JP7488022B2 - Folded electrodes and parallel plate electrode structure and laminated electrode pair using the same - Google Patents

Folded electrodes and parallel plate electrode structure and laminated electrode pair using the same Download PDF

Info

Publication number
JP7488022B2
JP7488022B2 JP2018236647A JP2018236647A JP7488022B2 JP 7488022 B2 JP7488022 B2 JP 7488022B2 JP 2018236647 A JP2018236647 A JP 2018236647A JP 2018236647 A JP2018236647 A JP 2018236647A JP 7488022 B2 JP7488022 B2 JP 7488022B2
Authority
JP
Japan
Prior art keywords
electrode plate
electrode
folded
plate portions
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018236647A
Other languages
Japanese (ja)
Other versions
JP2020097770A (en
Inventor
勝輔 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2018236647A priority Critical patent/JP7488022B2/en
Publication of JP2020097770A publication Critical patent/JP2020097770A/en
Application granted granted Critical
Publication of JP7488022B2 publication Critical patent/JP7488022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、折畳み電極及び同折畳み電極を用いた平行電極板構造並びに積層電極対に関する。 The present invention relates to a folded electrode, a parallel electrode plate structure using the folded electrode, and a stacked electrode pair.

従来、水に水素や酸素を含有させ、又は水の液性を調整して飲用や浴用、皮膚外用から掃除用など様々な用途に供すべく、水を電気分解して電解水を生成する電解水生成装置が知られている。 Conventionally, electrolytic water generating devices are known that electrolyze water to produce electrolytic water by adding hydrogen or oxygen to water or adjusting the liquid properties of the water so that it can be used for a variety of purposes, such as drinking, bathing, external application on the skin, and cleaning.

このような電解水生成装置としては、例えば、電解水を吐水する整水器やシャワーであったり、浴湯など水中に没して電解水を放散させる装置、更にはポットや水筒状のものなどが挙げられ、これらの装置には水を接触させて電解を行うための電極対(以下、電解電極対ともいう。)が内蔵されている。 Such electrolytic water generating devices include, for example, water conditioners and showers that discharge electrolytic water, devices that are submerged in water such as bath water and disperse electrolytic water, and even pots and water bottles. These devices have built-in electrode pairs (hereinafter also referred to as electrolytic electrode pairs) that contact water to electrolyze it.

電解電極対は、適切な間隔で配された正負一対の電極を備えていれば原理的には用を成すのであるが、電解効率や電解水の生成量を向上させるべく、複数枚の平板状の電極板を一定間隔で重畳してなる電解電極対(以下、積層電極対ともいう。)が提案されている。 In principle, an electrolysis electrode pair can be used if it has a pair of positive and negative electrodes arranged at an appropriate distance, but in order to improve the efficiency of electrolysis and the amount of electrolyzed water produced, an electrolysis electrode pair consisting of multiple flat electrode plates stacked at regular intervals (hereinafter also referred to as a stacked electrode pair) has been proposed.

この積層電極対は、重畳配置された各電極板を「正・負・正・負…」の如く交互に相対的に異なる電位とすることで、電解面積を増やして電解効率や電解水の生成量を向上させることが可能となる。 This stacked electrode pair allows each of the overlapping electrode plates to alternately have relatively different potentials, such as "positive, negative, positive, negative...", which increases the electrolysis area and improves the electrolysis efficiency and the amount of electrolyzed water produced.

また、積層電極対を構成するためには、各電極板を一つおきに同電位となる電極板は互いに導通させる必要があるが、これを実現すべく、複数の電極板部が架橋部を介して連なる一の金属平板より構成された電極板連結体を架橋部でそれぞれ折曲して電極板部が重なるように折り畳むことで形成した電極(以下、折畳み電極と称する。)を構築し、この折畳み電極を正負一対として組み合わせることで電解電極対を構成した積層電極対が知られている(例えば、特許文献1参照。) In order to form a stacked electrode pair, every other electrode plate must be electrically connected to the other electrode plates, which have the same potential. To achieve this, an electrode plate assembly made of a single metal flat plate with multiple electrode plate sections connected via bridge sections is folded at the bridge sections so that the electrode plate sections overlap (hereinafter referred to as a folded electrode). A stacked electrode pair is known in which an electrolytic electrode pair is formed by combining these folded electrodes as a positive/negative pair (see, for example, Patent Document 1).

このような、折畳み電極が採用された積層電極対によれば、同電位の電極板は架橋部で予め電気的に接続されているため、各電極板がそれぞれ分離している積層電極対に比して電解電極対の組立が容易である。 In a stacked electrode pair that uses such folded electrodes, the electrode plates of the same potential are electrically connected in advance at the bridge portion, making it easier to assemble the electrolysis electrode pair compared to a stacked electrode pair in which each electrode plate is separate.

実用新案登録第3207066号公報Utility Model Registration No. 3207066

ところで、前述の如く電解電極対は種々の電解水生成装置に採用されているが、例えばシャワーの如く比較的小型の装置の場合、電解電極対もより小型であるのが望ましい。また、その他の装置にあっても、それぞれ小型軽量化が望まれる。 As mentioned above, electrolysis electrode pairs are used in various electrolysis water generating devices, but in the case of relatively small devices such as showers, it is desirable for the electrolysis electrode pair to be smaller. Also, in other devices, it is desirable for them to be small and lightweight.

この点、電解面積を確保し易い積層電極対は比較的有利であるが、上記従来の折畳み電極を採用した積層電極対の場合、重畳する各電極板が干渉して短絡等が起こらぬよう、折畳み電極の各架橋部の接続基部を高精度で直角に折畳む必要がある。 In this regard, stacked electrode pairs, which make it easier to secure the electrolytic surface area, are relatively advantageous. However, in the case of stacked electrode pairs that use the conventional folded electrodes described above, the connection bases of the bridges of the folded electrodes must be folded at right angles with high precision to prevent interference between the overlapping electrode plates and short circuits.

また、積層電極対の各電極板の間隙は狭い方が電解効率上有利であるが、間隔が狭くなるほど架橋部の接続基部の直角形成は極めて高い精度が要求され、この折曲作業を一つの架橋部あたり二直角分行わなくてはならず、しかも全ての架橋部毎に行うため製造上相当に煩雑である。 In addition, the narrower the gap between the electrode plates of the stacked electrode pair, the more advantageous it is for electrolysis efficiency. However, the narrower the gap, the more precision is required for forming the right angles at the connection base of the bridge section. This bending process must be performed at two right angles per bridge section, and since it must be performed for every bridge section, manufacturing is quite cumbersome.

本発明は、斯かる事情に鑑みてなされたものであって、電極板連結体の架橋部での折曲作業をより簡便化することのできる折畳み電極を提供する。 The present invention was made in consideration of these circumstances, and provides a folding electrode that can more easily fold the electrode plate connector at the bridge portion.

また本発明では、同折畳み電極を用い、各電極板部を互いに平行とした平行電極板構造や、これら折畳み電極や平行電極板構造を採用した積層電極対についても提供する。 The present invention also provides a parallel electrode plate structure using the same folded electrode, with each electrode plate portion parallel to each other, and a stacked electrode pair employing these folded electrodes and parallel electrode plate structures.

上記従来の課題を解決するために、本発明に係る折畳み電極では、(1)複数の電極板部が架橋部を介して連なる一の金属平板より構成された電極板連結体よりなり、前記架橋部に形成した略半円弧状の屈曲構造により各電極板部が間隙を介して互いに重畳することとした。 In order to solve the above-mentioned problems, the folded electrode of the present invention (1) comprises an electrode plate assembly made of a single metal flat plate in which multiple electrode plate sections are connected via bridge sections, and the electrode plate sections overlap each other with gaps between them due to a roughly semicircular arc-shaped bent structure formed in the bridge section.

また、本発明に係る折畳み電極では、以下の点にも特徴を有する。
(2)前記折畳み電極は、自由状態において、対向する電極板部の間隙が両電極板部を連結する架橋部から離隔するに従い漸次狭窄するよう形成したこと。
(3)前記折畳み電極は、自由状態において、対向する電極板部の間隙が両電極板部を連結する架橋部から離隔するに従い漸次拡開するよう形成したこと。
The folded electrode according to the present invention also has the following features.
(2) The folded electrode is formed so that, in a free state, the gap between the opposing electrode plate portions gradually narrows as the electrode plate portions become more distant from the bridge portion connecting the two electrode plate portions.
(3) The folded electrode is formed so that, in a free state, the gap between the opposing electrode plate portions gradually widens as the electrode plate portions become more distant from the bridge portion connecting the two electrode plate portions.

また、本発明に係る平行電極板構造では、(4)(2)の折畳み電極の各電極板部をそれぞれ略平行に配置してなる平行電極板構造であって、対向する電極板部の内側間隙にスペーサを介在させ各電極板部を拡開方向に付勢して略平行に配置した。 The parallel electrode plate structure according to the present invention is a parallel electrode plate structure in which the electrode plate portions of the folded electrodes (4) and (2) are arranged approximately parallel to each other, and a spacer is interposed in the inner gap between the opposing electrode plate portions, and each electrode plate portion is biased in the expanding direction to be arranged approximately parallel.

また、本発明に係る平行電極板構造では、(5)(3)に記載の折畳み電極の各電極板部をそれぞれ略平行に配置してなる平行電極板構造であって、対向する電極板部の外側に保持体を配し各電極板部を狭める方向に付勢して略平行に配置したことにも特徴を有する。 The parallel electrode plate structure according to the present invention is also characterized in that the electrode plate portions of the folded electrodes described in (5) and (3) are arranged approximately parallel to each other, and that a holder is disposed on the outside of the opposing electrode plate portions, biasing the electrode plate portions in a narrowing direction to arrange them approximately parallel.

また、本発明に係る積層電極対では、(6)(1)に記載の折畳み電極であり各電極板部が互いに略平行となる屈曲構造を有する折畳み電極と、同折畳み電極の電極板部の間隙に配置した相対的に逆電位に印加される介装電極板と、を備えることとした。 The laminated electrode pair according to the present invention further comprises a folded electrode as described in (6)(1) having a bent structure in which the electrode plate portions are substantially parallel to each other, and an intermediate electrode plate disposed in the gap between the electrode plate portions of the folded electrode and applied with a relatively opposite potential.

また、本発明に係る積層電極対では、他の態様として、(7)(4)又は(5)に記載の平行電極板構造により各電極板部がそれぞれ略平行に配置された折畳み電極と、同折畳み電極の電極板部の間隙に配置した相対的に逆電位に印加される介装電極板と、を備えることとした。 In addition, as another aspect of the stacked electrode pair according to the present invention, (7) is provided with a folded electrode in which each electrode plate portion is arranged approximately parallel to each other by the parallel electrode plate structure described in (4) or (5), and an intervening electrode plate that is applied with a relatively opposite potential and is arranged in the gap between the electrode plate portions of the folded electrode.

また、本発明に係る積層電極対では、以下の点にも特徴を有する。
(8)前記介装電極板の端部を前記折畳み電極の架橋部における屈曲構造の曲率中心位置よりも前記架橋部に接近させて配置したこと。
(9)前記介装電極板は、第2の折畳み電極の電極板部であること。
The stacked electrode pair according to the present invention also has the following features.
(8) The end of the intermediate electrode plate is disposed closer to the bridge portion than the center of curvature of the bent structure at the bridge portion of the folded electrode.
(9) The intermediate electrode plate is an electrode plate portion of a second folded electrode.

本発明に係る折畳み電極によれば、複数の電極板部が架橋部を介して連なる一の金属平板より構成された電極板連結体よりなり、前記架橋部に形成した略半円弧状の屈曲構造により各電極板部が間隙を介して互いに重畳することとしたため、電極板連結体の架橋部での折曲作業をより簡便化することができる。 The folded electrode of the present invention is made up of an electrode plate assembly made of a single metal flat plate in which multiple electrode plate sections are connected via bridge sections, and the electrode plate sections are overlapped with gaps due to the approximately semicircular arc-shaped bent structure formed in the bridge section, which makes it easier to bend the electrode plate assembly at the bridge sections.

また、前記折畳み電極は、自由状態において、対向する電極板部の間隙が両電極板部を連結する架橋部から離隔するに従い漸次狭窄するよう形成すれば、互いの電極板部が正確に平行となるような折曲作業を必ずしも行う必要がなく折曲作業をより簡便化することができると共に、各電極板部をそれぞれ略平行に配置した際に各電極板部を拡開方向に付勢することができ、この付勢された平行な状態から狭窄する自由状態に戻ろうとする復元力を利用して各電極板の平行状態を堅実に維持することが可能となる。 In addition, if the folded electrode is formed so that in the free state, the gap between the opposing electrode plate portions gradually narrows as it moves away from the bridge portion connecting the two electrode plate portions, it is not necessary to perform the bending operation so that the electrode plate portions are exactly parallel to each other, making the bending operation easier. In addition, when the electrode plate portions are arranged approximately parallel to each other, they can be biased in the expanding direction, and the restoring force that tries to return from this biased parallel state to the narrowed free state can be used to firmly maintain the parallel state of each electrode plate.

また、前記折畳み電極は、自由状態において、対向する電極板部の間隙が両電極板部を連結する架橋部から離隔するに従い漸次拡開するよう形成すれば、互いの電極板部が正確に平行となるような折曲作業を必ずしも行う必要がなく折曲作業をより簡便化することができると共に、各電極板部をそれぞれ略平行に配置した際に各電極板部を狭める方向に付勢することができ、この付勢された平行な状態から拡開する自由状態に戻ろうとする復元力を利用して各電極板の平行状態を堅実に維持することが可能となる。 In addition, if the folded electrode is formed so that in the free state, the gap between the opposing electrode plate portions gradually widens as it moves away from the bridge portion connecting the two electrode plate portions, it is not necessary to perform the bending operation so that the electrode plate portions are exactly parallel to each other, making the bending operation easier, and when the electrode plate portions are arranged approximately parallel to each other, they can be biased in a direction that narrows the electrode plate portions, and the parallel state of the electrode plates can be firmly maintained by utilizing the restoring force that tries to return from this biased parallel state to the widening free state.

また、本発明に係る平行電極板構造によれば、前述の(2)の折畳み電極の各電極板部をそれぞれ略平行に配置してなる平行電極板構造であって、対向する電極板部の内側間隙にスペーサを介在させ各電極板部を拡開方向に付勢して略平行に配置したため、各電極板部の拡開方向への付勢力を利用して各電極板の平行状態を堅実に維持することができる。 The parallel electrode plate structure according to the present invention is a parallel electrode plate structure in which the electrode plate parts of the folded electrode of (2) described above are arranged approximately parallel to each other, and a spacer is interposed in the inner gap between the opposing electrode plate parts, and each electrode plate part is biased in the expanding direction and arranged approximately parallel, so that the parallel state of each electrode plate can be firmly maintained by utilizing the biasing force of each electrode plate part in the expanding direction.

また、前述の(3)の折畳み電極の各電極板部をそれぞれ略平行に配置してなる平行電極板構造であって、対向する電極板部の外側に保持体を配し各電極板部を狭める方向に付勢して略平行に配置すれば、各電極板部の狭まる方向への付勢力を利用して各電極板の平行状態を堅実に維持することができる。 In addition, in the parallel electrode plate structure in which the electrode plate portions of the folded electrode of (3) described above are arranged approximately parallel to each other, if a holder is placed on the outside of the opposing electrode plate portions and the electrode plate portions are biased in a narrowing direction to be arranged approximately parallel, the parallel state of the electrode plates can be firmly maintained by utilizing the biasing force in the narrowing direction of each electrode plate portion.

また、本発明に係る積層電極対によれば、前述の(1)の折畳み電極であり各電極板部が互いに略平行となる屈曲構造を有する折畳み電極、又は前述の(4)若しくは(5)の平行電極板構造により各電極板部がそれぞれ略平行に配置された折畳み電極と、同折畳み電極の電極板部の間隙に配置した相対的に逆電位に印加される介装電極板と、を備えることとしたため、折畳み電極の折曲作業の簡便化により構築が容易な積層電極対を提供することができる。 The stacked electrode pair according to the present invention includes a folded electrode having a bent structure in which the electrode plate portions are substantially parallel to each other, as described above in (1), or a folded electrode having a parallel electrode plate structure as described above in (4) or (5), in which the electrode plate portions are substantially parallel to each other, and an intervening electrode plate that is applied with a relatively opposite potential and is disposed in the gap between the electrode plate portions of the folded electrode. This simplifies the folding operation of the folded electrode, making it possible to provide a stacked electrode pair that is easy to construct.

また、前記介装電極板の端部を前記折畳み電極の架橋部における屈曲構造の曲率中心位置よりも前記架橋部に接近させて配置すれば、介装電極板の端部近傍における同介装電極板自体や対向する電極板部、架橋部の電解に伴う片減りを可及的に抑制することができる。 In addition, by arranging the end of the intermediate electrode plate closer to the bridge portion of the folded electrode than the center of curvature of the bent structure at the bridge portion, it is possible to minimize uneven wear of the intermediate electrode plate itself, the opposing electrode plate portion, and the bridge portion due to electrolysis near the end of the intermediate electrode plate.

また、前記介装電極板は、第2の折畳み電極の電極板部であることとすれば、正負両極のいずれについても折畳み電極となり、電解に伴う片減りを相互に抑制することができる。 In addition, if the intermediate electrode plate is the electrode plate portion of the second folded electrode, both the positive and negative electrodes will become folded electrodes, and uneven wear caused by electrolysis can be mutually suppressed.

本実施形態に係る積層電極対の外観を示した説明図である。FIG. 2 is an explanatory diagram showing the appearance of a stacked electrode pair according to the present embodiment. 介装電極板及び電極板連結体の構成を示した説明図である。4 is an explanatory diagram showing the configuration of an interposed electrode plate and an electrode plate connecting body. FIG. 積層電極対の構造を示した説明図である。FIG. 2 is an explanatory diagram showing the structure of a stacked electrode pair. オーバーハング構造を備えた折畳み電極、及び平行電極板構造を示した説明図である。FIG. 13 is an illustration showing a folded electrode with an overhang structure and a parallel electrode plate structure. スペーサを配した介装電極板の構成を示す説明図である。FIG. 13 is an explanatory diagram showing the configuration of an intermediate electrode plate having spacers arranged thereon. アンダーハング構造を備えた折畳み電極、及び平行電極板構造を示した説明図である。FIG. 13 is an illustration showing a folded electrode with an underhang structure and a parallel electrode plate structure. 遮断プレートの装着及び積層電極対の構築過程を示した説明図である。10A to 10C are explanatory diagrams showing the process of attaching a blocking plate and constructing a stacked electrode pair. 遮断プレートを備えた積層電極対の断面を示す説明図である。FIG. 13 is an explanatory diagram showing a cross section of a stacked electrode pair equipped with a blocking plate. 本実施形態に係る積層電極対の架橋部近傍における構造を示した説明図である。4 is an explanatory diagram showing a structure in the vicinity of a bridge portion of a stacked electrode pair according to the embodiment; FIG. 電極板連結体及び積層電極対の構成を示した説明図である。4A and 4B are explanatory diagrams showing the configuration of an electrode plate connected body and a stacked electrode pair. 電極板連結体の構成を示した説明図である。FIG. 4 is an explanatory diagram showing a configuration of an electrode plate connector. 積層電極対の構成を示した説明図である。FIG. 2 is an explanatory diagram showing a configuration of a stacked electrode pair. 積層電極対の構成を示した説明図である。FIG. 2 is an explanatory diagram showing a configuration of a stacked electrode pair. 風呂用水素水生成装置における使用例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of use in a hydrogen water generating device for a bath. 電解水素水シャワーヘッドにおける使用例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of use in an electrolytic hydrogen water shower head. 電解水素水シャワーヘッドにおける使用例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of use in an electrolytic hydrogen water shower head. 電解水素水生成装置の使用例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of use of an electrolytic hydrogen water generating device. 電解水素水生成装置における使用例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of use in an electrolytic hydrogen water generating device.

本発明は、複数の電極板部が架橋部を介して連なる一の金属平板より構成された電極板連結体よりなり、前記架橋部に形成した屈曲構造により各電極板部が間隙を介して互いに重畳する折畳み電極に関し、電極板連結体の架橋部での折曲作業をより簡便化することが可能な折畳み電極を提供するものである。 The present invention relates to a folding electrode that is made up of an electrode plate assembly made of a single metal flat plate with multiple electrode plate sections connected via bridge sections, and in which the electrode plate sections overlap each other via gaps due to a bending structure formed in the bridge sections, and provides a folding electrode that can more easily fold the electrode plate assembly at the bridge sections.

また本発明では、同折畳み電極を用い、各電極板部を互いに平行とした平行電極板構造や、これら折畳み電極や平行電極板構造を採用した積層電極対についても提供する。 The present invention also provides a parallel electrode plate structure using the same folded electrode, with each electrode plate portion parallel to each other, and a stacked electrode pair employing these folded electrodes and parallel electrode plate structures.

以下、図面を参照しながら、本実施形態に係る折畳み電極、平行電極板構造、積層電極対について詳説する。 The folded electrodes, parallel electrode plate structure, and stacked electrode pair of this embodiment will be described in detail below with reference to the drawings.

図1は、本実施形態に係る折畳み電極A1を採用した積層電極対B1の外観を示す説明図である。図1に示すように積層電極対B1は、電極積層部10と、同電極積層部10より伸延させた2本の導通棒11a及び導通棒11bとを備えており、各導通棒11a,11bに対し相対的に異なる電位の電圧を印加することで、電極積層部10と接触する水を電解可能に構成している。 Figure 1 is an explanatory diagram showing the appearance of a stacked electrode pair B1 that employs a folded electrode A1 according to this embodiment. As shown in Figure 1, the stacked electrode pair B1 includes an electrode stack 10 and two conductive rods 11a and 11b that extend from the electrode stack 10. By applying voltages of relatively different potentials to the conductive rods 11a and 11b, water that comes into contact with the electrode stack 10 can be electrolyzed.

電極積層部10は、折畳み電極A1と、同折畳み電極A1の間隙に介装された介装電極板12とで構成しており、複数枚(本実施形態に係る積層電極対B1では3枚)の板状の電極板が一定の間隙を形成しつつ重畳する構造を有している。特に、本実施形態において電極積層部10の極間の間隙は0.3~1.0mmとしており、電解効率に優れた狭隘電極体を構成している。 The electrode stack 10 is composed of a folded electrode A1 and an interposed electrode plate 12 interposed in the gap between the folded electrodes A1, and has a structure in which multiple plate-shaped electrode plates (three in the case of the stacked electrode pair B1 according to this embodiment) are stacked while forming a certain gap. In particular, in this embodiment, the gap between the electrodes of the electrode stack 10 is 0.3 to 1.0 mm, forming a narrow electrode body with excellent electrolysis efficiency.

介装電極板12は図2(a)に示すように、後述する折畳み電極A1の電極板部14と略同形状(平面視略矩形状)の金属板体であり、折畳み電極A1の対極として機能するものである。任意の構成であるが、介装電極板12には長穴状の孔12aが複数形成されており、電極板間への水の導入が容易になされるよう構成している。また、介装電極板12には破線で示すように導通棒11bが接続される。 As shown in FIG. 2(a), the intermediate electrode plate 12 is a metal plate having substantially the same shape (substantially rectangular in plan view) as the electrode plate portion 14 of the folded electrode A1 described below, and functions as the counter electrode of the folded electrode A1. Although this is an optional configuration, the intermediate electrode plate 12 has multiple elongated holes 12a formed therein, which are configured to facilitate the introduction of water between the electrode plates. In addition, a conductive rod 11b is connected to the intermediate electrode plate 12, as shown by the dashed line.

一方、図1に示した折畳み電極A1は、図2(b)に示す電極板連結体13を屈曲させて形成している。電極板連結体13は一枚の金属平板から打ち抜き等によって得られたものであり、複数(本実施形態では2箇所)の電極板部14と、各電極板部14を電気的に接続する架橋部15とを備えており、一点鎖線で示した各架橋部15を横断する線に沿って屈曲させることで折畳み電極A1が形成される。 On the other hand, the folded electrode A1 shown in FIG. 1 is formed by bending the electrode plate connector 13 shown in FIG. 2(b). The electrode plate connector 13 is obtained by punching or the like from a single metal flat plate, and has multiple electrode plate sections 14 (two in this embodiment) and bridging sections 15 that electrically connect each electrode plate section 14. The folded electrode A1 is formed by bending the electrode plate connector 13 along a line that crosses each bridging section 15, as shown by a dashed line.

電極板部14は、介装電極板12の対極であって折畳み電極A1の電解機能を発揮する電極板として機能する部位である。任意の構成であるが、本実施形態に係る折畳み電極A1にも、電極板部14に、同電極板部14の連結方向(図2(a)において上下方向)へ伸延する複数の長穴状の孔14aを形成しており、電極板間への水の導入が容易になされるよう構成している。 The electrode plate portion 14 is the counter electrode of the intermediate electrode plate 12 and functions as an electrode plate that exerts the electrolytic function of the folded electrode A1. Although this is an optional configuration, the folded electrode A1 according to this embodiment also has a plurality of elongated holes 14a formed in the electrode plate portion 14 that extend in the connection direction of the electrode plate portion 14 (the vertical direction in FIG. 2(a)), so that water can be easily introduced between the electrode plates.

また、電極板部14には破線で示すように導通棒11aが接続され、折畳み電極A1に対し所定の電圧で電流を供給可能としている。導通棒11aは、電極板連結体13の折畳み前に電極板部14に取付を行ってもよく、また、折畳み後に取り付けても良い。 In addition, a conductive rod 11a is connected to the electrode plate portion 14 as shown by the dashed line, making it possible to supply a current at a predetermined voltage to the folded electrode A1. The conductive rod 11a may be attached to the electrode plate portion 14 before folding the electrode plate connector 13, or it may be attached after folding.

架橋部15は、各電極板部14を電気的に接続しつつ一体的な構成とするための部位である。特に、本実施形態に係る折畳み電極A1の特徴としては、図1に示すように、この架橋部15に形成する屈曲構造を略半円弧状としている点が挙げられる。なお、架橋部15の数は特に限定されるものでなく、単数でも良いが、図2(b)に示す如く複数設けることもできる。架橋部15を複数設けると、当該電極板連結体13に折り曲げ加工を行い、折畳み電極、平行電極板構造、積層電極対を形成した際に、電極板相互の平行度を精度よく確保しやすく、また構造的な強度も高めることができ好適である。 The bridge portion 15 is a portion for electrically connecting the electrode plate portions 14 together while forming an integrated structure. In particular, as shown in FIG. 1, the folded electrode A1 according to this embodiment is characterized in that the bent structure formed in the bridge portion 15 is substantially semicircular. The number of bridge portions 15 is not particularly limited, and may be a single bridge portion, but multiple bridge portions may be provided as shown in FIG. 2(b). Providing multiple bridge portions 15 is preferable because it is easy to accurately ensure the parallelism between the electrode plates when the electrode plate connector 13 is bent to form a folded electrode, a parallel electrode plate structure, or a stacked electrode pair, and it also increases the structural strength.

図3は、図1の積層電極対B1についてP1-P1線における断面を模式的に示した説明図である。なお、折畳み電極A1と介装電極板12との間隔や厚み、位置関係、詳細な構成等は、説明の便宜上、一部省略や誇張して示す場合があり、その他の図面もまた同様である。折畳み電極A1の形成にあたっては、図2(b)にて電極板連結体13に示した折畳み線に沿って架橋部15の折畳みを行うのであるが、この際、図3に示すように、架橋部15に略半円弧状の屈曲構造を形成する。 Figure 3 is an explanatory diagram showing a schematic cross section of the stacked electrode pair B1 in Figure 1 taken along line P1-P1. Note that for the sake of convenience, the spacing, thickness, positional relationship, detailed configuration, etc. between the folded electrode A1 and the interposed electrode plate 12 may be partially omitted or exaggerated, and this also applies to the other drawings. When forming the folded electrode A1, the bridging portion 15 is folded along the folding line shown on the electrode plate connector 13 in Figure 2 (b), and at this time, a roughly semicircular arc-shaped bent structure is formed in the bridging portion 15, as shown in Figure 3.

このような構成とすることにより、従来の折畳み電極の如く架橋部の2箇所の根元をそれぞれ高精度で直角に折曲させる煩雑な作業を伴わず、折曲作業を極めて簡便なものとすることができる。なお、屈曲構造は折曲加工のほか、プレス加工等によっても形成することができる。また、屈曲構造は典型的には折曲加工により形成される自然屈曲構造であり、そのため当該屈曲構造は正確に半円弧形状である必要はない。また、折畳み電極A1の各電極板部14や介装電極板12は、例えば板厚が0.1mm~1.0mm、より好ましくは0.2mm~0.5mmとすることができ、材質としては、例えば、白金をメッキしたチタン板などを用いることができる。 This configuration makes it possible to make the bending process extremely easy, without the need for the cumbersome task of bending the two bases of the bridge section at right angles with high precision as in conventional folded electrodes. The bent structure can be formed by pressing or other methods in addition to bending. The bent structure is typically a natural bent structure formed by bending, and therefore does not need to be precisely in the shape of a semicircular arc. Each electrode plate portion 14 and the intermediate electrode plate 12 of the folded electrode A1 can have a plate thickness of, for example, 0.1 mm to 1.0 mm, more preferably 0.2 mm to 0.5 mm, and can be made of, for example, platinum-plated titanium plate.

また、この折畳み電極A1における半円弧状の屈曲構造は、例えば図4の左図に示すように、各電極板部が自由状態において互いに略平行となる屈曲構造(以下、平行時屈曲構造ともいう。)よりも強い屈曲、すなわち急な曲げとしても良い。なお、以下の説明において、このような平行時屈曲構造よりも急な曲げとした屈曲構造を、便宜上オーバーハング構造ともいう。 The semicircular arc bending structure of the folded electrode A1 may be stronger, i.e., sharper, than a bending structure in which the electrode plate portions are substantially parallel to each other in a free state (hereinafter also referred to as a parallel bending structure), as shown in the left diagram of FIG. 4, for example. In the following description, for convenience, such a bending structure that is sharper than the parallel bending structure is also referred to as an overhang structure.

屈曲構造の形成時において、このようなオーバーハング構造が許容される場合、互いの電極板部14が正確に平行となるような架橋部15の形成作業を必ずしも行う必要がなく折曲作業をより簡便化することができる。 When forming a bent structure, if such an overhang structure is permitted, it is not necessary to form the bridge section 15 so that the electrode plate sections 14 are precisely parallel to each other, making the bending process easier.

また、オーバーハング構造を備える折畳み電極A1の各電極板部14をそれぞれ略平行に配置してなる平行電極板構造を構築するにあたり、図4の右図に示すように、対向する電極板部14の内側間隙にスペーサ16を介在させることで電極板部14同士の平行を保つよう構成しても良い。 In addition, when constructing a parallel electrode plate structure in which each electrode plate portion 14 of the folded electrode A1 having an overhang structure is arranged approximately parallel to each other, as shown in the right diagram of Figure 4, a spacer 16 may be interposed in the inner gap between the opposing electrode plate portions 14 to maintain the parallelism of the electrode plate portions 14.

このスペーサ16の設置は、例えば具体例を挙げるならば、図5に示すように、介装電極板12にスペーサ16の嵌着孔17を形成しておき、嵌着孔17に対しスペーサ16を表裏突出状態に嵌着させ、同スペーサ16の係止爪16aで係止することにより、介装電極板12の表裏側に配される電極板部14との間隔を保持するよう形成することもできる。 As a specific example, the installation of the spacer 16 can be performed by forming a fitting hole 17 for the spacer 16 in the intermediate electrode plate 12, fitting the spacer 16 into the fitting hole 17 so that it protrudes from both sides, as shown in FIG. 5, and engaging the locking claws 16a of the spacer 16 to maintain a distance from the electrode plate portion 14 arranged on the front and back sides of the intermediate electrode plate 12.

このような構成とすることにより、各電極板部14をそれぞれ略平行に配置した際に各電極板部14を拡開方向に付勢することができ、この付勢力、すなわち復元しようとする力を利用して各電極板の平行状態を堅実に維持することができる。 By configuring in this way, when each electrode plate portion 14 is arranged approximately parallel to each other, it is possible to bias each electrode plate portion 14 in the expanding direction, and this biasing force, i.e., the force tending to return to its original position, can be used to firmly maintain the parallel state of each electrode plate.

また、同じくこの屈曲構造について、自由状態において図6の左図に示すような平行時屈曲構造よりも弱い屈曲、すなわち、緩やかな曲げとすることもできる。なお、以下の説明において、このような平行時屈曲構造よりも緩やかな曲げとした屈曲構造を、便宜上アンダーハング構造ともいう。 Furthermore, this bending structure can also be bent weaker than the parallel bending structure shown in the left diagram of Figure 6 in the free state, i.e., more gently. In the following explanation, for convenience, such a bending structure that is bent more gently than the parallel bending structure is also referred to as an underhang structure.

このアンダーハング構造を形成する場合も、先述のオーバーハング構造の形成と同様、平行電極板構造を構築するにあたり、互いの電極板部が正確に平行となるような折曲作業を必ずしも行う必要がなく折曲作業をより簡便化することができる。 When forming this underhang structure, as with the formation of the overhang structure described above, it is not necessary to perform bending work so that the electrode plate portions are precisely parallel to each other when constructing a parallel electrode plate structure, making the bending work easier.

また、アンダーハング構造を備える折畳み電極A1の各電極板部14をそれぞれ略平行に配置してなる平行電極板構造を構築するにあたり、図6の右図に示すように、対向する電極板部14の外側に保持体18を配することで電極板部14同士の平行を保つよう構成しても良い。 In addition, when constructing a parallel electrode plate structure in which each electrode plate portion 14 of the folded electrode A1 having an underhang structure is arranged approximately parallel to each other, as shown in the right diagram of Figure 6, a holder 18 may be arranged on the outside of the opposing electrode plate portions 14 to keep the electrode plate portions 14 parallel to each other.

このような構成とすることにより、各電極板部14をそれぞれ略平行に配置した際に各電極板部14を狭める方向に付勢することができ、この付勢力、すなわち復元しようとする力を利用して各電極板の平行状態を堅実に維持することができる。なお、このアンダーハング構造を備える折畳み電極A1の平行電極板構造においても、図4左図にて示したオーバーハング構造の場合と同様、電極板間にスペーサ16を介在させるようにしても良い。 By adopting such a configuration, when the electrode plate portions 14 are arranged approximately parallel to each other, they can be biased in a direction narrowing the electrode plate portions 14, and this biasing force, i.e., the force of restoration, can be used to firmly maintain the parallel state of the electrode plates. Note that even in the parallel electrode plate structure of the folded electrode A1 having this underhang structure, a spacer 16 may be interposed between the electrode plates, as in the case of the overhang structure shown in the left diagram of Figure 4.

ところで、電解水生成装置は、使用する水の水質によって電気分解の効率などに影響を受ける。水は地域によって硬度、すなわち水に溶存するカルシウムやマグネシウムなどのミネラル成分の量が異なる。硬度によって水の電気伝導率(導電率)が異なり、硬度の高い水では導電率が高くなり、伴い電解電圧が低下する。電解電圧が低下すると発生した気体がマイクロバブル化しにくくなり、発生した水素が水に溶存する効率が低下してしまう。 The efficiency of electrolysis in electrolytic water generators is affected by the quality of the water used. Water has different hardness depending on the region, i.e. the amount of mineral components such as calcium and magnesium dissolved in the water. The electrical conductivity (electrical conductivity) of water varies depending on the hardness, and water with high hardness has high electrical conductivity, which reduces the electrolysis voltage. When the electrolysis voltage decreases, it becomes difficult for the generated gas to turn into microbubbles, and the efficiency of the generated hydrogen dissolving in the water decreases.

そのため、硬度の高い地域で用いる電解水生成器においては電圧を高める設定とすることが望ましいが、そのためには回路の変更や電解電極の形状変更など、コストや時間のかかる大幅な設計変更が必要である。 For this reason, it is desirable to set the voltage higher for electrolytic water generators used in areas with high hardness, but this requires major design changes that are time-consuming and costly, such as changing the circuitry and the shape of the electrolytic electrodes.

そこで、大幅な設計変更等を伴うことなくこのような場合に対処するために、本実施形態では図7の左図に示すような遮断プレート23を電極板部14と介装電極板12との間に装着することについても提案する。 Therefore, in order to deal with such cases without requiring major design changes, this embodiment also proposes mounting a blocking plate 23 between the electrode plate portion 14 and the intermediate electrode plate 12, as shown in the left diagram of Figure 7.

この遮断プレートは既成の積層電極対の電極板間に配置することが可能な形状で、これを挿入することにより電極板間を部分的に遮断し、実効的に電極面積を減少させることができる。この遮断プレートの面積を変えることで電解電圧を調整することができ、硬度に合わせて適正な電解電圧を簡便に設定することができる。 This blocking plate has a shape that allows it to be placed between the electrode plates of an existing laminated electrode pair, and by inserting it, it is possible to partially block the space between the electrode plates, effectively reducing the electrode area. By changing the area of this blocking plate, the electrolysis voltage can be adjusted, making it easy to set the appropriate electrolysis voltage according to the hardness.

遮断プレートは絶縁性、耐水性がある物質で構成することが適しており、たとえばポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、PMMA樹脂、ABS樹脂などが好適である。 The blocking plate is preferably made of an insulating, water-resistant material, such as polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, PMMA resin, or ABS resin.

例えば本実施形態の場合、介装電極板12の一方の面に遮断プレート23を装着し、図7の右図の如くこの遮断プレート23が装着された介装電極板12を折畳み電極A1の電極板部14間に介装して積層電極対B1を構築する。 For example, in the case of this embodiment, a blocking plate 23 is attached to one side of the intervening electrode plate 12, and the intervening electrode plate 12 with the blocking plate 23 attached is folded and interposed between the electrode plate portions 14 of the electrodes A1 as shown in the right diagram of Figure 7 to form a stacked electrode pair B1.

このようにして構築された積層電極対B1は、図8(a)に示すように、電極板部14と介装電極板12との間隙のうち、遮断プレート23が装着された領域において電解が妨げられることとなり、電極の実効面積を減少させることで電解電圧を高めることができ、水の硬度に合わせた適正な電解電圧を容易に設定することが可能である。 As shown in FIG. 8(a), the stacked electrode pair B1 constructed in this manner prevents electrolysis in the area of the gap between the electrode plate portion 14 and the interposed electrode plate 12 where the blocking plate 23 is attached, and the effective area of the electrodes is reduced, thereby increasing the electrolysis voltage, making it possible to easily set an appropriate electrolysis voltage according to the hardness of the water.

なお、この遮断プレート23は必ずしも1箇所のみに設けられるものではなく、介装電極板12と電極板部14との間であればいずれにも適用することができ、例えば図8(b)に示すように、介装電極板12の表裏両側に遮断プレート23を装着して、水の硬度等に応じて電解面積を制限するよう適宜調整できる。 The blocking plate 23 does not necessarily have to be provided in only one place, but can be applied anywhere between the intermediate electrode plate 12 and the electrode plate portion 14. For example, as shown in FIG. 8(b), blocking plates 23 can be attached to both the front and back sides of the intermediate electrode plate 12, and can be appropriately adjusted to limit the electrolysis area depending on the water hardness, etc.

また、上述してきたように、本発明は折畳み電極A1と介装電極板12とを用いて構築した積層電極対を提供するものであるが、折畳み電極A1の電極板部14同士が元々平行である場合や、オーバーハング構造又はアンダーハング構造により元々は非平行状態であるものの本実施形態に係る平行電極板構造によって各電極板部14がそれぞれ略平行に配置されている場合において、この折畳み電極A1と介装電極板12との位置関係に関し、図9(a)に示すように、介装電極板12の端部12bを折畳み電極A1の架橋部15における屈曲構造の曲率中心位置Q1よりも架橋部15に接近させて配置した積層電極対としても良い。例えば図9(a)の例でいえば、介装電極板12の端部12bを曲率中心位置Q1よりもd4の長さだけ架橋部15に接近させて配置している。なお、以下の説明において、このような構造を便宜上、介装電極端の架橋部接近構造ともいう。 As described above, the present invention provides a stacked electrode pair constructed using the folded electrode A1 and the intermediate electrode plate 12. In cases where the electrode plate portions 14 of the folded electrode A1 are originally parallel to each other, or where the electrode plate portions 14 are originally non-parallel due to an overhang structure or an underhang structure but are arranged substantially parallel to each other due to the parallel electrode plate structure according to the present embodiment, the positional relationship between the folded electrode A1 and the intermediate electrode plate 12 may be such that the end portion 12b of the intermediate electrode plate 12 is arranged closer to the bridge portion 15 than the curvature center position Q1 of the bent structure at the bridge portion 15 of the folded electrode A1, as shown in FIG. 9(a). For example, in the example of FIG. 9(a), the end portion 12b of the intermediate electrode plate 12 is arranged closer to the bridge portion 15 by a length of d4 than the curvature center position Q1. In the following description, for convenience, such a structure is also referred to as the bridge portion approach structure of the intermediate electrode end.

また、端部12bから架橋部15の対向面までの長さd2やd3は、電極板間隙の長さd1に比してd1±20%程度の長さとしている。 The lengths d2 and d3 from the end 12b to the opposing surface of the bridge portion 15 are set to approximately d1±20% of the length d1 of the electrode plate gap.

このような構成とすることにより、折畳み電極A1の架橋部15においても無駄なく電解に寄与させることができると共に、介装電極板12の端部近傍における同介装電極板12自体や、対向する電極板部14、架橋部15の電解に伴う片減りを可及的に抑制することができる。 This configuration allows the bridging portion 15 of the folded electrode A1 to contribute to electrolysis without waste, and also minimizes uneven wear of the interposed electrode plate 12 itself near the end of the interposed electrode plate 12, the opposing electrode plate portion 14, and the bridging portion 15 due to electrolysis.

また、図9(b)は、介装電極端の架橋部接近構造における、より好適な例を示した説明図である。図9(b)は、図9(a)にて示した介装電極端の架橋部接近構造と略同様に、長さd5の分だけ介装電極板12の端部12bを曲率中心位置Q1よりも架橋部15に接近させて配置しているが、この端部12bの形状をアール形状化している点で構成を異にしている。 Figure 9(b) is an explanatory diagram showing a more suitable example of the bridge portion approach structure of the interposed electrode end. In Figure 9(b), the end 12b of the interposed electrode plate 12 is positioned closer to the bridge portion 15 than the curvature center position Q1 by a length d5, similar to the bridge portion approach structure of the interposed electrode end shown in Figure 9(a), but the configuration is different in that the shape of this end 12b is made into a round shape.

このような構成とすることにより、端部12bから架橋部15の対向面までの長さを、電極板間隙の長さd1と略同じ長さとすることができ、片減りをより緩和することができる。 By configuring it in this way, the length from the end 12b to the opposing surface of the bridge portion 15 can be made approximately the same length as the length d1 of the gap between the electrode plates, further reducing uneven wear.

またこれまでの折畳み電極の説明は、図2(b)に示したように、電極板部14を2つ備えた電極板連結体13により構成される折畳み電極A1の例を中心に展開したが、電極板部14の数は複数であれば特に限定されるものではない。 The explanation of the folded electrode so far has focused on the example of the folded electrode A1, which is composed of an electrode plate connector 13 having two electrode plate sections 14, as shown in FIG. 2(b), but the number of electrode plate sections 14 is not particularly limited as long as there are multiple electrode plate sections 14.

例えば図10(a)に示すように、3つの電極板部14を備える電極板連結体19であったり、又はそれ以上の数の電極板部14を備える電極板連結体によっても構築することが可能である。 For example, as shown in FIG. 10(a), it is possible to construct an electrode plate connector 19 having three electrode plate sections 14, or an electrode plate connector having a greater number of electrode plate sections 14.

例えば図10(a)に示す電極板連結体19は、3枚の電極板部14がそれぞれ架橋部15を介して連なる一の金属平板より構成しており、架橋部15を横断する仮想線L1(一点鎖線で示す)及びL2(二点鎖線で示す)を山折りと谷折り、若しくは谷折りと山折りの如く交互に屈曲構造を形成することで、図10(b)に示すような3枚の重畳した電極板部14を備える折畳み電極A2を構築することができる。 For example, the electrode plate assembly 19 shown in FIG. 10(a) is made up of a single metal flat plate with three electrode plate sections 14 connected via bridge sections 15, and by forming an alternating bent structure such as mountain folds and valley folds, or valley folds and mountain folds, around imaginary lines L1 (shown by dashed lines) and L2 (shown by dashed lines) that cross the bridge sections 15, a folded electrode A2 can be constructed that has three overlapping electrode plate sections 14 as shown in FIG. 10(b).

また、この折畳み電極A2を用いて積層電極対B2を構築する場合には、破線で示すように折畳み電極A2の間隙にそれぞれ介装電極板12を配置することで行っても良い。このとき、積層電極対B2は、先述のオーバーハング構造やアンダーハング構造、介装電極端の架橋部接近構造を備えても良いのは勿論であり、先述の平行電極板構造を採用することができる。 When constructing a stacked electrode pair B2 using this folded electrode A2, the intervening electrode plates 12 may be disposed in the gaps between the folded electrodes A2, as shown by the dashed lines. In this case, the stacked electrode pair B2 may of course have the above-mentioned overhang structure, underhang structure, or bridge portion approach structure at the end of the intervening electrode, or the above-mentioned parallel electrode plate structure may be adopted.

また、折畳み電極の電極板部14に介装する介装電極板は、図2(a)で示したように必ずしも1枚の電極板である必要はなく、双方を折畳み電極とし、一方は他方の介装電極板として機能することとしても良い。 In addition, the intervening electrode plate interposed in the electrode plate portion 14 of the folded electrode does not necessarily have to be a single electrode plate as shown in FIG. 2(a). Both may be folded electrodes, with one functioning as the intervening electrode plate for the other.

すなわち図11(a)に示すように、例えば3枚の電極板部14を備える電極板連結体20の架橋部15に屈曲構造を形成して第1の折畳み電極A3としつつ、図11(b)に示す2枚の電極板部14を備える電極板連結体21の架橋部15に屈曲構造を形成して第2の折畳み電極A4とし、一方の折畳み電極の間隙に他方の折畳み電極を介装することで図12(a)に示すような積層電極対B3とすることもできる。なお、折畳み電極の介装に際しては、一方(例えば、第1の折畳み電極A3)の架橋部15間の長さK1を、他方(例えば、第2の折畳み電極A4)の最も一側寄りの架橋部15から他側端部までの長さK2よりも大きくすることで、容易に介装作業を行うことができる。 That is, as shown in FIG. 11(a), for example, a bent structure is formed in the bridge portion 15 of an electrode plate connector 20 having three electrode plate portions 14 to form a first folded electrode A3, while a bent structure is formed in the bridge portion 15 of an electrode plate connector 21 having two electrode plate portions 14 shown in FIG. 11(b) to form a second folded electrode A4, and a stacked electrode pair B3 as shown in FIG. 12(a) can be formed by interposing one folded electrode in the gap between the other folded electrode. When interposing the folded electrodes, the length K1 between the bridge portions 15 of one (e.g., the first folded electrode A3) can be made larger than the length K2 from the bridge portion 15 closest to one side to the other end of the other (e.g., the second folded electrode A4), so that the interposing work can be easily performed.

図12(b)は、図12(a)のP2-P2断面を模式的に示した説明図である。このようにして構成した積層電極対B3は、第1の折畳み電極A3及び第2の折畳み電極A4の双方が、いずれも同極となる電極板部14同士が予め架橋部15によって電気的に接続されているため、積層電極対の構築作業を飛躍的に容易なものとすることができる。 Figure 12(b) is an explanatory diagram showing a schematic cross section taken along the line P2-P2 in Figure 12(a). The stacked electrode pair B3 thus constructed can be dramatically simplified in the construction of the stacked electrode pair, since the electrode plate portions 14 of both the first folded electrode A3 and the second folded electrode A4, which are of the same polarity, are electrically connected in advance by the bridging portions 15.

また、この積層電極対B3においても、介装電極端の架橋部接近構造を備えることにより、正負両極のいずれについても折畳み電極となり、電解に伴う片減りを相互に抑制することができる。 In addition, in this laminated electrode pair B3, by providing a bridge portion approach structure at the end of the intervening electrode, both the positive and negative electrodes become folded electrodes, and uneven wear due to electrolysis can be mutually suppressed.

また更には、この積層電極対B3においても、先述のオーバーハング構造やアンダーハング構造を備えても良いのは勿論である。 Furthermore, it goes without saying that this stacked electrode pair B3 may also have the above-mentioned overhang structure or underhang structure.

例えば、積層電極対B3においてオーバーハング構造を備える場合には、図13に示すように各電極板部14の間にスペーサ部材22を介在させることで平行電極板構造を形成することができる。 For example, if the stacked electrode pair B3 has an overhang structure, a parallel electrode plate structure can be formed by interposing a spacer member 22 between each electrode plate portion 14 as shown in FIG. 13.

すなわち、この外観視略矩形状のスペーサ部材22には、その一面にスリット状の溝部22aが刻設されており、この溝部22aに積層電極対B3の側面部から所定の電極板部14を挿入することで、オーバーハング構造に由来したスペーサ部材22による拡開方向への付勢力によって、各電極板部14間の間隙を堅実に保持しつつ、積層電極対B3の一体的な状態を保つことができる。 In other words, this spacer member 22, which has a generally rectangular appearance, has a slit-shaped groove 22a engraved on one side thereof, and by inserting a given electrode plate portion 14 into this groove 22a from the side portion of the stacked electrode pair B3, the biasing force in the expanding direction of the spacer member 22 resulting from the overhang structure firmly maintains the gap between each electrode plate portion 14 while maintaining the integrated state of the stacked electrode pair B3.

次に、上述してきた本実施形態に係る折畳み電極や平行電極板構造を採用した積層電極対の使用例について説明する。 Next, we will explain examples of using stacked electrode pairs that employ the folded electrodes and parallel electrode plate structure described above in this embodiment.

〔第1使用例〕
本第1の使用例は、浴湯など水中に没して電解水を放散させる装置、より具体的には、水の電気分解により生成した水素や水素水を浴湯中に拡散させる風呂用水素水生成装置D1である。
[First example of use]
The first use example is a device that is submerged in water, such as bath water, to disperse electrolytic water, more specifically, a hydrogen water generating device D1 for a bath that diffuses hydrogen and hydrogen water generated by electrolysis of water into the bath water.

風呂用水素水生成装置D1は、図14(a)に示すように、浴槽30内の底部31に配置し、浴槽30内の浴湯34に電解水素水を供給するための装置である。 As shown in FIG. 14(a), the bath hydrogen water generator D1 is a device that is placed on the bottom 31 of the bathtub 30 and supplies electrolyzed hydrogen water to the bath water 34 in the bathtub 30.

風呂用水素水生成装置D1は、図14(b)に示すように、上面視円形で全体的に角部のない偏平形状の化粧筐体32の内部に、水素水生成本体部33を収容して構成している。 As shown in FIG. 14(b), the hydrogen water generator D1 for bathing consists of a decorative housing 32 that is circular when viewed from above and has a generally flat corner-free shape, and contains a hydrogen water generator main body 33.

水素水生成本体部33は水没させても浸水しないよう水密状に形成されており、その内部には、二次電池や制御・充電基板を備え、浴湯の電気分解に必要なエネルギーを蓄えたり、供給可能に構成している。 The hydrogen water generating main body 33 is watertight so that it will not get wet even if it is submerged, and is equipped with a secondary battery and a control/charging board inside, allowing it to store and supply the energy required for electrolysis of bath water.

また、水素水生成本体部33の上部周縁には、4つの積層電極対B1が備えられている。この各積層電極対B1は、導通棒11a,11bを介して制御・充電基板と電気的に接続されており、これらの制御により接触している水の電気分解が行われる。 In addition, four stacked electrode pairs B1 are provided on the upper periphery of the hydrogen water generating main body 33. Each stacked electrode pair B1 is electrically connected to the control/charging board via conductive rods 11a and 11b, and the electrolysis of water in contact with the electrode pairs is performed by controlling these.

そして、電気分解により生じた電解水素水は、図14(a)に示す如く化粧筐体32の上部に形成された放出口32aを介して浴湯中に拡散することとなる。 The electrolytic hydrogen water produced by electrolysis is dispersed into the bath water through the outlet 32a formed in the upper part of the decorative housing 32 as shown in FIG. 14(a).

このような構成を備える風呂用水素水生成装置D1によれば、電解の為の電極として本実施形態に係る積層電極対B1を備えているため、水素水生成本体部33内の二次電池に蓄えられた限られた電力を利用しつつ、電解水素水の生成を効率的に生成することができる。 The bath hydrogen water generator D1 with such a configuration is equipped with the stacked electrode pair B1 according to this embodiment as electrodes for electrolysis, so electrolytic hydrogen water can be efficiently produced while utilizing the limited power stored in the secondary battery in the hydrogen water generator main body 33.

〔第2使用例〕
本第2の使用例は、電解水を吐水するシャワー、より具体的には、水の電気分解により生成した水素や水素水を浴用に供することができる電解水素水シャワーヘッドD2である。図15は、電解水素水シャワーヘッドD2の分解説明図を示している。
[Second example of use]
The second example of use is a shower that spouts electrolytic water, more specifically, an electrolytic hydrogen water shower head D2 that can provide hydrogen or hydrogen water generated by electrolysis of water for bathing. Fig. 15 shows an exploded view of the electrolytic hydrogen water shower head D2.

図15に示すように電解水素水シャワーヘッドD2は、シャワー本体40と蓄電体41とで構成され、また、シャワー本体40は、ステム部42とヘッド部43とを備えており、更にステム部42は、外筒体44と、電解部45とで構成している。 As shown in FIG. 15, the electrolytic hydrogen water shower head D2 is composed of a shower body 40 and a power storage body 41. The shower body 40 has a stem portion 42 and a head portion 43. The stem portion 42 is further composed of an outer cylinder body 44 and an electrolytic portion 45.

蓄電体41は、シャワー本体40にて電解を行うために必要なエネルギーを供給するための電力を蓄えておく役割を有している。具体的には、蓄電体41の内部には二次電池が収容されており、ヘッド部43の背面43aに装着することで、シャワー本体40の電解部45に電力を供給可能に構成している。 The power storage unit 41 serves to store electricity to supply the energy required to perform electrolysis in the shower body 40. Specifically, a secondary battery is housed inside the power storage unit 41, and by attaching it to the back surface 43a of the head unit 43, it is configured to be able to supply electricity to the electrolysis unit 45 of the shower body 40.

外筒体44は、上方へ拡開するテーパー筒状の部材であり、使用者が把持する把持部として機能する。また、次に述べる電解部45の外方を囲繞する外筒としての役割も有している。 The outer cylinder 44 is a tapered cylindrical member that expands upward and functions as a gripping part that is held by the user. It also serves as an outer cylinder that surrounds the outside of the electrolysis part 45, which will be described next.

また、外筒体44の下部には雄ネジ部44aが形成されており、所定の金具等を介して図示しない水道設備などから湯水を供給するホースと接続可能としている。 In addition, a male thread portion 44a is formed on the lower part of the outer cylinder body 44, and it can be connected to a hose that supplies hot and cold water from a water supply facility (not shown) via a specified metal fitting, etc.

また、外筒体44の上部には雌ネジ部44bが形成されており、ヘッド部43の接続口43bの外周に形成された雄ネジ部43cと接続可能に構成している。 In addition, a female thread portion 44b is formed on the upper part of the outer cylinder body 44, and is configured to be connectable to a male thread portion 43c formed on the outer periphery of the connection port 43b of the head portion 43.

電解部45は、供給された湯水をヘッド部43へ導くと共に湯水を電気分解するための部材であり、外筒体44の内部に収容された内筒として機能して、外筒体44と共に二重筒構造のステム部42を構成するものである。 The electrolysis section 45 is a component that guides the supplied hot water to the head section 43 and electrolyzes the hot water. It functions as an inner cylinder housed inside the outer cylinder body 44, and together with the outer cylinder body 44 constitutes the stem section 42 with a double cylinder structure.

具体的には、電解部45の下部には湯水の流入口45aを形成する一方、上部には電解部45内で生成した電解水素水の流出口45bを形成しており、ホースより供給される湯水を流入口45aを介して電解部45内へ導いて電解し、電解水素水を流出口45bを介して電解部45からヘッド部43内へ供給する。ヘッド部43に至った電解水素水は、同ヘッド部43の前面に形成された散水部43bより散水される。 Specifically, the electrolysis unit 45 has an inlet 45a for hot and cold water at the bottom and an outlet 45b for electrolyzed hydrogen water generated within the electrolysis unit 45 at the top. Hot and cold water supplied from a hose is introduced into the electrolysis unit 45 via the inlet 45a and electrolyzed, and the electrolyzed hydrogen water is supplied from the electrolysis unit 45 to the head unit 43 via the outlet 45b. The electrolyzed hydrogen water that reaches the head unit 43 is sprayed from the spray unit 43b formed on the front surface of the head unit 43.

また、電解部45の上部には、陽極端子45c及び陰極端子45dが配設されており、電解部45の内部に収容した積層電極対B3に対し、蓄電体41からの電力を供給可能としている。 In addition, an anode terminal 45c and a cathode terminal 45d are provided on the upper part of the electrolysis section 45, allowing power to be supplied from the power storage body 41 to the stacked electrode pair B3 housed inside the electrolysis section 45.

図16は、電解部45の内部構造を示した分解斜視図である。電解部45は、蓋部50と積層電極対B3とケース体52と連結リング53とで構成している。 Figure 16 is an exploded perspective view showing the internal structure of the electrolysis unit 45. The electrolysis unit 45 is composed of a lid unit 50, a stacked electrode pair B3, a case body 52, and a connecting ring 53.

蓋部50は、ケース体52の上部開口を閉蓋するための部材であり、円盤状の蓋本体54の上面に形成した台部55には略中央に流出口45bが突設され、また流出口45bの側方には電極棒露出孔55a,55bがそれぞれ形成されている。 The lid 50 is a member for closing the upper opening of the case body 52, and a base 55 formed on the top surface of the disk-shaped lid body 54 has an outlet 45b protruding from approximately the center, and electrode rod exposure holes 55a, 55b are formed on the sides of the outlet 45b.

電極棒露出孔55a,55bは、後述する積層電極対B3の導通棒60a,60bを電解部45の外表面に露出させて陽極端子45c及び陰極端子45dを構成するための孔であり、その内周には電解部45内の水を漏出を防止するためのパッキン55cがそれぞれ配設されている。 The electrode rod exposure holes 55a, 55b are holes for exposing the conductive rods 60a, 60b of the stacked electrode pair B3 (described later) to the outer surface of the electrolysis section 45 to form the anode terminal 45c and the cathode terminal 45d, and a gasket 55c is provided on the inner circumference of each hole to prevent water from leaking out of the electrolysis section 45.

ケース体52は、下方へ向けて緩やかに狭窄する有底筒状の筒胴部52aを備え、その内部は積層電極対B3を収容する電極体収容空間52cとしている。 The case body 52 has a cylindrical barrel portion 52a with a bottom that tapers gradually downward, and its interior defines an electrode assembly housing space 52c that houses the stacked electrode pair B3.

連結リング53はリング状の部材であり、ケース体52を挿通させた状態で蓋部50に螺合させ電解部45を一体的に構成するための連結部材である。 The connecting ring 53 is a ring-shaped member that is screwed onto the lid 50 with the case body 52 inserted therethrough to integrally form the electrolysis unit 45.

積層電極対B3は、先述の如く第1の折畳み電極A3と第2の折畳み電極A4とを組み合わせて形成した電極対であり、ここでは第1の折畳み電極A3の架橋部15に導通棒60aを、第2の折畳み電極A4の架橋部15に導通棒60bを配設し、積層電極対B3での電解に必要な電力の供給を可能としている。なお、蓋部50の上部に示す符号50aは、電極棒露出孔55a,55bから露出させた導通棒60a,60bに導線等を接続するための接続部材である。 The stacked electrode pair B3 is an electrode pair formed by combining the first folded electrode A3 and the second folded electrode A4 as described above. Here, a conductive rod 60a is disposed on the bridge portion 15 of the first folded electrode A3, and a conductive rod 60b is disposed on the bridge portion 15 of the second folded electrode A4, enabling the supply of power required for electrolysis in the stacked electrode pair B3. The reference symbol 50a shown on the upper part of the lid portion 50 is a connection member for connecting a conductor or the like to the conductive rods 60a, 60b exposed from the electrode rod exposure holes 55a, 55b.

そしてこのような構成を備える電解水素水シャワーヘッドD2によれば、本実施形態に係る積層電極対B3を備えているため、蓄電体41内の二次電池に蓄えられた限られた電力を利用しつつ、電解水素水の生成を効率的に生成することができる。 The electrolytic hydrogen water shower head D2 having such a configuration is equipped with the stacked electrode pair B3 according to this embodiment, and therefore can efficiently generate electrolytic hydrogen water while utilizing the limited power stored in the secondary battery in the power storage body 41.

また、本第2の使用例において積層電極対B3は、各電極板部14の伸延方向を、ケース体52内の流水方向に沿わせて配設している。 In addition, in this second usage example, the stacked electrode pair B3 is arranged so that the extension direction of each electrode plate portion 14 is aligned with the flow direction of water inside the case body 52.

従って、水道設備等からの水勢を阻害することなく各電極板部14間に水を流通させて、十分な量の湯水をヘッド部43から吐出させることができる。 As a result, water can flow between each electrode plate section 14 without impeding the water pressure from the water supply equipment, etc., allowing a sufficient amount of hot and cold water to be discharged from the head section 43.

〔第3の使用例〕
次に、第3の使用例について説明する。本第3の使用例は、図17に示すように、水筒状とした可搬型の電解水生成装置に関するものであり、より具体的には、水の電気分解により生成した水素や水素水を飲用に供することができる電解水素水生成装置D3である。
[Third Use Example]
Next, a third use example will be described. As shown in Fig. 17, the third use example relates to a portable electrolytic water generator in the shape of a water bottle, and more specifically, to an electrolytic hydrogen water generator D3 that can provide drinking hydrogen and hydrogen water generated by electrolysis of water.

図18(a)は、電解水素水生成装置D3の構成を示した断面模式図である。図18(a)に示すように電解水素水生成装置D3は、水を収容可能に構成した装置本体部70と、同装置本体部70の上部開口を閉蓋する蓋部71とで構成している。 Figure 18 (a) is a schematic cross-sectional view showing the configuration of the electrolytic hydrogen water generator D3. As shown in Figure 18 (a), the electrolytic hydrogen water generator D3 is composed of a device body 70 configured to be able to contain water, and a lid 71 that closes the upper opening of the device body 70.

装置本体部70は、中空状に形成された筐体72の内部空間を隔壁72aで上下分割し、上部は水を収容するための貯水部として機能する貯水空間73とする一方、下部は制御機構等を収容するための制御系収容空間74としている。 The device main body 70 has a hollow housing 72 with the internal space divided into upper and lower parts by a partition wall 72a, with the upper part being a water storage space 73 that functions as a water storage section for storing water, while the lower part is a control system storage space 74 for storing a control mechanism, etc.

制御系収容空間74には、バッテリー75と、スイッチ76と、コネクタ77とが、制御部78と電気的に接続された状態で配設されている。 A battery 75, a switch 76, and a connector 77 are arranged in the control system housing space 74 and are electrically connected to the control unit 78.

バッテリー75は、電解水素水生成装置D3で消費される電力の供給を行う二次電池であり、スイッチ76は、電解水素水生成装置D3の稼動・停止を制御するためのスイッチである。 The battery 75 is a secondary battery that supplies the power consumed by the electrolytic hydrogen water generating device D3, and the switch 76 is a switch for controlling the operation and stopping of the electrolytic hydrogen water generating device D3.

コネクタ77は、バッテリー75を充電する際にACアダプタ79のプラグ79aが差し込まれる部位であり、電源ケーブル79bを通じ、制御部78を介してバッテリー75への充電が行われる。また、使用時にはコネクタ77からプラグ79aを抜くことで、電解水素水生成装置D3を商用電源に拘束されることなく持ち運ぶことができ、電解水素水を常時調製可能としている。 The connector 77 is where the plug 79a of the AC adapter 79 is inserted when charging the battery 75, and charging of the battery 75 is performed via the power cable 79b and the control unit 78. By unplugging the plug 79a from the connector 77 when in use, the electrolytic hydrogen water generator D3 can be carried around without being tied to a commercial power source, and electrolytic hydrogen water can be prepared at any time.

一方、貯水空間73には、図18(b)で示すように、先述のスペーサ部材22を介在させた積層電極対B3を配置して、貯水空間73内に供給された飲用水を電解可能に構成している。 On the other hand, as shown in FIG. 18(b), a stacked electrode pair B3 is arranged in the water storage space 73 with the aforementioned spacer member 22 interposed therebetween, so that drinking water supplied to the water storage space 73 can be electrolyzed.

また、図17に示すように使用者Hは、電解水素水生成装置D3をバッグなどに収容した状態で携行するものであるため、使用者Hが移動する際には随時、電解水素水生成装置D3に振動が生じる。すなわち、電解水素水生成装置D3の筐体72自体が振動源となり、積層電極対B3に対して振動を与え、電解水素水の生成効率を向上可能としている。 As shown in FIG. 17, the user H carries the electrolyzed hydrogen water generator D3 in a bag or the like, so that vibrations are generated in the electrolyzed hydrogen water generator D3 whenever the user H moves. In other words, the housing 72 of the electrolyzed hydrogen water generator D3 itself becomes a vibration source, and imparts vibrations to the stacked electrode pair B3, thereby improving the efficiency of generating electrolyzed hydrogen water.

そして、このような構成を備える電解水素水生成装置D3によれば、本実施形態に係る積層電極対B3を備えているため、可搬型であるため小型軽量化が求められ、また、商用電源からも切り離された状態で使用される機器でありながら、筐体やバッテリーを小型とした場合であっても、良好な電解効率と優れた電解水の生成効率を発揮させることができる。 The electrolytic hydrogen water generating device D3 having such a configuration is equipped with the stacked electrode pair B3 according to this embodiment, and therefore is portable and therefore requires small size and light weight. In addition, even though it is a device that is used in a state disconnected from a commercial power source, it can achieve good electrolysis efficiency and excellent electrolytic water generation efficiency even when the housing and battery are small.

上述してきたように、本実施形態に係る折畳み電極によれば、電極板連結体の架橋部での折曲作業をより簡便化することが可能となる。 As described above, the folded electrode of this embodiment makes it possible to more easily fold the electrode plate connector at the bridge portion.

また、同折畳み電極を用い、各電極板部を互いに平行とした平行電極板構造や、これら折畳み電極や平行電極板構造を採用した積層電極対によれば、付勢力を利用して各電極板の平行状態を堅実に維持したり、電解に伴う片減りを可及的に抑制することができる。 In addition, by using the same folded electrode and adopting a parallel electrode plate structure in which each electrode plate portion is parallel to each other, or a stacked electrode pair that adopts such a folded electrode or parallel electrode plate structure, it is possible to firmly maintain the parallel state of each electrode plate by utilizing the biasing force, and to minimize uneven wear due to electrolysis.

更には、本実施形態に係る折畳み電極及び同折畳み電極を用いた平行電極板構造並びに積層電極対を電解水生成装置に採用することで、電解水生成装置の製造上の組立等を簡便化しつつ、効率的な電解が可能であり、狭隘な電極間隙による短絡や片減りなどのトラブルが抑制された電解水生成装置を提供することができる。 Furthermore, by adopting the folded electrode according to this embodiment, the parallel electrode plate structure using the folded electrode, and the stacked electrode pair in an electrolytic water generating device, it is possible to provide an electrolytic water generating device that simplifies the manufacturing assembly of the electrolytic water generating device while enabling efficient electrolysis and suppressing problems such as short circuits and uneven wear due to narrow electrode gaps.

最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 Finally, the above-mentioned explanations of each embodiment are merely examples of the present invention, and the present invention is not limited to the above-mentioned embodiments. Therefore, even if the embodiment is different from the above-mentioned embodiments, various modifications can be made depending on the design, etc., as long as they do not deviate from the technical concept of the present invention.

10 電極積層部
12 介装電極板
12b 端部
13 電極板連結体
14 電極板部
15 架橋部
16 スペーサ
18 保持体
19~21 電極板連結体
22 スペーサ部材
A1 折畳み電極
A2 折畳み電極
A3 第1の折畳み電極
A4 第2の折畳み電極
B1 積層電極対
B2 積層電極対
B3 積層電極対
D1 風呂用水素水生成装置
D2 電解水素水シャワーヘッド
D3 電解水素水生成装置
Q1 曲率中心位置
REFERENCE SIGNS LIST 10 Electrode stacking portion 12 Interposed electrode plate 12b End portion 13 Electrode plate connecting body 14 Electrode plate portion 15 Bridge portion 16 Spacer 18 Holder 19-21 Electrode plate connecting body 22 Spacer member A1 Folded electrode A2 Folded electrode A3 First folded electrode A4 Second folded electrode B1 Stacked electrode pair B2 Stacked electrode pair B3 Stacked electrode pair D1 Bath hydrogen water generator D2 Electrolytic hydrogen water shower head D3 Electrolytic hydrogen water generator Q1 Position of center of curvature

Claims (7)

複数の電極板部が架橋部を介して連なる一の金属平板より構成された電極板連結体よりなり、前記架橋部に形成した略半円弧状の屈曲構造により各電極板部が間隙を介して互いに重畳する折畳み電極と、
前記折畳み電極の電極板部の間隙に配置した相対的に逆電位に印加される介装電極板と、を備える積層電極対であって、
前記介装電極板は、前記折畳み電極の前記架橋部の直下に嵌着孔を備え、
前記嵌着孔にスペーサを表裏突出状態で嵌着させ、
前記スペーサにより、前記介装電極板の表裏側に配される前記折畳み電極との間隔を保持することを特徴とする積層電極対。
a folded electrode comprising an electrode plate assembly made of a single metal flat plate in which a plurality of electrode plate portions are connected via bridge portions, and in which the electrode plate portions are overlapped with each other via gaps due to a substantially semicircular arc-shaped bent structure formed in the bridge portions;
An intervening electrode plate disposed in a gap between the electrode plate portions of the folded electrode and applied with a relatively opposite potential,
The intermediate electrode plate has a fitting hole directly below the bridge portion of the folded electrode ,
A spacer is fitted into the fitting hole in a state where the spacer protrudes from both sides,
A laminated electrode pair, characterized in that the spacer maintains a distance between the folded electrodes arranged on the front and back sides of the intermediate electrode plate.
前記折畳み電極は、自由状態において、対向する電極板部の間隙が両電極板部を連結する架橋部から離隔するに従い漸次狭窄するよう形成したことを特徴とする請求項1に記載の積層電極対。 The laminated electrode pair according to claim 1, characterized in that the folded electrodes are formed so that in a free state, the gap between the opposing electrode plate portions gradually narrows as they move away from the bridge portion connecting the two electrode plate portions. 前記折畳み電極は、自由状態において、対向する電極板部の間隙が両電極板部を連結する架橋部から離隔するに従い漸次拡開するよう形成したことを特徴とする請求項1に記載の積層電極対。 The laminated electrode pair according to claim 1, characterized in that the folded electrodes are formed so that in a free state, the gap between the opposing electrode plate portions gradually widens as they move away from the bridge portion connecting the two electrode plate portions. 前記折畳み電極の各電極板部をそれぞれ略平行に配置してなる平行電極板構造であって、対向する電極板部の内側間隙にスペーサを介在させ各電極板部を拡開方向に付勢して略平行に配置したことを特徴とする請求項2に記載の積層電極対。 The laminated electrode pair according to claim 2, characterized in that the electrode plate portions of the folded electrodes are arranged approximately parallel to each other in a parallel electrode plate structure, and a spacer is interposed between the inner gaps of the opposing electrode plate portions, and the electrode plate portions are biased in the expanding direction and arranged approximately parallel. 前記折畳み電極の各電極板部をそれぞれ略平行に配置してなる平行電極板構造であって、対向する電極板部の外側に保持体を配し各電極板部を狭める方向に付勢して略平行に配置したことを特徴とする請求項3に記載の積層電極対。 The laminated electrode pair according to claim 3, characterized in that the electrode plate portions of the folded electrodes are arranged approximately parallel to each other in a parallel electrode plate structure, and a holder is disposed on the outside of the opposing electrode plate portions, biasing the electrode plate portions in a direction narrowing the electrode plate portions and arranging them approximately parallel. 前記介装電極板の端部を前記折畳み電極の架橋部における屈曲構造の曲率中心位置よりも前記架橋部に接近させて配置したことを特徴とする請求項1に記載の積層電極対。 The laminated electrode pair according to claim 1, characterized in that the end of the intermediate electrode plate is arranged closer to the bridge portion than the center of curvature of the bent structure at the bridge portion of the folded electrode. 前記介装電極板は、第2の折畳み電極の電極板部であることを特徴とする請求項1に記載の積層電極対。 The stacked electrode pair according to claim 1, characterized in that the intermediate electrode plate is an electrode plate portion of a second folded electrode.
JP2018236647A 2018-12-18 2018-12-18 Folded electrodes and parallel plate electrode structure and laminated electrode pair using the same Active JP7488022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018236647A JP7488022B2 (en) 2018-12-18 2018-12-18 Folded electrodes and parallel plate electrode structure and laminated electrode pair using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018236647A JP7488022B2 (en) 2018-12-18 2018-12-18 Folded electrodes and parallel plate electrode structure and laminated electrode pair using the same

Publications (2)

Publication Number Publication Date
JP2020097770A JP2020097770A (en) 2020-06-25
JP7488022B2 true JP7488022B2 (en) 2024-05-21

Family

ID=71106209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236647A Active JP7488022B2 (en) 2018-12-18 2018-12-18 Folded electrodes and parallel plate electrode structure and laminated electrode pair using the same

Country Status (1)

Country Link
JP (1) JP7488022B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193280A (en) 2001-12-27 2003-07-09 Sankyo:Kk Mixed gas generator
JP2005171383A (en) 2003-11-19 2005-06-30 Mitsuo Kimura Hydrogen-oxygen gas generating electrode, and electrolytic cell structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211962Y2 (en) * 1978-03-29 1987-03-24
JPS56119478U (en) * 1980-02-08 1981-09-11
JPS56169783A (en) * 1980-06-03 1981-12-26 Showa Denko Kk Electrode body
JPS5782482A (en) * 1980-11-07 1982-05-22 Showa Denko Kk Electrode body
JPS57200579A (en) * 1981-06-02 1982-12-08 Permelec Electrode Ltd Method of improving metal electrode for electrolysis
JPS60110890A (en) * 1983-11-17 1985-06-17 Toyo Soda Mfg Co Ltd Finger anode in unit for assembling bipolar type alkali chloride electrolytic cell
JP3003358U (en) * 1994-04-20 1994-10-18 テクノエクセル株式会社 Electrolyzer
JPH111790A (en) * 1997-06-06 1999-01-06 First Ocean Kk Electrode for electrolysis of water
ITMI20020416A1 (en) * 2002-03-01 2003-09-01 De Nora Elettrodi Spa DIAPHRAGM ELECTROLYTIC CELL ANODE
JP4599369B2 (en) * 2006-11-22 2010-12-15 株式会社フラックス Reduced water generator
JP3207066U (en) * 2016-08-08 2016-10-20 威臣科技股▲分▼有限公司 Improved structure of hydrogen water generator electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193280A (en) 2001-12-27 2003-07-09 Sankyo:Kk Mixed gas generator
JP2005171383A (en) 2003-11-19 2005-06-30 Mitsuo Kimura Hydrogen-oxygen gas generating electrode, and electrolytic cell structure

Also Published As

Publication number Publication date
JP2020097770A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
CA2638633A1 (en) Portable ozone generator and use thereof for purifying water
KR20170018476A (en) Hydrogen-containing water generating device
JP7488022B2 (en) Folded electrodes and parallel plate electrode structure and laminated electrode pair using the same
KR101714602B1 (en) Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR101814651B1 (en) Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR101682603B1 (en) Method of manufacturing electrode for generating hydrogen-containing water and electrode for generating hydrogen-containing water
KR20180000827U (en) Improved electrode structure of hydrogen water generator
WO2014125521A1 (en) Hydrogen water generation device
JP5906266B2 (en) Electrolyzed water generator
JP3132767U (en) Hydrogen / oxygen gas generator
KR101714597B1 (en) Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
JP6993780B2 (en) Nano bubble generator by energization method
TWM527006U (en) Hydrogen machine having liquid receiving space
CN112074217A (en) Shower head
JP5986002B2 (en) Air magnesium battery
JP5688107B2 (en) Hydrogen-containing water generator
JP5210456B1 (en) Wash water generator
KR20210089862A (en) Portable electro-analysised water generator
CN219184233U (en) Split type ozone tooth-flushing device
JP2012075973A (en) Method of generating ion water, and ion water generator
US20240199453A1 (en) Water treatment device using electrostatic field
JP2023028020A (en) Electrolytic water generator
JP2006087987A (en) Electrolyzer and electrolytic water generator using the same
JP6078803B2 (en) Gas generator
JPS6328489A (en) Method and apparatus for forming magnetized ionized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230316

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230323

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240509

R150 Certificate of patent or registration of utility model

Ref document number: 7488022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150