JP7395386B2 - スキャナユニット及びそれを用いた画像形成装置 - Google Patents

スキャナユニット及びそれを用いた画像形成装置 Download PDF

Info

Publication number
JP7395386B2
JP7395386B2 JP2020032975A JP2020032975A JP7395386B2 JP 7395386 B2 JP7395386 B2 JP 7395386B2 JP 2020032975 A JP2020032975 A JP 2020032975A JP 2020032975 A JP2020032975 A JP 2020032975A JP 7395386 B2 JP7395386 B2 JP 7395386B2
Authority
JP
Japan
Prior art keywords
laser beam
light
scanning
sensor
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020032975A
Other languages
English (en)
Other versions
JP2020166242A (ja
Inventor
皓貴 片山
潤 永利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US16/828,060 priority Critical patent/US11194264B2/en
Publication of JP2020166242A publication Critical patent/JP2020166242A/ja
Application granted granted Critical
Publication of JP7395386B2 publication Critical patent/JP7395386B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、電子写真方式のプリンタ、複写機等の画像形成装置に搭載されているレーザスキャナ等のスキャナユニットに関する。
レーザスキャナは、光源から画像情報に応じて出射されたレーザ光を偏向する回転多面鏡を搭載している。回転多面鏡の製造時の切削精度や、回転多面鏡を偏向器に組み付ける際の組み付け精度により、回転多面鏡の反射面は、偏向器の回転軸に対して倒れ(面倒れ)が発生する場合がある。面倒れがある状態でレーザ光を偏向走査すると、感光ドラムの表面上で結像走査された走査線の副走査方向の位置(感光ドラムの表面上において、レーザ光が走査する方向と直交する方向の位置)が反射面ごとに目標位置からずれる現象が周期的に発生する。つまり、面倒れに起因して走査線間隔にバラつきが発生し、それにより、出力した画像に濃度ムラ(バンディング)が現れ、画質低下に繋がる。
そこで、走査線が目標位置からどれだけずれているか、つまり走査線の副走査方向の位置を検出する必要がある。特許文献1では、走査線を2方向に分離する回折光学素子と、分離されたそれぞれの走査線を検知する2つのセンサが設けられている。2方向に分離された走査線がそれぞれのセンサを通過した際の時間を測定し、その時間差から走査線の副走査方向の位置を検出できる。
特許文献1では、検知部に至った複数の反射面により偏向されたレーザ光の検知信号から複数の反射面のうちの基準面となる反射面を特定することが記載され、走査位置ずれを電気的に補正することが開示されている。
特開2017-102144号公報
しかしながら、特許文献1では、走査線の副走査方向の位置を検出するために回折光学素子と複数のセンサなどの部品が必要であり、画像形成装置全体の大型化に繋がるという課題がある。また、特許文献1では、BDセンサの前にスリットを設ける必要があり、部品点数が多くなるといった課題がある。
本発明は前記課題を解決するものであり、その目的とするところは、簡単な構成でレーザ光の副走査方向の位置を検出することができるスキャナユニット及び画像形成装置を提供するものである。
本発明の画像形成装置は、感光体と、前記感光体を前記画像情報に応じたレーザ光で走査するスキャナユニットであって、前記レーザ光を出射する光源と、前記レーザ光を反射する回転多面鏡を有し前記レーザ光を偏向する偏向部と、前記偏向部で偏向されたレーザ光を受光するセンサと、を有するスキャナユニットと、前記センサの出力に応じて、前記レーザ光による走査開始タイミングを制御する制御部と、を有し、記録材に画像情報に応じた画像を形成する画像形成装置において、副走査方向における前記レーザ光の走査線の基準位置と、前記副走査方向における前記センサの受光面の中心位置がずれており、前記副走査方向において、前記回転多面鏡の各反射面による走査線は全て、その一部のみが前記センサの前記受光面を通過するように設定されていることを特徴とする。
本発明のスキャナユニットは、レーザ光を出射する光源と、前記レーザ光を反射する回転多面鏡を有し前記レーザ光を偏向する偏向部と、前記偏向部で偏向されたレーザ光を受光し、前記レーザ光による走査開始タイミングを制御するために用いられるセンサと、を有し、感光体を画像情報に応じた前記レーザ光で走査するスキャナユニットにおいて、副走査方向における前記レーザ光の走査線の基準位置と、前記副走査方向における前記センサの受光面の中心位置がずれており、前記副走査方向において、前記回転多面鏡の各反射面による走査線は全て、その一部のみが前記センサの前記受光面を通過するように設定されている、ことを特徴とする。
