JP7554681B2 - Earthquake-resistant walls - Google Patents
Earthquake-resistant walls Download PDFInfo
- Publication number
- JP7554681B2 JP7554681B2 JP2021012532A JP2021012532A JP7554681B2 JP 7554681 B2 JP7554681 B2 JP 7554681B2 JP 2021012532 A JP2021012532 A JP 2021012532A JP 2021012532 A JP2021012532 A JP 2021012532A JP 7554681 B2 JP7554681 B2 JP 7554681B2
- Authority
- JP
- Japan
- Prior art keywords
- wooden
- joint
- steel
- column
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 78
- 239000010959 steel Substances 0.000 claims description 78
- 229910052751 metal Inorganic materials 0.000 claims description 74
- 239000002184 metal Substances 0.000 claims description 74
- 239000000463 material Substances 0.000 claims description 20
- 230000009970 fire resistant effect Effects 0.000 claims description 11
- 239000004568 cement Substances 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 239000004570 mortar (masonry) Substances 0.000 description 25
- 229910052918 calcium silicate Inorganic materials 0.000 description 13
- 239000000378 calcium silicate Substances 0.000 description 13
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 13
- 238000002485 combustion reaction Methods 0.000 description 13
- 230000000903 blocking effect Effects 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011150 reinforced concrete Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Building Environments (AREA)
- Load-Bearing And Curtain Walls (AREA)
Description
本発明は、鉄骨系の柱梁架構の構面内に設けられる耐震壁に関する。 The present invention relates to a seismic wall installed within the structural plane of a steel-framed column-beam structure.
従来より、取付金物を介して木質壁を鉄骨部材に取り付けることが行われている(特許文献1、2参照)。
特許文献1では、木質壁の四隅に斜材が設けられており、これら斜材は、鉄骨柱と鉄骨梁との間に斜めに架設されている。
特許文献2では、木質壁パネルの四隅に荷重伝達部が設けられ、これら荷重伝達部は、鉄骨梁のフランジ上に固定されている。
ところで、建築基準法では、大型の建物について、火災時に鉄骨梁や鉄骨柱などの主要構造部が所定時間に亘って変形や損傷が生じない耐火構造とすることを規定している。しかしながら、特許文献1、2に示された構造では、火災により木質壁が燃焼すると、この燃焼熱が取付金物を介して鉄骨梁や鉄骨柱に伝達されるため、所定の耐火性能を確保できないおそれがあった。
Conventionally, wooden walls have been attached to steel frame members via mounting hardware (see
In
In
Incidentally, the Building Standards Act stipulates that large buildings must have a fire-resistant structure in which the main structural parts, such as steel beams and steel columns, do not deform or become damaged for a certain period of time in the event of a fire. However, in the structures shown in
本発明は、鉄骨系の柱梁架構の構面内に設けられて、火災時に柱梁架構の耐火性能が低下するのを抑制可能な耐震壁を提供することを目的とする。 The present invention aims to provide a seismic wall that is installed within the structural plane of a steel-framed column-beam structure and can prevent the fire resistance of the column-beam structure from decreasing in the event of a fire.
発明者らは、鉄骨系の柱梁架構内に設ける木質耐震壁として、木質壁部と柱梁架構とを接合する接合金物の外側表面に熱吸収部を設けることで、火災時に生じる木質壁部の燃焼熱の一部が熱吸収部で吸収されるため、柱梁架構に対して優れた耐火性能を備えた木質耐震壁を実現できる点に着目して、本発明に至った。
第1の発明の耐震壁(例えば、後述の木質耐震壁1、1A~1G)は、鉄骨系の柱梁架構(例えば、後述の柱梁架構2)の構面内に設けられる耐震壁であって、前記柱梁架構内に設けられた木質板からなる木質壁部(例えば、後述の木質壁部10)と、前記木質壁部と前記柱梁架構とを接合する接合金物(例えば、後述の接合金物20、20A~20G)と、前記接合金物に接して、または、前記接合金物の近傍に設けられた熱吸収部(例えば、後述のモルタルブロック26、26D)と、を備えることを特徴とする。
The inventors developed the present invention based on the idea that by providing a heat absorbing section on the outer surface of the connecting metal fittings that join the wooden wall section to the column-beam structure, a part of the combustion heat generated in the wooden wall section during a fire can be absorbed by the heat absorbing section, thereby realizing a wooden earthquake-resistant wall with excellent fire resistance compared to the column-beam structure.
The earthquake-resistant wall of the first invention (for example, wooden earthquake-
この発明によれば、木質壁部と柱梁架構とを接合する接合金物に接して熱容量の大きい熱吸収部を設けた。よって、火災により木質壁部が燃焼した際には、燃焼熱が接合金物を介して鉄骨系の柱梁架構に伝達されるが、このとき、火災で生じた熱や木質壁部の燃焼熱の一部が熱吸収部に吸収される。したがって、接合金物に接してまたは接合金物の近傍に熱吸収部を設けることで、鉄骨系の柱梁架構に伝わる熱量を低減でき、柱梁架構の温度の上昇が抑制可能となる。よって、鉄骨系の柱梁架構の耐火性能が低下するのを抑制できる。
なお、熱吸収部は、例えば、接合金物の外側表面や接合金物の内側表面に設けられる。
According to this invention, a heat absorbing part with a large heat capacity is provided in contact with the metal joint that connects the wooden wall section and the column-beam structure. Therefore, when the wooden wall section burns due to a fire, the combustion heat is transferred to the steel-framed column-beam structure via the metal joint, and at this time, a part of the heat generated by the fire and the combustion heat of the wooden wall section is absorbed by the heat absorbing part. Therefore, by providing the heat absorbing part in contact with or near the metal joint, the amount of heat transferred to the steel-framed column-beam structure can be reduced, and the temperature rise of the column-beam structure can be suppressed. Therefore, the deterioration of the fire resistance of the steel-framed column-beam structure can be suppressed.
The heat absorbing portion is provided, for example, on the outer surface of the metal joint or on the inner surface of the metal joint.
第2の発明の耐震壁は、前記木質壁部と前記柱梁架構との間をセメント系材料で塞いだ閉塞部(例えば、後述の閉塞部30)をさらに備えることを特徴とする。
The earthquake-resistant wall of the second invention is characterized by further comprising a closing section (e.g.,
この発明によれば、木質壁部と柱梁架構との間をセメント系材料で塞いで閉塞部とした。この閉塞部が木質壁部と柱梁架構との接合材となるので、木質壁部と柱梁架構との一体性が高まる。また、閉塞部が耐火被覆材として機能するので、木質壁部が燃焼した際には、熱吸収性材料に加えて閉塞部でも燃焼熱が吸収されて、鉄骨系の柱梁架構に伝わる熱量が低減し、鉄骨系の柱梁架構の耐火性能が低下するのを大幅に抑制できる。 According to this invention, the gap between the wooden wall section and the column-beam structure is sealed with a cement-based material to form a blocking section. This blocking section acts as a joining material between the wooden wall section and the column-beam structure, enhancing the unity between the wooden wall section and the column-beam structure. In addition, since the blocking section functions as a fire-resistant coating material, when the wooden wall section burns, the combustion heat is absorbed by the blocking section in addition to the heat-absorbing material, reducing the amount of heat transferred to the steel-framed column-beam structure, and significantly suppressing the deterioration of the fire resistance of the steel-framed column-beam structure.
第3の発明の耐震壁は、前記熱吸収部は、前記木質壁部の四隅、前記木質壁部の表面に沿った所定間隔おき、および、前記接合金物に当接する鉄骨梁のウエブ側面のうち、少なくとも1つに設けられることを特徴とする。 The third invention of the earthquake-resistant wall is characterized in that the heat absorption parts are provided on at least one of the four corners of the wooden wall section, at predetermined intervals along the surface of the wooden wall section, and on the web side of the steel beam that abuts against the metal joint.
この発明によれば、熱吸収部を、木質壁部の一部、つまり、木質壁部の四隅あるいは木質壁部の表面に沿って所定間隔おきに接合金物を配置した。よって、熱吸収部の取付け箇所を少なくでき、木質壁部と柱梁架構とを比較的容易に接合できる。
また、熱吸収部を、接合金物に当接する鉄骨梁のウエブ側面に設けることで、鉄骨系の柱梁架構に伝わる熱量を低減でき、柱梁架構の温度の上昇が抑制可能となる。また、この熱吸収部は、鉄骨梁のウエブの補剛材としても機能する。
According to this invention, the heat absorbing parts are arranged in parts of the wooden wall, i.e., at the four corners of the wooden wall or along the surface of the wooden wall, by placing metal joints at predetermined intervals. This reduces the number of attachment points for the heat absorbing parts, and makes it relatively easy to join the wooden wall to the column-beam structure.
In addition, by providing the heat absorbing part on the side of the web of the steel beam that contacts the metal joint, the amount of heat transferred to the steel-framed column-beam structure can be reduced, and the temperature rise of the column-beam structure can be suppressed. This heat absorbing part also functions as a stiffening material for the web of the steel beam.
本発明によれば、鉄骨系の柱梁架構の構面内に設けられて、火災時に柱梁架構の耐火性能が低下するのを抑制可能な耐震壁を提供できる。 The present invention provides a seismic wall that is installed within the structural plane of a steel-framed column-beam structure and can prevent the fire resistance of the column-beam structure from decreasing in the event of a fire.
本発明は、鉄骨系の柱梁架構の構面内に設けられた木質耐震壁である。この木質耐震壁では、熱吸収部が設けられた接合金物により木質壁部と柱梁架構とが接合されるとともに、木質壁部と柱梁架構との間をセメント系材料で塞いだ閉塞部が設けられている。
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
〔第1実施形態〕
図1は、本発明の第1実施形態に係る木質耐震壁1の正面図である。
木質耐震壁1は、鉄骨鉄筋コンクリート造の柱梁架構2の構面内に設けられる。
柱梁架構2は、一対の鉄骨鉄筋コンクリート柱3と、この一対の鉄骨鉄筋コンクリート柱3間に架設された上下一対の鉄骨梁4と、鉄骨梁4の上に設けられた床スラブ5と、を備える。
木質耐震壁1は、柱梁架構2内の水平方向中央部に設けられた木質板からなる矩形状の木質壁部10と、木質壁部10の四つの出隅部に設けられて柱梁架構2の鉄骨梁4に接合される接合金物20と、木質壁部10と柱梁架構2の鉄骨梁4との間をセメント系材料で塞いだ閉塞部30と、を備える。つまり、木質壁部10は、接合金物20および閉塞部30を介して、柱梁架構2に接合されている。
木質壁部10を構成する木質板は、例えば、CLTや合板である。CLT(Cross Laminated Timber)は、木材から切り出したひき板(ラミナ)を繊維方向が直交するように積層して接着したものである。合板は、木材から切り出した単板を繊維方向が直交するように積層して接着したものである。
木質耐震壁1の鉄骨梁4との接合部分および鉄骨梁4は、けい酸カルシウム板6で覆われている。
The present invention relates to a wooden earthquake-resistant wall installed within the structural plane of a steel-framed column-beam structure. In this wooden earthquake-resistant wall, the wooden wall section and the column-beam structure are joined by joint metal fittings equipped with heat absorbing parts, and a sealing part is provided between the wooden wall section and the column-beam structure, which is sealed with a cement-based material.
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same components are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
First Embodiment
FIG. 1 is a front view of a wooden earthquake-
The wooden earthquake-
The column-
The wooden earthquake-
The wooden boards constituting the
The joints between the wooden earthquake-
図2は、図1の木質耐震壁1の破線Aで囲んだ部分の拡大図である。
接合金物20は、柱梁架構2に接合される架構接合部21と、架構接合部21から鉛直方向に延びて木質壁部10の側端面に接合される壁接合部22と、を備える。
図3は、接合金物20の部分拡大側面図であり、図4(a)は、図3の接合金物20のB-B断面図であり、図4(b)は、図3の接合金物20のC-C断面図である。なお、図3では、理解を容易にするため、けい酸カルシウム板6の表示を省略している。
FIG. 2 is an enlarged view of the portion of the wooden earthquake-
The
Fig. 3 is a partially enlarged side view of the
架構接合部21は、柱梁架構2の鉄骨梁4のフランジに沿って設けられた板状部材であり、この鉄骨梁4のフランジに複数のボルト24で接合されている。
壁接合部22は、木質壁部10の出隅部の側端面11に沿って延びる板状であり、この側端面11に複数のビス25で接合されている。これらのビス25は、上下方向に所定間隔おきに複数列で設けられている。
The
The
接合金物20の外側表面つまり架構接合部21と壁接合部22との入隅部には、熱吸収部としての熱容量の大きいモルタルブロック26が設けられている。
また、接合金物20の壁接合部22の鉄骨梁4側の部分および架構接合部21は、耐火被覆材として機能するけい酸カルシウム板6で覆われている。
A
In addition, the portion of the
閉塞部30は、図3に示すように、柱梁架構2の鉄骨梁4に溶接固定されたスタッド31にメッシュ筋32を配筋し、グラウト材を充填したものである。この閉塞部30の側面は、けい酸カルシウム板6で覆われている。
As shown in FIG. 3, the blocking
以上の木質耐震壁1は、柱梁架構2に水平力が作用した場合、以下のように動作する。すなわち、木質壁部10の上下端面と鉄骨梁4との隙間を閉塞部30で塞いだので、図5(a)に示すように、閉塞部30を介して、柱梁架構2の鉄骨梁4から木質壁部10に押圧力が伝達される。なお、この閉塞部30は、鉄骨梁4の耐火被覆としても機能する。また、図5(b)に示すように、接合金物20により、この水平力が木質壁部10の出隅部に確実に伝達される。
また、火災時には、木質壁部10が燃焼すると、火災で生じた熱や木質壁部10の燃焼熱が接合金物20を介して鉄骨梁4に伝達されるが、このとき、図6に示すように、この熱の一部が接合金物20の表面に設けたモルタルブロック26に吸収されて、鉄骨梁4に伝わる熱量が低減し、温度の上昇が抑制される。
The above wooden earthquake-
In addition, in the event of a fire, when the
〔接合金物の耐火性能についての検証〕
以下、本発明の木質耐震壁を対象として、接合金物の熱吸収部による温度上昇抑制効果について検証した。具体的には、仮想三次元空間上に比較例および実施例の解析モデルを生成し、有限要素法による熱伝導解析を行った。ここで、比較例は、接合金物にモルタルを設けない構造とし、実施例は、接合金物にモルタルを設けた構造とした。
[Verification of fire resistance of metal joints]
The effect of suppressing temperature rise by the heat absorbing part of the metal joint was verified below for the wooden earthquake-resistant wall of the present invention. Specifically, analysis models of the comparative example and the example were generated in a virtual three-dimensional space, and a heat conduction analysis was performed using the finite element method. Here, the comparative example had a structure in which mortar was not provided on the metal joint, and the example had a structure in which mortar was provided on the metal joint.
図7(a)は、解析モデルを一端側から視た斜視図である。図7(b)は、解析モデルを他端側から視た斜視図である。図7(c)は、解析モデルからけい酸カルシウム板を取り外した状態の斜視図である。
図7に示すように、今回の解析モデルは、木質耐震壁の図1中破線Aで囲んだ部分(つまり木質耐震壁および鉄骨梁の1/4の部分)でかつ鉄骨梁の中心軸で二分割したものとした。さらに、解析モデルを以下のように設定した。鉄骨梁は、BH-400×200×12×22とした。床スラブは、厚さ100mmのALC板とした。閉塞部は、厚さ70mmのモルタルとした。接合金物、閉塞部、ならびに、鉄骨梁の側面のうち接合金物および閉塞部に接続される部分は、厚さ60mmのけい酸カルシウム板で覆い、残りの部分つまり鉄骨梁のうち接合金物および閉塞部に接続されない部分は、厚さ25mmのけい酸カルシウム板で覆った。言い換えると、木質耐震壁が設置される鉄骨梁の側面は、厚さ60mmのけい酸カルシウム板で覆い、木質耐震壁が設置されない鉄骨梁は、厚さ25mmのけい酸カルシウム板で覆った。ただし、鉄骨梁端部の断熱境界面は、厚さ35mmのけい酸カルシウム板で覆った。鉄骨梁内部の空洞は、熱対流を無視して熱放射のみとした。また、木質壁部については、火災による焼失を想定し、モデル化は行っていない。
Fig. 7(a) is a perspective view of the analytical model as viewed from one end side, Fig. 7(b) is a perspective view of the analytical model as viewed from the other end side, and Fig. 7(c) is a perspective view of the analytical model with the calcium silicate plate removed.
As shown in FIG. 7, the analytical model this time was the portion of the wooden shear wall surrounded by the dashed line A in FIG. 1 (i.e., 1/4 of the wooden shear wall and the steel beam) and was divided in two by the central axis of the steel beam. Furthermore, the analytical model was set as follows. The steel beam was BH-400×200×12×22. The floor slab was an ALC plate with a thickness of 100 mm. The closing part was mortar with a thickness of 70 mm. The joint metal, the closing part, and the part of the side of the steel beam that is connected to the joint metal and the closing part were covered with a calcium silicate plate with a thickness of 60 mm, and the remaining part, that is, the part of the steel beam that is not connected to the joint metal and the closing part, was covered with a calcium silicate plate with a thickness of 25 mm. In other words, the side of the steel beam where the wooden shear wall is installed was covered with a calcium silicate plate with a thickness of 60 mm, and the steel beam where the wooden shear wall is not installed was covered with a calcium silicate plate with a thickness of 25 mm. However, the thermal insulation boundary surface of the steel beam end was covered with a 35 mm thick calcium silicate board. The cavity inside the steel beam was assumed to be thermally radiated only, ignoring thermal convection. Also, the wooden walls were not modeled, assuming that they would be destroyed by fire.
以上の比較例および実施例の解析モデルに対して、標準加熱温度曲線(ISO834曲線)で2.4時間加熱し、鋼材温度を出力した。ここで、鋼材温度とは、接合金物の架構接合部と壁接合部との接合部分の温度である。図8は、熱伝導解析の解析結果(鋼材温度の経時変化)を示す図である。図8より、接合金物20にモルタルを設けることで、鋼材温度の上昇を抑制できることが判る。具体的には、2時間加熱した時点で、モルタルなしでは約460℃であるが、モルタルありでは約410℃であり、鋼材温度を11%低減できていることが判る。
The analysis models of the above comparative examples and examples were heated for 2.4 hours using the standard heating temperature curve (ISO 834 curve), and the steel temperature was output. Here, the steel temperature refers to the temperature at the joint between the frame joint and the wall joint of the joint metal. Figure 8 shows the results of the heat conduction analysis (change in steel temperature over time). Figure 8 shows that providing mortar to the
本実施形態によれば、以下のような効果がある。
(1)木質壁部10と鉄骨梁4とを接合する接合金物20の外側表面に、熱容量の大きい熱吸収部であるモルタルブロック26を設けた。よって、火災により木質壁部10が燃焼すると、火災で生じた熱や木質壁部10の燃焼熱が接合金物20を介して鉄骨梁4に伝達される。このとき、火災で生じた熱や木質壁部10の燃焼熱の一部がモルタルブロック26に吸収されて、鉄骨梁4に伝わる熱量が低減され、温度の上昇が抑制される。よって、鉄骨系の柱梁架構2の耐火性能が低下するのを抑制できる。
According to this embodiment, the following effects are obtained.
(1) The
(2)木質壁部10と柱梁架構2の鉄骨梁4との間をセメント系材料で塞いで閉塞部30としたので、この閉塞部30が木質壁部10と鉄骨梁4との接合材となり、木質壁部10と鉄骨梁4との一体性が高まる。また、閉塞部30が耐火被覆材として機能するので、木質壁部10が燃焼した際には、モルタルブロック26に加えて閉塞部30でも燃焼熱が吸収されて、鉄骨梁4に伝わる熱量が低減するから、鉄骨系の柱梁架構2の耐火性能が低下するのを大幅に抑制できる。
(2) The gap between the
(3)木質壁部10の表面に全長に亘って接合金物および熱吸収部を配置するのではなく、木質壁部10の四隅にのみ接合金物20およびモルタルブロック26を配置した。よって、接合金物20の取付け箇所を少なくでき、木質壁部10と柱梁架構2とを比較的容易に接合できる。
(3) Instead of placing joint metals and heat absorbing parts along the entire length of the surface of the
〔第2実施形態〕
図9は、本発明の第2実施形態に係る木質耐震壁1Aの上部の正面図である。図10は、図9の木質耐震壁1AのD-D断面図である。
本実施形態では、接合金物20Aの構造が、第1実施形態と異なる。すなわち、接合金物20Aは、木質壁部10の表面に沿って所定間隔おきに設けられている。具体的には、接合金物20Aは、木質壁部10の正面側および裏面側に、それぞれ3つずつ設けられている。
接合金物20Aは、断面略L字形状であり、柱梁架構2に接合される架構接合部21と、架構接合部21から鉛直方向に延びて木質壁部10の側端面に接合される壁接合部22と、を備える。架構接合部21と壁接合部22との入隅部には、熱容量の大きい熱吸収部であるモルタルブロック26が設けられている。この接合金物20Aは、耐火被覆材として機能するけい酸カルシウム板6で覆われている。
本実施形態によれば、上述の(1)~(3)と同様の効果がある。
Second Embodiment
Fig. 9 is a front view of the upper part of a
In this embodiment, the structure of the
The metal joint 20A has a generally L-shaped cross section and includes a frame joint 21 that is joined to the column-
According to this embodiment, there are advantages similar to those of (1) to (3) above.
〔第3実施形態〕
図11は、本発明の第3実施形態に係る木質耐震壁1Bの接合金物20Bの斜視図である。
本実施形態では、接合金物20Bの架構接合部21と壁接合部22との入隅部に、リブ40が設けられている点が、第1実施形態と異なる。このリブ40は、モルタルブロック26に埋設されている。
本実施形態によれば、上述の(1)~(3)と同様の効果がある。
Third Embodiment
FIG. 11 is a perspective view of a metal joint 20B of a wooden earthquake-
This embodiment differs from the first embodiment in that a
According to this embodiment, there are advantages similar to those of (1) to (3) above.
〔第4実施形態〕
図12は、本発明の第4実施形態に係る木質耐震壁1Cの接合金物20Cの斜視図である。
本実施形態では、接合金物20Bの架構接合部21の外側表面に、スタッドボルト41が設けられている点が、第1実施形態と異なる。このスタッドボルト41は、モルタルブロック26に埋設されている。
本実施形態によれば、上述の(1)~(3)と同様の効果がある。
Fourth Embodiment
FIG. 12 is a perspective view of a metal joint 20C of a wooden earthquake-
This embodiment differs from the first embodiment in that a
According to this embodiment, there are advantages similar to those of (1) to (3) above.
〔第5実施形態〕
図13(a)は、本発明の第5実施形態に係る木質耐震壁1Dの接合金物20の側面図である。図13(b)は、図13(a)の木質耐震壁1DのE-E断面図である。
本実施形態では、モルタルブロック26Dが、接合金物20に接しておらず、鉄骨梁4の接合金物20側の下フランジ7およびウエブ8の側面に接して設けられている点が、第1実施形態と異なる。
すなわち、モルタルブロック26Dは、鉄骨梁4のウエブ8の側面に設けた鉛直補強リブ間において、架構接合部21に接する鉄骨梁4の下フランジ7と上フランジとの中間の高さ位置まで設けられている。
この木質耐震壁1Dでは、火災時に、木質壁部10が燃焼すると、火災で生じた熱や木質壁部10の燃焼熱が接合金物20を介して鉄骨梁4に伝達されるが、このとき、図14に示すように、この熱の一部がモルタルブロック26Dに吸収されて、鉄骨梁4に伝わる熱量が低減し、温度の上昇が抑制される。
Fifth Embodiment
Fig. 13(a) is a side view of a
This embodiment differs from the first embodiment in that the
That is, the
In this wooden earthquake-
本実施形態では、モルタルブロック26Dを、鉄骨梁4の下フランジ7と上フランジとの中間の高さ位置まで設けたが、これに限らず、鉄骨梁4の上フランジの高さ位置まで、つまり、下フランジ7と上フランジとの間の全高に亘って設けてもよい。このようにすれば、モルタルブロック26Dを鉄骨梁4の下フランジ7と上フランジとの中間の高さ位置まで設けた場合に比べて、鉄骨梁4のウエブに対する補剛効果を高めることができる。
本実施形態によれば、上述の(1)~(3)の効果に加えて、以下の効果がある。
(4)モルタルブロック26Dを、鉄骨梁4の下フランジ7およびウエブ8の側面に当接して設けることで、鉄骨梁4に伝わる熱量を低減でき、鉄骨梁4の温度の上昇が抑制可能となる。また、このモルタルブロック26Dは、鉄骨梁4のウエブ8の補剛材としても機能する。
In this embodiment, the mortar blocks 26D are provided up to a height position midway between the
According to this embodiment, in addition to the above-mentioned advantages (1) to (3), the following advantages are obtained.
(4) By providing the
なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
上述の第2実施形態では、接合金物20Aを木質壁部10の表面に沿って所定間隔おきに設けたが、これに限らず、図15に示すように、接合金物20Eを木質壁部10の正面側および裏面側に全長に亘って設けてもよい。この接合金物20Eは、耐火被覆材として機能するけい酸カルシウム板6で覆われている。このようにしても、上述の(1)、(2)と同様の効果がある。
また、上述の各実施形態では、熱吸収部を接合金物20、20A、20Bの外側表面に設けたが、これに限らず、接合金物の内側表面に設けてもよい。このように熱吸収部を接合金物の内側表面に設けた場合でも、火災による熱や木質壁部10の燃焼熱の一部を熱吸収部が吸収し、柱梁架構2の耐火性能の低下を抑制することができる。
また、上述の各実施形態では、熱吸収部をモルタルで形成したが、これに限らず、熱吸収性に優れたコンクリート、石膏、熱吸収セラミック材のいずれかで形成してもよい。
The present invention is not limited to the above-described embodiment, and modifications and improvements within the scope of the present invention that can achieve the object of the present invention are included in the present invention.
In the second embodiment described above, the
In addition, in each of the above-mentioned embodiments, the heat absorbing parts are provided on the outer surfaces of the
In addition, in each of the above-described embodiments, the heat absorbing portion is formed of mortar, but the present invention is not limited to this, and the heat absorbing portion may be formed of concrete, plaster, or a heat absorbing ceramic material having excellent heat absorption properties.
また、上述の各第4実施形態では、接合金物20Bの架構接合部21の外側表面にスタッドボルト41を設けたが、これに限らず、スタッドボルト41の代わりに、図16に示すように、頭付きスタッド42を設けてもよいし、図17に示すように、スタッドボルト43およびナット44を設けてもよい。
In addition, in each of the fourth embodiments described above, a
1、1A、1B、1C、1D、1E、1F、1G…木質耐震壁(耐震壁)
2…柱梁架構 3…鉄骨鉄筋コンクリート柱
4…鉄骨梁 5…床スラブ 6…けい酸カルシウム板 7…下フランジ 8…ウエブ
10…木質壁部 11…側端面
20、20A、20B、20C、20E、20F、20G…接合金物
21…架構接合部 22…壁接合部
24…ボルト 25…ビス 26、26D…モルタルブロック(熱吸収部)
30…閉塞部 31…スタッド 32…メッシュ筋
40…リブ 41…スタッドボルト 42…頭付きスタッド
43…スタッドボルト 44…ナット
1, 1A, 1B, 1C, 1D, 1E, 1F, 1G...Wood shear wall (shear wall)
2... Column-
30: Closure portion 31: Stud 32: Mesh reinforcement 40: Rib 41: Stud bolt 42: Headed stud 43: Stud bolt 44: Nut
Claims (2)
前記柱梁架構内に設けられた木質板からなる木質壁部と、
前記木質壁部の出隅部で前記木質壁部と前記鉄骨梁とを接合する接合金物と、
前記柱梁架構の構面内に設けられた熱吸収部と、
前記木質壁部と前記鉄骨梁との間をセメント系材料で塞いだ閉塞部と、
前記鉄骨梁を覆う耐火被覆材と、を備え、
前記接合金物は、前記鉄骨梁に接合される架構接合部と、前記架構接合部から延びて前記木質壁部の側端面に接合される壁接合部と、を備え、
前記熱吸収部は、前記木質壁部の側方で前記接合金物の架構接合部および前記壁接合部に接しており、
前記耐火被覆材は、前記鉄骨梁に加えて、前記接合金物の架構接合部、前記熱吸収部、および前記閉塞部を覆うことを特徴とする耐震壁。 A seismic wall provided within the structural surface of a column-beam frame including a steel beam,
A wooden wall portion made of a wooden board provided in the column-beam frame;
A joint metal fitting that joins the wooden wall portion and the steel beam at a corner portion of the wooden wall portion;
A heat absorbing portion provided within the structural surface of the column-beam structure ;
A closing portion formed by closing a gap between the wooden wall portion and the steel beam with a cement-based material;
A fire-resistant covering material covering the steel beam ,
The joint metal includes a frame joint portion joined to the steel beam, and a wall joint portion extending from the frame joint portion and joined to a side end surface of the wooden wall portion,
The heat absorbing portion is in contact with the frame joint portion and the wall joint portion of the metal joint at the side of the wooden wall portion,
A seismic wall characterized in that the fire-resistant covering material covers, in addition to the steel beams, the structural joints of the metal joints, the heat absorption parts, and the closing parts .
前記柱梁架構内に設けられた木質板からなる木質壁部と、
前記木質壁部の出隅部で前記木質壁部と前記鉄骨梁とを接合する接合金物と、
前記柱梁架構の構面内に設けられた熱吸収部と、
前記木質壁部と前記鉄骨梁との間をセメント系材料で塞いだ閉塞部と、
前記鉄骨梁を覆う耐火被覆材と、を備え、
前記接合金物は、前記鉄骨梁に接合される架構接合部と、前記架構接合部から延びて前記木質壁部の側端面に接合される壁接合部と、を備え、
前記熱吸収部は、前記鉄骨梁の前記架構接合部に接するフランジを挟んで前記架構接合部とは反対側に設けられ、
前記耐火被覆材は、前記鉄骨梁に加えて、前記接合金物の架構接合部、前記熱吸収部、および前記閉塞部を覆うことを特徴とする耐震壁。
A seismic wall provided within the structural surface of a column-beam frame including a steel beam,
A wooden wall portion made of a wooden board provided in the column-beam frame;
A joint metal fitting that joins the wooden wall portion and the steel beam at a corner portion of the wooden wall portion;
A heat absorbing portion provided within the structural surface of the column-beam structure ;
A closing portion formed by closing a gap between the wooden wall portion and the steel beam with a cement-based material;
A fire-resistant covering material covering the steel beam ,
The joint metal includes a frame joint portion joined to the steel beam, and a wall joint portion extending from the frame joint portion and joined to a side end surface of the wooden wall portion,
The heat absorption portion is provided on the opposite side of the frame joint across a flange that contacts the frame joint of the steel beam,
A seismic wall characterized in that the fire-resistant covering material covers, in addition to the steel beams, the structural joints of the metal joints, the heat absorption parts, and the closing parts .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020132736 | 2020-08-05 | ||
JP2020132736 | 2020-08-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022031097A JP2022031097A (en) | 2022-02-18 |
JP7554681B2 true JP7554681B2 (en) | 2024-09-20 |
Family
ID=80324382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021012532A Active JP7554681B2 (en) | 2020-08-05 | 2021-01-28 | Earthquake-resistant walls |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7554681B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008255627A (en) | 2007-04-04 | 2008-10-23 | Meiken Kogyo Kk | Joint metal assembly for wooden member |
JP2016216899A (en) | 2015-05-14 | 2016-12-22 | 株式会社竹中工務店 | Earthquake-proof wall structure |
JP2019065685A (en) | 2017-10-04 | 2019-04-25 | 株式会社竹中工務店 | building |
JP2019218694A (en) | 2018-06-15 | 2019-12-26 | 株式会社竹中工務店 | Frame reinforcing structure |
JP2020016022A (en) | 2018-07-23 | 2020-01-30 | 国立大学法人 東京大学 | Earthquake resistant wall |
JP2022020037A (en) | 2020-07-19 | 2022-01-31 | 大成建設株式会社 | Earthquake-resistant wall |
-
2021
- 2021-01-28 JP JP2021012532A patent/JP7554681B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008255627A (en) | 2007-04-04 | 2008-10-23 | Meiken Kogyo Kk | Joint metal assembly for wooden member |
JP2016216899A (en) | 2015-05-14 | 2016-12-22 | 株式会社竹中工務店 | Earthquake-proof wall structure |
JP2019065685A (en) | 2017-10-04 | 2019-04-25 | 株式会社竹中工務店 | building |
JP2019218694A (en) | 2018-06-15 | 2019-12-26 | 株式会社竹中工務店 | Frame reinforcing structure |
JP2020016022A (en) | 2018-07-23 | 2020-01-30 | 国立大学法人 東京大学 | Earthquake resistant wall |
JP2022020037A (en) | 2020-07-19 | 2022-01-31 | 大成建設株式会社 | Earthquake-resistant wall |
Also Published As
Publication number | Publication date |
---|---|
JP2022031097A (en) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019065685A (en) | building | |
JP6841439B2 (en) | Building method and building structure | |
JP6745371B1 (en) | Buckling restraint brace | |
JP2019044514A (en) | Joint structure between column and beam | |
JP7554681B2 (en) | Earthquake-resistant walls | |
JP2023136917A (en) | Composite slab structure and method for constructing composite slab structure | |
JP7365173B2 (en) | buckling restraint brace | |
JP2020084729A (en) | Construction method and building structure | |
JP6776016B2 (en) | Fireproof structure | |
JP7687868B2 (en) | Synthetic components and methods of manufacturing same | |
JP7152788B2 (en) | Fire-resistant structure construction method | |
JP2521524Y2 (en) | Floor structure in wooden structures | |
JP7470243B1 (en) | Composite beams and methods for constructing composite beams | |
JP3145223B2 (en) | Unit building | |
JP2024143166A (en) | Joint structure between beam and earthquake-resistant wall | |
JP2767073B2 (en) | Lightweight cellular concrete slab structure for wooden frame | |
JP2020165174A (en) | Floor panel for wooden building | |
KR101639256B1 (en) | Composite unit modular using engineered lumber and the construction method therefor | |
RU2719671C1 (en) | Building structure for structures (versions) | |
JP7401377B2 (en) | wooden building floor panels | |
JP2025091677A (en) | Fireproof structure | |
JP2024148108A (en) | Joint structure of structural materials | |
JP2025001367A (en) | Fire-resistant structure for column-beam joint | |
JP2022118425A (en) | Beam floor junction structure | |
KR101682826B1 (en) | Insulation combined joint member and the hollow of his rigid insulation and energy-saving prefabricated structural insulated building structures structure construction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7554681 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |