JP7515119B2 - Thin film transistor and its manufacturing method - Google Patents

Thin film transistor and its manufacturing method Download PDF

Info

Publication number
JP7515119B2
JP7515119B2 JP2021518334A JP2021518334A JP7515119B2 JP 7515119 B2 JP7515119 B2 JP 7515119B2 JP 2021518334 A JP2021518334 A JP 2021518334A JP 2021518334 A JP2021518334 A JP 2021518334A JP 7515119 B2 JP7515119 B2 JP 7515119B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
oxide semiconductor
metal oxide
film transistor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021518334A
Other languages
Japanese (ja)
Other versions
JPWO2020226045A1 (en
Inventor
行治 浦岡
パオロ ソリア ベルムンド,フアン
真一 前田
忠之 伊左治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Nissan Chemical Corp
Original Assignee
Nara Institute of Science and Technology NUC
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC, Nissan Chemical Corp filed Critical Nara Institute of Science and Technology NUC
Publication of JPWO2020226045A1 publication Critical patent/JPWO2020226045A1/ja
Application granted granted Critical
Publication of JP7515119B2 publication Critical patent/JP7515119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、新規な薄膜トランジスタ及びその製造方法に関する。 The present invention relates to a novel thin film transistor and a method for manufacturing the same.

従来の蒸着法、スパッタ法やCVD法といった成膜技術に代えて、塗布法による金属酸化物半導体層の成膜を行った薄膜トランジスタの製造方法が近年提案されている(例えば特許文献1~特許文献3)。In recent years, methods for manufacturing thin-film transistors have been proposed in which a metal oxide semiconductor layer is formed by a coating method instead of conventional film formation techniques such as vapor deposition, sputtering, and CVD (for example, Patent Documents 1 to 3).

国際公開第2012/014885号International Publication No. 2012/014885 国際公開第2009/081862号International Publication No. 2009/081862 特開2010-0983035号公報JP 2010-0983035 A

塗布法による成膜は、スパッタ法等の真空系の成膜装置を用いる従来法と比べて、より簡易な構成(工程、装置)で、また低コストにての成膜を実現でき、高い生産性に加え、大面積にての成膜やより複雑なパターンにての成膜をも可能とする点で有望視されている。そのため、半導体層の成膜のみならず、薄膜トランジスタを構成する各層の成膜においても塗布法の適用が検討されている。
しかし、一般に、塗布法によって成膜・製造された薄膜トランジスタにおいては、半導体層の形成時に使用する前駆体に由来する不純物の存在、不完全な金属酸化物の形成、さらにはチャネル層の活性化が難しい等の種々の要因により、高い移動度を有するチャネル層、ひいては薄膜トランジスタを実現することは難しい。
Compared with conventional methods using vacuum deposition equipment such as sputtering, coating methods are promising because they can achieve deposition with a simpler configuration (steps, equipment) and at a lower cost, and because they are more productive and allow deposition over a large area and in more complicated patterns. Therefore, the application of coating methods is being considered not only for deposition of semiconductor layers, but also for deposition of each layer constituting a thin film transistor.
However, in general, in thin film transistors formed and manufactured by a coating method, it is difficult to realize a channel layer having high mobility, and thus a thin film transistor, due to various factors such as the presence of impurities derived from the precursors used in forming the semiconductor layer, the formation of incomplete metal oxides, and further, difficulty in activating the channel layer.

本発明は、12cm/Vs以上、好ましくは18cm/Vs以上という高い移動度を有するトップゲート型薄膜トランジスタ、並びに、高移動度を実現するトップゲート型薄膜トランジスタの製造方法の提供を課題とする。 An object of the present invention is to provide a top-gate thin-film transistor having a high mobility of 12 cm 2 /Vs or more, preferably 18 cm 2 /Vs or more, and a method for manufacturing a top-gate thin-film transistor that achieves high mobility.

本発明者らは、上記の課題を解決するべく鋭意研究を重ねた結果、金属酸化物半導体層に対して、エキシマレーザー光照射又はYAGレーザー光照射を実施する、特にUV光照射とエキシマレーザー光照射又はYAGレーザー光照射とを組みわせて実施したところ、金属酸化物半導体層を電極(導体)に変換するとともに、金属酸化物半導体層を移動度の高いチャネル層に変換でき、高移動度のトップゲート型薄膜トランジスタとなることを見出し、本発明を完成させた。As a result of extensive research conducted by the inventors to solve the above problems, they discovered that by irradiating a metal oxide semiconductor layer with excimer laser light or YAG laser light, particularly by combining UV light irradiation with excimer laser light or YAG laser light, the metal oxide semiconductor layer can be converted into an electrode (conductor) and also into a high mobility channel layer, resulting in a high mobility top-gate thin film transistor, and thus completed the present invention.

すなわち本発明は、第1観点として、12cm/Vs以上の移動度を有するトップゲート型薄膜トランジスタに関する。
第2観点として、移動度が18cm/Vs以上である、第1観点に記載のトップゲート型薄膜トランジスタに関する。
第3観点として、トップゲート型薄膜トランジスタが、トップコンタクト式又はボトムコンタクト式である、第1観点又は第2観点に記載のトップゲート型薄膜トランジスタに関する。
第4観点として、トップゲート型薄膜トランジスタが、フッ素を含むポリシロキサン膜をゲート絶縁膜として有するものである、第1観点乃至第3観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタに関する。
第5観点として、ガラス基板、シリコン基板、又はフレキシブル基板上に形成された薄膜トランジスタである、第1観点乃至第4観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタに関する。
第6観点として、該薄膜トランジスタが金属酸化物半導体層を含み、該金属酸化物半導体層が、インジウム、スズ、亜鉛、ガリウム、及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子の酸化物を含む、第1観点乃至第5観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタに関する。
第7観点として、前記金属酸化物半導体層が、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、及び酸化スズからなる群から選ばれる少なくとも1種の金属酸化物を含む層である、第6観点に記載のトップゲート型薄膜トランジスに関するタ。
第8観点として、下記(A)工程から(E)工程を含む、トップゲート型薄膜トランジスタの製造方法。
(A)工程:基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成し、該層(a)のパターニングとエッチングを行う工程、
(B)工程:パターニング及びエッチングされた金属酸化物半導体層(a)上に、絶縁層(b)を形成し、該層(b)の上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程、
(C)工程:金属酸化物半導体層(c)のパターニングとエッチングを行う工程、
(D)工程:パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして下層の絶縁層(b)をエッチングする工程、
(E)工程:基板の上方からエキシマレーザー光又はYAGレーザー光を照射する工程
を含むトップゲート型薄膜トランジスタの製造方法に関する。
第9観点として、(B)工程で形成する絶縁層(b)がフッ素を含むポリシロキサン膜である、第8観点に記載のトップゲート型薄膜トランジスタの製造方法に関する。
第10観点として、(E)工程が、基板の上方からUV光と、エキシマレーザー光又はYAGレーザー光をともに照射する(E’)工程である、第8観点又は第9観点に記載のトップゲート型薄膜トランジスタの製造方法に関する。
第11観点として、(E)工程が、基板の上方からUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する(E”)工程である、第8観点又は第9観点に記載のトップゲート型薄膜トランジスタの製造方法に関する。
第12観点として、前記金属酸化物半導体層形成用組成物が、金属塩と第一アミド化合物と水を主体とする溶媒とを含む、第8観点乃至第11観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
第13観点として、前記(A)工程及び(B)工程において、同一又は異なる条件及び手順で、金属酸化物半導体層形成用組成物をスピンコートにて塗布し、110℃~180℃で0.1分間~30分間熱処理する、塗布及び熱処理の操作を1回~10回繰り返し行った後、250℃~350℃で0.1時間~120時間焼成する加熱を行うことにより、前記金属酸化物半導体層(a)及び金属酸化物半導体層(c)をそれぞれ形成する、
第8観点乃至第12観点のうちいずれか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
第14観点として、前記(E)工程において、波長150nm~380nmのエキシマレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射する、
第8観点乃至第13観点のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
第15観点として、前記(E)工程において、波長250nm~400nmのYAGレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射する、
第8観点乃至第13観点のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
第16観点として、前記(E)工程において、波長150nm~350nmのUV光を1分間~120分間照射する、
第10観点至第15観点のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法に関する。
That is, a first aspect of the present invention relates to a top-gate thin film transistor having a mobility of 12 cm 2 /Vs or more.
A second aspect relates to the top-gate thin film transistor according to the first aspect, which has a mobility of 18 cm 2 /Vs or more.
As a third aspect, the present invention relates to the top-gate thin film transistor according to the first or second aspect, in which the top-gate thin film transistor is of a top-contact type or a bottom-contact type.
As a fourth aspect, the present invention relates to a top-gate thin-film transistor according to any one of the first to third aspects, in which the top-gate thin-film transistor has a fluorine-containing polysiloxane film as a gate insulating film.
A fifth aspect relates to the top-gate thin-film transistor according to any one of the first to fourth aspects, which is a thin-film transistor formed on a glass substrate, a silicon substrate, or a flexible substrate.
As a sixth aspect, the present invention relates to the top-gate thin film transistor according to any one of the first to fifth aspects, wherein the thin film transistor includes a metal oxide semiconductor layer, and the metal oxide semiconductor layer includes an oxide of at least one metal atom selected from the group consisting of indium, tin, zinc, gallium, and aluminum.
As a seventh aspect, the present invention relates to the top-gate thin film transistor according to the sixth aspect, wherein the metal oxide semiconductor layer is a layer containing at least one metal oxide selected from the group consisting of indium gallium zinc oxide, indium gallium oxide, indium tin zinc oxide, gallium zinc oxide, indium tin oxide, indium zinc oxide, tin zinc oxide, zinc oxide, and tin oxide.
As an eighth aspect, there is provided a method for manufacturing a top-gate thin film transistor, the method including the following steps (A) to (E):
Step (A): a step of applying a composition for forming a metal oxide semiconductor layer on a substrate, baking the composition, forming a metal oxide semiconductor layer (a), and patterning and etching the layer (a);
Step (B): forming an insulating layer (b) on the patterned and etched metal oxide semiconductor layer (a), and applying a metal oxide semiconductor layer-forming composition onto the insulating layer (b) and baking the composition to form a metal oxide semiconductor layer (c);
Step (C): A step of patterning and etching the metal oxide semiconductor layer (c);
Step (D): Etching the underlying insulating layer (b) using the patterned and etched metal oxide semiconductor layer (c) as a mask pattern;
The present invention relates to a method for producing a top-gate type thin film transistor, which includes step (E) of irradiating a substrate with excimer laser light or YAG laser light from above the substrate.
As a ninth aspect, the present invention relates to the method for producing a top-gate thin film transistor as defined in the eighth aspect, in which the insulating layer (b) formed in the step (B) is a polysiloxane film containing fluorine.
As a tenth aspect, the present invention relates to a method for manufacturing a top-gate thin film transistor according to the eighth or ninth aspect, in which the step (E) is a step (E') of irradiating the substrate from above with both UV light and excimer laser light or YAG laser light.
As an eleventh aspect, the present invention relates to the method for manufacturing a top-gate thin film transistor according to the eighth or ninth aspect, wherein the step (E) is a step (E″) of irradiating the substrate from above with UV light, and then irradiating the substrate with excimer laser light or YAG laser light.
As a twelfth aspect, the present invention relates to the method for producing a top-gate thin film transistor according to any one of the eighth to eleventh aspects, in which the composition for forming a metal oxide semiconductor layer contains a metal salt, a first amide compound, and a solvent mainly containing water.
As a thirteenth aspect, in the steps (A) and (B), a composition for forming a metal oxide semiconductor layer is applied by spin coating under the same or different conditions and procedures, and heat-treated at 110° C. to 180° C. for 0.1 to 30 minutes. This operation of application and heat treatment is repeated once to ten times, and then baking is performed at 250° C. to 350° C. for 0.1 to 120 hours, thereby forming the metal oxide semiconductor layer (a) and the metal oxide semiconductor layer (c), respectively.
The present invention relates to a method for manufacturing the top-gate thin film transistor according to any one of the eighth to twelfth aspects.
As a fourteenth aspect, in the step (E), an excimer laser beam having a wavelength of 150 nm to 380 nm is irradiated at 50 mJ/cm 2 to 150 mJ/cm 2 for 1 nanosecond to 120 nanoseconds.
The present invention relates to a method for manufacturing the top-gate thin film transistor according to any one of the eighth to thirteenth aspects.
As a fifteenth aspect, in the step (E), a YAG laser beam having a wavelength of 250 nm to 400 nm is irradiated at 50 mJ/cm 2 to 150 mJ/cm 2 for 1 nanosecond to 120 nanoseconds.
The present invention relates to a method for manufacturing the top-gate thin film transistor according to any one of the eighth to thirteenth aspects.
As a sixteenth aspect, in the step (E), UV light having a wavelength of 150 nm to 350 nm is irradiated for 1 minute to 120 minutes.
The present invention relates to a method for manufacturing a top-gate thin film transistor according to any one of the tenth to fifteenth aspects.

本発明によれば、12cm/Vs以上、18cm/Vs以上、20cm/Vs以上、30cm/Vs以上であり、例えば12cm/Vs~80cm/Vs、12cm/Vs~70cm/Vs、12cm/Vs~60cm/Vs、18cm/Vs~80cm/Vs、18cm/Vs~70cm/Vs、18cm/Vs~60cm/Vs、18cm/Vs~50cm/Vs、18cm/Vs~50cm/Vs、20cm/Vs~80cm/Vs、20cm/Vs~70cm/Vs、20cm/Vs~60cm/Vs、30cm/Vs~80cm/Vs、30cm/Vs~70cm/Vs、30cm/Vs~60cm/Vs、30cm/Vs~50cm/Vs、30cm/Vs~50cm/Vsの範囲の高移動度を有するトップゲート型薄膜トランジスタを提供することができる。
また本発明の製造方法によれば、エキシマレーザー光照射又はYAGレーザー光照射により金属酸化物半導体層を活性化して、移動度の高いチャネル層に変換することにより、さらには金属酸化物半導体層をUV光照射することで導体(電極)に変換することによって、高移動度のトップゲート型薄膜トランジスタを製造できる。
According to the present invention, the surface area is 12 cm 2 /Vs or more, 18 cm 2 /Vs or more, 20 cm 2 /Vs or more, or 30 cm 2 /Vs or more, for example, 12 cm 2 /Vs to 80 cm 2 /Vs, 12 cm 2 /Vs to 70 cm 2 /Vs, 12 cm 2 /Vs to 60 cm 2 /Vs, 18 cm 2 /Vs to 80 cm 2 /Vs, 18 cm 2 /Vs to 70 cm 2 /Vs, 18 cm 2 /Vs to 60 cm 2 /Vs, 18 cm 2 /Vs to 50 cm 2 /Vs, 18 cm 2 /Vs to 50 cm 2 /Vs, 20 cm 2 /Vs to 80 cm 2 /Vs, 20 cm 2 /Vs to 70 cm 2 /Vs. It is possible to provide top-gate thin film transistors having high mobility in the ranges of 20 cm 2 /Vs to 60 cm 2 /Vs, 30 cm 2 /Vs to 80 cm 2 /Vs, 30 cm 2 /Vs to 70 cm 2 /Vs, 30 cm 2 /Vs to 60 cm 2 /Vs, 30 cm 2 /Vs to 50 cm 2 /Vs, and 30 cm 2 /Vs to 50 cm 2 /Vs.
Furthermore, according to the manufacturing method of the present invention, a metal oxide semiconductor layer is activated by irradiation with excimer laser light or YAG laser light to convert it into a channel layer with high mobility, and further, the metal oxide semiconductor layer is converted into a conductor (electrode) by irradiating it with UV light, thereby making it possible to manufacture a top-gate type thin film transistor with high mobility.

図1は、実施例で製造した構造体Aを示す断面図である。FIG. 1 is a cross-sectional view showing a structure A produced in the example. 図2は、実施例で製造したトップゲート型薄膜トランジスタを示す断面図である。FIG. 2 is a cross-sectional view showing a top-gate type thin film transistor produced in the example. 図3は、実施例1で製造したトップゲート型薄膜トランジスタの伝達特性を示すグラフである。FIG. 3 is a graph showing the transfer characteristics of the top-gate thin film transistor produced in Example 1. 図4は、実施例7で製造したトップゲート型薄膜トランジスタの伝達特性を示すグラフである。FIG. 4 is a graph showing the transfer characteristics of the top-gate thin film transistor produced in Example 7. 図5は、本発明のトップゲート型薄膜トランジスタの製造方法における(A)工程~(E)工程を示す図である。FIG. 5 is a diagram showing steps (A) to (E) in the method for producing a top-gate thin film transistor of the present invention. 図6は、一般的なトップゲート型薄膜トランジスタを示す図であり、図6(a)はトップコンタクト式の構造の断面を示し、図6(b)はボトムコンタクト式の構造の断面を示す。6A and 6B are diagrams showing a typical top-gate type thin film transistor, where FIG. 6A shows a cross section of a top-contact type structure and FIG. 6B shows a cross section of a bottom-contact type structure.

[トップゲート型薄膜トランジスタ]
本発明が対象とする薄膜トランジスタ(TFT)は、12cm/Vs以上、好ましくは18cm/Vs以上の移動度を有するトップゲート型薄膜トランジスタである。例えば、本発明が対象とするトップゲート型薄膜トランジスタは、12cm/Vs~60cm/Vs、18cm/Vs~50cm/Vs、又は18cm/Vs~40cm/Vsの範囲といった高い移動度を得られる。
薄膜トランジスタ(TFT)は半導体と電極(導体)の位置関係によって構造分類され、本発明が対象とする、ゲート電極が半導体層の上側に配置されるトップゲート型薄膜トランジスタには、ソース電極とドレイン電極が半導体層の上側に配置される構造のトップコンタクト式と、これら電極が半導体層の下側に配置される構造のボトムコンタクト式がある。本発明のトップゲート型薄膜トランジスタは、トップコンタクト式及びボトムコンタク式の双方の態様を包含する。
[Top-gate thin-film transistor]
The thin film transistor (TFT) of the present invention is a top-gate type thin film transistor having a mobility of 12 cm 2 /Vs or more, preferably 18 cm 2 /Vs or more. For example, the top-gate type thin film transistor of the present invention can have a high mobility in the range of 12 cm 2 /Vs to 60 cm 2 /Vs, 18 cm 2 /Vs to 50 cm 2 /Vs, or 18 cm 2 /Vs to 40 cm 2 /Vs.
Thin film transistors (TFTs) are classified by their structures according to the positional relationship between the semiconductor and the electrodes (conductors), and the top-gate thin film transistors of the present invention, in which the gate electrode is disposed above the semiconductor layer, are classified into top-contact types in which the source electrode and the drain electrode are disposed above the semiconductor layer, and bottom-contact types in which these electrodes are disposed below the semiconductor layer. The top-gate thin film transistor of the present invention encompasses both top-contact and bottom-contact types.

図6に、一般的なトップゲート型薄膜トランジスタの一例を示す模式図として、トップコンタクト式(図6(a))の構造の断面図と、ボトムコンタクト式(図6(b))の構造の断面図をそれぞれ示す。
図6(a)の例では、基板1上に半導体層2(チャネル2a)が形成され、半導体層2上にドレイン電極3とソース電極4が形成されている。そしてゲート絶縁膜5は、半導体層2とドレイン電極3とソース電極4の上に形成され、その上にゲート電極6が設置された構成となっている。
また図6(b)の例では、基板1上に、ドレイン電極3とソース電極4が形成され、これら電極を覆うように半導体層2(チャネル2a)が形成されている。そして半導体層2上にゲート絶縁膜5が形成され、その上にゲート電極6が設置された構成となっている。
FIG. 6 is a schematic diagram showing an example of a general top-gate thin-film transistor, showing a cross-sectional view of a top-contact type structure (FIG. 6(a)) and a cross-sectional view of a bottom-contact type structure (FIG. 6(b)).
6(a), a semiconductor layer 2 (channel 2a) is formed on a substrate 1, and a drain electrode 3 and a source electrode 4 are formed on the semiconductor layer 2. A gate insulating film 5 is formed on the semiconductor layer 2, the drain electrode 3, and the source electrode 4, and a gate electrode 6 is provided thereon.
6(b), a drain electrode 3 and a source electrode 4 are formed on a substrate 1, and a semiconductor layer 2 (channel 2a) is formed to cover these electrodes. A gate insulating film 5 is formed on the semiconductor layer 2, and a gate electrode 6 is provided on the gate insulating film 5.

薄膜トランジスタが形成される基板としては特に限定されず、例えばシリコン基板、金属基板、ガリウム基板、透明電極基板、有機薄膜基板、プラスチック基板、ガラス基板等が挙げられる。より具体的には、例えば、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのプラスチックフィルム、ステンレス箔、ガラス等が挙げられる。また、配線層やトランジスタ等の回路素子が形成された半導体基板等であってもよい。さらに屈曲可能な基板(例えばフレキシブル基板)等であってもよい。中でも、ガラス基板、シリコン基板、フレキシブル基板等を好適に用いることができる。The substrate on which the thin film transistor is formed is not particularly limited, and examples thereof include a silicon substrate, a metal substrate, a gallium substrate, a transparent electrode substrate, an organic thin film substrate, a plastic substrate, a glass substrate, etc. More specifically, examples thereof include plastic films such as polyimide, polycarbonate, polyethylene terephthalate, and polyethylene naphthalate, stainless steel foil, and glass. The substrate may also be a semiconductor substrate on which a wiring layer and circuit elements such as transistors are formed. The substrate may also be a bendable substrate (e.g., a flexible substrate). Among these, glass substrates, silicon substrates, flexible substrates, etc. can be preferably used.

本発明の薄膜トランジスタでは、半導体層として金属酸化物半導体層を含み、該半導体層は、例えば、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも1種の金属原子の酸化物を含む。好ましくは、上記金属酸化物半導体層は、インジウム(In)、スズ(Sn)、亜鉛(Zn)、ガリウム(Ga)、及びアルミニウム(Al)からなる群から選ばれる少なくとも1種の金属原子の酸化物を含む。
好ましい態様において、上記金属酸化物半導体層は、例えば酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、酸化スズ、すなわち例えば、InGaZnO、InGaO、InSnZnO、GaZnO、InSnO、InZnO、SnZnO(いずれもx>0)、ZnO、SnO等を含む。
上記金属酸化物半導体層は、CVD法、スパッタリング法、パルスレーザー堆積法、真空蒸着法などの真空法のほか、後述する塗布法を用いて形成可能である。
なお金属酸化物半導体層は、層形成後にエキシマレーザー光又はYAGレーザー光による照射処理が施されていてもよい。
In the thin film transistor of the present invention, the semiconductor layer includes a metal oxide semiconductor layer, and the semiconductor layer includes at least one oxide of a metal atom selected from the group consisting of, for example, Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Preferably, the metal oxide semiconductor layer includes at least one oxide of a metal atom selected from the group consisting of indium (In), tin (Sn), zinc (Zn), gallium (Ga), and aluminum (Al).
In a preferred embodiment, the metal oxide semiconductor layer includes, for example, indium gallium zinc oxide, indium gallium oxide, indium tin zinc oxide, gallium zinc oxide, indium tin oxide, indium zinc oxide, tin oxide, zinc oxide, tin oxide, i.e., for example, InGaZnOx , InGaOx , InSnZnOx , GaZnOx , InSnOx , InZnOx , SnZnOx (all x>0), ZnO, SnO2 , etc.
The metal oxide semiconductor layer can be formed by a vacuum method such as a CVD method, a sputtering method, a pulsed laser deposition method, or a vacuum evaporation method, as well as a coating method described later.
Note that the metal oxide semiconductor layer may be subjected to irradiation treatment with excimer laser light or YAG laser light after the layer is formed.

薄膜トランジスタに用いられる電極材料(ゲート電極、ソース電極、ドレイン電極の材料)としては、例えば、金、銀、銅、アルミニウム、モリブデン、チタンなどの金属や、Mg/Cu、Mg/Ag、Mg/Al、Mg/In等の合金、SnO、InO、ZnO、InO・SnO(ITO)、InO・ZnO(IZO)、Sb・SnO(ATO)等の金属酸化物、カーボンブラック、フラーレン類、カーボンナノチューブなどの無機材料、ポリチオフェン、ポリアニリン、ポリピロール、ポリフルオレンおよびこれらの誘導体などの有機π共役ポリマーなどが挙げられる。これらの電極材料は1種類で用いてもよいが、薄膜トランジスタの電界効果移動度の向上、オン/オフ比の向上を目的として、もしくは閾値電圧の制御を目的として、複数の材料を組み合わせて用いてもよい。又、ゲート電極、ソース電極、ドレイン電極のそれぞれにおいて異なる電極材料を用いてもよい。
なおこれら電極の形成方法としては、真空蒸着、スパッタ法などの従来慣用の技術を用いることができ、また製造方法の簡略化のため、スプレーコート法、印刷法、インクジェット法などの塗布法を採用してもよい。また後述するように、本発明では、紫外線照射により金属酸化物半導体層を導体に変換し、電極とすることができる。
Examples of electrode materials (gate electrode, source electrode, drain electrode materials) used in thin film transistors include metals such as gold, silver, copper, aluminum, molybdenum, and titanium, alloys such as Mg/Cu, Mg/Ag, Mg/Al, and Mg/In, metal oxides such as SnO 2 , InO 2 , ZnO, InO 2.SnO 2 (ITO), InO 2.ZnO (IZO), and Sb 2 O 5.SnO 2 (ATO), inorganic materials such as carbon black, fullerenes, and carbon nanotubes, and organic π-conjugated polymers such as polythiophene, polyaniline, polypyrrole, polyfluorene, and derivatives thereof. Although one type of these electrode materials may be used, a combination of a plurality of materials may be used for the purpose of improving the field effect mobility and on/off ratio of the thin film transistor, or for the purpose of controlling the threshold voltage. Also, different electrode materials may be used for each of the gate electrode, source electrode, and drain electrode.
As a method for forming these electrodes, conventional techniques such as vacuum deposition and sputtering can be used, and in order to simplify the manufacturing method, coating methods such as spray coating, printing and inkjet printing may be used. As will be described later, in the present invention, the metal oxide semiconductor layer can be converted into a conductor by ultraviolet irradiation to form an electrode.

また、ゲート絶縁膜としては、例えば、酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化イットリウムなどの無機絶縁膜、ポリイミド、ポリメチルメタクリレート、ポリビニルフェノール、ベンゾシクロブテン、シリコーン(例えばポリシロキサン等)などの有機絶縁膜が挙げられ、これらはハロゲン元素を含んでいてもよい。例えば、フッ素を含むポリシロキサン膜(フッ素変性されたポリシロキサンを含む膜など)をゲート絶縁膜にする事ができる。
ゲート絶縁膜は1種類の膜を単独で用いてもよいが、薄膜トランジスタの電界効果移動度の向上、オン/オフ比の向上を目的として、もしくは閾値電圧の制御を目的として、複数の膜を組み合わせて用いてもよい。
上記ゲート絶縁膜は、真空蒸着、スパッタ法などの従来慣用の技術により形成可能であるが、製造方法の簡略化のため、スプレーコート法、印刷法、インクジェット法などの塗布法も採用でき、また基板としてシリコン基板を用いる場合、ゲート絶縁膜は熱による酸化によっても形成することができる。塗布法の場合は、絶縁膜形成塗布液の基板上への成膜性を改善するために絶縁膜形成塗布液に界面活性剤を含有していてもよい。
Examples of the gate insulating film include inorganic insulating films such as silicon oxide, silicon nitride, aluminum oxide, hafnium oxide, and yttrium oxide, and organic insulating films such as polyimide, polymethyl methacrylate, polyvinylphenol, benzocyclobutene, and silicone (e.g., polysiloxane, etc.), which may contain a halogen element. For example, a polysiloxane film containing fluorine (such as a film containing fluorine-modified polysiloxane) can be used as the gate insulating film.
The gate insulating film may be a single film, or a combination of multiple films may be used for the purpose of improving the field effect mobility and on/off ratio of the thin film transistor, or for the purpose of controlling the threshold voltage.
The gate insulating film can be formed by conventional techniques such as vacuum deposition and sputtering, but in order to simplify the manufacturing method, coating methods such as spray coating, printing, and inkjet can also be used, and when a silicon substrate is used as the substrate, the gate insulating film can also be formed by thermal oxidation. In the case of the coating method, the insulating film forming coating liquid may contain a surfactant in order to improve the film-forming property of the insulating film forming coating liquid on the substrate.

[トップゲート型薄膜トランジスタの製造方法]
本発明のトップゲート型薄膜トランジスタの製造方法は、下記(A)工程から(E)工程を含む製造方法である。
(A)工程:基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成し、該層(a)のパターニングとエッチングを行う工程、
(B)工程:パターニング及びエッチングされた金属酸化物半導体層(a)上に、絶縁層(b)を形成し、該層(b)の上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程、
(C)工程:金属酸化物半導体層(c)のパターニングとエッチングを行う工程、
(D)工程:パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして下層の絶縁層(b)をエッチングする工程、
(E)工程:基板の上方からエキシマレーザー光又はYAGレーザー光を照射する工程。
また、(E)工程がUV光と、エキシマレーザー光又はYAGレーザー光を照射する(E’)工程とすることができる。
そして、(E)工程がUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する(E”)工程とすることができる。
これら各工程の模式図を図5にそれぞれ示す。
以下、各工程について詳述する。
[Method of manufacturing a top-gate thin-film transistor]
The method for producing a top-gate thin film transistor of the present invention is a production method including the following steps (A) to (E).
Step (A): a step of applying a composition for forming a metal oxide semiconductor layer on a substrate, baking the composition, forming a metal oxide semiconductor layer (a), and patterning and etching the layer (a);
Step (B): forming an insulating layer (b) on the patterned and etched metal oxide semiconductor layer (a), and applying a metal oxide semiconductor layer-forming composition onto the insulating layer (b) and baking the composition to form a metal oxide semiconductor layer (c);
Step (C): A step of patterning and etching the metal oxide semiconductor layer (c);
Step (D): Etching the underlying insulating layer (b) using the patterned and etched metal oxide semiconductor layer (c) as a mask pattern;
Step (E): A step of irradiating the substrate with excimer laser light or YAG laser light from above.
Furthermore, the step (E) may be a step (E') of irradiating with UV light and excimer laser light or YAG laser light.
Then, after the step (E) of irradiating with UV light, a step (E'') of irradiating with excimer laser light or YAG laser light can be performed.
A schematic diagram of each of these steps is shown in FIG.
Each step will be described in detail below.

<(A)工程>
本工程は、基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成した後、該金属酸化物半導体層(a)のパターニングとエッチング行う工程である(図5(A)工程参照)。
金属酸化物半導体層(a)を形成する基板としては特に限定されず、例えば薄膜トランジスタが形成される基板として上述した各種基板を挙げることができる。
<Step (A)>
This process is a process in which a metal oxide semiconductor layer (a) is formed by applying a composition for forming a metal oxide semiconductor layer onto a substrate and baking the composition, and then the metal oxide semiconductor layer (a) is patterned and etched (see process in FIG. 5(A)).
The substrate on which the metal oxide semiconductor layer (a) is formed is not particularly limited, and examples thereof include the various substrates mentioned above as substrates on which thin film transistors are formed.

本工程で使用する金属酸化物半導体層形成用組成物として、例えば、金属塩と第一アミド化合物と水を主体とする溶媒とを含む組成物を挙げることができる。The composition for forming the metal oxide semiconductor layer used in this process may be, for example, a composition containing a metal salt, a first amide compound, and a solvent mainly composed of water.

上記第一アミド化合物としては、例えば下記一般式(I)で表される化合物を挙げることができる。

Figure 0007515119000001
式(I)中、Rは水素原子;炭素原子数1~6の直鎖状又は分枝状のアルキル基;水素原子、又は炭素原子数1~6の直鎖状若しくは分枝状のアルキル基が結合した酸素原子;又は、水素原子、酸素原子、又は炭素原子数1~6の直鎖状若しくは分枝状のアルキル基が結合した窒素原子を表す。
上記Rにおいて、水素原子、又は炭素原子数1~6の直鎖状若しくは分枝状のアルキル基が結合した酸素原子とは、-OH又は-OR(Rは炭素原子数1~6の直鎖状若しくは分枝状のアルキル基)である。
また、水素原子、酸素原子、又は炭素原子数1~6の直鎖状若しくは分枝状のアルキル基が結合した窒素原子とは、例えば、-NH、-NHRや、-NR(R、R及びRはそれぞれ独立に炭素原子数1~6の直鎖状若しくは分枝状のアルキル基である)である。 The primary amide compound may, for example, be a compound represented by the following general formula (I).
Figure 0007515119000001
In formula (I), R 1 represents a hydrogen atom; a linear or branched alkyl group having 1 to 6 carbon atoms; a hydrogen atom or an oxygen atom to which a linear or branched alkyl group having 1 to 6 carbon atoms is bonded; or a hydrogen atom, an oxygen atom, or a nitrogen atom to which a linear or branched alkyl group having 1 to 6 carbon atoms is bonded.
In the above R 1 , the hydrogen atom or the oxygen atom bonded to a linear or branched alkyl group having 1 to 6 carbon atoms is --OH or --OR 2 (R 2 is a linear or branched alkyl group having 1 to 6 carbon atoms).
Furthermore, the nitrogen atom bonded to a hydrogen atom, an oxygen atom, or a linear or branched alkyl group having 1 to 6 carbon atoms is, for example, -NH2 , -NHR3 , or -NR4R5 (wherein R3 , R4 , and R5 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms).

また上記一般式(I)で表される化合物に限定されない、第一アミド化合物の具体例としては、アセトアミド、アセチル尿素、アクリルアミド、アジポアミド、アセトアルデヒド セミカルバゾン、アゾジカルボンアミド、4-アミノ-2,3,5,6-テトラフルオロベンズアミド、β-アラニンアミド塩酸塩、L-アラニンアミド塩酸塩、ベンズアミド、ベンジル尿素、ビ尿素、ビュウレット、ブチルアミド、3-ブロモプロピオンアミド、ブチル尿素、3,5-ビス(トリフルオロメチル)ベンズアミド、カルバミン酸tert-ブチル、ヘキサンアミド、カルバミン酸アンモニウム、カルバミン酸エチル、2-クロロアセトアミド、2-クロロエチル尿素、クロトンアミド、2-シアノアセトアミド、カルバミン酸ブチル、カルバミン酸イソプロピル、カルバミン酸メチル、シアノアセチル尿素、シクロプロパンカルボキサミド、シクロヘキシル尿素、2,2-ジクロロアセトアミド、リン酸ジシアンジアミジン、グアニル尿素硫酸塩、1,1-ジメチル尿素、2,2-ジメトキシプロピオンアミド、エチル尿素、フルオロアセトアミド、ホルムアミド、フマルアミド、グリシンアミド塩酸塩、ヒドロキシ尿素、ヒダントイン酸、2-ヒドロキシエチル尿素、ヘプタフルオロブチルアミド、2-ヒドロキシイソブチルアミド、イソ酪酸アミド、乳酸アミド、マレアミド、マロンアミド、1-メチル尿素、ニトロ尿素、オキサミン酸、オキサミン酸エチル、オキサミド、オキサミン酸ヒドラジド、オキサミン酸ブチル、フェニル尿素、フタルアミド、プロピオン酸アミド、ピバル酸アミド、ペンタフルオロベンズアミド、ペンタフルオロプロピオンアミド、セミカルバジド塩酸塩、コハク酸アミド、トリクロロアセトアミド、トリフルオロアセトアミド、硝酸尿素、尿素、バレルアミド等が挙げられる。これらの中でもホルムアミド、尿素、カルバミン酸アンモニウムが好ましい。
これらは1種を用いても、2種以上を組み合わせて用いてもよい。
Specific examples of the first amide compound, which are not limited to the compound represented by the general formula (I), include acetamide, acetyl urea, acrylamide, adipamide, acetaldehyde semicarbazone, azodicarbonamide, 4-amino-2,3,5,6-tetrafluorobenzamide, β-alaninamide hydrochloride, L-alaninamide hydrochloride, benzamide, benzyl urea, biurea, biuret, butylamide, 3-bromopropionamide, butyl urea, 3,5-bis(trifluoromethyl)benzamide, tert-butyl carbamate, hexanamide, ammonium carbamate, ethyl carbamate, 2-chloroacetamide, 2-chloroethyl urea, crotonamide, 2-cyanoacetamide, butyl carbamate, isopropyl carbamate, methyl carbamate, cyanoacetyl urea, cyclopropane carboxamide, cyclohexyl urea, 2,2-dichloroacetamide, dicyandiamide phosphate, and guanylurea sulfate. Examples of suitable urea include 1,1-dimethylurea, 2,2-dimethoxypropionamide, ethylurea, fluoroacetamide, formamide, fumaramide, glycinamide hydrochloride, hydroxyurea, hydantoic acid, 2-hydroxyethylurea, heptafluorobutyramide, 2-hydroxyisobutyramide, isobutyric acid amide, lactic acid amide, maleamide, malonamide, 1-methylurea, nitrourea, oxamic acid, ethyl oxamate, oxamide, oxamic acid hydrazide, butyl oxamate, phenylurea, phthalamide, propionic acid amide, pivalic acid amide, pentafluorobenzamide, pentafluoropropionamide, semicarbazide hydrochloride, succinic acid amide, trichloroacetamide, trifluoroacetamide, urea nitrate, urea, and valeramide. Among these, formamide, urea, and ammonium carbamate are preferred.
These may be used alone or in combination of two or more.

また上記金属塩として、それを構成する金属としては、例えば、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも1種である。上記に挙げた金属の中でも、インジウム(In)、スズ(Sn)、亜鉛(Zn)、ガリウム(Ga)、及びアルミニウム(Al)からなる群から選ばれる少なくとも1種の金属が好ましく、特にインジウム(In)、スズ(Sn)、亜鉛(Zn)のいずれかを含むことが好ましく、更にガリウム(Ga)またはアルミニウム(Al)を含んでもよい。 The metal constituting the above metal salt is, for example, at least one selected from the group consisting of Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Among the metals listed above, at least one metal selected from the group consisting of indium (In), tin (Sn), zinc (Zn), gallium (Ga), and aluminum (Al) is preferred, and it is particularly preferred to contain any one of indium (In), tin (Sn), and zinc (Zn), and may further contain gallium (Ga) or aluminum (Al).

また上記の金属塩は無機酸塩であることが好ましい。無機酸塩としては、例えば、硝酸塩、硫酸塩、リン酸塩、炭酸塩、炭酸水素塩、ホウ酸塩、塩酸塩及びフッ化水素酸塩からなる群から選ばれる少なくとも1種を用いることができる。これらの塩は水和物の形態であってもよい。金属酸化物半導体層形成用組成物を塗布後の加熱処理(焼成)をより低温で行うことができる観点からは、無機酸塩として、塩酸塩、硝酸塩を用いることが好ましい。 The metal salt is preferably an inorganic acid salt. As the inorganic acid salt, for example, at least one selected from the group consisting of nitrates, sulfates, phosphates, carbonates, hydrogencarbonates, borates, hydrochlorides, and hydrofluorides can be used. These salts may be in the form of hydrates. From the viewpoint of being able to carry out the heat treatment (baking) after application of the composition for forming a metal oxide semiconductor layer at a lower temperature, it is preferable to use hydrochlorides and nitrates as the inorganic acid salt.

なお、上記金属酸化物半導体層形成用組成物が複数種の金属を含有する場合、各金属の割合(組成比)は所望の金属酸化物半導体層を形成することができれば特に限定されないが、例えば、Inや、Snの金属塩から選ばれる塩に含有される金属(金属A)と、Znの金属塩から選ばれる塩に含有される金属(金属B)と、Gaや、Alの金属塩に含有される金属(金属C)とのモル比率が、金属A:金属B:金属C=1:0.05~1:0~1を満たすことが好ましい。例えば、金属塩として好適な硝酸塩を用いる場合、モル比率が金属A:金属B:金属C=1:0.05~1:0~1を満たすように、各金属の硝酸塩を、詳しくは後述する水を主成分とした溶媒に溶解し、さらに上記一般式(I)等の第一アミドが含まれる水溶液として、金属酸化物半導体層形成用組成物を調製すればよい。In addition, when the composition for forming a metal oxide semiconductor layer contains a plurality of metals, the ratio (composition ratio) of each metal is not particularly limited as long as the desired metal oxide semiconductor layer can be formed. For example, it is preferable that the molar ratio of the metal (metal A) contained in a salt selected from metal salts of In and Sn, the metal (metal B) contained in a salt selected from metal salts of Zn, and the metal (metal C) contained in a metal salt of Ga or Al satisfies metal A: metal B: metal C = 1: 0.05 to 1: 0 to 1. For example, when a suitable nitrate salt is used as the metal salt, the nitrate salt of each metal is dissolved in a solvent mainly composed of water, which will be described later in detail, so that the molar ratio satisfies metal A: metal B: metal C = 1: 0.05 to 1: 0 to 1, and the composition for forming a metal oxide semiconductor layer is prepared as an aqueous solution containing a first amide such as the general formula (I) above.

上記金属酸化物半導体層形成用組成物の溶媒は、水を主体とするものである。水を主体とする溶媒とは、すなわち主溶媒、つまり溶媒の50質量%以上が水である溶媒を意味する。上記金属酸化物半導体層形成用組成物において使用する溶媒は水を主体としていればよく、水のみを溶媒として用いても、水と有機溶媒との混合溶媒を用いてもよい。水以外に含まれる有機溶媒の具体例としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、メチルエチルケトン、乳酸エチル、シクロヘキサノン、γ-ブチロラクトン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、メタノール、エタノール、1-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、n-ヘキサノール、シクロヘキサノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2,2-ジメチル-3-ペンタノール、2,3-ジメチル-3-ペンタノール、2,4-ジメチル-3-ペンタノール、4,4-ジメチル-2-ペンタノール、3-エチル-3-ペンタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-メチル-2-ヘキサノール、2-メチル-3-ヘキサノール、5-メチル-1-ヘキサノール、5-メチル-2-ヘキサノール、2-エチル-1-ヘキサノール、4-メチル-3-ヘプタノール、6-メチル-2-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、2-プロピル-1-ペンタノール、2,4,4-トリメチル-1-ペンタノール、2,6-ジメチル-4-ヘプタノール、3-エチル-2,2-ジメチル-ペンタノール、1-ノナノール、2-ノナノール、3,5,5-トリメチル-1-ヘキサノール、1-デカノール、2-デカノール、4-デカノール、3,7-ジメチル-1-オクタノール、3,7-ジメチル-3-オクタノール等が挙げられる。これらの有機溶媒は2種以上を組み合わせて用いてもよい。The solvent of the composition for forming the metal oxide semiconductor layer is mainly composed of water. A solvent mainly composed of water means a main solvent, that is, a solvent in which 50% by mass or more of the solvent is water. The solvent used in the composition for forming the metal oxide semiconductor layer may be mainly composed of water, and water alone or a mixed solvent of water and an organic solvent may be used. Specific examples of organic solvents other than water include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monopropyl ether, methyl ethyl ketone, ethyl lactate, cyclohexanone, γ-butyrolactone, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, methanol, ethylene glycol, ethylene glycol monomethyl ether, propylene glycol monopropyl ether, methyl ethyl ketone, ethyl lactate, cyclohexanone, γ-butyrolactone, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, methanol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate ... ethanol, 1-propanol, isopropanol, n-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, n-hexanol, cyclohexanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl- 3-pentanol, 4-methyl-1-pentanol, 4-methyl-2-pentanol, 2,2-dimethyl-3-pentanol, 2,3-dimethyl-3-pentanol, 2,4-dimethyl-3-pentanol, 4,4-dimethyl-2-pentanol, 3-ethyl-3-pentanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-methyl-2-hexanol, 2-methyl-3-hexanol, 5-methyl-1-hexanol, 5-methyl-2-hexanol, 2-ethyl-1-hexanol, 4-methyl 3-heptanol, 6-methyl-2-heptanol, 1-octanol, 2-octanol, 3-octanol, 2-propyl-1-pentanol, 2,4,4-trimethyl-1-pentanol, 2,6-dimethyl-4-heptanol, 3-ethyl-2,2-dimethyl-pentanol, 1-nonanol, 2-nonanol, 3,5,5-trimethyl-1-hexanol, 1-decanol, 2-decanol, 4-decanol, 3,7-dimethyl-1-octanol, 3,7-dimethyl-3-octanol, etc. These organic solvents may be used in combination of two or more kinds.

上記金属酸化物半導体層形成用組成物中の固形分濃度は0.1質量%以上であり、好ましくは0.3質量%以上であり、より好ましくは0.5質量%以上である。また上記固形分濃度は30.0質量%以下であり、好ましくは20.0質量%以下であり、より好ましくは15.0質量%以下である。なお、固形分濃度とは、上記金属塩と第一アミド化合物の合計の濃度である。The solid content concentration in the composition for forming a metal oxide semiconductor layer is 0.1% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more. The solid content concentration is 30.0% by mass or less, preferably 20.0% by mass or less, and more preferably 15.0% by mass or less. The solid content concentration is the total concentration of the metal salt and the first amide compound.

上記金属酸化物半導体層形成用組成物の製造方法は特に限定されず、例えば、金属塩と第一アミド化合物を、水を主体とする溶媒に混合すればよい。
組成物のpH調整のために、必要に応じて、硝酸、硫酸、リン酸、炭酸、ホウ酸、塩酸、フッ化水素酸等の酸を添加してもよい。
The method for producing the composition for forming a metal oxide semiconductor layer is not particularly limited. For example, a metal salt and a first amide compound may be mixed in a solvent mainly containing water.
In order to adjust the pH of the composition, an acid such as nitric acid, sulfuric acid, phosphoric acid, carbonic acid, boric acid, hydrochloric acid, or hydrofluoric acid may be added, if necessary.

上記金属酸化物半導体層形成用組成物を基板に塗布して薄膜を形成した後、焼成することにより、緻密なアモルファスの金属酸化物半導体層を形成することができる。なお、焼成工程の前に、残存溶媒を予め除去するために、前処理として、例えば110℃~180℃、0.1分間~30分間の熱処理による乾燥工程を行ってもよい。The composition for forming a metal oxide semiconductor layer is applied to a substrate to form a thin film, which is then fired to form a dense amorphous metal oxide semiconductor layer. Prior to the firing step, a drying step may be performed as a pretreatment step by heat treatment at, for example, 110°C to 180°C for 0.1 to 30 minutes in order to remove any remaining solvent.

上記金属酸化物半導体層形成用組成物の基板への塗布方法は、公知の方法を適用することができ、例えばスピンコート、ディップコート、スクリーン印刷法、ロールコート、インクジェットコート、ダイコート法、転写印刷法、スプレー法、スリットコート法等が挙げられる。上記金属酸化物半導体層形成用組成物を各種の塗布方法により塗布して得られる薄膜の厚さは1nm~1μmであり、好ましくは10nm~100nmである。The method for applying the composition for forming a metal oxide semiconductor layer to a substrate can be a known method, such as spin coating, dip coating, screen printing, roll coating, inkjet coating, die coating, transfer printing, spraying, slit coating, etc. The thickness of the thin film obtained by applying the composition for forming a metal oxide semiconductor layer by various application methods is 1 nm to 1 μm, and preferably 10 nm to 100 nm.

薄膜形成後、必要に応じて乾燥工程を経た後、焼成工程を実施する。薄膜の焼成により、薄膜(金属酸化物半導体層形成用組成物)中の金属塩が酸化反応し、アモルファスな金属酸化物半導体層を製造することができる。すなわち、上記した金属塩を構成する金属の酸化物(例えば、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、酸化スズ、すなわち例えば、InGaZnO、InGaO、InSnZnO、GaZnO、InSnO、InZnO、SnZnO(いずれもx>0)、ZnO、SnO等)を含む、半導体層が形成される。
この焼成温度は250℃~500℃、例えば250℃~350℃とすることができる。なお、上記特定の金属酸化物半導体層形成用組成物を用いることにより、従来300℃以上が必要とされていた焼成温度よりも、より低い温度で焼成しても、緻密なアモルファスの金属酸化物半導体層を形成することが可能である。焼成時間は特に限定されないが、例えば、0.1時間~120時間である。
After the thin film is formed, a drying process is performed as necessary, and then a baking process is performed. By baking the thin film, the metal salt in the thin film (composition for forming a metal oxide semiconductor layer) undergoes an oxidation reaction, and an amorphous metal oxide semiconductor layer can be produced. That is, a semiconductor layer is formed that contains the oxide of the metal constituting the above-mentioned metal salt (e.g., indium gallium zinc oxide, indium gallium oxide, indium tin zinc oxide, gallium zinc oxide, indium tin oxide, indium zinc oxide, tin oxide, zinc oxide, tin oxide, i.e., for example, InGaZnO x , InGaO x , InSnZnO x , GaZnO x , InSnO x , InZnO x , SnZnO x (all x>0), ZnO, SnO 2 , etc.).
The baking temperature can be 250° C. to 500° C., for example, 250° C. to 350° C. By using the specific metal oxide semiconductor layer-forming composition, it is possible to form a dense amorphous metal oxide semiconductor layer even when baking at a lower temperature than the baking temperature that has conventionally required 300° C. or higher. The baking time is not particularly limited, but is, for example, 0.1 hours to 120 hours.

薄膜の焼成には、従来使用されている大気圧プラズマ装置やマイクロ波加熱装置、またホットプレート、IR炉、オーブン等の装置を使用できる。上記特定の金属酸化物半導体層形成用組成物は300℃以下の低温での焼成温度も適用できること、また生産性の観点から汎用性が高く、より安価な加熱装置を用いるという観点から、ホットプレート、IR炉、オーブンなどの使用が有利である。
また、前記薄膜の焼成は、空気中、酸素等の酸化雰囲気だけでなく、窒素、ヘリウム、アルゴン等の不活性ガス中で行うこともできる。
For firing the thin film, a conventionally used atmospheric pressure plasma device, microwave heating device, hot plate, IR furnace, oven, etc. can be used. The specific metal oxide semiconductor layer-forming composition can be applied to a firing temperature as low as 300° C. or less, and from the viewpoint of using a heating device that is highly versatile and inexpensive from the viewpoint of productivity, it is advantageous to use a hot plate, IR furnace, oven, etc.
The thin film can be fired not only in air or an oxidizing atmosphere such as oxygen, but also in an inert gas such as nitrogen, helium, or argon.

こうして得られた金属酸化物半導体層(a)の厚さは特に限定されないが、例えば5nm~100nmである。
なお、一回の塗布・焼成処理により所望の厚さが得られない場合には、塗布・焼成処理の工程を所望の膜厚となるまで繰り返したり、また、塗布・乾燥工程を所望の膜厚となるまで繰り返した後、焼成工程を実施すればよい。
The thickness of the metal oxide semiconductor layer (a) thus obtained is not particularly limited, but is, for example, 5 nm to 100 nm.
In addition, if the desired thickness cannot be obtained by a single coating/firing process, the coating/firing process may be repeated until the desired film thickness is obtained, or the coating/drying process may be repeated until the desired film thickness is obtained, and then a firing process may be carried out.

続いて、得られた金属酸化物半導体層(a)のパターニングとエッチングを行い、金属酸化物半導体層を所望の形状に加工する。パターニング法としては、例えばフォトレジストをマスクとして塩酸などによりエッチングする方法がある。不要になったフォトレジストは有機溶媒やアッシングなどによって除去することができる。 Then, the obtained metal oxide semiconductor layer (a) is patterned and etched to process the metal oxide semiconductor layer into the desired shape. For example, a patterning method includes a method in which a photoresist is used as a mask and etching is performed with hydrochloric acid or the like. Unnecessary photoresist can be removed by organic solvents or ashing.

<(B)工程>
本工程は、パターニング及びエッチングされた金属酸化物半導体層(a)上に、ゲート絶縁膜となる絶縁層(b)を形成した後、該層(b)の上に、金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程である(図5(B)工程参照)。
<Step (B)>
This process is a process in which an insulating layer (b) to be a gate insulating film is formed on the patterned and etched metal oxide semiconductor layer (a), and then a composition for forming a metal oxide semiconductor layer is applied onto the layer (b) and baked to form a metal oxide semiconductor layer (c) (see process in FIG. 5(B)).

絶縁層(b)(ゲート絶縁膜)の形成方法としては、前述したように、スパッタ法、真空蒸着法、プラズマを用いた化学気相成長(プラズマCVD)法による形成方法がある。CVD法では、SiNxによる成膜や、SiHの成膜とその酸化が挙げられる。
また、二酸化ケイ素を主成分とする前駆体溶液を各種の塗布法を用いて作成した、塗布型の酸化膜を挙げることができる。前記二酸化ケイ素を主成分とする前駆体溶液として、例えばシリコーンが挙げられ、シリコーン骨格に官能基を導入してアミノ変性、エポキシ変性、カルボキシ変性、カルビノール変性、メタクリル変性、メルカプト変性、フェノール変性、フッ素変性等の変性シリコーンを用いることができる。
As described above, the insulating layer (b) (gate insulating film) can be formed by sputtering, vacuum deposition, or plasma-assisted chemical vapor deposition (plasma CVD). CVD methods include film formation using SiNx and film formation using SiH4 and its oxidation.
Also, examples of the oxide film are coating-type oxide films prepared by applying various coating methods to a precursor solution mainly composed of silicon dioxide. Examples of the precursor solution mainly composed of silicon dioxide include silicone, and modified silicones such as amino-modified, epoxy-modified, carboxy-modified, carbinol-modified, methacryl-modified, mercapto-modified, phenol-modified, and fluorine-modified silicones can be used by introducing functional groups into the silicone skeleton.

前記二酸化ケイ素を主成分とする前駆体溶液には、界面活性剤を添加することができる。界面活性剤としては、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン性界面活性剤を用いることができる。
アニオン界面活性剤としては脂肪族モノカルボン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン塩、N-アシルグルタミン酸塩等のカルボン酸型、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、アルファーオレフィンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、アルキル(分岐鎖)ベンゼンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、N-メチル-N-アシルタウリン塩等のスルホン酸型、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、油脂硫酸エステル塩等の硫酸エステル型、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩等のリン酸エステル型が挙げられる。
カチオン界面活性剤としては、モノアルキルアミン塩、ジアルキルアミン塩、トリアルキルアミン塩等のアルキルアミン塩型、ハロゲン化(フッ化、塩化、臭化、又はヨウ化)アルキルトリメチルアンモニウム、ハロゲン化(フッ化、塩化、臭化、又はヨウ化)ジアルキルジメチルアンモニウム、ハロゲン化(フッ化、塩化、臭化、又はヨウ化)アルキルベンザルコニウム等の第4級アンモニウム塩型が挙げられる。
両性界面活性剤としては、アルキルベタイン、脂肪酸アミドプロピルベタイン等のカルボキシベタイン型、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等の2-アルキルイミダゾリンの誘導体型、アルキル(又はジアルキル)ジエチレントリアミノ酢酸等のグリシン型、アルキルアミンオキシド等のアミンオキシド型が挙げられる。
非イオン界面活性剤としては、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル等のエステル型、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等のエーテル型、脂肪酸ポリエチレングリコール、脂肪酸ポリオキシエチレンソルビタン等のエステルエーテル型、脂肪酸アルカノールアミド等のアルカノールアミド型が挙げられる。
これらの界面活性剤はそれぞれアルキル鎖中の水素原子の一部もしくは全部をハロゲン原子に置換したものでもよい。
A surfactant may be added to the precursor solution containing silicon dioxide as a main component. The surfactant may be an anionic surfactant, a cationic surfactant, an amphoteric surfactant, or a nonionic surfactant.
Examples of anionic surfactants include carboxylic acid types such as aliphatic monocarboxylates, polyoxyethylene alkyl ether carboxylates, N-acylsarcosine salts, and N-acylglutamates; sulfonic acid types such as dialkyl sulfosuccinates, alkanesulfonates, alpha-olefin sulfonates, linear alkylbenzene sulfonates, alkyl (branched)benzene sulfonates, naphthalenesulfonate-formaldehyde condensates, alkylnaphthalenesulfonates, and N-methyl-N-acyltaurate salts; sulfate types such as alkyl sulfates, polyoxyethylene alkyl ether sulfates, and fat sulfate salts; and phosphate types such as alkyl phosphates, polyoxyethylene alkyl ether phosphates, and polyoxyethylene alkyl phenyl ether phosphates.
Examples of the cationic surfactant include alkylamine salt types such as monoalkylamine salts, dialkylamine salts, and trialkylamine salts, and quaternary ammonium salt types such as alkyltrimethylammonium halides (fluoride, chloride, bromide, or iodide), dialkyldimethylammonium halides (fluoride, chloride, bromide, or iodide), and alkylbenzalkonium halides (fluoride, chloride, bromide, or iodide).
Examples of amphoteric surfactants include carboxybetaine type surfactants such as alkylbetaines and fatty acid amidopropyl betaines, 2-alkylimidazoline derivative type surfactants such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaines, glycine type surfactants such as alkyl (or dialkyl)diethylenetriaminoacetic acid, and amine oxide type surfactants such as alkylamine oxide.
Examples of nonionic surfactants include ester-type surfactants such as glycerin fatty acid esters, sorbitan fatty acid esters, and sucrose fatty acid esters; ether-type surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, and polyoxyethylene polyoxypropylene glycol; ester-ether-type surfactants such as fatty acid polyethylene glycol and fatty acid polyoxyethylene sorbitan; and alkanolamide-type surfactants such as fatty acid alkanolamides.
These surfactants may each have some or all of the hydrogen atoms in the alkyl chain substituted with halogen atoms.

絶縁層(b)(ゲート絶縁膜)の好適な一例としてフッ素を含むポリシロキサン膜を挙げることができる。フッ素を含むポリシロキサン膜は、フッ素化ポリシロキサン、フッ素変性等の変性シリコーン、又はフッ素含有界面活性剤を含むポリシロキサン等の材料を塗布し焼成することにより得られる。すなわち、フッ素を含むポリシロキサン膜とは、ポリシロキサン構造の一部がフッ素原子で置換された態様だけでなく、膜中にフッ素原子を含有する添加剤(界面活性剤等)を含有する態様の双方を意味する。
フッ素を含むポリシロキサン膜は、固形分として例えばフッ素化ポリシロキサン、フッ素変性等の変性シリコーン、又はフッ素含有界面活性剤を含むポリシロキサン等を、固形分濃度0.1質量%~50質量%、又は0.1質量%~40質量%、又は0.1質量%~30質量%、又は1質量%~20質量%、又は5質量%~20質量%の水溶性組成物を用いて形成できる。
より具体的には、基板上に形成された金属酸化物半導体層(a)上に、前記水溶性組成物をピンコート等により塗布して、110℃~180℃で0.1分間~30分間の乾燥後、250℃~350℃で0.1時間~10時間の焼成を行い、膜厚が例えば10nm~500nm、又は50nm~400nm、100nm~300nmの範囲にて、フッ素を含むポリシロキサン膜を得られる。
A suitable example of the insulating layer (b) (gate insulating film) is a polysiloxane film containing fluorine. The polysiloxane film containing fluorine is obtained by applying and baking a material such as fluorinated polysiloxane, modified silicone such as fluorine modified, or polysiloxane containing a fluorine-containing surfactant. That is, the polysiloxane film containing fluorine means not only a mode in which a part of the polysiloxane structure is replaced with a fluorine atom, but also a mode in which an additive containing a fluorine atom (surfactant, etc.) is contained in the film.
The fluorine-containing polysiloxane film can be formed by using a water-soluble composition having a solid content of, for example, fluorinated polysiloxane, modified silicone such as fluorine-modified, or polysiloxane containing a fluorine-containing surfactant, with a solid content concentration of 0.1% by mass to 50% by mass, or 0.1% by mass to 40% by mass, or 0.1% by mass to 30% by mass, or 1% by mass to 20% by mass, or 5% by mass to 20% by mass.
More specifically, the water-soluble composition is applied by pin coating or the like onto a metal oxide semiconductor layer (a) formed on a substrate, and then dried at 110° C. to 180° C. for 0.1 to 30 minutes, and then baked at 250° C. to 350° C. for 0.1 to 10 hours, to obtain a fluorine-containing polysiloxane film having a film thickness in the range of, for example, 10 nm to 500 nm, 50 nm to 400 nm, or 100 nm to 300 nm.

絶縁層(b)形成後、該層(b)上に、金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する。該(c)層は、前述の<(A)工程>における金属酸化物半導体層(a)の形成と同様の材料・手順・厚さにて形成すればよい。After the insulating layer (b) is formed, a composition for forming a metal oxide semiconductor layer is applied onto the insulating layer (b) and baked to form a metal oxide semiconductor layer (c). The (c) layer may be formed with the same materials, procedures, and thickness as the metal oxide semiconductor layer (a) in the above-mentioned <Step (A)>.

<(C)工程>
本工程は、金属酸化物半導体層(c)のパターニングとエッチングを行う工程であり、前述の<(A)工程>における金属酸化物半導体層(a)のパターニングとエッチングと同様の手順により、実施可能である(図5(C)工程参照)。
<Step (C)>
This process is a process for patterning and etching the metal oxide semiconductor layer (c), and can be carried out in the same manner as the patterning and etching of the metal oxide semiconductor layer (a) in the above-mentioned <Process (A)> (see Process (C) in FIG. 5).

<(D)工程>
本工程は、パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして、下層の絶縁層(b)をエッチングし、所望の形状の絶縁層(b)を得る工程である(図5(D)工程参照)。
絶縁層(b)のエッチングは、絶縁層(b)を構成する材料に応じてドライエッチング又はウェットエッチングを適宜選択すればよく、例えば反応性イオンエッチング装置を用いて実施することができる。
<Step (D)>
In this process, the underlying insulating layer (b) is etched using the patterned and etched metal oxide semiconductor layer (c) as a mask pattern to obtain the insulating layer (b) in a desired shape (see process in FIG. 5(D)).
The insulating layer (b) may be etched by dry etching or wet etching, which may be appropriately selected depending on the material constituting the insulating layer (b), and may be etched by using, for example, a reactive ion etching device.

<(E)工程>
本工程は、基板の上方から、すなわち基板上に形成された積層構造(金属酸化物半導体層(a)-絶縁層(b)-金属酸化物半導体層(c))の上方から、エキシマレーザー光又はYAGレーザー光を照射する工程である(図5(E)工程参照)。
本工程は、エキシマレーザー光又はYAGレーザー光に加えて、UV光を照射する工程[(E’)工程]として実施されることが好ましい。
本工程は、より好ましくはUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する工程[(E”)工程]として実施される。
<Step (E)>
This process is a process of irradiating the substrate with excimer laser light or YAG laser light from above, i.e., from above the laminated structure (metal oxide semiconductor layer (a)-insulating layer (b)-metal oxide semiconductor layer (c)) formed on the substrate (see process (E) in FIG. 5).
This step is preferably carried out as a step of irradiating UV light in addition to the excimer laser light or YAG laser light [step (E')].
This step is more preferably carried out as a step of irradiating with UV light, followed by irradiating with excimer laser light or YAG laser light [step (E″)].

エキシマレーザー光、YAGレーザー光、UV光の波長や照射時間、またエネルギー等は、照射する金属酸化物半導体層の構成や厚さ等によって適宜選択すればよい。
例えばエキシマレーザー光の照射は、波長150nm~380nmのエキシマレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射することによって実施される。
例えば、YAGレーザー光は、波長250nm~400nmのYAGレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射することによって実施される。
またUV光の照射は、例えば、波長150nm~350nmのUV光を1分間~120分間照射することによって実施される。
The wavelength, irradiation time, energy, etc. of the excimer laser light, YAG laser light, or UV light may be appropriately selected depending on the configuration, thickness, etc. of the metal oxide semiconductor layer to be irradiated.
For example, the irradiation with excimer laser light is carried out by irradiating with excimer laser light having a wavelength of 150 nm to 380 nm at 50 mJ/cm 2 to 150 mJ/cm 2 for 1 nanosecond to 120 nanoseconds.
For example, the YAG laser beam is applied by irradiating a YAG laser beam having a wavelength of 250 nm to 400 nm at 50 mJ/cm 2 to 150 mJ/cm 2 for 1 nanosecond to 120 nanoseconds.
The UV light irradiation is carried out, for example, by irradiating UV light having a wavelength of 150 nm to 350 nm for 1 minute to 120 minutes.

上記(E)工程を経ることにより、エキシマレーザー光又はYAGレーザー光の照射により該半導体層が移動度の高いチャネル層に変換される。また表層に露出した金属酸化物層は、UV光照射によって導体(電極)に変換される。
前述したとおり、上記(E)工程ではエキシマレーザー光又はYAGレーザー光を照射することを必須とするものである。そして、上記(E)工程ではUV光とエキシマレーザー光又はYAGレーザー光を照射する(E’)工程を行うことができる。更に(E)工程ではUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する(E”)工程を行うことができる。
Through the above-mentioned step (E), the semiconductor layer is converted into a channel layer with high mobility by irradiation with an excimer laser beam or a YAG laser beam, and the metal oxide layer exposed on the surface is converted into a conductor (electrode) by irradiation with UV light.
As described above, the step (E) requires irradiation with excimer laser light or YAG laser light. The step (E) may include a step (E') of irradiating with UV light and excimer laser light or YAG laser light. Furthermore, the step (E) may include a step (E") of irradiating with excimer laser light or YAG laser light after irradiating with UV light.

以下、実施例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものでない。なお、実施例で用いた各測定装置等は以下のとおりである。The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. The measuring devices used in the examples are as follows:

移動度の測定方法
実施例及び比較例で製造した薄膜トランジスタの移動度の測定には、半導体パラメータ―アナライザー Agilent4156Cを用いた。
ドレイン電圧0.1V、TFTのサイズはチャンネル幅90μm、チェンネル長10μmにて、ゲート電圧-20Vから+20Vにおけるドレイン電流の変化を測定し、移動度(単位:cm/Vs)を算出した。
Mobility Measurement Method The mobility of the thin film transistors produced in the examples and comparative examples was measured using a semiconductor parameter analyzer, Agilent 4156C.
The drain voltage was 0.1 V, the TFT size was 90 μm in channel width and 10 μm in channel length, and the change in drain current at gate voltages from −20 V to +20 V was measured to calculate the mobility (unit: cm 2 /Vs).

低圧水銀ランプの照度の測定方法
実施例で用いた低圧水銀ランプの照度は、OAI社製の照度計(MODEL306)に253.7nmに感度ピークを持つプローブを接続し測定した。低圧水銀ランプの主な発光スペクトルは185nmと254nmの2つとなり、照度の比を15:85とし、MODEL306で測定された照度(254nmの照度)を0.85で除する事で低圧水銀ランプの照度とした。
The illuminance of the low-pressure mercury lamp used in the examples was measured by connecting a probe having a sensitivity peak at 253.7 nm to an illuminance meter (MODEL 306) manufactured by OAI Co., Ltd. The main emission spectrum of the low-pressure mercury lamp is 185 nm and 254 nm, and the illuminance ratio was set to 15:85, and the illuminance measured with MODEL 306 (illuminance at 254 nm) was divided by 0.85 to obtain the illuminance of the low-pressure mercury lamp.

金属酸化物半導体層形成用組成物(前駆体溶液)1の調製
硝酸インジウム(III)3水和物0.90g(Aldrich社製、99.999%trace metals basis)と硝酸亜鉛6水和物0.23g(Aldrich社製、99.999%trace metals basis)とホルムアミド0.09g(東京化成工業(株)製、98.5%)とを超純水8.78gに添加し、溶液が完全に透明になるまで撹拌して水溶液としたものを、金属酸化物半導体層形成用組成物1とした。
Preparation of Metal Oxide Semiconductor Layer-Forming Composition (Precursor Solution) 1 0.90 g of indium (III) nitrate trihydrate (manufactured by Aldrich Corporation, 99.999% trace metals basis), 0.23 g of zinc nitrate hexahydrate (manufactured by Aldrich Corporation, 99.999% trace metals basis), and 0.09 g of formamide (manufactured by Tokyo Chemical Industry Co., Ltd., 98.5%) were added to 8.78 g of ultrapure water, and the solution was stirred until it became completely transparent to obtain an aqueous solution, which was used as metal oxide semiconductor layer-forming composition 1.

構造体Aの作製
シリコン酸化膜が100nm積層したシリコン基板に、金属酸化物半導体層形成用組成物1をスピンコーターを用いて4,000rpmにて塗工し、150℃で10分間乾燥することで酸化物半導体前駆体層を得た。続いて、スピンコーターによる塗工と150℃での10分間の乾燥を1サイクルとして4回繰り返し、最後にホットプレートを用いて300℃で60分のアニール処理を行い、膜厚50nmのInZnOからなる酸化物半導体層Aを得た。
次に、酸化物半導体層Aの上部にフォトレジストを塗布し露光と現像を行い、レジストパターンを形成した。このレジストパターンをマスクとし、酸化物半導体層Aを0.01Mの塩酸水溶液に5分間浸漬することでエッチングした。エッチング処理後、剥離液を用いて、酸化物半導体層Aの上部に残されたフォトレジストを除去した。
次に、酸化物半導体層Aの上部にスピンコーターを用いて膜厚200nmのフッ素を含むポリシロキサン膜をゲート絶縁膜として形成した。焼成温度は300℃であった。
次に、ゲート絶縁膜の上部に、金属酸化物半導体層形成用組成物1をスピンコーターを用いて4,000rpmにて塗工し、150℃で10分間乾燥することで酸化物半導体前駆体層を得た。続いて、スピンコーターによる塗工と150℃での10分間の乾燥を1サイクルとして4回繰り返した後、最後にホットプレートを用いて300℃で60分のアニール処理を行い、膜厚50nmのInZnOからなる酸化物半導体層Bを得た。
次に、酸化物半導体層Bの上部にフォトレジストを塗布し露光と現像を行い、レジストパターンを形成した。このレジストパターンをマスクとし、酸化物半導体層Bを0.01Mの塩酸水溶液を用いて上記同様にエッチングした。エッチング処理後、剥離液を用いて、酸化物半導体層Bの上部に残されたフォトレジストを除去した。
Preparation of Structure A A metal oxide semiconductor layer-forming composition 1 was applied to a silicon substrate having a silicon oxide film of 100 nm laminated thereon using a spin coater at 4,000 rpm, and dried for 10 minutes at 150° C. to obtain an oxide semiconductor precursor layer. Subsequently, one cycle of application using the spin coater and drying for 10 minutes at 150° C. was repeated four times, and finally, an annealing treatment was performed for 60 minutes at 300° C. using a hot plate to obtain an oxide semiconductor layer A made of InZnO having a film thickness of 50 nm.
Next, a photoresist was applied to the upper part of the oxide semiconductor layer A, and exposure and development were performed to form a resist pattern. Using this resist pattern as a mask, the oxide semiconductor layer A was immersed in a 0.01 M hydrochloric acid aqueous solution for 5 minutes to perform etching. After the etching process, the photoresist remaining on the upper part of the oxide semiconductor layer A was removed using a stripping solution.
Next, a fluorine-containing polysiloxane film having a thickness of 200 nm was formed as a gate insulating film by using a spin coater on the oxide semiconductor layer A. The baking temperature was 300°C.
Next, an oxide semiconductor precursor layer was obtained by applying the metal oxide semiconductor layer-forming composition 1 to the upper portion of the gate insulating film using a spin coater at 4,000 rpm and drying for 10 minutes at 150° C. Subsequently, one cycle of application using the spin coater and drying for 10 minutes at 150° C. was repeated four times, and finally, an annealing treatment was performed using a hot plate at 300° C. for 60 minutes to obtain an oxide semiconductor layer B made of InZnO having a thickness of 50 nm.
Next, a photoresist was applied to the upper part of the oxide semiconductor layer B, and exposure and development were performed to form a resist pattern. Using this resist pattern as a mask, the oxide semiconductor layer B was etched in the same manner as above using a 0.01 M hydrochloric acid aqueous solution. After the etching process, the photoresist remaining on the upper part of the oxide semiconductor layer B was removed using a stripping solution.

次に、反応性イオンエッチング装置を用いて、酸化物半導体層Bをマスクにして、ゲート絶縁膜をドライエッチングした。プロセスガスはCFとArの混合ガスを用いた。
ドライエッチングの工程において、マスクされていないポリシロキサンと酸化物半導体B上のフォトレジストは完全に除去され、構造体Aを得た。
図1に構造体Aの模式図(断面図)を示す。
Next, the gate insulating film was dry-etched using a reactive ion etching apparatus with the oxide semiconductor layer B as a mask, using a mixed gas of CF4 and Ar as a process gas.
In the dry etching process, the unmasked polysiloxane and the photoresist on the oxide semiconductor B were completely removed, and a structure A was obtained.
FIG. 1 shows a schematic diagram (cross-sectional view) of structure A.

実施例1 トップゲート型薄膜トランジスタ(1)の作製及び評価
低圧水銀ランプ(サムコ社製UVオゾンクリーナーUV1、照度15mW/cm、波長185nm~254nm)を用い、構造体Aに、大気雰囲気下で、紫外線を60分間連続照射した(54J/cm)。紫外線照射時、構造体Aをホットプレートにて115℃に加熱した。
次に、KrFエキシマレーザーアニール装置を用いて、大気雰囲気下で、照射エネルギー量が120mJ/cmになる条件にて、KrFエキシマレーザー(波長248nm)を9ナノ秒間、構造体Aに照射した。この時のピーク出力は13.3MW/cmであった。
Example 1: Fabrication and Evaluation of Top-Gate Thin-Film Transistor (1) Using a low-pressure mercury lamp (UV Ozone Cleaner UV1 manufactured by Samco, illuminance 15 mW/cm 2 , wavelength 185 nm to 254 nm), Structure A was continuously irradiated with ultraviolet light (54 J/cm 2 ) for 60 minutes in an air atmosphere. During the ultraviolet light irradiation, Structure A was heated to 115° C. on a hot plate.
Next, using a KrF excimer laser annealing device, the structure A was irradiated with a KrF excimer laser (wavelength 248 nm) for 9 nanoseconds under the condition that the irradiation energy amount was 120 mJ/ cm2 in the air atmosphere. The peak output at this time was 13.3 MW/ cm2 .

上記の紫外線照射とエキシマレーザー照射の処理を施した構造体Aにおいては、酸化物半導体層B及び酸化物半導体層Aの露出部は、電気抵抗が大きく低下して導体となり、電極として機能した。一方、酸化物半導体層Aのゲート絶縁膜に覆われている領域は、半導体(チャネル)として機能した。すなわち、図2に示すように、表層に露出した酸化物半導体層Bはゲート電極として機能し、また表層に露出した酸化物半導体層A(一部)はソース電極又はドレイン電極(なおソース電極とドレイン電極は特に区別されない)として機能し、結果として、トップゲート型薄膜トランジスタが製造できた。
実施例1で製造したトップゲート型薄膜トランジスタの伝達特性を図3に示す。実施例1で製造したトップゲート型薄膜トランジスタの移動度は35.94cm/Vsとなった。
In the structure A subjected to the above-mentioned ultraviolet irradiation and excimer laser irradiation, the exposed portions of the oxide semiconductor layer B and the oxide semiconductor layer A became conductors with a large decrease in electrical resistance and functioned as electrodes. Meanwhile, the region of the oxide semiconductor layer A covered with the gate insulating film functioned as a semiconductor (channel). That is, as shown in FIG. 2, the oxide semiconductor layer B exposed on the surface functioned as a gate electrode, and the oxide semiconductor layer A (part) exposed on the surface functioned as a source electrode or drain electrode (the source electrode and the drain electrode are not particularly distinguished), and as a result, a top-gate type thin film transistor was manufactured.
3 shows the transfer characteristic of the top-gate type thin film transistor manufactured in Example 1. The mobility of the top-gate type thin film transistor manufactured in Example 1 was 35.94 cm 2 /Vs.

実施例2 トップゲート型薄膜トランジスタの作製及び評価
構造体Aを用い、KrFエキシマレーザーの照射条件を、140mJ/cm(ピーク出力15.6MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例2で製造したトップゲート型薄膜トランジスタの移動度は31.59cm/Vsとなった。
Example 2: Fabrication and Evaluation of Top-Gate Thin-Film Transistor A top-gate thin-film transistor having the structure (cross-sectional view) shown in Fig. 2 was fabricated using structure A under the same conditions as in Example 1, except that the KrF excimer laser irradiation conditions were 140 mJ/ cm2 (peak output 15.6 MW/ cm2 ). The mobility of the top-gate thin-film transistor fabricated in Example 2 was 31.59 cm2 /Vs.

実施例3 トップゲート型薄膜トランジスタの作製及び評価
構造体Aを用い、KrFエキシマレーザーの照射条件を、真空条件下にて100mJ/cm(ピーク出力11.1MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例3で製造したトップゲート型薄膜トランジスタの移動度は41.75cm/Vsとなった。
Example 3: Fabrication and Evaluation of Top-Gate Thin-Film Transistor A top-gate thin-film transistor having the structure (cross-sectional view) shown in Fig. 2 was fabricated using structure A under the same conditions as in Example 1, except that the KrF excimer laser irradiation conditions were 100 mJ/ cm2 (peak output 11.1 MW/ cm2 ) under vacuum conditions. The mobility of the top-gate thin-film transistor fabricated in Example 3 was 41.75 cm2 /Vs.

実施例4 トップゲート型薄膜トランジスタの作製及び評価
構造体Aを用い、KrFエキシマレーザーの照射条件を、真空条件下にて120mJ/cm(ピーク出力13.3MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例4で製造したトップゲート型薄膜トランジスタの移動度は45.56cm/Vsとなった。
Example 4: Fabrication and Evaluation of Top-Gate Thin-Film Transistor A top-gate thin-film transistor having the structure (cross-sectional view) shown in Fig. 2 was fabricated using structure A under the same conditions as in Example 1, except that the KrF excimer laser irradiation conditions were 120 mJ/ cm2 (peak output 13.3 MW/ cm2 ) under vacuum conditions. The mobility of the top-gate thin-film transistor fabricated in Example 4 was 45.56 cm2 /Vs.

実施例5 トップゲート型薄膜トランジスタの作製及び評価
構造体Aを用い、KrFエキシマレーザーの照射条件を、真空条件下にて140mJ/cm(ピーク出力15.6MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例5で製造したトップゲート型薄膜トランジスタの移動度は18.38cm/Vsとなった。
Example 5: Fabrication and Evaluation of Top-Gate Thin-Film Transistor A top-gate thin-film transistor having the structure (cross-sectional view) shown in Fig. 2 was fabricated using structure A under the same conditions as in Example 1, except that the KrF excimer laser irradiation conditions were 140 mJ/ cm2 (peak output 15.6 MW/ cm2 ) under vacuum conditions. The mobility of the top-gate thin-film transistor fabricated in Example 5 was 18.38 cm2 /Vs.

実施例6 トップゲート型薄膜トランジスタの作製及び評価
構造体Aを用い、KrFエキシマレーザーの照射条件を、窒素雰囲気下にて120mJ/cm(ピーク出力13.3MW/cm)とした以外は、実施例1と同一の条件にて、図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタを作製した。実施例6で製造したトップゲート型薄膜トランジスタの移動度は27.78cm/Vsとなった。
Example 6: Fabrication and Evaluation of Top-Gate Thin-Film Transistor A top-gate thin-film transistor having the structure (cross-sectional view) shown in Fig. 2 was fabricated using structure A under the same conditions as in Example 1, except that the KrF excimer laser irradiation conditions were 120 mJ/ cm2 (peak output 13.3 MW/ cm2 ) in a nitrogen atmosphere. The mobility of the top-gate thin-film transistor fabricated in Example 6 was 27.78 cm2 /Vs.

参考例1 トップゲート型薄膜トランジスタの作製及び評価
低圧水銀ランプ(サムコ社製UVオゾンクリーナーUV1、照度15mW/cm)を用い、構造体Aに、大気雰囲気下で、紫外線を60分間連続照射した(54J/cm)。紫外線照射時、構造体Aをホットプレートにて115℃に加熱した。
紫外線照射処理のみを施した構造体Aにおいて、酸化物半導体層B及び酸化物半導体層Aの露出部は、電気抵抗が大きく低下し電極として機能した。酸化物半導体層Aのゲート絶縁膜に覆われている領域は、半導体(チャネル)として機能した。すなわち、参考例1においても、先の図2に示す構造(断面図)を有するトップゲート型薄膜トランジスタが製造できた。ただし、参考例1で製造したトップゲート型薄膜トランジスタの移動度は14.33cm/Vsとなり、実施例1~実施例6で得られた移動度が18cm/Vsを超える性能の良いトップゲート型薄膜トランジスタは作製できなかった。
Reference Example 1: Fabrication and Evaluation of Top-Gate Thin Film Transistor Using a low-pressure mercury lamp (UV Ozone Cleaner UV1 manufactured by Samco, illuminance 15 mW/cm 2 ), Structure A was continuously irradiated with ultraviolet light (54 J/cm 2 ) in the air for 60 minutes. During the ultraviolet light irradiation, Structure A was heated to 115° C. on a hot plate.
In the structure A that was subjected to only the ultraviolet irradiation treatment, the exposed portions of the oxide semiconductor layer B and the oxide semiconductor layer A had a significantly reduced electrical resistance and functioned as electrodes. The region of the oxide semiconductor layer A covered with the gate insulating film functioned as a semiconductor (channel). That is, in Reference Example 1 as well, a top-gate type thin film transistor having the structure (cross-sectional view) shown in FIG. 2 was manufactured. However, the mobility of the top-gate type thin film transistor manufactured in Reference Example 1 was 14.33 cm 2 /Vs, and a top-gate type thin film transistor with good performance having a mobility exceeding 18 cm 2 /Vs obtained in Examples 1 to 6 could not be manufactured.

比較例1
構造体A(紫外線未照射、エキシマレーザー未照射)の酸化物半導体層Bをゲート電極とみなし、酸化物半導体層Aの露出部をそれぞれソース電極、ドレイン電極とみなして、構造体Aをトップゲート型薄膜トランジスタとして扱った場合の性能を評価したが、その移動度は0.01cm/Vsとなった。
Comparative Example 1
The oxide semiconductor layer B of the structure A (not irradiated with ultraviolet light or excimer laser) was regarded as a gate electrode, and the exposed portions of the oxide semiconductor layer A were regarded as a source electrode and a drain electrode, respectively, and the performance of the structure A was evaluated when treated as a top-gate thin film transistor, and the mobility was 0.01 cm 2 /Vs.

実施例7 トップゲート型薄膜トランジスタの作製及び評価
低圧水銀ランプ(サムコ社製UVオゾンクリーナーUV1、照度15mW/cm、波長185nm~254nm)を用い、構造体Aに、大気雰囲気下で、紫外線を60分間連続照射した(54J/cm)。紫外線照射時、構造体Aをホットプレートにて115℃に加熱した。
次に、YAGレーザー装置(COHERENT社製、MATRIX 355-1-60)を用いて、大気雰囲気下で、照射エネルギー量が120mJ/cmになる条件にて、YAGレーザーを構造体Aに照射した。この時のYAGレーザー(波長355nm)のパルス幅は25ナノ秒以下、周波数は60kHz、照射時間は4分、強度は0.5mW/cmとした。
上記の紫外線照射とYAGレーザー照射の処理を施した構造体Aにおいては、酸化物半導体層B及び酸化物半導体層Aの露出部は、電気抵抗が大きく低下して導体となり、電極として機能した。一方、酸化物半導体層Aのゲート絶縁膜に覆われている領域は、半導体(チャネル)として機能した。すなわち、図2に示すように、表層に露出した酸化物半導体層Bはゲート電極として機能し、また表層に露出した酸化物半導体層A(一部)はソース電極又はドレイン電極(なおソース電極とドレイン電極は特に区別されない)として機能し、結果として、トップゲート型薄膜トランジスタが製造できた。
実施例7で製造したトップゲート型薄膜トランジスタの伝達特性を図4に示す。実施例7で製造したトップゲート型薄膜トランジスタの移動度は12.18cm/Vsとなった。移動度は参考例1と同程度であったが、より安定した伝達特性が得られた。
Example 7: Fabrication and Evaluation of Top-Gate Thin-Film Transistor Using a low-pressure mercury lamp (UV Ozone Cleaner UV1 manufactured by Samco, illuminance 15 mW/cm 2 , wavelength 185 nm to 254 nm), Structure A was continuously irradiated with ultraviolet light (54 J/cm 2 ) for 60 minutes in an air atmosphere. During the ultraviolet light irradiation, Structure A was heated to 115° C. on a hot plate.
Next, using a YAG laser device (MATRIX 355-1-60, manufactured by COHERENT), the structure A was irradiated with a YAG laser under the conditions of an irradiation energy amount of 120 mJ/ cm2 in an air atmosphere. The pulse width of the YAG laser (wavelength 355 nm) at this time was 25 nanoseconds or less, the frequency was 60 kHz, the irradiation time was 4 minutes, and the intensity was 0.5 mW/ cm2 .
In the structure A that was subjected to the above-mentioned ultraviolet irradiation and YAG laser irradiation, the exposed portions of the oxide semiconductor layer B and the oxide semiconductor layer A became conductors with a large decrease in electrical resistance and functioned as electrodes. Meanwhile, the region of the oxide semiconductor layer A covered with the gate insulating film functioned as a semiconductor (channel). That is, as shown in FIG. 2, the oxide semiconductor layer B exposed on the surface functioned as a gate electrode, and the oxide semiconductor layer A (part) exposed on the surface functioned as a source electrode or drain electrode (the source electrode and the drain electrode are not particularly distinguished), and as a result, a top-gate type thin film transistor was manufactured.
The transfer characteristics of the top-gate type thin film transistor produced in Example 7 are shown in Fig. 4. The mobility of the top-gate type thin film transistor produced in Example 7 was 12.18 cm2 /Vs. The mobility was similar to that of Reference Example 1, but more stable transfer characteristics were obtained.

Claims (8)

下記(A)工程から(E)工程を含む、トップゲート型薄膜トランジスタの製造方法。
(A)工程:基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成し、該層(a)のパターニングとエッチングを行う工程、
(B)工程:パターニング及びエッチングされた金属酸化物半導体層(a)上に、絶縁層(b)を形成し、該層(b)の上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程、
(C)工程:金属酸化物半導体層(c)のパターニングとエッチングを行う工程、
(D)工程:パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして下層の絶縁層(b)をエッチングする工程、
(E)工程:基板の上方からエキシマレーザー光又はYAGレーザー光を照射する工程
を含み、
前記(E)工程が、基板の上方からUV光と、エキシマレーザー光又はYAGレーザー光をともに照射する(E’)工程である、
トップゲート型薄膜トランジスタの製造方法。
A method for manufacturing a top-gate thin film transistor, comprising the following steps (A) to (E):
Step (A): a step of applying a composition for forming a metal oxide semiconductor layer on a substrate, baking the composition, forming a metal oxide semiconductor layer (a), and patterning and etching the layer (a);
Step (B): forming an insulating layer (b) on the patterned and etched metal oxide semiconductor layer (a), and applying a metal oxide semiconductor layer-forming composition onto the insulating layer (b) and baking the composition to form a metal oxide semiconductor layer (c);
Step (C): patterning and etching the metal oxide semiconductor layer (c);
Step (D): Etching the underlying insulating layer (b) using the patterned and etched metal oxide semiconductor layer (c) as a mask pattern;
Step (E): comprising a step of irradiating the substrate with excimer laser light or YAG laser light from above the substrate,
The step (E) is a step (E') of irradiating the substrate with both UV light and excimer laser light or YAG laser light from above the substrate;
A method for manufacturing a top-gate thin-film transistor.
下記(A)工程から(E)工程を含む、トップゲート型薄膜トランジスタの製造方法。A method for manufacturing a top-gate thin film transistor, comprising the following steps (A) to (E):
(A)工程:基板上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(a)を形成し、該層(a)のパターニングとエッチングを行う工程、Step (A): a step of applying a composition for forming a metal oxide semiconductor layer on a substrate, baking the composition, forming a metal oxide semiconductor layer (a), and patterning and etching the layer (a);
(B)工程:パターニング及びエッチングされた金属酸化物半導体層(a)上に、絶縁層(b)を形成し、該層(b)の上に金属酸化物半導体層形成用組成物を塗布し焼成して金属酸化物半導体層(c)を形成する工程、Step (B): forming an insulating layer (b) on the patterned and etched metal oxide semiconductor layer (a), and applying a metal oxide semiconductor layer-forming composition onto the insulating layer (b) and baking the composition to form a metal oxide semiconductor layer (c);
(C)工程:金属酸化物半導体層(c)のパターニングとエッチングを行う工程、Step (C): A step of patterning and etching the metal oxide semiconductor layer (c);
(D)工程:パターニング及びエッチングされた金属酸化物半導体層(c)をマスクパターンとして下層の絶縁層(b)をエッチングする工程、Step (D): etching the underlying insulating layer (b) using the patterned and etched metal oxide semiconductor layer (c) as a mask pattern;
(E)工程:基板の上方からエキシマレーザー光又はYAGレーザー光を照射する工程Step (E): A step of irradiating the substrate with excimer laser light or YAG laser light from above.
を含み、Including,
前記(E)工程が、基板の上方からUV光を照射した後、エキシマレーザー光又はYAGレーザー光を照射する(E”)工程である、The step (E) is a step (E″) of irradiating the substrate from above with UV light and then irradiating the substrate with excimer laser light or YAG laser light,
トップゲート型薄膜トランジスタの製造方法。A method for manufacturing a top-gate thin-film transistor.
(B)工程で形成する絶縁層(b)がフッ素を含むポリシロキサン膜である、請求項1又は請求項2に記載のトップゲート型薄膜トランジスタの製造方法。 3. The method for producing a top-gate thin film transistor according to claim 1 , wherein the insulating layer (b) formed in the step (B) is a polysiloxane film containing fluorine. 前記金属酸化物半導体層形成用組成物が、金属塩と第一アミド化合物と水を主体とする溶媒とを含む、請求項乃至請求項のうちいずれか一項に記載のトップゲート型薄膜トランジスタの製造方法。 4. The method for producing a top-gate thin film transistor according to claim 1 , wherein the composition for forming a metal oxide semiconductor layer contains a metal salt, a first amide compound, and a solvent mainly composed of water. 前記(A)工程及び(B)工程において、同一又は異なる条件及び手順で、金属酸化物半導体層形成用組成物をスピンコートにて塗布し、110℃~180℃で0.1分間~30分間熱処理する、塗布及び熱処理の操作を1回~10回繰り返し行った後、250℃~350℃で0.1時間~120時間焼成する加熱を行うことにより、前記金属酸化物半導体層(a)及び金属酸化物半導体層(c)をそれぞれ形成する、
請求項乃至請求項のうちいずれか一項に記載のトップゲート型薄膜トランジスタの製造方法。
In the steps (A) and (B), a composition for forming a metal oxide semiconductor layer is applied by spin coating under the same or different conditions and procedures, and heat-treated at 110° C. to 180° C. for 0.1 to 30 minutes. This operation of application and heat treatment is repeated 1 to 10 times, and then the resulting product is baked at 250° C. to 350° C. for 0.1 to 120 hours, thereby forming the metal oxide semiconductor layer (a) and the metal oxide semiconductor layer (c), respectively.
A method for manufacturing a top-gate type thin film transistor according to claim 1 .
前記(E)工程において、波長150nm~380nmのエキシマレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射する、
請求項乃至請求項のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法。
In the step (E), an excimer laser beam having a wavelength of 150 nm to 380 nm is irradiated at 50 mJ/cm 2 to 150 mJ/cm 2 for 1 nanosecond to 120 nanoseconds.
A method for manufacturing a top-gate type thin film transistor according to claim 1 .
前記(E)工程において、波長250nm~400nmのYAGレーザー光を50mJ/cm~150mJ/cmにて1ナノ秒間~120ナノ秒間照射する、
請求項乃至請求項のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法。
In the step (E), a YAG laser beam having a wavelength of 250 nm to 400 nm is irradiated at 50 mJ/cm 2 to 150 mJ/cm 2 for 1 nanosecond to 120 nanoseconds.
A method for manufacturing a top-gate type thin film transistor according to claim 1 .
前記(E)工程において、波長150nm~350nmのUV光を1分間~120分間照射する、
請求項乃至請求項のうち何れか一項に記載のトップゲート型薄膜トランジスタの製造方法。
In the step (E), UV light having a wavelength of 150 nm to 350 nm is irradiated for 1 minute to 120 minutes.
A method for manufacturing a top-gate type thin film transistor according to claim 1 .
JP2021518334A 2019-05-09 2020-04-20 Thin film transistor and its manufacturing method Active JP7515119B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019089093 2019-05-09
JP2019089093 2019-05-09
PCT/JP2020/017061 WO2020226045A1 (en) 2019-05-09 2020-04-20 Thin-film transistor and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2020226045A1 JPWO2020226045A1 (en) 2020-11-12
JP7515119B2 true JP7515119B2 (en) 2024-07-12

Family

ID=73050619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021518334A Active JP7515119B2 (en) 2019-05-09 2020-04-20 Thin film transistor and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7515119B2 (en)
TW (1) TW202111775A (en)
WO (1) WO2020226045A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206505A (en) 2008-01-29 2009-09-10 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2010080490A (en) 2008-09-24 2010-04-08 National Institute Of Advanced Industrial Science & Technology Semiconductor element
US20120018718A1 (en) 2010-07-21 2012-01-26 National Chiao Tung University Self-aligned top-gate thin film transistors and method for fabricating same
JP2014140005A (en) 2012-12-20 2014-07-31 Nippon Hoso Kyokai <Nhk> Thin film transistor and manufacturing method of the same
JP2015109315A (en) 2013-12-03 2015-06-11 出光興産株式会社 Thin film transistor, manufacturing method of the same, oxide semiconductor layer, display device and semiconductor device
JP2015153909A (en) 2014-02-14 2015-08-24 富士フイルム株式会社 Metal complex composition, metal oxide thin film, method for producing the same, electronic element, thin-film transistor, display device, image sensor, and x-ray sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206505A (en) 2008-01-29 2009-09-10 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2010080490A (en) 2008-09-24 2010-04-08 National Institute Of Advanced Industrial Science & Technology Semiconductor element
US20120018718A1 (en) 2010-07-21 2012-01-26 National Chiao Tung University Self-aligned top-gate thin film transistors and method for fabricating same
JP2014140005A (en) 2012-12-20 2014-07-31 Nippon Hoso Kyokai <Nhk> Thin film transistor and manufacturing method of the same
JP2015109315A (en) 2013-12-03 2015-06-11 出光興産株式会社 Thin film transistor, manufacturing method of the same, oxide semiconductor layer, display device and semiconductor device
JP2015153909A (en) 2014-02-14 2015-08-24 富士フイルム株式会社 Metal complex composition, metal oxide thin film, method for producing the same, electronic element, thin-film transistor, display device, image sensor, and x-ray sensor

Also Published As

Publication number Publication date
TW202111775A (en) 2021-03-16
JPWO2020226045A1 (en) 2020-11-12
WO2020226045A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
JP5854231B2 (en) Precursor composition for forming amorphous metal oxide semiconductor layer, method for producing amorphous metal oxide semiconductor layer, and method for producing semiconductor device
US7947537B2 (en) Metal oxide semiconductor, semiconductor element, thin film transistor and method of manufacturing thereof
JP5640323B2 (en) Metal oxide semiconductor manufacturing method, metal oxide semiconductor, and thin film transistor
JP5763876B2 (en) Thin film transistor and manufacturing method thereof
Kim et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors
JP2010258057A (en) Metal oxide semiconductor, method of manufacturing the same, and thin film transistor using the same
JP5132053B2 (en) Method for producing organic thin film transistor
Tan et al. The annealing effects on the properties of solution-processed alumina thin film and its application in TFTs
WO2010061721A1 (en) Thin film transistor and method for manufacturing thin film transistor
WO2010079581A1 (en) Thin film transistor and method for manufacturing same
JP2007150156A (en) Transistor and method of manufacturing same
JP2010283190A (en) Thin film transistor and method of manufacturing the same
Jung et al. Toward ultraviolet solution processed ZrOx/IZO transistors with top-gate and dual-gate operation: Selection of solvents, precursors, stabilizers, and additive elements
JPWO2010044332A1 (en) Thin film transistor and manufacturing method thereof
JP7515119B2 (en) Thin film transistor and its manufacturing method
JP2010147206A (en) Thin-film transistor and method for manufacturing the same
JP2010258206A (en) Method for manufacturing metal oxide semiconductor, the metal oxide semiconductor, semiconductor element using the same, and thin-film transistor
JP2010258018A (en) Semiconductor thin film and thin-film transistor using the same
KR20110025334A (en) Method to control a crystallization behavior for low temperature-processed and solution-processable oxide semiconductor
CN209747522U (en) Double-layer metal oxide semiconductor heterojunction thin film transistor
CN111180310A (en) Method for patterning metal oxide film and application
JP7217626B2 (en) Method for producing coating-type metal oxide film
Fan et al. Organic thin-film transistor performance improvement using ammonia (NH3) plasma treatment on the gate insulator surface
JP2010171237A (en) Metal oxide semiconductor, method of manufacturing the same, and thin-film transistor using the same
KR101115074B1 (en) Method of forming zto thin film pattern, thin film transistor and manufacturing method thereby

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240621

R150 Certificate of patent or registration of utility model

Ref document number: 7515119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150