JP7522956B2 - Heat exchanger and air conditioner using same - Google Patents
Heat exchanger and air conditioner using same Download PDFInfo
- Publication number
- JP7522956B2 JP7522956B2 JP2020020258A JP2020020258A JP7522956B2 JP 7522956 B2 JP7522956 B2 JP 7522956B2 JP 2020020258 A JP2020020258 A JP 2020020258A JP 2020020258 A JP2020020258 A JP 2020020258A JP 7522956 B2 JP7522956 B2 JP 7522956B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- heat transfer
- fin
- transfer tubes
- straight lines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011295 pitch Substances 0.000 claims description 44
- 238000010276 construction Methods 0.000 claims description 2
- 238000005553 drilling Methods 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 18
- 239000003507 refrigerant Substances 0.000 description 17
- 238000009826 distribution Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0067—Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
本発明はフィンチューブ型の熱交換器とそれを用いた空気調和機に関する。 The present invention relates to a fin-tube type heat exchanger and an air conditioner using the same.
一般に空気調和機は、圧縮機によって圧縮した冷媒を凝縮器や蒸発器等の熱交換器に循環させて空気と熱交換させ冷房もしくは暖房を行うが、前記熱交換器の熱交換効率によって空気調和機としての性能や省エネ性が大きく左右される。従って、熱交換器は高効率化が強く求められている。 In general, air conditioners circulate refrigerant compressed by a compressor through heat exchangers such as condensers and evaporators to exchange heat with the air to provide cooling or heating, but the performance and energy-saving properties of the air conditioner are greatly affected by the heat exchange efficiency of the heat exchanger. Therefore, there is a strong demand for heat exchangers with high efficiency.
この空気調和機に用いる熱交換器は、一般的には、フィン群に伝熱管を複数列挿通させて構成したフィンチューブ型の熱交換器が用いられており、送風機の前面側と背面側を覆うようにして設けられている(例えば、特許文献1参照)。 The heat exchanger used in this air conditioner is generally a fin-tube type heat exchanger configured by inserting multiple rows of heat transfer tubes into a group of fins, and is installed to cover the front and back sides of the blower (see, for example, Patent Document 1).
図13は特許文献1の空気調和機を示し、この空気調和機は貫流型の送風機101により調和機本体102の吸込口103より空気を吸込み熱交換器104で熱交換した後、吹出口105より吹き出して空調を行うが、上記熱交換器104は送風機101を囲むように略くの字形状に屈曲形成した前面側熱交換器104Aと直線状の背面側熱交換器104Bをその上部で突き合わせて構成してある。そして、上記熱交換器104は図14に示すようにフィン106に伝熱管107を挿通させて構成してある。 Figure 13 shows the air conditioner of Patent Document 1. In this air conditioner, air is drawn in from an inlet 103 of the main body 102 of the conditioner by a once-through blower 101, heat is exchanged in a heat exchanger 104, and the air is then blown out from an outlet 105 to perform air conditioning. The heat exchanger 104 is configured by butting together an upper part of a front heat exchanger 104A bent in an approximately L-shape to surround the blower 101 and a straight rear heat exchanger 104B. The heat exchanger 104 is configured by inserting a heat transfer tube 107 through fins 106 as shown in Figure 14.
ここで、上記空気調和機に使用される熱交換器104は、高い熱交換効率を要求される場合、複数の伝熱管列の各伝熱管107が空気の流れ方向に互いに重ならないよう千鳥配置されているとともに、場合によっては更に伝熱管107を流れる冷媒の状態、すなわち液相と気相の状態に応じて最も高い熱交換性能を発揮するように伝熱管107の管径を変える等して高効率化を図っている。なお、このような熱交換器を便宜上ハイブリット型熱交換器と称す。 When high heat exchange efficiency is required, the heat exchanger 104 used in the air conditioner is arranged in a staggered manner so that the heat transfer tubes 107 in the multiple heat transfer tube rows do not overlap each other in the air flow direction, and in some cases, the pipe diameter of the heat transfer tubes 107 is changed to achieve high efficiency so as to achieve the highest heat exchange performance depending on the state of the refrigerant flowing through the heat transfer tubes 107, i.e., the liquid and gas phase states. For convenience, this type of heat exchanger is referred to as a hybrid type heat exchanger.
上記構成の熱交換器を用いた空気調和機は、貫流型の送風機101を用い前面側熱交換器104Aを略くの字形状に屈曲させているので、貫流型の送風機101の中心に向かって吸引される空気が前記前面側熱交換器104Aの各辺からこれと略交差する形で流入し通過するが、各列の複数の伝熱管107がこの空気の流れ方向に重ならないように並ぶ形となっているので、各伝熱管107と空気との熱交換率が高く、しかも伝熱管107の管径を異ならせているので、冷媒の気液状態に応じて高い熱交換性能を発揮し、熱交換器は高効率化する。よって、空気調和機としての性能や省エネ性が良好なものとなる。 The air conditioner using the heat exchanger of the above configuration uses a once-through type blower 101 and has the front heat exchanger 104A bent into an approximately L-shape, so that air sucked toward the center of the once-through type blower 101 flows in and passes through the front heat exchanger 104A in a manner that approximately intersects with each side of the front heat exchanger 104A. However, since the heat transfer tubes 107 in each row are arranged so as not to overlap in the direction of the air flow, the heat exchange rate between each heat transfer tube 107 and the air is high, and since the diameters of the heat transfer tubes 107 are different, high heat exchange performance is achieved according to the gas-liquid state of the refrigerant, and the heat exchanger is highly efficient. This results in good performance and energy saving as an air conditioner.
しかしながら、上記特許文献1記載のハイブリッド型熱交換器は、製造コストが高くつき、大幅にコストアップして非常に高価なものとなる。 However, the hybrid heat exchanger described in Patent Document 1 is expensive to manufacture, resulting in a significant increase in cost and making the product very expensive.
すなわち、上記ハイブリッド型熱交換器は、伝熱管挿通用の孔列を穿孔金型でプレス形成する際、複数の伝熱管列の各伝熱管107が空気の流れ方向に互いに重ならないようするために、孔形成位置が互いにずれた形の穿孔金型、例えば2列並びの場合は2列専用の穿孔金型、3列並びの場合は3列専用の穿孔金型を必要とする。 In other words, when the rows of holes for inserting the heat transfer tubes are press-formed with a drilling die, the hybrid heat exchanger requires a drilling die with hole formation positions offset from each other so that the heat transfer tubes 107 in the multiple heat transfer tube rows do not overlap each other in the air flow direction; for example, a drilling die dedicated to two rows in the case of two rows, and a drilling die dedicated to three rows in the case of three rows.
また、穿孔金型の孔形成用ピン軸径も伝熱管107の管径を変えるために異なるものとする必要がある。 The diameter of the hole-forming pin shaft of the drilling die also needs to be different in order to change the diameter of the heat transfer tube 107.
そして、2列並びの伝熱管挿通用の孔列を持つフィン、3列並びの伝熱管挿通用の孔列を持つフィンを形成するたびにそれに応じた穿孔金型に交換する必要があるなど製造工程も複雑化する。 In addition, the manufacturing process becomes more complicated, as it is necessary to change to the appropriate drilling die each time a fin with two rows of holes for inserting heat transfer tubes or a fin with three rows of holes for inserting heat transfer tubes is formed.
その結果、熱交換器の製造コストが大幅にアップし、非常に高価なものとなるのである。 As a result, the manufacturing costs of heat exchangers increase significantly, making them very expensive.
本発明はこのような点に鑑み、特に複数の金型を必要とすることによって生じるコストアップ課題に焦点を当ててなしたもので、単一金型による単純な工程で複数の伝熱管列の各伝熱管が空気の流れ方向に互いに重ならないように形成できる高効率かつ安価な熱交換器とそれを用いた安価で高性能な空気調和機を提供することを目的としたものである。 The present invention was made in consideration of these points, and particularly focused on the problem of increased costs that arise from the need for multiple molds, and aims to provide a highly efficient and inexpensive heat exchanger that can be formed in a simple process using a single mold so that the heat transfer tubes in multiple heat transfer tube rows do not overlap each other in the air flow direction, and an inexpensive, high-performance air conditioner that uses the same.
本発明は上記目的を達成するため、その熱交換器は、多数のフィン群に伝熱管を挿通して構成され、フィンは略くの字形状に形成され、熱交換器の風上となる前縁の2本の直線部の延長線の交差部分の角度および風下となる後縁の2本の直線部の延長線の交差部分の角度が同じ鈍角をなし、2本の直線の間を結ぶ1本の同じ形状の湾曲部が形成されていて、伝熱管が、風上前縁の2本の直線部の延長線の交点と風下後縁の2本の直線部の延長線の交点とを結ぶ線FLに平行に、所定のピッチFPで少なくとも2列以上配置され、各列の段方向のピッチをSP、線FLと風上前縁の2本の直線部とが成す角度をそれぞれα、βとしたとき、FP・cosαおよびFP・cosβがSP・1/4からSP・3/4の範囲内に収まる構成としてある。 In order to achieve the above object, the present invention provides a heat exchanger that is constructed by inserting heat transfer tubes into a large number of fin groups, the fins are formed in an approximately L-shape, the angle at the intersection of the extensions of the two straight lines at the windward leading edge of the heat exchanger and the angle at the intersection of the extensions of the two straight lines at the leeward trailing edge form the same obtuse angle, and a curved section of the same shape is formed connecting the two straight lines, and the heat transfer tubes are arranged in at least two rows at a predetermined pitch FP parallel to a line FL that connects the intersection of the extensions of the two straight lines at the windward leading edge and the intersection of the extensions of the two straight lines at the leeward trailing edge, and when the row pitch of each row is SP and the angles between the line FL and the two straight lines at the windward leading edge are α and β, respectively, FP·cosα and FP·cosβ are configured to be within the range of SP·1/4 to SP·3/4.
また、空気調和機は、吸込み口と吹出し口とを有する本体に収納された貫流型の送風機を備え、上記送風機の前面側に前記熱交換器を配置した構成としてある。 The air conditioner also has a once-through type blower housed in a main body having an intake port and an exhaust port, and the heat exchanger is disposed in front of the blower.
これにより、この熱交換器は、穿孔ピンが1列の穿孔金型を用いてフィン素材板を順送りしながら伝熱管挿通用の孔を穿孔した後、所要孔列を持つ形状にフィン素材板を切り離してフィンを製造すれば、そのフィンの直線部に穿孔された伝熱管挿通用の孔、つまりこの孔に挿通させる伝熱管は、風上から風下側に向かって重なることなく順次位置ずれして略千鳥配置状態となる。 As a result, this heat exchanger is manufactured by drilling holes for inserting heat transfer tubes while feeding a fin blank plate forward using a drilling die with a row of drilling pins, and then cutting the fin blank plate into a shape with the required row of holes to manufacture the fins.The holes for inserting heat transfer tubes drilled in the straight parts of the fin, i.e., the heat transfer tubes to be inserted into these holes, are shifted sequentially from the windward side to the leeward side without overlapping, resulting in a roughly staggered arrangement.
したがって、伝熱管挿通用の孔を穿孔する穿孔金型はフィンの伝熱管列が2列、3列以上と複数列であっても穿孔用ピンが1列の穿孔金型一つでよく、しかもフィン素材板は金型交換等することなく単純に順送りするだけで伝熱管挿通用の孔を連続的にプレス穿孔することができる。そして、伝熱管は風上から風下側に向かって重なることなく順次位置ずれして略千鳥配置状態となるので、各伝熱管に対する空気の接触度合が高まり、伝熱性能が向上して熱交換効率の高いものとすることができる。 Therefore, even if the fin has two, three or more rows of heat transfer tubes, a single drilling die with one row of drilling pins is sufficient to drill holes for inserting the heat transfer tubes, and the fin material plate can be simply fed forward without changing the die, allowing the holes to be continuously press-drilled for inserting the heat transfer tubes. The heat transfer tubes are shifted sequentially from the windward side to the leeward side without overlapping, resulting in a roughly staggered arrangement, which increases the degree of air contact with each heat transfer tube, improving heat transfer performance and achieving high heat exchange efficiency.
つまり、製造コストを下げると同時に熱交換効率を向上させて、安価で高効率な熱交換器とすることができる。そしてこの熱交換器を用いた空気調和機もその性能を向上させつつコストダウンすることができる。 In other words, it is possible to reduce manufacturing costs while improving heat exchange efficiency, resulting in an inexpensive, highly efficient heat exchanger. And air conditioners using this heat exchanger can also be reduced in cost while improving their performance.
本発明は上記構成により、単一の金型で空気の流れ方向に重ならない伝熱管配列とすることができ、しかも金型交換等が不要となるので製造工程も単純化でき、高効率かつ安価な熱交換器とそれを用いた安価で高性能な空気調和機を提供することができる。 With the above-mentioned configuration, the present invention can use a single mold to arrange the heat transfer tubes so that they do not overlap in the air flow direction, and since mold replacement is not required, the manufacturing process can be simplified, making it possible to provide a highly efficient and inexpensive heat exchanger and an inexpensive, high-performance air conditioner that uses the same.
第1の発明は、多数のフィン群に伝熱管を挿通して構成した熱交換器であって、フィンは略くの字形状に形成され、熱交換器の風上となる前縁の2本の直線部の延長線の交差部分の角度および風下となる後縁の2本の直線部の延長線の交差部分の角度が同じ鈍角をなし、2本の直線の間を結ぶ1本の同じ形状の湾曲部が形成されていて、伝熱管が、風上前縁の2本の直線部の延長線の交点と風下後縁の2本の直線部の延長線の交点とを結ぶ線FLに平行に、所定のピッチFPで少なくとも2列以上配置され、各列の段方向のピッチをSP、線FLと風上前縁の2本の直線部とが成す角度をそれぞれα、βとしたとき、FP・cosαおよびFP・cosβがSP・1/4からSP・3/4の範囲内に収まる構成としてある。 The first invention is a heat exchanger constructed by inserting heat transfer tubes into a number of fin groups, the fins are formed in a roughly dogleg shape, the angle at the intersection of the extensions of the two straight lines at the windward leading edge of the heat exchanger and the angle at the intersection of the extensions of the two straight lines at the leeward trailing edge form the same obtuse angle, and one curved section of the same shape is formed connecting the two straight lines, the heat transfer tubes are arranged in at least two rows at a predetermined pitch FP parallel to a line FL connecting the intersection of the extensions of the two straight lines at the windward leading edge and the intersection of the extensions of the two straight lines at the leeward trailing edge, and the row pitch of each row is SP, and the angles between the line FL and the two straight lines at the windward leading edge are α and β, respectively, so that FP·cosα and FP·cosβ are within the range of SP·1/4 to SP·3/4.
これにより、この熱交換器は、穿孔ピンが1列の穿孔金型を用いてフィン素材板を順送りしながら伝熱管挿通用の孔を穿孔した後、所要孔列を持つ形状に切り離してフィンを製造すれば、そのフィンの直線部に穿孔された伝熱管挿通用の孔、つまりこの孔に挿通させる伝熱管は、風上から風下側に向かって重なることなく順次位置ずれして略千鳥配置状態となる。 As a result, this heat exchanger is manufactured by drilling holes for inserting the heat transfer tubes while feeding the fin blank plate forward using a drilling die with a row of drilling pins, and then cutting it into a shape with the required row of holes to manufacture the fins.The holes for inserting the heat transfer tubes drilled in the straight parts of the fin, i.e., the heat transfer tubes to be inserted into these holes, are shifted sequentially from the windward side to the leeward side without overlapping, resulting in a roughly staggered arrangement.
したがって、伝熱管挿通用の孔を穿孔する穿孔金型はフィンの伝熱管列が2列、3列以上と複数列であっても穿孔用ピンが1列の穿孔金型一つでよく、しかもフィン素材板は金型交換等することなく単純に順送りするだけで伝熱管挿通用の孔を連続的にプレス穿孔することができる。そして、伝熱管は風上から風下側に向かって重なることなく順次位置ずれして略千鳥配置状態となるので、各伝熱管に対する空気の接触度合が高まり伝熱性能が向上して熱交換効率の高いものとすることができる。 Therefore, even if the fin has two, three or more rows of heat transfer tubes, a single drilling die with one row of drilling pins is sufficient to drill holes for inserting the heat transfer tubes, and the fin material plate can be simply fed forward without changing the die, allowing the holes for inserting the heat transfer tubes to be continuously press-drilled. The heat transfer tubes are sequentially shifted from the windward side to the leeward side without overlapping, resulting in a roughly staggered arrangement, which increases the degree of air contact with each heat transfer tube, improving heat transfer performance and achieving high heat exchange efficiency.
つまり、製造コストを下げると同時に熱交換効率を向上させて、安価で高効率な熱交換器とすることができる。 In other words, it is possible to reduce manufacturing costs while improving heat exchange efficiency, resulting in an inexpensive, highly efficient heat exchanger.
第2の発明は、多数のフィン群に伝熱管を挿通して構成した熱交換器であって、フィンは略くの字形状に形成され、熱交換器の風上となる前縁の2本の直線部の延長線の交差部分の角度および風下となる後縁の2本の直線部の延長線の交差部分の角度が同じ鈍角をなし、2本の直線の間を結ぶ1本の同じ形状の湾曲部が形成されていて、伝熱管が1列に配置されおり、伝熱管が1列配置されたフィンを風上側から風下側に複数並設して、並設した各フィンの伝熱管が、風上前縁の2本の直線部の延長線の交点と風下後縁の2本の直線部の延長線の交点とを結ぶ線FLに平行に、所定のピッチFPで少なくとも2列以上になるとともに、各列の段方向のピッチをSP、線FLと風上前縁の2本の直線部とが成す角度をそれぞれα、βとしたとき、FP・cosαおよびFP・cosβがSP・1/4からSP・3/4の範囲内に収まる構成としてある。 The second invention is a heat exchanger constructed by inserting heat transfer tubes into a number of fin groups, the fins are formed in a roughly dogleg shape, the angle at the intersection of the extensions of the two straight sections at the leading edge, which is the windward side of the heat exchanger, and the angle at the intersection of the extensions of the two straight sections at the trailing edge, which is the leeward side, form the same obtuse angle, and one curved section of the same shape is formed connecting the two straight lines, the heat transfer tubes are arranged in a row, and the fins with the heat transfer tubes arranged in a row are arranged in a number of rows from the windward side to the leeward side. The heat transfer tubes of each fin are arranged in parallel in at least two rows at a predetermined pitch FP, parallel to a line FL that connects the intersection of the extensions of the two straight lines on the windward leading edge and the intersection of the extensions of the two straight lines on the leeward trailing edge, and when the row pitch of each row is SP and the angles between the line FL and the two straight lines on the windward leading edge are α and β, respectively, FP·cosα and FP·cosβ are configured to be within the range of SP·1/4 to SP·3/4.
これにより、フィン素材板を順送りしながら単一の穿孔金型によって伝熱管挿通用の孔列をプレス形成する、という、単一金型を用いた単純工程によって1列孔のフィンを製造してこれを並べれば、空気の流れ方向、換言すると2列以上の複数の列方向に並ぶ伝熱管挿通用の孔、つまり伝熱管が、互いに重なることなく略千鳥配置状態となるようにすることができる。 As a result, by manufacturing fins with one row of holes through a simple process using a single die, in which a row of holes for inserting heat transfer tubes is press-formed using a single drilling die while the fin material plate is fed forward, and then arranging these, it is possible to ensure that the holes for inserting heat transfer tubes that are arranged in the direction of air flow, in other words, in two or more rows, i.e., the heat transfer tubes, are arranged in a roughly staggered pattern without overlapping each other.
したがって、第1の発明と同様、伝熱管挿通用の孔をプレス形成する穿孔金型は一つでよく、しかもフィン素材板は金型交換等することなく単純に順送りするだけで伝熱管挿通用の孔を連続的にプレス形成でき、工程も簡素化する。よって、伝熱管と空気との熱交換率を高めて熱交換効率を向上させつつ大幅なコストダウンを図ることが可能となり、安価で高効率な熱交換器とすることができる。加えて、各フィンは独立しているから断熱を確実なものとして、熱交換器の性能を一段と向上させることができる。 Therefore, as with the first invention, only one drilling die is required to press-form the holes for inserting the heat transfer tubes, and the fin blank plate can be simply fed forward without changing dies, allowing the holes to be continuously press-formed, simplifying the process. This increases the heat exchange rate between the heat transfer tubes and the air, improving heat exchange efficiency while significantly reducing costs, resulting in an inexpensive, highly efficient heat exchanger. In addition, because each fin is independent, insulation is ensured, further improving the performance of the heat exchanger.
第3の発明は、第1又は第2の発明において、伝熱管は、段方向のピッチSPが少なくとも2種類以上の組み合わせからなる構成としてある。 The third invention is the first or second invention, in which the heat transfer tubes are configured with a combination of at least two different pitches SP in the row direction.
これにより、熱交換器を通過する空気の流速が早い部分は伝熱管の段方向のピッチSPが短い部分を位置させ、遅い部分はピッチSPが長い部分を位置させることによって、熱交換器を通過する空気の速度分布を調整し、熱交換器全域における伝熱性能を向上させて、より高性能な熱交換器とすることができる。 By positioning the sections with a short pitch SP in the row direction of the heat transfer tubes in the areas where the air flows faster through the heat exchanger, and the sections with a long pitch SP in the areas where the air flows slower, the speed distribution of the air passing through the heat exchanger can be adjusted, improving the heat transfer performance throughout the entire heat exchanger and resulting in a higher performance heat exchanger.
第4の発明は、第1~第3の発明において、フィンは、フィン表面に複数の第1切起こし及び第1切起こしと交差する方向の第2切り起こしを設け、第1切起こし及び第2切り起こしはそれぞれ空気の流れ方向に開口する構成としてある。 The fourth invention is the first to third inventions, in which the fin has a plurality of first cuts and second cuts on the fin surface that intersect with the first cuts, and the first cuts and second cuts are each configured to open in the direction of air flow.
これにより、貫流型の送風機の前面側に配置した際、送風機の前面側から吸引される空気に対しては第1切り起こし、上方から吸引される空気に対しては第2切り起こしがその流路に位置する形となって熱交換器を通過する空気流れに抵抗をつけ、熱交換器を通過する空気の速度分布を調整して熱交換器の熱交換効率を向上させることができる。 As a result, when placed on the front side of a once-through type blower, the first cut-out is located in the flow path for air sucked in from the front side of the blower, and the second cut-out is located in the flow path for air sucked in from above, providing resistance to the air flow passing through the heat exchanger, adjusting the speed distribution of the air passing through the heat exchanger and improving the heat exchange efficiency of the heat exchanger.
第5の発明は第1~第4の発明において、伝熱管は、その外形状を大小2種類以上とした構成としてある。 The fifth invention is the first to fourth inventions, in which the heat transfer tube has two or more different external shapes, large and small.
これにより、冷媒の気液混合状態に応じ伝熱管と冷媒との熱交換を最適化して高い熱伝達率を発揮させることができ、熱交換器を更に高効率化することができるとともに、伝熱管の材料費を下げて一段と安価な熱交換器とすることができる。 This allows the heat exchange between the heat transfer tube and the refrigerant to be optimized according to the gas-liquid mixture state of the refrigerant, resulting in a high heat transfer coefficient, making the heat exchanger even more efficient and reducing the material cost of the heat transfer tube, resulting in an even cheaper heat exchanger.
第6の発明は第1~第5の発明において、フィンは、風上前縁の2本の直線部の延長線の交差部分がなす角度と風下後縁の2本の直線部の延長線の交差部分がなす角度を同一とした構成としてある。 The sixth invention is the first to fifth inventions, in which the angle formed by the intersection of the extensions of the two straight lines on the windward leading edge is the same as the angle formed by the intersection of the extensions of the two straight lines on the leeward trailing edge.
これにより、略くの字形状のフィンの風上前縁と風下後縁との間の全域の巾寸法を等しくして十分な熱交換面積を持たせることができ、更に熱交換効率の高い高効率な熱交換器とすることができる。そして、フィン素材板をフィン形状に切断する際、一つ目のフィンの風下側縁部と二つ目の風上側縁部との間に無駄な廃材が発生することもなくなり、効率的に生産することができる。 This allows the width dimension of the entire area between the windward leading edge and the leeward trailing edge of the roughly L-shaped fin to be equal, providing a sufficient heat exchange area, and making it possible to produce a highly efficient heat exchanger with high heat exchange efficiency. Furthermore, when cutting the fin blank into the fin shape, no waste material is generated between the leeward edge of the first fin and the windward edge of the second fin, allowing for efficient production.
第7の発明は第1~第6の発明において、フィンは、略くの字形状のフィンの端部に切り離し可能な第2フィン部を備えた構成としてある。 The seventh invention is the first to sixth inventions, in which the fin has a second fin portion that can be detached from the end of the approximately L-shaped fin.
これにより、第2フィン部を切り離せば略くの字形状のフィンによって形成する熱交換器と第2フィン部によって形成する熱交換器とを一つの金型で製造することができ、大幅なコストダウンを実現することができる。 This allows the heat exchanger formed by the roughly L-shaped fins and the heat exchanger formed by the second fin portion to be manufactured using a single mold by simply cutting off the second fin portion, resulting in significant cost reductions.
第8の発明は第1~第7の発明において、フィンは、切り離した第2フィン部で構成した熱交ブロックを最外方に位置するフィンの風上側の前面もしくは背面に移載した構成としてある。 The eighth invention is any of the first to seventh inventions, in which the fins are configured by transferring a heat exchange block formed from the separated second fin portion to the front or back of the windward side of the outermost fin.
これにより、熱交換器の幅方向寸法を小さくしながら熱交換器の伝熱面積を確保することができ、空気調和機の室内機に設置した際、室内機の奥行きサイズの大型化を抑えるとともに、第2フィン部をカットして生じたフィン残部を利用して熱交換器の伝熱面積を確保することができるので、材料取りの無駄がない高性能な空気調和機とすることができる。 This allows the heat exchanger's heat transfer area to be secured while reducing the width dimension of the heat exchanger, and when installed in the indoor unit of an air conditioner, the indoor unit's depth size is prevented from increasing, and the remaining fins created by cutting the second fin section can be used to secure the heat transfer area of the heat exchanger, resulting in a high-performance air conditioner with no wasted material.
第9の発明は第1~第7の発明の熱交換器の背面側に別体構成の第2熱交換器を組み合わせて構成した熱交換器としてある。 The ninth invention is a heat exchanger constructed by combining a second heat exchanger of a separate construction with the rear side of the heat exchanger of the first to seventh inventions.
これにより、汎用性の高い既存の熱交換器を第2熱交換器として組合せて、コストおよび適用能力に応じた最適な複数の熱交換器をより低コストで提供することができる。 This allows a versatile existing heat exchanger to be combined as the second heat exchanger to provide multiple heat exchangers optimized for cost and application capacity at a lower cost.
第10の発明は空気調和機であり、この空気調和機は、吸込み口と吹出し口とを有する本体に収納された貫流型の送風機を備え、送風機の前面側に前記第1~第9の発明のいずれかに記載の熱交換器を配置した構成としてある。 The tenth invention is an air conditioner that includes a once-through type blower housed in a body having an intake port and an exhaust port, and a heat exchanger according to any one of the first to ninth inventions is disposed on the front side of the blower.
これにより、熱交換器が安価で高効率な熱交換器であるから、この熱交換器を搭載した空気調和機もその性能を向上させ、且つ、コストダウンすることができる。 As a result, the heat exchanger is inexpensive and highly efficient, and the performance of the air conditioner equipped with this heat exchanger can be improved and costs reduced.
第11の発明は、第10の発明において、吸込み口は本体の上面部に設け、熱交換器は本体上面の吸込み口と対向する上部の伝熱管の段方向のピッチSPを他の部分の伝熱管の段方向のピッチSPより短くした構成としてある。 The eleventh invention is the tenth invention, in which the suction port is provided on the upper surface of the main body, and the heat exchanger is configured such that the pitch SP in the row direction of the upper heat transfer tubes facing the suction port on the upper surface of the main body is shorter than the pitch SP in the row direction of the heat transfer tubes in other parts.
これにより、本体上面の吸込み口から吸い込まれる空気の流れが最も速くなるフィン上部は伝熱管の段方向のピッチSPが短く抵抗が大きくなるので当該部分の流速が低下し、ピッチSPが長い部分を流れる空気の流速に近似するようになって流速分布の均一化が図られることになり、熱交換器全体にわたって伝熱性能を向上させ高性能な熱交換器とすることができる。 As a result, the upper part of the fin, where the air flow sucked in from the intake port on the top of the main body is the fastest, has a short pitch SP in the row direction of the heat transfer tube and high resistance, so the flow speed in that part decreases, and the flow speed approaches the flow speed of the air flowing in the part with a long pitch SP, resulting in a uniform flow speed distribution, improving heat transfer performance throughout the entire heat exchanger and making it a high-performance heat exchanger.
第12の発明は、第10~第11の発明において、吸込み口は本体の上面部に設け、熱交換器は本体上面の吸込み口と対向するフィン上部に第2切り起こしを設けた構成としてある。 The twelfth invention is the tenth to eleventh inventions, in which the suction port is provided on the top surface of the main body, and the heat exchanger has a second raised portion provided on the upper part of the fin that faces the suction port on the top surface of the main body.
これにより、貫流型の送風機の前面側に配置した際、送風機前面側から伝熱管の段の間を通過する空気に対しては第1切り起こしがその流路に位置する形となって熱交換器を通過する空気流れに抵抗をつけるとともに、本体上部吸込み口から伝熱管の列の間を通過する空気に対しては第2切り起こしがその流路に位置する形となって熱交換器を通過する空気流れに抵抗をつけ、熱交換器を通過する空気の速度分布を効果的に調整して熱交換器の熱交換効率をより向上させることができる。 As a result, when placed on the front side of a once-through type blower, the first raised part is positioned in the flow path of air passing from the front side of the blower between the rows of heat transfer tubes, providing resistance to the air flow passing through the heat exchanger, and the second raised part is positioned in the flow path of air passing from the upper main body intake port between the rows of heat transfer tubes, providing resistance to the air flow passing through the heat exchanger, effectively adjusting the speed distribution of the air passing through the heat exchanger and further improving the heat exchange efficiency of the heat exchanger.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 The following describes an embodiment of the present invention with reference to the drawings. Note that the present invention is not limited to this embodiment.
(実施の形態1)
本発明の実施の形態1に係る熱交換器は、例えば冷媒配管で互いに接続した室外機と室内機とで構成したセパレート型の空気調和機に組み込んで使用され、以下、その構成を空気調和機の構成とともに説明する。
(Embodiment 1)
The heat exchanger of embodiment 1 of the present invention is incorporated into and used in a separate-type air conditioner consisting of an outdoor unit and an indoor unit connected to each other by refrigerant piping, and its configuration will be described below together with the configuration of the air conditioner.
図1は実施の形態1に係る熱交換器とそれを用いた空気調和機の室内機を示す断面図、図2は同熱交換器のフィンを示す平面図、図3は同フィンの要部を示す拡大平面図、図4は同熱交換器のフィン製造例を示す説明図である。 Figure 1 is a cross-sectional view showing a heat exchanger according to embodiment 1 and an indoor unit of an air conditioner using the same, Figure 2 is a plan view showing the fins of the heat exchanger, Figure 3 is an enlarged plan view showing the main parts of the fins, and Figure 4 is an explanatory diagram showing an example of manufacturing the fins of the heat exchanger.
図1に示すように、本実施の形態の空気調和機はその室内機1の本体2上面に吸込み口3が設けられ、下面に吹出し口4が設けられている。そして、上記本体2内には、貫流型の送風機5とフィンチューブ型の熱交換器6とが収納されている。 As shown in FIG. 1, the air conditioner of this embodiment has an intake port 3 on the top surface of the main body 2 of the indoor unit 1, and an outlet port 4 on the bottom surface. Inside the main body 2, a once-through type blower 5 and a fin-tube type heat exchanger 6 are housed.
上記熱交換器6は、本体2内の前面側に配置された前面側熱交換器6Aと、本体2内の背面側に配置された背面側熱交換器6Bとから構成されている。そして、前面側熱交換器6Aおよび背面側熱交換器6Bにより貫流型の送風機5を風上側から取り囲むような形態に配置されている。 The heat exchanger 6 is composed of a front heat exchanger 6A arranged on the front side of the main body 2 and a rear heat exchanger 6B arranged on the rear side of the main body 2. The front heat exchanger 6A and the rear heat exchanger 6B are arranged in such a way that they surround the once-through type blower 5 from the upwind side.
前記前面側熱交換器6Aおよび背面側熱交換器6Bは、所定の間隔で平行に並べられ、その間を空気が流動する多数のフィン8、9と、これらのフィン8、9に略直角に挿入され、内部を冷媒が流動する多数の伝熱管10とを有し、前面側熱交換器6Aと背面側熱交換器6Bとは、そのフィン8、9同士は分離されているが、伝熱管10が連通されることにより一つの熱交換器として作用する。 The front heat exchanger 6A and rear heat exchanger 6B are arranged in parallel at a predetermined interval and have numerous fins 8, 9 through which air flows, and numerous heat transfer tubes 10 inserted at approximately right angles to the fins 8, 9 and through which the refrigerant flows. The fins 8, 9 of the front heat exchanger 6A and rear heat exchanger 6B are separate, but the heat transfer tubes 10 are connected together, so that they function as a single heat exchanger.
以下、本発明の対象となる前面側熱交換器6Aの構成について説明する。 The configuration of the front heat exchanger 6A that is the subject of the present invention is described below.
本実施の形態で示す前面側熱交換器6Aは、図2に示すように、そのフィン8が、略くの字形状に形成されている。すなわち、フィン8の風上側縁部および風下側縁部のそれぞれは、互いにその延長線の交差部分の角度が同じ鈍角をなす2本の直線部11a、11bおよび12a、12bと、これら2本の直線部11a、11bと12a、12bとの間をそれぞれ結ぶ各1本の湾曲部13、14とからなる略くの字形状に形成されている。 As shown in Fig. 2, the fins 8 of the front heat exchanger 6A shown in this embodiment are formed in a roughly V-shape. That is, the windward edge and the leeward edge of the fin 8 are each formed in a roughly V-shape consisting of two straight lines 11a, 11b and 12a, 12b whose extensions intersect at the same obtuse angle, and one curved line 13, 14 connecting the straight lines 11a, 11b and 12a, 12b, respectively.
上記湾曲部13、14の形状は、楕円曲線、双曲線、スプライン、近似直線で結ぶ形状、略くの字を面取りした形状などがあるが、本実施の形態では、図2に示すように円弧形状としてある。そして、上記風上側縁部の円弧形状の湾曲部13と、風下側縁部の円弧形状の湾曲部14との曲率半径が同じで、同じ寸法形状としてあり、前記直線部11a、11bからなる風上側縁部と直線部12a、12bからなる風下側縁部とは平行状態となってフィン幅が上部及び下部の全域にわたって同じ幅となる形状となっている。 The shapes of the curved portions 13 and 14 may be elliptical, hyperbolic, spline, a shape connected by an approximate straight line, a shape with roughly beveled edges, etc., but in this embodiment, they are arc-shaped as shown in Figure 2. The arc-shaped curved portion 13 of the windward edge and the arc-shaped curved portion 14 of the leeward edge have the same radius of curvature and the same dimensions, and the windward edge consisting of the straight portions 11a and 11b and the leeward edge consisting of the straight portions 12a and 12b are parallel to each other, so that the fin width is the same throughout the entire upper and lower areas.
また各フィン8には所定の間隔で伝熱管挿通用の円形の孔15が多数バーリング加工され、この孔15に、図1に示すように、伝熱管10が挿入固定されている。 In addition, each fin 8 has a number of circular holes 15 at predetermined intervals for inserting heat transfer tubes, and the heat transfer tubes 10 are inserted and fixed into these holes 15 as shown in Figure 1.
まず、前記伝熱管10が挿通固定される孔15は、図2に示すように、フィン8の風上前縁の2本の直線部11a、11bの延長線の交点と風下後縁の2本の直線部12a、12bの延長線の交点とを結ぶ線FLに平行に、所定のピッチFPで少なくとも2列以上配置されている。そして、各列、すなわちフィン8の略くの字状の外縁と平行な方向となる段方向の段のピッチをSP、前記線FLと風上前縁の2本の直線部とが成す角度をそれぞれα、βとしたとき、FP・cosαおよびFP・cosβがSP・1/4からSP・3/4の範囲内に収まる構成としてある。 First, the holes 15 through which the heat transfer tubes 10 are inserted and fixed are arranged in at least two rows at a predetermined pitch FP parallel to a line FL that connects the intersection of the extensions of the two straight lines 11a, 11b at the windward leading edge of the fin 8 and the intersection of the extensions of the two straight lines 12a, 12b at the leeward trailing edge, as shown in Figure 2. Then, when the pitch of each row, i.e., the step pitch in the step direction that is parallel to the outer edge of the approximately dogleg-shaped fin 8, is SP, and the angles between the line FL and the two straight lines at the windward leading edge are α and β, respectively, FP·cosα and FP·cosβ are configured to be within the range of SP·1/4 to SP·3/4.
また、フィン1列分の幅方向の長さである列ピッチをRPとすると、RP=FP・sinαおよびRP=FP・sinβ、の関係式が成り立つので、列ピッチRPおよび角度α、βを設定すれば、所定のピッチFPは一義的に決まる。 If the row pitch, which is the width direction length of one row of fins, is RP, then the following relations hold: RP = FP sin α and RP = FP sin β. Therefore, by setting the row pitch RP and the angles α and β, the specified pitch FP can be uniquely determined.
なお、上記線FLに平行に所定のピッチFPで少なくとも2列以上配置された各孔15は同一外形状であるが、本実施の形態では、熱交換器の出入り口部分に位置することになる孔15の外形状、この実施の形態では円形孔の直径は、伝熱管10内を流れる冷媒の気液状態に応じ冷媒と伝熱管10との間で最も高い熱交換がなされるよう少なくとも大小2種類の異なる大きさ形状としてある。例えば、空気調和機を暖房運転し、室内機1の熱交換器6を凝縮器またはガスクーラーとして使用する際の冷媒出口寄りの伝熱管10の直径は他の何れの箇所よりも細く形成されている。なお、この細い伝熱管10を用いる領域は、空気調和機を冷房運転するときには、室内機1の熱交換器6が蒸発器として使用され、伝熱管10内の冷媒は逆にながれるので、入口寄りの領域となる。 The holes 15 arranged in at least two rows at a predetermined pitch FP parallel to the line FL have the same external shape, but in this embodiment, the external shape of the holes 15 located at the inlet and outlet of the heat exchanger, in this embodiment, the diameter of the circular holes, is at least two different sizes and shapes, large and small, so that the highest heat exchange is achieved between the refrigerant and the heat transfer tube 10 depending on the gas-liquid state of the refrigerant flowing through the heat transfer tube 10. For example, when the air conditioner is in heating operation and the heat exchanger 6 of the indoor unit 1 is used as a condenser or gas cooler, the diameter of the heat transfer tube 10 near the refrigerant outlet is made thinner than any other part. Note that when the air conditioner is in cooling operation, the heat exchanger 6 of the indoor unit 1 is used as an evaporator and the refrigerant in the heat transfer tube 10 flows in the opposite direction, so the area where this thin heat transfer tube 10 is used is the area near the inlet.
また、図2、図3に示すように、フィン8の孔15の段方向の間のフィン面には、複数、この例では3つの切り起こし16、17、18が風上から順に設けられている。上記複数の切り起こし16、17、18は夫々が略平行状態に並び、その立ち上がり部は、伝熱管10の円周に概略沿うように形成されている。尚、この切り起こし16、17、18の巾及び切り起こし高さ等は空気との熱交換性能を考慮して適宜設定されている。 As shown in Figures 2 and 3, multiple cut-and-raised portions 16, 17, and 18 (three cut-and-raised portions in this example) are provided on the fin surface between the rows of holes 15 of the fin 8 in the windward direction. The cut-and-raised portions 16, 17, and 18 are arranged approximately parallel to each other, and their raised portions are formed to roughly follow the circumference of the heat transfer tube 10. The width and height of the cut-and-raised portions 16, 17, and 18 are appropriately set in consideration of the heat exchange performance with the air.
次に上記のように構成した空気調和機の作用効果について説明する。 Next, we will explain the effects of the air conditioner configured as above.
上記熱交換器は、伝熱管10が挿通固定される各列の孔15が、図2、図3に示すように、風上前縁の2本の直線部11a、11bの延長線の交点と風下後縁の2本の直線部12a、12bの延長線の交点とを結ぶ線FLに平行に所定のピッチFPで配置されているので、図4に示すように、フィン素材板19を前記ピッチFPで矢印X方向に順送りしながら1列の穿孔ピンを持つ穿孔金型(図示せず)を用いて伝熱管挿通用の孔15を穿孔し、その後、所要孔列、例えばこの場合は3列の孔列を持つ形状に切り離せばフィン8を製造することかできる。 In the above heat exchanger, the holes 15 in each row through which the heat transfer tubes 10 are inserted and fixed are arranged at a predetermined pitch FP parallel to the line FL connecting the intersection of the extensions of the two straight lines 11a, 11b at the windward leading edge and the intersection of the extensions of the two straight lines 12a, 12b at the leeward trailing edge, as shown in Figures 2 and 3. As a result, as shown in Figure 4, the fin blank plate 19 is fed forward in the direction of the arrow X at the pitch FP, and holes 15 for inserting the heat transfer tubes are drilled using a drilling die (not shown) with a row of drilling pins, and then cut into a shape with the required row of holes, for example, three rows of holes in this case, to manufacture the fins 8.
そして、上記1列の穿孔金型一つで穿孔したフィン8の3列の各列の孔15は、段方向のピッチをSP、前記線FLと風上前縁の2本の直線部11a、11bとが成す角度をそれぞれα、βとしたとき、FP・cosαおよびFP・cosβがSP・1/4からSP・3/4の範囲内に収まる配置構成としてあるから、貫流型の送風機5の中心に向かって流れる空気の流れ方向(図2、図3の矢印Y参照)に対しその風上から風下側に向かって重なることなく順次位置ずれした略千鳥配置状態となる。 The holes 15 in each of the three rows of the fins 8 drilled with the one row of drilling dies are arranged so that FP·cosα and FP·cosβ are within the range of SP·1/4 to SP·3/4, when the pitch in the row direction is SP and the angles between the line FL and the two straight lines 11a and 11b at the windward leading edge are α and β, respectively. Therefore, they are arranged in a roughly staggered manner, shifted sequentially from the windward side to the leeward side without overlapping with respect to the flow direction of the air flowing toward the center of the cross-flow type blower 5 (see arrow Y in Figures 2 and 3).
例えば、FP・cosαおよびFP・cosβをSP・1/2になるようにすれば、列方向に隣り合う各伝熱管との距離が等間隔な千鳥配置状態となる。 For example, if FP·cosα and FP·cosβ are set to SP·1/2, the heat transfer tubes will be staggered so that the distance between adjacent tubes in the row direction is equal.
したがって、伝熱管挿通用の孔15を穿孔する穿孔金型はフィン8の伝熱管列が2列、3列と複数列であっても穿孔用ピンが1列の穿孔金型一つでよく、しかもフィン素材板19は金型交換等することなく単純に順送りするだけで伝熱管挿通用の孔15を連続的にプレス穿孔することができる。よって、その製造コストを下げることができる。 Therefore, even if the fin 8 has two or three rows of heat transfer tubes, a single drilling die with one row of drilling pins is sufficient to drill the holes 15 for inserting the heat transfer tubes, and the fin blank plate 19 can be simply fed forward without needing to change dies or the like, allowing the holes 15 for inserting the heat transfer tubes to be continuously press-drilled. This allows the manufacturing costs to be reduced.
そして、上記1列の穿孔金型一つで穿孔していても、フィン8の各列の孔15は空気の流れ方向に順次位置ずれして略千鳥配置状態となるから、孔15に挿通される伝熱管10は空気との接触度合が高まり、伝熱性能が向上して熱交換効率の高いものとすることができる。つまり、1列の穿孔金型一つで伝熱管挿通用の孔15を穿孔しても、その孔15は風上から風下側に向かって略千鳥配置状態とすることができ、高効率な熱交換器とすることができる。 Even if the holes are drilled using a single row of drilling dies, the holes 15 in each row of the fins 8 are sequentially shifted in the air flow direction to form a roughly staggered arrangement, so that the heat transfer tubes 10 inserted into the holes 15 have a higher degree of contact with the air, improving heat transfer performance and resulting in high heat exchange efficiency. In other words, even if the holes 15 for inserting the heat transfer tubes are drilled using a single row of drilling dies, the holes 15 can be roughly staggered from the windward side to the leeward side, resulting in a highly efficient heat exchanger.
このように、本実施形態の熱交換器は、金型交換等することなく1列の穿孔金型一つで製造して製造コストを下げると同時に熱交換効率を向上させて、安価で高効率な熱交換器とすることができる。 In this way, the heat exchanger of this embodiment can be manufactured using a single row of drilling dies without the need for die replacement, thereby reducing manufacturing costs and improving heat exchange efficiency, resulting in an inexpensive, highly efficient heat exchanger.
また、本実施の形態では、前記伝熱管10は、その外形状、この例では管径を大小異ならせているので、冷媒の気液状態に応じ伝熱管10と冷媒との熱交換を最適化して高い熱伝達率を発揮させることができる。例えば、熱交換器を凝縮器またはガスクーラーとして使用する際の冷媒出口寄りの伝熱管10あるいは蒸発器として使用する際の入口寄りの伝熱管10の管径(直径)を他の何れの箇所よりも細くすることにより、この伝熱管10内の冷媒の熱伝達率を向上させて、熱交換能力を増大させることができる。また、この領域の冷媒は液相状態で密度が大きいので冷媒流通抵抗はあまり増大することがなく、熱交換能力の増大を妨げることはない。 In addition, in this embodiment, the heat transfer tube 10 has an outer shape, and in this example, the tube diameter is made large and small, so that the heat exchange between the heat transfer tube 10 and the refrigerant can be optimized according to the gas-liquid state of the refrigerant, and a high heat transfer rate can be achieved. For example, by making the tube diameter (diameter) of the heat transfer tube 10 closer to the refrigerant outlet when the heat exchanger is used as a condenser or gas cooler, or the heat transfer tube 10 closer to the inlet when used as an evaporator, narrower than any other location, the heat transfer rate of the refrigerant in the heat transfer tube 10 can be improved and the heat exchange capacity can be increased. In addition, since the refrigerant in this region has a high density in the liquid phase, the refrigerant flow resistance does not increase much, and the increase in heat exchange capacity is not hindered.
このように、熱交換器を更に高効率化することができるとともに、管径を小さくした分高価な銅からなる伝熱管10の材料使用量を抑えて安価な熱交換器とすることができる。 In this way, the efficiency of the heat exchanger can be further improved, and the reduced diameter of the tube reduces the amount of expensive copper used for the heat transfer tube 10, making it an inexpensive heat exchanger.
加えて、伝熱管10を挿通させたフィン8は、風上前縁の2本の直線部11a、11bの延長線の交差部分がなす角度と風下後縁の2本の直線部12a、12bの延長線の交差部分がなす角度を同一としているから、略くの字形状のフィンの風上前縁と風下後縁との間の全域の巾寸法を等しくすることができる。 In addition, the fin 8 through which the heat transfer tube 10 is inserted has the same angle between the intersection of the extensions of the two straight sections 11a, 11b at the windward leading edge and the intersection of the extensions of the two straight sections 12a, 12b at the leeward trailing edge, so the width of the entire area between the windward leading edge and the leeward trailing edge of the roughly L-shaped fin can be made equal.
よって、略くの字形状のフィン全域にわたって十分な熱交換面積を持たせることができ、大きな熱交換能力を発揮して更に熱交換効率の高い高効率な熱交換器とすることができる。また、フィン素材板19をフィン形状に切断する際、一つ目のフィンの風下側縁部と二つ目のフィンの風上側縁部との切断間に無駄な廃材が発生することもなくなり、効率的に生産することができる。 As a result, it is possible to provide a sufficient heat exchange area over the entire area of the approximately L-shaped fins, which allows for a high heat exchanger with a large heat exchange capacity and high heat exchange efficiency. In addition, when cutting the fin material plate 19 into the fin shape, no waste material is generated between the cutting of the downwind edge of the first fin and the upwind edge of the second fin, allowing for efficient production.
(実施の形態2)
図5は実施の形態2に係る熱交換器のフィンを示す平面図、図6は同熱交換器を空気調和機に用いた状態を示すフィンの平面図である。
(Embodiment 2)
FIG. 5 is a plan view showing fins of a heat exchanger according to the second embodiment, and FIG. 6 is a plan view of the fins showing a state in which the heat exchanger is used in an air conditioner.
本実施の形態の熱交換器は、その伝熱管挿通用の孔15(伝熱管10)の段方向のピッチSPを少なくとも2種類以上とした構成としてある。この例では、空気調和機の本体上面の吸込み口3と対向する上部段方向の伝熱管挿通用の孔15a(伝熱管10)のピッチSP1を他の部分の伝熱管挿通用の孔15b(伝熱管10)のピッチSP2より短くした構成としてある。 The heat exchanger of this embodiment is configured with at least two or more types of pitch SP in the row direction of the holes 15 (heat transfer tubes 10) for inserting the heat transfer tubes. In this example, the pitch SP1 of the holes 15a (heat transfer tubes 10) for inserting the heat transfer tubes in the upper row direction facing the intake port 3 on the top surface of the air conditioner body is shorter than the pitch SP2 of the holes 15b (heat transfer tubes 10) for inserting the heat transfer tubes in other parts.
これにより、本体上面の吸込み口3から吸い込まれる空気の流れが最も速くなるフィン上部は伝熱管10の段方向のピッチSP1が短く抵抗が大きくなるので当該部分の流速が低下し、ピッチSP2が長い部分を流れる空気の流速に近似するようになって流速分布の均一化が図られることになり、前面側熱交換器6Aの伝熱性能を向上させて高性能な熱交換器とすることができる。 As a result, the upper part of the fin, where the flow of air sucked in from the intake port 3 on the top of the main body is the fastest, has a short pitch SP1 in the row direction of the heat transfer tubes 10 and high resistance, so the flow speed in that part is slower, and the flow speed approaches the flow speed of the air flowing in the part with a long pitch SP2, resulting in a more uniform flow speed distribution, improving the heat transfer performance of the front heat exchanger 6A and making it a high-performance heat exchanger.
すなわち、前面側熱交換器6Aを通過する空気の流速が早い部分は伝熱管のピッチSP1が短い部分を位置させ、遅い部分はピッチSP2が長い部分を位置させることによって、前面側熱交換器6Aを通過する空気の速度分布を調整し、熱交換器全域における伝熱性能を向上させて、より高性能な熱交換器とすることができる。 In other words, by positioning the heat transfer tubes with a short pitch SP1 in the areas where the air flow speed passing through the front heat exchanger 6A is fast, and the heat transfer tubes with a long pitch SP2 in the areas where the air flow speed is slow, the speed distribution of the air passing through the front heat exchanger 6A can be adjusted, improving the heat transfer performance throughout the entire heat exchanger and resulting in a higher performance heat exchanger.
特に、本実施の形態のように空気調和機の吸込み口3が本体2の上面1箇所の場合は、フィン上部の抵抗が大きくなる分吸込み口3部分からフィン前縁側に回り込む空気の量が多くなって流速分布の調整が進むので、その流速分布がより均一化し、より高性能な熱交換器とすることができる。 In particular, when the air conditioner has a single intake port 3 on the top surface of the main body 2 as in this embodiment, the resistance at the top of the fins increases, so the amount of air that flows around from the intake port 3 to the leading edge of the fin increases, and the flow rate distribution is adjusted, making the flow rate distribution more uniform and resulting in a higher performance heat exchanger.
その他の構成及び作用効果は実施の形態1と同じであり、説明は省略する。 The rest of the configuration and effects are the same as in embodiment 1, so a detailed explanation is omitted.
(実施の形態3)
図7は実施の形態3に係る熱交換器のフィンを示す平面図、図8は同熱交換器を用いた空気調和機の室内機を示す断面図である。
(Embodiment 3)
FIG. 7 is a plan view showing fins of a heat exchanger according to the third embodiment, and FIG. 8 is a cross-sectional view showing an indoor unit of an air conditioner using the same heat exchanger.
本実施の形態の熱交換器は、実施の形態1で示した複数の切り起こし16、17、18が、実施の形態1の図3にも図示しているが図7に示す通り空気の流れ方向に開口する形に形成してある。例えば、フィン8の長辺部分には風上前縁に向かって開口するように設け(以下、この切り起こしを第1切り起こしフィン16a、17a、18aと称す)、フィン8の上端となる短辺部分には前記第1切り起こし16a、17a、18aと略交差する略90度方向に向きを変えて設けてある(以下、この切り起こしを第2切り起こし16b、17b、18bと称す)。 In the heat exchanger of this embodiment, the multiple cut-ups 16, 17, and 18 shown in embodiment 1 are formed to open in the air flow direction as shown in FIG. 7, as shown in FIG. 3 of embodiment 1. For example, the cut-ups are provided on the long side of the fin 8 so as to open toward the windward leading edge (hereinafter, these cut-ups are referred to as first cut-up fins 16a, 17a, and 18a), and on the short side that forms the upper end of the fin 8, they are provided at an angle of approximately 90 degrees that approximately intersects with the first cut-ups 16a, 17a, and 18a (hereinafter, these cut-ups are referred to as second cut-ups 16b, 17b, and 18b).
なお、上記、各複数の第1切り起こし16a、17a、18aは風上前縁の2本の直線部11a、11bの延長線の交点と風下後縁の2本の直線部12a、12bの延長線の交点とを結ぶ線FLに平行に列方向へピッチFPで同一形状に形成してある。 The first cuts 16a, 17a, 18a are formed in the same shape at a pitch FP in the row direction parallel to a line FL that connects the intersection of the extensions of the two straight lines 11a, 11b on the windward leading edge and the intersection of the extensions of the two straight lines 12a, 12b on the leeward trailing edge.
これにより、上記前面側熱交換器6Aを貫流型の送風機5の前面側に配置した際、送風機前面側から伝熱管10の段の間を通過する空気に対しては第1切り起こし16a、17a、18aがその流路に位置する形となって前面側熱交換器6Aを通過する空気流れに抵抗をつけるとともに、本体上部の吸込み口3から伝熱管10の列の間を通過する流速の速い空気に対しては第2切り起こし16b、17b、18bがその流路に位置する形となって前面側熱交換器6Aを通過する空気流れに抵抗をつけ、前面側熱交換器6Aを通過する空気の速度分布を効果的に調整して熱交換器の熱交換効率をより向上させることができる。 As a result, when the front heat exchanger 6A is placed on the front side of the once-through type blower 5, the first cut-and-raised portions 16a, 17a, and 18a are positioned in the flow path of the air passing between the rows of heat transfer tubes 10 from the front side of the blower, providing resistance to the air flow passing through the front heat exchanger 6A, and the second cut-and-raised portions 16b, 17b, and 18b are positioned in the flow path of the fast-flowing air passing between the rows of heat transfer tubes 10 from the intake port 3 at the top of the main body, providing resistance to the air flow passing through the front heat exchanger 6A, effectively adjusting the speed distribution of the air passing through the front heat exchanger 6A and further improving the heat exchange efficiency of the heat exchanger.
また、本実施の形態においても前記実施の形態2で説明したように、フィン上部の抵抗が大きくなる分フィン前縁側に回り込む空気の量が多くなって流速分布の調整が進むので、その流速分布がより均一化し、より高性能な熱交換器とすることができる。 As explained in the second embodiment, the resistance at the top of the fin increases, and the amount of air that flows around the leading edge of the fin increases, improving the adjustment of the flow velocity distribution, making the flow velocity distribution more uniform and resulting in a higher performance heat exchanger.
その他の構成及び作用効果は実施の形態1と同じであり、説明は省略する。 The rest of the configuration and effects are the same as in embodiment 1, so a detailed explanation is omitted.
(実施の形態4)
図9は実施の形態4に係る熱交換器のフィンを示す平面図である。
(Embodiment 4)
FIG. 9 is a plan view showing fins of a heat exchanger according to the fourth embodiment.
本実施の形態の熱交換器は、実施の形態1~3の図2にも図示している通り略くの字形状のフィン8の端部に切り離し可能にフィン9を一体形成した構成としてある。 The heat exchanger of this embodiment is configured such that fins 9 are integrally formed at the ends of fins 8 that are roughly V-shaped and can be separated, as shown in FIG. 2 of embodiments 1 to 3.
これにより、略くの字形状のフィン8によって形成する前面側熱交換器6Aとフィン9によって形成する背面側熱交換器6Bとのフィン8、9を一つの金型で一気にプレス加工して製造することができ、更にコストダウンを進めることができる。 This allows the front heat exchanger 6A, which is formed by the roughly L-shaped fins 8, and the rear heat exchanger 6B, which is formed by the fins 9, to be manufactured by pressing the fins 8, 9 in one go using a single die, further reducing costs.
また、フィン9には、フィン9の端部に切り離し可能に第2フィン部20を一体形成した構成としてある。
これにより、略くの字形状のフィン8によって形成する前面側熱交換器6Aとフィン9によって形成する背面側熱交換器6Bと第2フィン部20によって形成する熱交ブロック21とのフィン8、9、20を一つの金型で一気にプレス加工して製造することができ、更にコストダウンを進めることができる。
Further, the fin 9 has a second fin portion 20 integrally formed at an end of the fin 9 in a detachable manner.
This allows the fins 8, 9, and 20 of the front side heat exchanger 6A formed by the approximately L-shaped fins 8, the rear side heat exchanger 6B formed by the fins 9, and the heat exchanger block 21 formed by the second fin section 20 to be manufactured all at once by pressing using a single mold, further reducing costs.
その他の構成及び作用効果は実施の形態1と同じであり、説明は省略する。 The rest of the configuration and effects are the same as in embodiment 1, so a detailed explanation is omitted.
(実施の形態5)
図10は実施の形態5に係る熱交換器とそれを用いた空気調和機の室内機を示す断面図である。
(Embodiment 5)
FIG. 10 is a cross-sectional view showing a heat exchanger according to the fifth embodiment and an indoor unit of an air conditioner using the heat exchanger.
本実施の形態の熱交換器は、略くの字形状のフィン8と一体形成したフィン9の第2フィン部(図9の20で示す)をカットして前記カットした第2フィン部20で熱交ブロック21を形成し、この熱交ブロック21を背面側熱交換器6Bの最外方に位置するフィン9の風上側の前面もしくは背面に移載した構成としてある。 The heat exchanger of this embodiment is configured such that the second fin portion (indicated by 20 in FIG. 9) of the fin 9 formed integrally with the approximately L-shaped fin 8 is cut to form a heat exchange block 21 with the cut second fin portion 20, and this heat exchange block 21 is transferred to the front or back of the windward side of the fin 9 located at the outermost position of the rear heat exchanger 6B.
これにより、略くの字形状に屈曲したフィン8と一体のフィン9で形成する背面側熱交換器6Bの前後幅方向寸法Lを小さくしながら当該背面側熱交換器6Bの伝熱面積を確保することができる。よって、空気調和機の室内機に設置した際、室内機の奥行きサイズの大型化を抑えるとともに、カットして生じた第2フィン部20を利用して熱交換器全体の伝熱面積を確保することができるので、材料取りの無駄がない高性能な空気調和機とすることができる。 This makes it possible to ensure the heat transfer area of the rear heat exchanger 6B, which is formed by the fins 8 bent into an approximately L-shape and the fins 9 integral with the rear heat exchanger 6B, while reducing the front-to-rear width dimension L of the rear heat exchanger 6B. Therefore, when installed in the indoor unit of an air conditioner, the depth size of the indoor unit is prevented from becoming large, and the heat transfer area of the entire heat exchanger can be ensured by using the second fin portion 20 created by cutting, resulting in a high-performance air conditioner with no wasted material.
その他の構成及び作用効果は実施の形態1と同じであり、説明は省略する。 The rest of the configuration and effects are the same as in embodiment 1, so a detailed explanation is omitted.
(実施の形態6)
図11は実施の形態6に係る熱交換器とそれを用いた空気調和機の室内機を示す断面図である。
(Embodiment 6)
Sixth embodiment Fig. 11 is a cross-sectional view showing a heat exchanger according to the sixth embodiment and an indoor unit of an air conditioner using the heat exchanger.
本実施の形態の熱交換器は、実施の形態1で説明した前面側熱交換器6Aの背面側に別金型で形成した別体構成の第2熱交換器22を組み合わせて構成した熱交換器としてある。 The heat exchanger of this embodiment is constructed by combining the front heat exchanger 6A described in embodiment 1 with a second heat exchanger 22 that is a separate component formed using a separate mold on the rear side of the front heat exchanger 6A.
これにより、別金型で形成した汎用性の高い既存の熱交換器を第2熱交換器22として組合せて、コストおよび適用能力に応じた最適な複数の熱交換器をより低コストで提供することができる。 This allows an existing, versatile heat exchanger formed using a separate mold to be combined as the second heat exchanger 22, making it possible to provide multiple heat exchangers optimized for cost and application capacity at a lower cost.
その他の構成及び作用効果は実施の形態1と同じであり、説明は省略する。 The rest of the configuration and effects are the same as in embodiment 1, so a detailed explanation is omitted.
(実施の形態7)
図12は実施の形態7に係る熱交換器とそれを用いた空気調和機の室内機を示す断面図である。
(Seventh embodiment)
FIG. 12 is a cross-sectional view showing a heat exchanger according to the seventh embodiment and an indoor unit of an air conditioner using the heat exchanger.
本実施の形態は、実施の形態1で説明した1列の穿孔ピンを持つ穿孔金型(図示せず)を用いてピッチFPで伝熱管挿通用の孔15を穿孔したフィン素材板19を、1列の孔列を持つ形状に切り離して一つ孔列のフィン(以下、一つ孔列フィンと称す)80を製造し、この一つ孔列フィン80を風上側から風下側に複数、この例では二つ並設して熱交換器を構成してある。 In this embodiment, a fin blank plate 19 in which holes 15 for inserting heat transfer tubes are drilled at pitch FP using a drilling die (not shown) with a row of drilling pins as described in embodiment 1 is cut into a shape with a single row of holes to produce a fin with a single row of holes (hereinafter referred to as a single-hole row fin) 80. A heat exchanger is constructed by arranging multiple single-hole row fins 80 side by side from the upwind side to the downwind side (two in this example).
これにより風上側から風下側に並設した複数の一つ孔列フィン80の各孔15、つまり伝熱管10は、実施の形態1と同様、風上前縁の2本の直線部11a、11bの延長線の交点と風下後縁の2本の直線部12a、12bの延長線の交点とを結ぶ線FLに平行に所定のピッチFPでの配置となり、かつ、伝熱管10の段方向のピッチをSP、前記線FLと風上前縁の2本の直線部11a、11bとが成す角度をそれぞれα、βとしたとき、FP・cosαおよびFP・cosβがSP・1/4からSP・3/4の範囲内に収まる配置構成となる。 As a result, the holes 15 of the multiple single-hole row fins 80 arranged side by side from the windward side to the leeward side, i.e., the heat transfer tubes 10, are arranged at a predetermined pitch FP parallel to the line FL connecting the intersection of the extensions of the two straight sections 11a, 11b of the windward leading edge and the intersection of the extensions of the two straight sections 12a, 12b of the leeward trailing edge, as in embodiment 1, and when the pitch in the row direction of the heat transfer tubes 10 is SP and the angles between the line FL and the two straight sections 11a, 11b of the windward leading edge are α and β, respectively, the arrangement is such that FP·cosα and FP·cosβ are within the range of SP·1/4 to SP·3/4.
つまり、この熱交換器は一つ孔列フィン80を風上側から風下側に複数並設することによって、実施の形態1の場合と同様、伝熱管10が、風上前縁の2本の直線部11a、11bの延長線の交点と風下後縁の2本の直線部12a、12bの延長線の交点とを結ぶ線FLに平行に、所定のピッチFPで少なくとも2列以上配置されるとともに、各列の段方向のピッチをSP、前記線FLと風上前縁の2本の直線部とが成す角度をそれぞれα、βとしたとき、FP・cosαおよびFP・cosβがSP・1/4からSP・3/4の範囲内に収まる配置構成となる。 In other words, this heat exchanger has multiple perforated fins 80 arranged side by side from the windward side to the leeward side, and similarly to the first embodiment, the heat transfer tubes 10 are arranged in at least two rows at a predetermined pitch FP parallel to a line FL connecting the intersection of the extensions of the two straight sections 11a, 11b of the windward leading edge and the intersection of the extensions of the two straight sections 12a, 12b of the leeward trailing edge, and when the row pitch of each row is SP and the angles between the line FL and the two straight sections of the windward leading edge are α and β, respectively, the arrangement is such that FP·cosα and FP·cosβ are within the range of SP·1/4 to SP·3/4.
よって、実施の形態1と同様、フィン素材板19をピッチFPで順送りしながら単一の穿孔金型によって伝熱管挿通用の孔列をプレス形成する、という、単一金具を用いた単純工程による製造によって、空気の流れ方向、換言すると2列以上の複数の列方向に並ぶ伝熱管挿通用の孔15、つまり伝熱管10が、互いに重なることなく、略千鳥配置状態とすることができる。したがって、伝熱管挿通用の孔15をプレス形成する穿孔金型は一つでよく、しかもフィン素材板19は金型交換等することなく単純に順送りするだけで伝熱管挿通用の孔15を連続的にプレス形成でき、工程も簡素化する。よって、伝熱管10と空気との熱交換率を高めて熱交換効率を向上させつつ大幅なコストダウンを図ることが可能となり、安価で高効率な熱交換器とすることができる。 As in the first embodiment, the fin material plate 19 is fed forward at pitch FP while a single punching die is used to press-form rows of holes for inserting the heat transfer tubes. This simple manufacturing process uses a single metal fitting, and the holes 15 for inserting the heat transfer tubes, that is, the heat transfer tubes 10, arranged in the air flow direction, in other words, in two or more rows, can be arranged in a roughly staggered arrangement without overlapping each other. Therefore, only one punching die is required to press-form the holes 15 for inserting the heat transfer tubes, and the fin material plate 19 can be simply fed forward without changing the die, and the process is simplified. This increases the heat exchange rate between the heat transfer tubes 10 and the air, improving heat exchange efficiency while significantly reducing costs, resulting in an inexpensive and highly efficient heat exchanger.
加えて、各一つ孔列フィン80がそれぞれ独立しているので、一つ孔列フィン80間での断熱が行われ、熱交換器の性能を効果的に向上させることができる。 In addition, since each single-hole fin 80 is independent, insulation is provided between the single-hole fins 80, effectively improving the performance of the heat exchanger.
以上、本発明に係る熱交換器と空気調和機について、上記各実施の形態を用いて説明したが、本発明は、これに限定されるものではなく、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれるものである。 The heat exchanger and air conditioner according to the present invention have been described above using the above-mentioned embodiments, but the present invention is not limited to these and includes all modifications within the meaning and scope of the claims.
例えば、熱交換器として、本実施の形態1~6ではフィン8に形成する孔列を3列としたが、この孔15は2列もしくは3列以上の複数列であってもよいものである。 For example, in the heat exchanger of the first to sixth embodiments, the fins 8 are formed with three rows of holes, but the holes 15 may be formed with two rows or multiple rows of three or more rows.
また、本実施の形態2で説明した伝熱管10のピッチSPは大小2種類としたが、前面側熱交換器6Aに流入する空気の流速分布に応じて大中小等としてもよく、また、短いピッチSP1での配列部分はフィン8の上部としたが、本体2の吸込み口3が前面側にも設けてあればこの前面側部分と上部の2箇所に設けてもよいものである。 The pitch SP of the heat transfer tubes 10 described in the second embodiment is two types, large and small, but it may be large, medium, small, etc. depending on the flow velocity distribution of the air flowing into the front heat exchanger 6A. Also, the arrangement part with the short pitch SP1 is on the top of the fins 8, but if the intake port 3 of the main body 2 is also provided on the front side, it may be provided in two places, the front side part and the top.
また、本実施の形態7で説明した熱交換器の一つ孔列フィン80は2つ並設した場合を例示したが、これは必要とされる熱交換器の能力に応じて適宜増やせばよいものである。 In addition, in the heat exchanger described in this embodiment 7, two perforated fins 80 are arranged side by side, but this can be increased as needed depending on the required capacity of the heat exchanger.
また、前記一つ孔列フィン80で構成した本実施の形態7の熱交換器は、その前の実施の形態2~6で説明した構成の一つもしくは複数を組み合わせて構成してもよく、これによって更に高効率かつ安価な熱交換器とすることができる。 The heat exchanger of this embodiment 7, which is configured with the one-hole row fin 80, may also be configured by combining one or more of the configurations described in the previous embodiments 2 to 6, thereby making it possible to create an even more efficient and inexpensive heat exchanger.
また、空気調和機としては、本実施の形態では室内機と室外機が分離されているセパレート型の空気調和機で説明したが、これは一体型の空気調和機であってもよく、同様の効果が得られるものである。 In addition, in this embodiment, the air conditioner is described as a separate type air conditioner in which the indoor unit and the outdoor unit are separate, but this may also be an integrated air conditioner, and the same effect can be obtained.
以上説明したように、本発明にかかる熱交換器は、単一の金型で空気の流れ方向に重ならない伝熱管配列とすることができ、しかも金型交換等が不要となるので製造工程も単純化でき、高効率かつ安価な熱交換器とすることができる。そして、この熱交換器を用いた空気調和機は、安価で高性能な空気調和機とすることができる。よって、一般家庭で使用される空気調和機をはじめとして様々な空気調和機に広く適用できる。 As explained above, the heat exchanger of the present invention can be made with a single mold to arrange the heat transfer tubes so that they do not overlap in the air flow direction, and since mold replacement is not required, the manufacturing process can be simplified, resulting in a highly efficient and inexpensive heat exchanger. An air conditioner using this heat exchanger can be an inexpensive, high-performance air conditioner. Therefore, it can be widely applied to various air conditioners, including those used in ordinary households.
1 室内機
2 本体
3 吸込み口
4 吹出し口
5 送風機
6 熱交換器
6A 前面側熱交換器
6B 背面側熱交換器
8、9 フィン
10 伝熱管
11a、11b 直線部
12a、12b 直線部
13、14 湾曲部
15、15a、15b 孔
16、17、18 切り起こし
16a、17a、18a 第1切り起こし
16b、17b、18b 第2切り起こし
19 フィン素材板
20 第2フィン部
21 熱交ブロック
22 第2熱交換器
80 一つ孔列フィン
REFERENCE SIGNS LIST 1 Indoor unit 2 Main body 3 Intake port 4 Outlet port 5 Blower 6 Heat exchanger 6A Front heat exchanger 6B Rear heat exchanger 8, 9 Fin 10 Heat transfer tube 11a, 11b Straight section 12a, 12b Straight section 13, 14 Curved section 15, 15a, 15b Hole 16, 17, 18 Cut-out 16a, 17a, 18a First cut-out 16b, 17b, 18b Second cut-out 19 Fin blank 20 Second fin section 21 Heat exchange block 22 Second heat exchanger 80 Fin with one hole row
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020020258A JP7522956B2 (en) | 2020-02-10 | 2020-02-10 | Heat exchanger and air conditioner using same |
PCT/JP2021/001572 WO2021161729A1 (en) | 2020-02-10 | 2021-01-19 | Heat exchanger and air conditioner using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020020258A JP7522956B2 (en) | 2020-02-10 | 2020-02-10 | Heat exchanger and air conditioner using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021124273A JP2021124273A (en) | 2021-08-30 |
JP7522956B2 true JP7522956B2 (en) | 2024-07-26 |
Family
ID=77292863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020020258A Active JP7522956B2 (en) | 2020-02-10 | 2020-02-10 | Heat exchanger and air conditioner using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7522956B2 (en) |
WO (1) | WO2021161729A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7448848B2 (en) * | 2022-06-14 | 2024-03-13 | ダイキン工業株式会社 | air conditioner |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005083606A (en) | 2003-09-05 | 2005-03-31 | Matsushita Electric Ind Co Ltd | Heat exchanger with fin and its manufacturing method |
JP2010071560A (en) | 2008-09-18 | 2010-04-02 | Toshiba Carrier Corp | Indoor unit of air conditioner |
JP2010223558A (en) | 2009-03-25 | 2010-10-07 | Daikin Ind Ltd | Heat exchanger, and indoor unit of air conditioning device comprising the same |
JP2010261638A (en) | 2009-05-01 | 2010-11-18 | Hitachi Appliances Inc | Indoor unit of air conditioner, heat exchanger used in the same, and method of manufacturing heat exchanger |
JP2014130000A (en) | 2012-12-28 | 2014-07-10 | Panasonic Corp | Air conditioner |
JP2015049008A (en) | 2013-09-03 | 2015-03-16 | 日立アプライアンス株式会社 | Air conditioner, and heat exchanger for air conditioner |
JP2015127607A (en) | 2013-12-27 | 2015-07-09 | ダイキン工業株式会社 | Heat exchanger |
JP2017138008A (en) | 2016-02-01 | 2017-08-10 | パナソニックIpマネジメント株式会社 | Heat exchanger |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0347136Y2 (en) * | 1986-05-28 | 1991-10-07 |
-
2020
- 2020-02-10 JP JP2020020258A patent/JP7522956B2/en active Active
-
2021
- 2021-01-19 WO PCT/JP2021/001572 patent/WO2021161729A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005083606A (en) | 2003-09-05 | 2005-03-31 | Matsushita Electric Ind Co Ltd | Heat exchanger with fin and its manufacturing method |
JP2010071560A (en) | 2008-09-18 | 2010-04-02 | Toshiba Carrier Corp | Indoor unit of air conditioner |
JP2010223558A (en) | 2009-03-25 | 2010-10-07 | Daikin Ind Ltd | Heat exchanger, and indoor unit of air conditioning device comprising the same |
JP2010261638A (en) | 2009-05-01 | 2010-11-18 | Hitachi Appliances Inc | Indoor unit of air conditioner, heat exchanger used in the same, and method of manufacturing heat exchanger |
JP2014130000A (en) | 2012-12-28 | 2014-07-10 | Panasonic Corp | Air conditioner |
JP2015049008A (en) | 2013-09-03 | 2015-03-16 | 日立アプライアンス株式会社 | Air conditioner, and heat exchanger for air conditioner |
JP2015127607A (en) | 2013-12-27 | 2015-07-09 | ダイキン工業株式会社 | Heat exchanger |
JP2017138008A (en) | 2016-02-01 | 2017-08-10 | パナソニックIpマネジメント株式会社 | Heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
WO2021161729A1 (en) | 2021-08-19 |
JP2021124273A (en) | 2021-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2236972B1 (en) | Fin for heat exchanger and heat exchanger using the fin | |
KR20110033198A (en) | Method for manufacturing tube and fin heat exchanger with reduced tube diameter and optimized fins produced thereby | |
JP4511143B2 (en) | Finned heat exchanger and manufacturing method thereof | |
JP4876660B2 (en) | Finned heat exchanger and air conditioner | |
JP7522956B2 (en) | Heat exchanger and air conditioner using same | |
JP2008121950A (en) | Finned heat exchanger | |
JP2011043251A (en) | Finned heat exchanger | |
CN201387182Y (en) | Heat exchanger and air conditioner | |
JP3979118B2 (en) | HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER | |
JP3903888B2 (en) | Heat exchanger | |
JP2008215694A (en) | Heat exchanger with fin | |
JP2004019999A (en) | Heat exchanger with fin, and manufacturing method therefor | |
JP4725277B2 (en) | Finned heat exchanger | |
CN100532958C (en) | Finned heat exchanger and manufacturing method thereof | |
JP2006162183A (en) | Heat exchanger with fin | |
JPH1054685A (en) | Heat exchanger and manufacture thereof | |
JP2003161588A (en) | Heat exchanger and air conditioner having the same | |
JP2006097953A (en) | Heat exchanger with fin | |
JP4179137B2 (en) | Finned heat exchanger | |
US20150000880A1 (en) | Heat exchanger with varied louver angles | |
JP2008121920A (en) | Finned heat exchanger | |
US12078431B2 (en) | Microchannel heat exchanger for a furnace | |
JP2002054840A (en) | Air conditioner | |
JP2010261638A (en) | Indoor unit of air conditioner, heat exchanger used in the same, and method of manufacturing heat exchanger | |
CN101270943B (en) | Heat exchanger and air conditioner with heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20221020 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240418 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240617 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7522956 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |