JPH01106477A - Sic blue color light emitting diode - Google Patents

Sic blue color light emitting diode

Info

Publication number
JPH01106477A
JPH01106477A JP62264384A JP26438487A JPH01106477A JP H01106477 A JPH01106477 A JP H01106477A JP 62264384 A JP62264384 A JP 62264384A JP 26438487 A JP26438487 A JP 26438487A JP H01106477 A JPH01106477 A JP H01106477A
Authority
JP
Japan
Prior art keywords
type
sic
substrate
sic layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62264384A
Other languages
Japanese (ja)
Other versions
JPH0797660B2 (en
Inventor
Junichi Sano
純一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26438487A priority Critical patent/JPH0797660B2/en
Publication of JPH01106477A publication Critical patent/JPH01106477A/en
Publication of JPH0797660B2 publication Critical patent/JPH0797660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve efficiency for emitting light by laminating n-type 6H-SiC layer and 6H-SiC layer on n-type 4H-SiC substrate in sequence. CONSTITUTION:Nitrogen-doped n-type 6H-SiC layer 22 and auminum-doped p-type 6H-SiC layer 23 are grown on an n-type 4H-SiC substrate in sequence. A groove 26 which reaches a substrate 21 from the surface of a p-type 6H-SiC layer 23 with a SiO2 film 24 as an etching. Then, a SiO2 film 24 is removed and a thermal oxidation SiO2 film 27 is formed on the front surface and side surface of p-type 6H-SiC layer 23, on the side surface on n-type 6H-SiC layer 22 and substrate 21, and on the inner surface of the groove 26. Then the SiO2 film 27 which is located on the front surface of the p-type 6H-SiC layer 23 which is separated by the groove 26 is partially removed by the photolithography technique. And ohmic first and second electrodes 29 and 30 consisting of Al-Si and Ni-Cr-Au are formed on the front surface of the p-type 6H-SiC layer 23 exposed from an opening 28 and on the rear surface of the substrate 21, respectively.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は5tC(シリコンカーバイト)発色発光ダイオ
ードに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a 5tC (silicon carbide) color emitting diode.

(ロ)従来の技術 SICはバンドギャップが太き(、Pn間両伝導形得ら
れることから青色発光ダイオード用材料として注目を浴
びてきた。
(b) Conventional SIC has attracted attention as a material for blue light emitting diodes because it has a wide bandgap (and Pn-to-Pn biconductivity type can be obtained).

s t cg色発光ダイオードの発光層はり、 Hof
tmannらの報告(Journal Applied
Physics  53α(1,6962,(1913
2))から、カソードルミネッセンスを用いた測定でn
側エピタキシャル成長層で発光していることが知らnて
いる。また、G11nther  zieglerらの
報告(IEEIi: Trans、Electron 
Daviceg、ED−30,277(1983))よ
フ、アルミニクムドーグp形SIGとアンドーグn形S
ICを比較すると、アルミニクムドープp形81Cの方
がかな〕透過率が低いことが知らnている。
s t cg color light emitting diode light emitting layer beam, Hof
A report by tmann et al. (Journal Applied
Physics 53α (1,6962, (1913
2)), n is measured using cathodoluminescence.
It is known that light is emitted from the side epitaxial growth layer. In addition, a report by G11nther ziegler et al. (IEEEi: Trans, Electron
Daviseg, ED-30, 277 (1983)) Aluminum Dogue p-type SIG and Andog n-type S
When comparing ICs, it is known that aluminum-doped p-type 81C has lower transmittance.

更に、古賀らの報告(応用電子物性分科会 研究ことが
知らnている。
Furthermore, a report by Koga et al. (Applied Electronic Materials Subcommittee Research) is known.

こnらの点から、SiC實色発色発光ダイオード装置て
は、第4因に示す如くn型6H−SiC基板(1)の−
主面に窒素がドープさn九n型6H−SiC層(2)と
アルミニクムがドープさn&p型6H−5tC層(3)
とを順次形成してなるSiC背色発色発光ダイオード)
の上記p型6H−81C層(3)肯を銀ペースト(51
等を介して反射器(6)等に固着し、基板(Ijflよ
り光を取出す構成のものが考えらnる。
From these points, as shown in the fourth factor, in the SiC color-emitting diode device, the n-type 6H-SiC substrate (1)
Nitrogen doped n9n type 6H-SiC layer (2) and aluminum doped n&p type 6H-5tC layer (3) on main surface
(SiC colored light-emitting diode formed by sequentially forming
The above p-type 6H-81C layer (3) is coated with silver paste (51
A configuration in which the light is fixed to a reflector (6) or the like through a substrate (Ijfl) or the like and extracts light from the substrate (Ijfl) can be considered.

