instruments.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はNi 29.5〜35.0係、 Co 2.0
〜7.0係。
The present invention has Ni 29.5 to 35.0 and Co 2.0.
~7.0 Section.

Cr 0.001〜2.0 %以下、 Ti 0.00
1〜2.0 To以下を含み、残部Feから成るか、あ
るいはこれを主成分とし、さらに副成分としてNb9M
o+W2%以下。
Cr 0.001-2.0% or less, Ti 0.00
1 to 2.0 To or less, with the balance consisting of Fe, or with this as the main component and further Nb9M as a subcomponent.
o+W2% or less.

Be+ V+ Zr+ Si + 1%以下、 Mn、
 Cu+ AI 、 C,5O05俤以下の一種あるい
は二種以上の0.001〜2.0%から成る合金につい
て、簡易な熱処理と加工により発揮し得ることを見出し
たもので、その目的とするところはFe 63.5%、
 Ni 36.5 f&およびFe63.0 % 、 
Ni 32.0 ’A 、 Co 5.0%の合金より
も機械的強度が高く、シかも熱膨張係数が一50°〜+
100℃の広い温度範囲において、はぼ−2,0〜+0
.5X10=/℃と非常に小さく、超然膨張合金として
用途に充分適合する新規な材料を提供することにある。
Be+ V+ Zr+ Si + 1% or less, Mn,
It was discovered that an alloy consisting of 0.001 to 2.0% of one or more of Cu + AI, C, 5O05 or less can be exhibited by simple heat treatment and processing, and the purpose is to Fe 63.5%,
Ni 36.5 f& and Fe63.0%,
It has higher mechanical strength than Ni 32.0'A, Co 5.0% alloy, and its thermal expansion coefficient is 150° to +
In a wide temperature range of 100℃, the temperature is -2.0 to +0
.. The object of the present invention is to provide a new material that has a very small expansion of 5×10=/°C and is fully suitable for use as a super-zero expansion alloy.

〔実施例〕〔Example〕

上述の簡易な熱処理と加工の方法は次の通りである。 The above-mentioned simple heat treatment and processing method is as follows.

(A)溶体化処理のため600℃以上融点以下の温度で
1分間以上(例えば5分乃至100時間)加熱後、焼入
れすれるかあるいは毎秒1℃以下の速度で徐冷して焼鈍
を行う。
(A) After heating for solution treatment at a temperature of 600° C. or higher and lower than the melting point for 1 minute or more (for example, 5 minutes to 100 hours), it is quenched or annealed by slow cooling at a rate of 1° C. per second or lower.

CB)上記焼入れ後あるいは焼鈍後加工率10%以上の
冷間加工を行い、さらに50C以上6oo℃以下の温度
で1分間以上(例えば5分乃至100時間)加熱し、つ
いて毎秒1℃以下の速度で徐冷する。
CB) After the above-mentioned quenching or annealing, perform cold working at a processing rate of 10% or more, and further heat at a temperature of 50C or more and 6oooC or less for 1 minute or more (for example, 5 minutes to 100 hours), at a rate of 1 °C per second or less. Cool slowly.

およびFeのみかあるいはこれを主成分としてさらに副
成分を加え、空気中もしくは不活性ガス中または真空中
において1通常の溶解炉によって溶解した後、 Mn 
! Si + Ti+ AI + Caなど少量0.S
S以下添加して有害な不純物を徐き充分に攪拌して組成
的に均一な溶融合金を造る。つぎにこれを鋳型に注入し
て鋳塊を造り、600℃以上融点以下の温度で1分間以
上(例えば5分乃至100時間)加熱保持した後、焼入
れするかあるいは毎秒1℃以下の速度で徐冷する。さら
にこれを常温あるいは常温以上融点以下の温度において
鍛造、圧延、引抜きあるいはスェージして用途に適合す
る形状に成形する。つぎにこれを50℃以上6oo℃以
下の温度で1分間以上(例えば5分乃至100時間)加
熱し。
Mn is melted in air, inert gas, or vacuum in a normal melting furnace.
! Small amount of Si + Ti + AI + Ca etc. 0. S
S or less is added to remove harmful impurities and thoroughly stirred to produce a compositionally uniform molten alloy. Next, this is injected into a mold to make an ingot, heated and held at a temperature of 600°C or higher and lower than the melting point for 1 minute or more (for example, 5 minutes to 100 hours), and then quenched or slowed at a rate of 1°C per second or lower. Cool down. Further, this is forged, rolled, drawn or swaged at room temperature or at a temperature above room temperature and below the melting point to form it into a shape suitable for the intended use. Next, this is heated at a temperature of 50° C. or higher and 60° C. or lower for 1 minute or more (for example, 5 minutes to 100 hours).

ついて毎秒1℃以下の速度で徐冷して製品とする。The product is then slowly cooled at a rate of 1°C per second or less.

つぎに本発明の実施例について述べる。Next, embodiments of the present invention will be described.

第1表に示す合金成分の全量(約IKf)をアルミナ坩
堝中で、 Arガスを通じながら高周波誘導電気炉によ
り溶解した後、溶湯なよく攪拌し、鉄型に鋳込んで、3
5朋X35m1)1にの角型鋳塊を得た。つぎにその一
部を鍛造によって約10顛の丸棒にし。
The entire amount of the alloy components shown in Table 1 (approximately IKf) was melted in an alumina crucible in a high-frequency induction electric furnace while passing Ar gas, the molten metal was thoroughly stirred, and cast into an iron mold.
A square ingot measuring 5 mm x 35 m1 was obtained. Next, part of it is forged into a round bar of about 10 pieces.

1000℃で1時間加熱後100℃/時間の速度で冷却
した。それを常温で種々の加工率を施して、丸棒にし、
それから長さ10crILの丸棒2本を切りとり1本を
冷間加工状態、他方を100℃、200℃、400℃、
600℃、800℃および1000℃で1時間加熱した
後100℃/時間の速度で冷却して測定に供した。
After heating at 1000°C for 1 hour, it was cooled at a rate of 100°C/hour. It is processed into a round bar by various processing rates at room temperature,
Then, two round bars with a length of 10crIL were cut out, one in a cold worked condition, and the other at 100℃, 200℃, and 400℃.
After heating at 600°C, 800°C and 1000°C for 1 hour, the mixture was cooled at a rate of 100°C/hour and subjected to measurement.

る 常温および高温にお饋誠膨張係数は縦型と横型膨張計に
より測定した。
The expansion coefficients at room temperature and high temperature were measured using vertical and horizontal dilatometers.

第1表には代表的なインバ合金(Fe 63.0 % 
Table 1 shows typical Invar alloys (Fe 63.0%
.

Ni 32.0%、 Co 5.0%)と本発明合金の
測定値が比較して示しである。この表から明らかな如く
The measured values for the alloy of the present invention (Ni: 32.0%, Co: 5.0%) are shown in comparison. As is clear from this table.

本発明合金はいずれも従来のインバー合金に比較ンバー
合金と本発明の代表的な合金について、それぞれ冷間加
工率と再加熱した後、徐冷した状態における一50°〜
+100℃の熱膨張係数ならび熱膨張曲線が示しである
。図から見られるように本発明合金の熱膨張係数は適当
な加工率と熱処理を調整することに−2,0〜+〇、5
 X 10  の非常に小さな値が得られることがわか
る。従って本発明合金は常温および高温において使用す
る一般測定器。
All of the present invention alloys are compared with conventional Invar alloys.For Invar alloys and representative alloys of the present invention, the cold working rate and the temperature range from 150° to 150° after being reheated and slowly cooled.
The coefficient of thermal expansion at +100° C. and the thermal expansion curve are shown. As can be seen from the figure, the coefficient of thermal expansion of the alloy of the present invention ranges from -2,0 to +〇,5 by adjusting the appropriate processing rate and heat treatment.
It can be seen that a very small value of X 10 is obtained. Therefore, the alloy of the present invention is suitable for general measuring instruments used at room temperature and high temperature.

標準尺および精密機器の材料として非常に好適である。Very suitable as a material for standard measures and precision instruments.

〔発明の効果〕〔Effect of the invention〕

最後に本発明合金の組成を限定した理由についてのべる
。まずNi−Co−Cr−Ti −Fe 三元合金にお
いて組成なNi 29.5〜35J) % 、 Co 
2.0〜7.0% 、 Cr 0.001〜2.0 %
以下、 Ti 0.001〜2.0%以下、残部Feと
限定したのはその組成範囲以外では熱膨張係数が本発明
の目的とする−2.0〜+0.5×10  の範囲をこ
えるからである。Crは耐食性および機械的強度の改善
元素であり、またTiはNiとの金属間化合物を形成さ
せ1強度を上昇させるに有用な元素である。
Finally, the reason for limiting the composition of the alloy of the present invention will be discussed. First, in the Ni-Co-Cr-Ti-Fe ternary alloy, the composition is Ni29.5~35J)%, Co
2.0-7.0%, Cr 0.001-2.0%
Hereinafter, the reason why Ti is limited to 0.001 to 2.0% or less and the balance is Fe is because outside of this composition range, the coefficient of thermal expansion exceeds the range of -2.0 to +0.5 x 10 which is the objective of the present invention. It is. Cr is an element for improving corrosion resistance and mechanical strength, and Ti is an element useful for forming an intermetallic compound with Ni to increase strength.

つぎに副成分なNb、 Mo、 W 2 ’4以下+ 
Be+ v’+Zr l si 1%以下、 Mn+ 
Cu+ AI + Cr S 0.5%以下の一種ある
いは二種以上の全io、001〜2.0チと限定したの
は、これらの組成範囲以外では熱膨張係数が本発明の目
的とする−2.0〜+〇、5 X 10  の範囲をこ
えるからである。Nb + Mo + Wt V+添加
については機械的強度と耐食性の改善元素とし、またB
e l Zr I Cu l At I CI Sにつ
いては機械的強度の改善元素とした。Mn + Stは
溶解時における脱酸剤として有効に寄与する。Ni+C
o+Fe元素は熱膨張係数を左右する最も重要な元素で
ある。
Next, the subcomponents Nb, Mo, W 2 '4 or less +
Be+ v'+Zr l si 1% or less, Mn+
Cu + AI + Cr S 0.5% or less of one or more types of total IO is limited to 001 to 2.0% because outside these composition ranges, the thermal expansion coefficient is -2, which is the objective of the present invention. This is because it exceeds the range of .0 to +〇, 5 x 10. Nb + Mo + Wt V+ addition is an element that improves mechanical strength and corrosion resistance, and B
e l Zr I Cu l At I CI S was considered as an element for improving mechanical strength. Mn + St effectively contributes as a deoxidizing agent during dissolution. Ni+C
The o+Fe element is the most important element that influences the coefficient of thermal expansion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の代表的な合金の熱膨張係数と冷間加工
率との関係を示したグラフである。 第2図は本発明の代表的な合金の80チ冷間加工後時効
温度との関係を示したグラフである。 ?53図は本発明の代表的な合金の400℃で時効した
状態の熱膨張曲線と従来のインバー合金と比較したり゛
ラフである。 特許出願人 財団法人電気磁気材料研究所代 理 人 
弁理士玉蟲久五部(外2名)第 1  図 P x+o−’ 温 度 〔0c〕
FIG. 1 is a graph showing the relationship between the coefficient of thermal expansion and the cold working rate of typical alloys of the present invention. FIG. 2 is a graph showing the relationship between aging temperature after 80 inch cold working of a representative alloy of the present invention. ? Figure 53 shows a rough comparison between the thermal expansion curve of a typical alloy of the present invention aged at 400°C and that of a conventional Invar alloy. Patent applicant Agent: Institute for Electrical and Magnetic Materials Foundation
Patent attorney Gobe Tamamushi (2 others) Figure 1 P x+o-' Temperature [0c]

Claims (3)

【特許請求の範囲】[Claims] (1)重量比にてNi29.5〜35%、Co2.0〜
7.0%の範囲において、Cr0.001〜2.0%以
下、Ti0.001〜2.0%以下を含み残部は実質的
にはFeから成り、熱膨張係数が−2.0×10^−^
6〜+0.5×10^−^6の範囲であることを特徴と
する超低熱膨張合金。
(1) Ni29.5-35%, Co2.0-35% by weight
In the range of 7.0%, Cr is 0.001 to 2.0% or less, Ti is 0.001 to 2.0% or less, and the remainder is substantially Fe, with a coefficient of thermal expansion of -2.0 x 10^ −^
An ultra-low thermal expansion alloy characterized in that the thermal expansion is in the range of 6 to +0.5×10^-^6.
(2)重量比にて主成分として、Ni29.5〜35.
0%、Co2.0〜7.0%、Cr0.001〜2.0
%、Ti0.001〜2.0%および残部Feからなる
合金に、副成分としてNb、Mo、W2%以下、Be、
V、Zr、Si1%以下、Mn、Cu、Al、C、S0
.5%以下のうち少くとも一種または二種以上の全量0
.001〜2.0%を含有してなり、熱膨張係数が−2
.0〜+0.5×10^−^6であることを特徴とする
超低熱膨張合金。
(2) Ni29.5 to 35.
0%, Co2.0-7.0%, Cr0.001-2.0
%, Ti 0.001 to 2.0% and the balance Fe, as subcomponents Nb, Mo, W 2% or less, Be,
V, Zr, Si 1% or less, Mn, Cu, Al, C, S0
.. Total amount of at least one or more of 5% or less 0
.. 001 to 2.0%, and the coefficient of thermal expansion is -2
.. An ultra-low thermal expansion alloy characterized by having a thermal expansion coefficient of 0 to +0.5×10^-^6.
(3)前記特許請求の範囲第1項又は第2項に記載の超
低熱膨張合金において、 (A)600℃以上融点以下の高温で1分間以上加熱し
て均質溶体化処理をした後、焼入れするか或いは毎秒1
℃以下の速度で徐冷して焼鈍を行い、(B)上記焼入れ
後あるいは焼鈍後、10%以上の冷間加工を行い、 (C)上記冷間加工後、50℃以上600℃以下の温度
で1分間以上100時間以下加熱しついて毎秒1℃以下
の速度で徐冷することにより熱膨張係数が−2.0〜+
0.5×10^−^6の範囲であることを特徴とする超
低熱膨張合金の製造方法。
(3) In the ultra-low thermal expansion alloy according to claim 1 or 2, (A) after performing homogeneous solution treatment by heating at a high temperature of 600°C or higher and lower than the melting point for 1 minute or more, quenching is performed. or 1 per second
(B) After the above-mentioned quenching or annealing, cold working is performed by 10% or more; (C) After the above-mentioned cold working, the temperature is 50°C or more and 600°C or less. The coefficient of thermal expansion is -2.0 to +
A method for producing an ultra-low thermal expansion alloy, characterized in that the thermal expansion is in the range of 0.5×10^-^6.
JP62280693A 1987-11-06 1987-11-06 Ultra-low thermal expansion alloy and manufacturing method Expired - Fee Related JP2796966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280693A JP2796966B2 (en) 1987-11-06 1987-11-06 Ultra-low thermal expansion alloy and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280693A JP2796966B2 (en) 1987-11-06 1987-11-06 Ultra-low thermal expansion alloy and manufacturing method

Publications (2)

Publication Number Publication Date
JPH01123052A true JPH01123052A (en) 1989-05-16
JP2796966B2 JP2796966B2 (en) 1998-09-10

Family

ID=17628628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280693A Expired - Fee Related JP2796966B2 (en) 1987-11-06 1987-11-06 Ultra-low thermal expansion alloy and manufacturing method

Country Status (1)

Country Link
JP (1) JP2796966B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910945A (en) * 1987-04-17 1990-03-27 Strapack Corporation Band feeding and tightening apparatus for strapping machine
WO1994029057A1 (en) * 1993-06-09 1994-12-22 Charles Hauser Device for sawing a hard or fragile material
WO1998041665A1 (en) * 1997-03-18 1998-09-24 Sumitomo Special Metals Co., Ltd. Low heat expansion alloy
JP2011162820A (en) * 2010-02-08 2011-08-25 Res Inst Electric Magnetic Alloys High-strength low-thermal-expansion alloy, method for producing the same, and precision instrument
KR102030834B1 (en) * 2019-05-20 2019-10-10 국방과학연구소 Heat treatment of Fe-Ni-Co ternary alloy and Fe-Ni-Co ternary alloy using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105713A (en) * 1973-01-29 1974-10-07
JPS5541928A (en) * 1978-09-16 1980-03-25 Kobe Steel Ltd High strength steel of low thermal expansibility
JPS5741350A (en) * 1980-08-25 1982-03-08 Furukawa Electric Co Ltd:The Alloy with high strength, high ductility and low thermal expansibility and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105713A (en) * 1973-01-29 1974-10-07
JPS5541928A (en) * 1978-09-16 1980-03-25 Kobe Steel Ltd High strength steel of low thermal expansibility
JPS5741350A (en) * 1980-08-25 1982-03-08 Furukawa Electric Co Ltd:The Alloy with high strength, high ductility and low thermal expansibility and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910945A (en) * 1987-04-17 1990-03-27 Strapack Corporation Band feeding and tightening apparatus for strapping machine
WO1994029057A1 (en) * 1993-06-09 1994-12-22 Charles Hauser Device for sawing a hard or fragile material
WO1998041665A1 (en) * 1997-03-18 1998-09-24 Sumitomo Special Metals Co., Ltd. Low heat expansion alloy
US6123898A (en) * 1997-03-18 2000-09-26 Sumitomo Special Metals Co., Ltd. Low heat expansion alloy
CN1075564C (en) * 1997-03-18 2001-11-28 住友特殊金属株式会社 Low heat expansion alloy
JP2011162820A (en) * 2010-02-08 2011-08-25 Res Inst Electric Magnetic Alloys High-strength low-thermal-expansion alloy, method for producing the same, and precision instrument
KR102030834B1 (en) * 2019-05-20 2019-10-10 국방과학연구소 Heat treatment of Fe-Ni-Co ternary alloy and Fe-Ni-Co ternary alloy using the same

Also Published As

Publication number Publication date
JP2796966B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
JPS6159390B2 (en)
CN110541119B (en) Low-expansion iron-nickel alloy and manufacturing method thereof
EP0343292B1 (en) Low thermal expansion casting alloy
US2768915A (en) Ferritic alloys and methods of making and fabricating same
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPH0321622B2 (en)
JPH0321623B2 (en)
JPH0641623B2 (en) Controlled expansion alloy
JP3614869B2 (en) High strength non-magnetic low thermal expansion alloy
JPH01123052A (en) Ultralow thermal expansion alloy and production thereof
JP4253100B2 (en) Low thermal expansion alloy with excellent machinability and manufacturing method thereof
JPH02236239A (en) Manufacture of high temperature wear-resistant co base alloy having excellent hot workability
JPH04235261A (en) Manufacture of co-base alloy stock
JPH03134144A (en) Nickel-base alloy member and its manufacture
JPS59232231A (en) Manufacture of rotor for turbine
JPH04131358A (en) High-hardness nonferromagnetic low-thermal expansion alloy and production thereof
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
JPS621466B2 (en)
JP2628806B2 (en) High strength non-magnetic low thermal expansion alloy and method for producing the same
JP3589846B2 (en) Manufacturing method of ferritic stainless steel for cold forging with excellent shear cutability
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
JP2005023426A (en) High strength nonmagnetic low thermal expansion alloy
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPH02111850A (en) Manufacture of copper alloy for lead frame
JPS63125632A (en) High-strength copper alloy having excellent thermal fatigue resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees