JPH01107468A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH01107468A
JPH01107468A JP62265805A JP26580587A JPH01107468A JP H01107468 A JPH01107468 A JP H01107468A JP 62265805 A JP62265805 A JP 62265805A JP 26580587 A JP26580587 A JP 26580587A JP H01107468 A JPH01107468 A JP H01107468A
Authority
JP
Japan
Prior art keywords
electrolyte
concentration
battery
polyaniline
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62265805A
Other languages
Japanese (ja)
Inventor
Hiroshi Hattori
浩 服部
Tatsu Nagai
龍 長井
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62265805A priority Critical patent/JPH01107468A/en
Publication of JPH01107468A publication Critical patent/JPH01107468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase energy densities per unit volume and unit weight by using polyaniline as a positive electrode and a specified electrolyte. CONSTITUTION:In a secondary battery using polyaniline in a positive electrode 6, an electrolyte 9 prepared by dissolving LiBF4 in 1,2-dimethoxyethane is used and the concentration of the LiBF4 is made to 4-6mol/l. Although this electrolyte 9 is of high concentration, it does not decrease the charge-discharge performance of the battery, and when the concentration ot LiBF4 exceeds 4mol/l, energy density per weight is substantially increased. The concentration in which the electrolyte is liquid at room temperature is up to about 6mol/l. The amount ot the electrolyte 9 in the battery is remarkably reduced and energy densities per unit volume and unit weight are increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリアニリンを正極に用いるリチウム二次電池
に係わり、さらに詳しくはその電解液の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a lithium secondary battery using polyaniline as a positive electrode, and more particularly to improvement of its electrolyte.

〔従来の技術〕[Conventional technology]

導電性高分子を電極材料に用いる二次電池の中で、ポリ
アニリンを正極に用いたリチウム二次電池は、充放電効
率の良さ、自己放電の少なさで優れ、過放電に強いとい
う長所を持つと報告されている(例えば、第24回電池
討論会要旨集第197頁)。
Among secondary batteries that use conductive polymers as electrode materials, lithium secondary batteries that use polyaniline as the positive electrode have the advantages of high charge/discharge efficiency, low self-discharge, and resistance to overdischarge. (For example, 24th Battery Symposium Abstracts, page 197).

しかし、実際の電池を組立てた場合、ポリアニリンの重
量が軽いにもかかわらず、多量の電解液を使用しなけれ
ばならないために、体積、重量あたりのエネルギー密度
を充分に高めることができないという問題がある。
However, when actually assembling a battery, despite the light weight of polyaniline, a large amount of electrolyte must be used, making it impossible to sufficiently increase the energy density per volume and weight. be.

これは、この電池の充放電反応が電解液中のアニオンの
ポリアニリンへのドープ・脱ドープ反応を利用するもの
であり、電解液中のアニオンおよびカチオンが電池活物
質と同様の役目を果たすため、多量の電解液が必要であ
るということが原因である。
This is because the charging and discharging reactions of this battery utilize the doping and dedoping reactions of anions in the electrolyte to polyaniline, and the anions and cations in the electrolyte play the same role as the battery active material. This is due to the need for a large amount of electrolyte.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明はポリアニリンを正極に用いたリチウム二次電
池が多量の電解液を使用しなければならなかったという
問題点を解決し、それによって、体積、重量あたりのエ
ネルギー密度の高いリチウム二次電池を提供することを
目的とする。
This invention solves the problem that lithium secondary batteries using polyaniline as the positive electrode require the use of a large amount of electrolyte, and thereby enables lithium secondary batteries with high energy density per volume and weight. The purpose is to provide.

〔問題点を解決するための手段] 本発明者らは、上記目的を達成するために、ポリアニリ
ンを正極に用いるリチウム二次電池において、多量のリ
チウム塩を溶解し得る有機電解液系について、鋭意検討
を重ねた結果、LiBF4を1.2−ジメトキシエタン
に溶解するときは、LiBFaを4モル/1以上の高濃
度に溶解でき、かつそのような高濃度にしても電池反応
に何らの障害を伴うことがなく、電池内に注入する電解
液量を減らしても、所定の放電容量を維持し、電池の体
積、重量あたりのエネルギー密度を高めることができる
ことを見出し、本発明を完成するにいたった。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have made extensive efforts to develop an organic electrolyte system capable of dissolving a large amount of lithium salt in a lithium secondary battery using polyaniline as a positive electrode. As a result of repeated studies, we found that when LiBF4 is dissolved in 1,2-dimethoxyethane, LiBFa can be dissolved at a high concentration of 4 mol/1 or more, and even at such a high concentration, there will be no hindrance to the battery reaction. They discovered that even if the amount of electrolyte injected into the battery is reduced, the predetermined discharge capacity can be maintained and the energy density per volume and weight of the battery can be increased, and this led to the completion of the present invention. Ta.

すなわち、従来、リチウム二次電池においては二硫化チ
タン(TiS)などの無機系正極活物質を用いる場合が
主流を占めていたので、電解液はリチウムイオンを正極
側にイオン伝導させればよく、そのため、リチウム塩を
約1モル/I!、程度溶解した電解液が一般に使用され
ており、正極にポリアニリンを用いる場合にも、二硫化
チタンなどの無機系正極活物質を用いる場合同様に、リ
チウム塩濃度が約1モル/l程度の電解液を使用されて
いたが、上記のようにLiBF、が4モル/I!。
In other words, conventionally, inorganic positive electrode active materials such as titanium disulfide (TiS) have been mainly used in lithium secondary batteries, so the electrolyte only needs to ionically conduct lithium ions to the positive electrode side. Therefore, about 1 mol/I! of lithium salt! Generally, an electrolytic solution with a lithium salt concentration of about 1 mol/l is used when polyaniline is used for the positive electrode, as is the case when using an inorganic positive electrode active material such as titanium disulfide. However, as mentioned above, LiBF is 4 mol/I! .

以上溶解した電解液を使用すると、電池内の電解液を大
幅に減らすことができ、体積、重量あたりのエネルギー
密度の高い、小型でかつ軽量のリチウム二次電池を作製
することができる。しかも、ポリアニリンを正極に用い
るリチウム二次電池では、電解液の溶質濃度がそのよう
に高濃度であっても、電池反応に何ら障害を生じない。
By using the electrolyte dissolved above, the amount of electrolyte in the battery can be significantly reduced, and a small and lightweight lithium secondary battery with high energy density per volume and weight can be produced. Furthermore, in a lithium secondary battery using polyaniline as a positive electrode, even such a high solute concentration in the electrolytic solution does not cause any hindrance to the battery reaction.

さらに、上記のLiBF4を1.2−ジメトキシエタン
に溶解した電解液は、LtBFn濃度が4モル/It以
上という高濃度であっても電池の充放電サイクル特性を
低下させず、したがってポリアニリンの持つ充放電サイ
クル特性の良さを生かしたリチウム二次電池を作製する
ことができる。
Furthermore, the electrolytic solution prepared by dissolving LiBF4 in 1,2-dimethoxyethane does not deteriorate the charge-discharge cycle characteristics of the battery even at a high LtBFn concentration of 4 mol/It or more, and therefore, the electrolytic solution that polyaniline has It is possible to produce a lithium secondary battery that takes advantage of its good discharge cycle characteristics.

本発明において、電解液中のLiBF4濃度は4モル/
l〜6モル/lにするが、これは下記の理由によるもの
である。LiBF、濃度の増加に伴って電池の体積、重
量あたりのエネルギー密度が高(なるが、LiBF4濃
度が4モル/1以上になるとLiBF*濃度が1モル/
l程度のものに比べて体積、重量あたりのエネルギー密
度が格段と向上する。そして、LiBFa濃度が4モル
/Ilを超えても、LiBF4濃度度が4モル/lのと
きと比べて電池の体積、重量あたりのエネルギー密度を
向上させる効果がそれほど変わらず、また室温で液状を
保ち得る濃度が6モル/l程度までであるからである。
In the present invention, the LiBF4 concentration in the electrolyte is 4 mol/
The amount is adjusted to 1 to 6 mol/l for the following reasons. As the concentration of LiBF increases, the energy density per volume and weight of the battery increases (However, when the LiBF4 concentration becomes 4 mol/1 or more, the LiBF* concentration increases
The energy density per volume and weight is significantly improved compared to those with a size of about 1. Even if the LiBFa concentration exceeds 4 mol/Il, the effect of improving the energy density per volume and weight of the battery does not change much compared to when the LiBF4 concentration is 4 mol/l, and the liquid state at room temperature does not change much. This is because the concentration that can be maintained is up to about 6 mol/l.

ポリアニリンを正極に用いるには、通常、ポリアニリン
粉末をペレット状に加圧成形するか、またはシート状に
成形される。その際、ポリテトラフルオロエチレンなど
の結着剤をポリアニリンに添加してもよい。
In order to use polyaniline for a positive electrode, polyaniline powder is usually pressure-molded into a pellet shape or formed into a sheet shape. At that time, a binder such as polytetrafluoroethylene may be added to the polyaniline.

負極にはリチウムまたはリチウム合金が用いられる。上
記リチウム合金としては、例えばりチウム−アルミニウ
ム、リチウム−鉛、リチウム−マグネシウム、リチウム
−ビスマス、リチウム−ガリウム、リチウム−インジウ
ム、リチウム−ガリウム−インジウムなどや、それらに
さらに他の金属を少量添加したものなどが用いられる。
Lithium or a lithium alloy is used for the negative electrode. Examples of the above-mentioned lithium alloys include lithium-aluminum, lithium-lead, lithium-magnesium, lithium-bismuth, lithium-gallium, lithium-indium, lithium-gallium-indium, etc., and alloys containing small amounts of other metals. Things are used.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving Examples.

実施例1 0.1モル/iのアニリンおよび1モル/fのHBF、
を溶解させた水溶液中で電位走査法によって白金電極上
にポリアニリンを電解重合した。このポリアニリンを白
金電極から削り落とし、得られたポリアニリン粉末を洗
浄し、真空乾燥した後、165■をとり出し、これを5
00kg/cdの成形圧力で加圧成形し、直径14i+
園、厚さ0.85+smのペレットを作製し、これを正
極とした。負極には7■の金属リチウムを用いた。
Example 1 0.1 mol/i aniline and 1 mol/f HBF,
Polyaniline was electrolytically polymerized on a platinum electrode using a potential scanning method in an aqueous solution in which polyaniline was dissolved. This polyaniline was scraped off from the platinum electrode, and the obtained polyaniline powder was washed and vacuum dried.
Pressure molded at a molding pressure of 00 kg/cd, diameter 14i+
A pellet with a thickness of 0.85+sm was prepared and used as a positive electrode. For the negative electrode, 7μ metallic lithium was used.

電解液にはアルゴン雰囲気中で37.5 gのLiBF
4を1.2−ジメトキシエタンに徐々に溶解して全量を
100mj!とし、LiBF、ifi度が4モル/lと
なったものを用いた。
The electrolyte contained 37.5 g of LiBF in an argon atmosphere.
4 was gradually dissolved in 1,2-dimethoxyethane and the total amount was 100mj! LiBF with an ifi degree of 4 mol/l was used.

電池は、第1図に示すように、プラスチック製実験用セ
ル容器1内にステンレス鋼製箔でリード2をとったステ
ンレス鋼製箔製網よりなる集電体3、前記リチウムより
なる負極4、微孔性ポリプロピレンフィルムよりなるセ
パレータ5、前記ポリアニリンペレットよりなる正極6
、ステンレス鋼製箔でリード8をとったステンレス鋼製
網からなる集電体7の順に配置し、前記電解液9を19
7μ!注入した後、上からプラスチック栓10をし、隙
間をエポキシ樹脂11で固めて密封することによって組
み立てた。
As shown in FIG. 1, the battery includes, in a plastic experimental cell container 1, a current collector 3 made of a stainless steel foil net with leads 2 made of stainless steel foil, a negative electrode 4 made of the above-mentioned lithium, A separator 5 made of a microporous polypropylene film, and a positive electrode 6 made of the polyaniline pellets mentioned above.
, a current collector 7 made of a stainless steel net with leads 8 made of stainless steel foil are arranged in this order, and the electrolyte 9 is
7μ! After the injection, a plastic stopper 10 was placed on top, and the gap was solidified and sealed with epoxy resin 11 to assemble.

実施例2 電解液のLiBFs濃度を5モル/lに変え、注入電解
液量をポリアニリンと同容量分の159μ2に変えたほ
かは実施例1と同様の電池を組み立てた。
Example 2 A battery was assembled in the same manner as in Example 1, except that the LiBFs concentration of the electrolyte was changed to 5 mol/l and the amount of electrolyte injected was changed to 159 μ2, which is the same capacity as polyaniline.

実施例3 電解液のLiBFa1度を6モル/iに変え、注入電解
液量をポリアニリンと同容量分の134μ2に変えたほ
かは実施例1と同様の電池を組み立てた。
Example 3 A battery was assembled in the same manner as in Example 1, except that the electrolyte was changed from 1 degree LiBFa to 6 mol/i, and the amount of electrolyte injected was changed to 134 μ2, the same capacity as polyaniline.

比較例1 電解液のLiBFn濃度を1モル/2に変え、注入電解
液量をポリアニリンと同容量分の756μlに変えたほ
かは実施例1同様の電池を組み立てた。
Comparative Example 1 A battery similar to Example 1 was assembled except that the LiBFn concentration of the electrolyte was changed to 1 mol/2 and the amount of the electrolyte injected was changed to 756 μl, which was the same volume as polyaniline.

上記実施例1〜3および比較例1の電池を正極が負極に
対して3.9■になるまで500μAで定電流充電し、
正極が負極に対して2.5vになるまで500μAで定
電流放電をし、この充放電を2回繰り返した後の第3回
目放電での放電容量を測定した。その結果ならびに上記
放電容量の測定結果に基づいて算出した電池の体積、重
量あたりのエネルギー密度を第1表に示す。
The batteries of Examples 1 to 3 and Comparative Example 1 were charged at a constant current of 500μA until the positive electrode became 3.9μ with respect to the negative electrode.
Constant current discharge was carried out at 500 μA until the positive electrode became 2.5 V with respect to the negative electrode, and after repeating this charging and discharging twice, the discharge capacity at the third discharge was measured. Table 1 shows the energy density per volume and weight of the battery calculated based on the results and the above measurement results of the discharge capacity.

第1表に示すように、いずれの電池においても、ポリア
ニリン量に応じた量の電解液を注入することにより、そ
れぞれ所定の放電容量が得られるが(ただし、電解液中
のLIBF4濃度の増加に伴い抵抗分極が増え、それに
よって放電容量が若干低下する)、本発明の実施例1〜
3の電池では、LIBF4濃度の増加に伴う注入電解液
量の減少により、従来品に相当する比較例1の電池に比
べて、体積あたりのエネルギー密度および重量あたりの
エネルギー密度を大幅に向上させることができた。
As shown in Table 1, in each battery, a predetermined discharge capacity can be obtained by injecting an amount of electrolyte corresponding to the amount of polyaniline (however, the increase in LIBF4 concentration in the electrolyte Accordingly, the resistance polarization increases and the discharge capacity slightly decreases), Examples 1 to 1 of the present invention
In battery No. 3, the energy density per volume and energy density per weight were significantly improved compared to the battery of Comparative Example 1, which corresponds to the conventional product, by reducing the amount of electrolyte injected as the LIBF4 concentration increased. was completed.

また、前記条件下で充放電サイクルを繰り返し、第10
0回目放電時の放電容量を測定し、前記第3回目放電で
の放電容量に対する放電容量の保持率を求めた。その結
果を第2表に示す。
Further, the charge/discharge cycle was repeated under the above conditions, and the 10th
The discharge capacity at the 0th discharge was measured, and the retention rate of the discharge capacity with respect to the discharge capacity at the 3rd discharge was determined. The results are shown in Table 2.

第     2     表 第2表に示すように、LiBF、を1,2−ジメトキシ
エタン中に4モル/115モル/2.6モル/j!溶解
した電解液を用いた実施例1〜3の電池は、放電容量の
保持率が大きく、電解液中のLiBF、濃度が1モル/
2の比較例1の電池と同程度であって、電解液中のLi
BF、濃度を高くしたことによる充放電サイクル特性の
低下は認められなかった。
Table 2 As shown in Table 2, LiBF was present in 1,2-dimethoxyethane at 4 mol/115 mol/2.6 mol/j! The batteries of Examples 1 to 3 using the dissolved electrolyte had a high discharge capacity retention rate, and the LiBF concentration in the electrolyte was 1 mol/L.
2, the Li in the electrolyte was the same as that of Comparative Example 1.
No deterioration in charge/discharge cycle characteristics due to increasing the BF concentration was observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、ポリアニリンを正極
に用いるリチウム二次電池において、LiBF、を1.
2−ジメトキシエタンに4モル/l〜6モル/Il溶解
した電解液を用いることにより、体積、重量あたりのエ
ネルギー密度を高めることができた。
As explained above, in the present invention, in a lithium secondary battery using polyaniline as a positive electrode, LiBF is used in 1.
By using an electrolytic solution in which 4 mol/l to 6 mol/Il was dissolved in 2-dimethoxyethane, the energy density per volume and weight could be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリチウム二次電池の一例を示す断
面図である。 4・・・負極、 6・・・正極、  9・・・電解液印
黛# 第  1  図 4・・・負極 6・・・正極 9・・・電解液
FIG. 1 is a sectional view showing an example of a lithium secondary battery according to the present invention. 4... Negative electrode, 6... Positive electrode, 9... Electrolyte solution #1 Fig. 4... Negative electrode 6... Positive electrode 9... Electrolyte solution

Claims (1)

【特許請求の範囲】[Claims] (1)ポリアニリンを正極に用い、リチウムまたはリチ
ウム合金を負極に用いるリチウム二次電池において、電
解液の溶質としてLiBF_4を用い、電解液の溶媒と
して1、2−ジメトキシエタンを用い、電解液の溶質濃
度が4モル/l〜6モル/lであることを特徴とするリ
チウム二次電池。
(1) In a lithium secondary battery that uses polyaniline as the positive electrode and lithium or lithium alloy as the negative electrode, LiBF_4 is used as the solute of the electrolyte, 1,2-dimethoxyethane is used as the solvent of the electrolyte, and the solute of the electrolyte is A lithium secondary battery having a concentration of 4 mol/l to 6 mol/l.
JP62265805A 1987-10-20 1987-10-20 Lithium secondary battery Pending JPH01107468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265805A JPH01107468A (en) 1987-10-20 1987-10-20 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265805A JPH01107468A (en) 1987-10-20 1987-10-20 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH01107468A true JPH01107468A (en) 1989-04-25

Family

ID=17422291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265805A Pending JPH01107468A (en) 1987-10-20 1987-10-20 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH01107468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146714A1 (en) * 2012-03-26 2013-10-03 国立大学法人 東京大学 Lithium secondary battery electrolyte and secondary battery including said electrolyte
WO2018062337A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Electrochemical device
JP2019160617A (en) * 2018-03-14 2019-09-19 Tdk株式会社 Lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146714A1 (en) * 2012-03-26 2013-10-03 国立大学法人 東京大学 Lithium secondary battery electrolyte and secondary battery including said electrolyte
JPWO2013146714A1 (en) * 2012-03-26 2015-12-14 国立大学法人 東京大学 ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY CONTAINING THE ELECTROLYTE SOLUTION
JP2016122657A (en) * 2012-03-26 2016-07-07 国立大学法人 東京大学 Lithium secondary battery electrolyte, and secondary battery including the same
US9614252B2 (en) 2012-03-26 2017-04-04 The University Of Tokyo Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution
WO2018062337A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Electrochemical device
JP2019160617A (en) * 2018-03-14 2019-09-19 Tdk株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
Tarascon et al. Performance of Bellcore's plastic rechargeable Li-ion batteries
EP1114481B1 (en) Solid polymer alloy electrolyte in homogeneous state and manufacturing method therefor, and composite electrode, lithium polymer battery and lithium ion polymer battery using the same and manufacturing methods therefor
EP3979372B1 (en) Positive pole piece, and electrochemical device and equipment related thereto
EP3979397A1 (en) Positive electrode plate and electrochemical device and equipment associated therewith
CN115172661B (en) Pole piece, electrode component, battery monomer, battery and power consumption device
KR100873564B1 (en) Electrochemical device having advanced safety by using thermal expasion materials and preparation method thereof
JP3451781B2 (en) Organic electrolyte secondary battery
JPH01107467A (en) Lithium secondary battery
JPH01107468A (en) Lithium secondary battery
JP4071746B2 (en) Polymer electrolyte for lithium secondary battery and lithium secondary battery including the same
JP3292220B2 (en) Lithium battery
JPH0541251A (en) Nonaqueous electrolyte secondary battery
US6617077B1 (en) Polymer electrolyte battery and method of fabricating the same
JPH09270271A (en) Nonaqueous secondary battery and manufacture thereof
JPS59134561A (en) Lithium cell
JPH05258753A (en) Nonaqueous electrolyte lithium battery
JPS58163188A (en) Organic electrolyte secondary cell
JP2680570B2 (en) Rechargeable battery
JPH01124971A (en) Lithium secondary battery
Appetecchi et al. Plastic power sources
JPS62290069A (en) Organic electrolyte secondary battery
JP2001006660A (en) Nonaqueous secondary battery
JPH056309B2 (en)
JPH01124970A (en) Lithium secondary battery
KR20040042749A (en) Porous Polymer-Coated Gelling Separators and Electrochemical Cells Using the Same