尚、図中(7)は基板(1)の他主面の周縁に形成さn
たオーミック性の第1[[、(81はp盤6H,81α
層(3)表面に形成さnたオーミック性の第2電極であ
る。
Note that (7) in the figure is formed at the periphery of the other main surface of the substrate (1).
The first ohmic property [[, (81 is p board 6H, 81α
This is an ohmic second electrode formed on the surface of layer (3).

斯る装置では第5図に示す如くp型6H−SiC基板(
111上KP型6H−8lcm(13とn型6H−8I
G層αJとt−順次ai層してなる5l(4色発光ダイ
オードα瘤の上記基板(11)側を銀ペース)(lシ等
を介して反射器(te等に固着し、n型6H−SiC層
と α3側より光を取出す構成点た装置に較べて光透過率が
低いp型頭域を薄くできるので光取出効率が11向上す
る。尚、第5図中、αηはp型6H−8IG゛層Q31
の表面周縁に形成さnたオーミック性のM1電極、αδ
は基板(111裏面に形成さnたオーミック性の第2電
極である。
In such a device, a p-type 6H-SiC substrate (
111 upper KP type 6H-8lcm (13 and n type 6H-8I
5L consisting of G layer αJ and t-sequential AI layer (silver paste on the substrate (11) side of the four-color light emitting diode α bump) (fixed to reflector (TE etc. through l sheet etc., n-type 6H - Compared to a device that extracts light from the SiC layer and the α3 side, the p-type head region with low light transmittance can be made thinner, so the light extraction efficiency is improved by 11. In Fig. 5, αη is the p-type 6H -8IG layer Q31
An ohmic M1 electrode formed on the surface periphery of αδ
is an ohmic second electrode formed on the back surface of the substrate (111).

し9 発明が解決しようとする問題煮 熱るに、基板をn型6H−8IGで構成してなるSIC
青色発光ダイオード(4)においても夾用上光分な光取
出効率が得らnてなく、光取出効率の更に高いものが望
まれている。
9 The problem that the invention seeks to solve is the SIC whose substrate is composed of n-type 6H-8IG.
Even in the blue light emitting diode (4), a sufficient light extraction efficiency has not been obtained, and a device with even higher light extraction efficiency is desired.

に)問題点を解決するための手段 本発明は斯る点に鑑みてなさnたもので、その構成的特
徴は、n型4H−8IG基板上にn型6H−8IG層及
びp盤6 H−8I CIn1に7@久積層したことに
ある。
B) Means for Solving the Problems The present invention has been made in view of the above points, and its structural features include an n-type 6H-8IG layer and a p-type 6H-8IG layer on an n-type 4H-8IG substrate. -8I This is due to the fact that 7@k layers were added to CIn1.

(J#作用 4H−SiCの光透過率(図中、矢線A)とキャリアa
度が3XIO/mのn型6H−SiCO光透過率(図中
、5J!腺B)とを測定した結果を示す。
(J# action 4H-SiC light transmittance (arrow A in the figure) and carrier a
The results of measuring the light transmittance of n-type 6H-SiCO with a degree of 3XIO/m (5J! gland B in the figure) are shown.

第3図よル明らかな如<、”型4H−SiCは斯るSI
Cより低濃度のn型6 H−8i Cに較べて波長46
0nm程度の青色光に対する透過率が高い。尚、図示し
ていないがキャリア濃度が3X1017//dのp型4
H−SiCの光透過率は上記n型6H−3IGより低い
As is clear from Figure 3, "type 4H-SiC is such an SI
Wavelength 46 compared to n-type 6 H-8i C, which has a lower concentration than C.
High transmittance for blue light of about 0 nm. Although not shown, a p-type 4 with a carrier concentration of 3X1017//d
The light transmittance of H-SiC is lower than that of the n-type 6H-3IG.

(へ)夾施例 第1図(a)〜(1]は本発明のSIC青色発光ダイオ
ードの與遣方法を示す工程別断面図である。
(F) Additional Embodiments FIGS. 1(a) to 1(1) are cross-sectional views showing each step of the method for providing the SIC blue light emitting diode of the present invention.

第1図(4L)は第1工程を示し、n型4H−8iG基
板Qv上に窒素がドープさnたn型6H−SiC1!■
及びアルミニクムがドーグさ2’したP型6H。
FIG. 1 (4L) shows the first step, in which an n-type 4H-8iG substrate Qv is doped with nitrogen (n-type 6H-SiC1!). ■
and P-type 6H with aluminum dogged 2'.

SIC層@を順次成長させる。尚、斯る成長は周知のC
VD法等によシ行なう。
SIC layers are grown sequentially. Incidentally, such growth is the well-known C.
This is done using the VD method, etc.

第1図中】は第2工程を示し、p型6H−8IG層のの
表面及び側面と基板CID及びn型6H−8,1電層四
備面に膜厚25GOAの熱酸化5102展c!4Jt−
形成する。尚、斯るS l 02 HQ40ffeK(
ri湿潤な酸素がsoosccMの割合で供給さnる1
000℃の高温雰囲気中に120分間、上記成長j−の
のが形成され九基板12]J1に床持することによ〕行
なえる。
1 shows the second step, in which a film thickness of 25 GOA is thermally oxidized on the surface and side surfaces of the p-type 6H-8 IG layer, the substrate CID, and the four surfaces of the n-type 6H-8,1 conductive layer. 4Jt-
Form. In addition, such S l 02 HQ40ffeK (
ri Moist oxygen is supplied at a rate of soosccM n1
The above growth can be carried out by holding the substrate 12 on the substrate 12] for 120 minutes in a high temperature atmosphere of 000 DEG C.

第1図(0)は第3工程を示し、p型6H−8IG層の
表面の81へ膜+241をホトリソグラフィ技術を用い
て部分的に除去し、紙面垂直方向に延在する開口c5t
−形成する。
FIG. 1(0) shows the third step, in which the film +241 is partially removed from 81 on the surface of the p-type 6H-8IG layer using photolithography, and an opening c5t extending in the direction perpendicular to the paper surface is formed.
- form.

N1図(山はM4工程を示し、上記8102展圓をエラ
をングマスクとしてp型6H−3iC4i@、 表面よ
〕基板r2vに達する溝@ヲエッをングにょシ形成する
。斯るエツチングは基板c?1lt−iooot:に床
持した状態でArガス218LM、C/zガ、c170
SCCM、Ozガ、xt−14sccMずっ基板表面に
供給することにより行なえる。
Diagram N1 (The mountain indicates the M4 process, using the 8102 expansion circle as an etching mask, etching the grooves reaching the substrate r2v from the p-type 6H-3iC4i@ surface) to the substrate r2v. 1lt-iooot: Ar gas 218LM, C/z gas, c170
This can be done by supplying SCCM, Oz, and xt-14sccM to the surface of the substrate.

第1図(e)はM5工程を示し、S i 02 HII
C#tm去する。
FIG. 1(e) shows the M5 process, S i 02 HII
C#tm leave.

第1図(!]は第6エ程を示し、plJ16H−SiC
層の表面及び側面、n型6H−8IG層の及び基板QD
側面と溝(至)円面に膜厚600λの熱酸化St02 
@@を形成する。尚、斯る5lo2膜(至)の形成は乾
燥酸素が5008CCMの割合で供給さnる1100℃
の高温雰囲気中に5時間、jI!1図(433に示す基
板金床持することにより行なえる。
Figure 1 (!) shows the 6th process, plJ16H-SiC
Surface and side surfaces of the layer, n-type 6H-8IG layer and substrate QD
Thermal oxidation St02 with a film thickness of 600λ on the side surface and groove (to) circular surface
Form @@. The formation of such a 5LO2 film was carried out at 1100°C while dry oxygen was supplied at a rate of 5008 CCM.
jI! for 5 hours in a high temperature atmosphere. This can be done by holding the substrate anvil shown in Figure 1 (433).

81図(2)は第7エ程を示し、溝@により分離さnた
p型6H−SiC層(ハ)の表面に夫々位置する5lO
z膜(2)をホトシソグラフィ技vrIを用いて部分的
に除去し、紙面垂直方向に延在する開口w’を形成する
Figure 81 (2) shows the seventh step, in which the 5lO
The Z film (2) is partially removed using photolithography technique vrI to form an opening w' extending in the direction perpendicular to the plane of the paper.

第1図(勾はM8工程を示し、上記開口(至)により露
出したp型6H−8i c層の表面及び基板c!!l凰
面に夫hA、lニー81及びN1−Cr−Auからなる
オーミック性のM11第21を極(2)閃ヲ形成する。
FIG. 1 (The slope shows the M8 process, and the surface of the p-type 6H-8i C layer exposed by the above opening (to) and the bottom surface of the substrate are covered with a layer of aluminum, aluminum 81, and N1-Cr-Au. The ohmic M11 21 forms a pole (2) flash.

尚、上記第2電価(7)は開口(至)直下には形成さn
ない。
Note that the second electric charge (7) is not formed directly below the opening (to).
do not have.

第1図(1)は最終工程を示し、溝のに浴りて基板(2
IIt″分割することによ、1j)SIC青色発光ダイ
オード3I)が完成する。
Figure 1 (1) shows the final process, in which the substrate (2
By dividing IIt'', 1j) SIC blue light emitting diode 3I) is completed.

第2図は上記工程によシ作成さnたSIC背色青色光ダ
イオード6υのp型SIC層(231側を銀ペースト8
3t″介して反射器−に固層した構成を示す。
Figure 2 shows a p-type SIC layer (231 side with silver paste 8
The configuration is shown in which the structure is fixed to the reflector through 3t''.

第2図のような装置では、n型6H−8IG層oとp型
s H−81cmcnトo接合近傍テ生じた青色光の大
部分は、Ii [I2D t−介して外部に取出さnる
こととなるが、上記基板Qvがn型4H−3IGで構成
さnているため、第4図及び第5図に示した従来装置に
較べて光取出効率は50%以上向上した。また、不夾施
例の発光ダイオードr31)のn型6H−3IG層のと
p型6H−8IG層(ハ)との側面は5IOz&1@で
被わnているため、第2図に示す如く、p型6H−31
CJ@(ハ)側をボンディングした場合でありても銀ペ
ース)C31の這い上ルにより生じる上記両肩+221
Ωの短絡は生じない。
In the device shown in Fig. 2, most of the blue light generated near the junction between the n-type 6H-8IG layer o and the p-type sH-81cmcn is taken out to the outside via Ii[I2Dt-. However, since the substrate Qv is composed of n-type 4H-3IG, the light extraction efficiency is improved by more than 50% compared to the conventional device shown in FIGS. 4 and 5. In addition, since the side surfaces of the n-type 6H-3IG layer and the p-type 6H-8IG layer (c) of the light emitting diode r31) of the non-containing example are covered with 5IOz&1@, as shown in FIG. p-type 6H-31
Even if the CJ @ (C) side is bonded, the above two shoulders +221 caused by the creeping of C31 (silver pace)
No short circuit of Ω occurs.

怪】発明の効果 本発明によnば、従来に比して光取出効率が大なるSI
C青色発光ダイオードを提供できる。
[Suspicious] Effects of the Invention According to the present invention, the SI has a higher light extraction efficiency than the conventional one.
C blue light emitting diode can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(〜〜(幻は不発明の5icy色発光ダイオード
の製造工程を示す工程別断面図、第2図は第1図に示し
た工程によ9作成さルたSIC青色発光ダイオードを反
射器に組込んだ構成を示す断面図、M3図は光透過率を
示す特注図、第4図及び第5図は従来例を示す断面図で
ある。
Figure 1 is a cross-sectional view showing the manufacturing process of an uninvented 5icy color light emitting diode, Figure 2 is a reflective SIC blue light emitting diode manufactured by the process shown in Figure 1. FIG. 4 and FIG. 5 are cross-sectional views showing a conventional example. Figure M3 is a custom-made view showing light transmittance.

Claims (1)

【特許請求の範囲】[Claims] (1)n型4H−SiC基板上にn型6H−SiC層及
びP型6H−SiC層を順次積層したことを特徴とする
SiC青色発光ダイオード。
(1) An SiC blue light emitting diode characterized in that an n-type 6H-SiC layer and a P-type 6H-SiC layer are sequentially laminated on an n-type 4H-SiC substrate.
JP26438487A 1987-10-20 1987-10-20 SiC blue light emitting diode Expired - Lifetime JPH0797660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26438487A JPH0797660B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26438487A JPH0797660B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Publications (2)

Publication Number Publication Date
JPH01106477A true JPH01106477A (en) 1989-04-24
JPH0797660B2 JPH0797660B2 (en) 1995-10-18

Family

ID=17402405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26438487A Expired - Lifetime JPH0797660B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Country Status (1)

Country Link
JP (1) JPH0797660B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546052U (en) * 1991-11-19 1993-06-18 三洋電機株式会社 Light emitting diode device
JPH05175239A (en) * 1991-06-14 1993-07-13 Cree Res Inc High power and high frequency metal-semiconductor field-effect transistor
US5481318A (en) * 1990-03-27 1996-01-02 Ferguson Limited Television receiver with additional display of characters
US6686616B1 (en) 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
US6902964B2 (en) 2001-10-24 2005-06-07 Cree, Inc. Methods of fabricating delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
US6956239B2 (en) 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
KR100548860B1 (en) * 1997-07-16 2006-03-23 산요덴키가부시키가이샤 N type nitride semiconductor electrode, semiconductor device having the electrode, and manufacturing method thereof
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
US7348612B2 (en) 2004-10-29 2008-03-25 Cree, Inc. Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same
US7402844B2 (en) 2005-11-29 2008-07-22 Cree, Inc. Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods
US7646043B2 (en) 2006-09-28 2010-01-12 Cree, Inc. Transistors having buried p-type layers coupled to the gate
US8203185B2 (en) 2005-06-21 2012-06-19 Cree, Inc. Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481318A (en) * 1990-03-27 1996-01-02 Ferguson Limited Television receiver with additional display of characters
JPH05175239A (en) * 1991-06-14 1993-07-13 Cree Res Inc High power and high frequency metal-semiconductor field-effect transistor
JPH0546052U (en) * 1991-11-19 1993-06-18 三洋電機株式会社 Light emitting diode device
KR100548860B1 (en) * 1997-07-16 2006-03-23 산요덴키가부시키가이샤 N type nitride semiconductor electrode, semiconductor device having the electrode, and manufacturing method thereof
US6686616B1 (en) 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
US7067361B2 (en) 2000-05-10 2006-06-27 Cree, Inc. Methods of fabricating silicon carbide metal-semiconductor field effect transistors
US6902964B2 (en) 2001-10-24 2005-06-07 Cree, Inc. Methods of fabricating delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
US6906350B2 (en) 2001-10-24 2005-06-14 Cree, Inc. Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
US6956239B2 (en) 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
US7297580B2 (en) 2002-11-26 2007-11-20 Cree, Inc. Methods of fabricating transistors having buried p-type layers beneath the source region
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
US7348612B2 (en) 2004-10-29 2008-03-25 Cree, Inc. Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same
US8203185B2 (en) 2005-06-21 2012-06-19 Cree, Inc. Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods
US7402844B2 (en) 2005-11-29 2008-07-22 Cree, Inc. Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods
US7646043B2 (en) 2006-09-28 2010-01-12 Cree, Inc. Transistors having buried p-type layers coupled to the gate
US7943972B2 (en) 2006-09-28 2011-05-17 Cree, Inc. Methods of fabricating transistors having buried P-type layers coupled to the gate

Also Published As

Publication number Publication date
JPH0797660B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
JPH01106477A (en) Sic blue color light emitting diode
TW578318B (en) Light emitting diode and method of making the same
JP2650730B2 (en) Pn junction type light emitting diode using silicon carbide semiconductor
JPH10506234A (en) Long-life vertical-structure light-emitting diodes with III-nitride active layer
JPS6327851B2 (en)
JPH0268968A (en) Compound semiconductor light-emitting device
JPH06103757B2 (en) Diamond electronic device
JP4063801B2 (en) Light emitting diode
JPH0485972A (en) Forming method for p-type sic electrode
JPH04188678A (en) Semiconductor light-emitting element
JP2911122B2 (en) Method for forming ohmic electrode of silicon carbide semiconductor device
JPH07307487A (en) Short-wavelength light-emitting element
US5373172A (en) Semiconducting diamond light-emitting element
KR100339518B1 (en) GaN Semiconductor White Light Emitting Device
JP4518881B2 (en) P-type ohmic electrode, compound semiconductor device including the same, compound semiconductor light-emitting device, and manufacturing method thereof
JP4277361B2 (en) Method for manufacturing group III nitride semiconductor device
JPS6174378A (en) Manufacture of photosensor by simultaneous formation of shallow junction and bsf under infrated rays
JPS61179581A (en) Si light-emitting diode
JPH06244455A (en) Manufacture of light emitting diode
JPH05304314A (en) Light emitting diode
JPH067601B2 (en) Light emitting element
JP2585252B2 (en) Semiconductor light emitting device
JPH0669539A (en) Light-emitting semiconductor device and its manufacture
JPH0244313Y2 (en)
TWI250667B (en) Method for the production of a number of optoelectronic semiconductor-chips and optoelectronic semiconductor-chips