本発明によれば、簡単な構成でレーザ光の副走査方向の位置を検出することができる。
光走査装置を備えた画像形成装置の構成を示す断面図である。 光走査装置の構成を示す斜視図である。 制御部の構成を示すブロック図である。 走査線とBDセンサとの位置関係を説明する図である。 走査線とBDセンサとの位置関係を説明する図である。 走査線とBDセンサとの位置関係を説明する図である。 (a),(b)は、ポリゴンミラーの各反射面で反射された各レーザ光の各走査線とBDセンサとの位置関係を説明する図である。 ポリゴンミラーの反射面で反射されたレーザ光の各走査線とBDセンサとの位置関係を説明する図である。 (a),(b)は、BDセンサの受光量と、出力するBD信号を説明する図である。 (a)は、レーザ光の全体がBDセンサの受光面内を通過する場合の位置関係を示す図である。(b)は、レーザ光の全体がBDセンサの受光面外を通過する場合の位置関係を示す図である。 走査線の位置が異なっているが、受光面積が同じになるケースを説明するための図。
図により光走査装置を備えた画像形成装置の一実施形態を具体的に説明する。
<画像形成装置>
図1を用いて画像形成装置101の構成について説明する。図1は、光走査装置100を備えた画像形成装置101の構成を示す断面図である。図1に示す画像形成装置101は、電子写真方式を用いたレーザビームプリンタの一例である。画像形成装置101は、紙等の記録材19に画像を形成する。画像形成装置101には、画像形成部としてのプロセスカートリッジ107が設けられている。
プロセスカートリッジ107には、クリーニングユニット16と現像ユニット17が設けられている。クリーニングユニット16には、感光体及び像担持体としての感光ドラム8が図1の時計回り方向に回転可能に設けられている。図1の時計回り方向に回転する感光ドラム8の表面は、クリーニングユニット16に設けられた帯電手段としての帯電ローラ18により一様に帯電される。
画像形成装置101には、筐体の一部である光学台102が設けられている。光学台102には、スキャナユニットとしての光走査装置100が設置されている。一様に帯電された感光ドラム8の表面に光走査装置100から画像情報に応じたレーザ光Lが照射される。これにより感光ドラム8の表面上に静電潜像が形成される。その後、現像ユニット17に設けられた現像剤担持体としての現像ローラ15により感光ドラム8の表面上に形成された静電潜像に対して現像剤としてのトナーが供給されてトナー像として現像される。
画像形成装置101の下部には、給送ユニット103が設けられており、給送ユニット103に収容された厚紙や普通紙などの記録材19は、給送ローラ104により1枚ずつ分離給送される。給送ローラ104により給送された記録材19は、停止したレジストローラ13のニップ部に先端が突き当てられて斜行が補正される。
感光ドラム8の表面に対向して、転写手段としての転写ローラ105が設けられている。感光ドラム8の表面上に形成されたトナー像の画先が感光ドラム8と転写ローラ105とにより形成される転写ニップ部Nに到達する。そのタイミングに合わせて記録材19の先端部が転写ニップ部Nに到達するように、レジストローラ13により記録材19が挟持搬送される。
図示しない転写バイアス電源から転写ローラ105に転写バイアスが印加されることにより感光ドラム8の表面に担持されたトナー像が記録材19に転写される。転写後に感光ドラム8の表面に残留した残留トナーは、クリーニングユニット16に設けられた図示しないクリーニング手段により掻き取られて除去される。
転写ニップ部Nにおいて、トナー像が転写された記録材19は、定着手段としての定着装置106に搬送される。定着装置106には、加熱ローラ106aと加圧ローラ106bが設けられており、トナー像を担持した記録材19が加熱ローラ106aと加圧ローラ106bとにより挟持搬送される間に加熱及び加圧されてトナー像が記録材19に熱定着される。その後、記録材19は、排出ローラ108により挟持搬送されて排出トレイ14上に排出される。
<光走査装置>
次に、図2を用いて、光走査装置100の構成について説明する。図2は、光走査装置100の構成を示す斜視図である。図2において、符号1は、レーザ光Lを出射する光源としての半導体レーザである。符号12は、半導体レーザ1を支持する回路基板(支持体)である。符号2は、コリメータレンズとシリンドリカルレンズを一体に成形したアナモフィックレンズである。コリメータレンズは、レーザ光Lを平行光にする。シリンドリカルレンズは、レーザ光Lを図2の矢印E方向にのみ集光する。
符号3は、開口絞りである。符号5は偏向部としての偏向器である。符号4は、偏向器5に搭載されている回転多面鏡としてのポリゴンミラーである。符号11a~11dは、ポリゴンミラー4に設けられる複数の反射面である。符号6は、BD(Beam Detect)センサである。検出部としてのBDセンサ6は、複数の反射面11a~11dでそれぞれ反射されたレーザ光Lを検出する。そして、感光ドラム8の表面への図2の矢印D方向(感光ドラム8の回転軸線方向)の書き出し位置を制御するための信号を出力する。
符号7は、走査レンズとしてのfθレンズである。fθレンズ7は、レーザ光Lが角度θで入ってくると、該fθレンズの焦点距離fを掛け合わせた大きさ(f×θ)の像を結ぶようなレンズ特性(fθ特性)を有する。符号9は、前述した各種の光学部材等を収容する光学箱である。符号10は、粉塵侵入防止等の観点から光学箱9に取り付けられる蓋である。図2において、ポリゴンミラー4の回転により移動するレーザ光Lの方向(主走査方向)が図2の矢印D方向である。また、感光ドラム8の表面及びBDセンサ6の受光面6a上において図2の矢印D方向と直交する方向が副走査方向であり、図2の矢印E方向である。
上記構成において、光源である半導体レーザ1から出射した、画像情報に応じたレーザ光Lは、アナモフィックレンズ2により図2の矢印D方向では略平行光または収束光とされ、図2の矢印E方向では収束光とされる。次に、レーザ光Lは、開口絞り3を通ってレーザ光Lの光束幅が制限されて、ポリゴンミラー4の各反射面11a~11d上において主走査方向に一定幅を有した焦線状に結像する。
偏向器5は、回転軸4aを中心にポリゴンミラー4を図2の時計回り方向に回転させる。ポリゴンミラー4は、半導体レーザ1から出射されたレーザ光Lを複数の反射面11a~11dで反射する。ポリゴンミラー4を図2の時計回り方向に回転させることにより各反射面11a~11d上に結像されたレーザ光Lは、偏向走査される。
各反射面11a~11dで反射したレーザ光Lは、先ず、BDセンサ6の受光面6aに入射した後、fθレンズ7に入射し、感光ドラム8の表面上を図2の矢印D方向に移動する。後述するCPU20(図3参照)は、BDセンサ6から出力されたBD信号を基準として、主走査方向における画像の書き出しタイミング(走査開始タイミング)を制御する。BDセンサ6から出力されたBD信号の検出は、ポリゴンミラー4の各反射面11a~11dごとに行われる。
fθレンズ7は、レーザ光Lがfθレンズ7に入射すると、感光ドラム8の表面上にスポットを形成するようにレーザ光Lを集光し、かつスポットの走査速度が等速になるように設計されている。このようなfθレンズ7の特性を得るために、fθレンズ7は非球面レンズとなっている。線L2は、感光ドラム8の表面上のレーザ光Lによる走査線L2を示している。
以上のようにして感光ドラム8の表面には、画像情報に応じた静電潜像が形成される。
<走査線とBDセンサとの位置>
次に、図4~図6を用いて、本実施例の光走査装置100における走査線L2とBDセンサ6との位置関係について説明する。図4は、矢印E方向において、走査線L2の中心線Lsの位置が設計上の走査線L2の位置の基準線CLsに一致している場合を示す。図5は、ポリゴンミラー4の面倒れにより、走査線L2の中心線Lsの位置が基準線CLsの位置から矢印-E方向に幅hずれている場合を示す。図6は、ポリゴンミラー4の面倒れにより、走査線L2の中心線Lsの位置が基準線CLsの位置から矢印+E方向に幅hずれている場合を示す。
光走査装置100は、各反射面11a~11dによる走査線L2が基準線CLsに対して+E方向にずれているのか-E方向にずれているのか、また、そのずれ量の大きさをBDセンサ6からの出力によって識別する機能を有する。そのために、光走査装置100の走査線L2とBDセンサ6は、副走査方向において、次の条件を満たす位置関係になっている。
(1)副走査方向において、走査線L2の基準線CLsの位置(基準位置)と、受光面6aの中心6bを通る中心線Cの位置(中心位置)と、がずれている。
(2)面倒れ等の影響で走査線L2が基準線CLsから副走査方向にずれたとしても、各反射面11a~11dによる走査線L2と受光面6aの中心線Cの位置関係は次のように設定されている。その中心線Lsが、BDセンサ6の中心線Cに対して基準線CLsが設けられた側と同じ側に位置するように、各反射面11a~11dによる走査線L2と受光面6aの中心線Cの位置関係が設定されている。
(3)各反射面11a~11dによる走査線L2は、全て、その一部のみがBDセンサ6の受光面6aを通過するように設定されている。
以下、光走査装置100の走査線L2とBDセンサ6の位置関係について具体的に説明する。
図4~図6を参照すれば理解できるように、光走査装置100は、副走査方向(矢印E方向)において、走査線L2の基準線CLsと、受光面6aの中心線Cと、が副走査方向でずれるように構成されている。そして、各反射面11a~11dによる走査線L2は、そのレーザ光Lの一部のみがBDセンサ6の受光面6aを通過するように、BDセンサ6と走査線L2の矢印E方向における位置関係が設定されている。
一方、図10(a)及び図10(b)は比較例である。図10(a)は、レーザ光Lのスポット全部がBDセンサ6の受光面6aの領域内を通過するケースである。図10(b)は、レーザ光Lのスポット全部がBDセンサ6の受光面6aの領域外を通過するケースである。
上述したように、本例の光走査装置は、矢印E方向におけるBDセンサ6の受光面6aの中心線Cが走査線L2の中心線Lsよりも矢印E方向にずれた位置になるように構成されている。そして、複数の反射面11a~11dのどの面を使って走査した場合でも、矢印D方向に走査されるレーザ光Lは、その一部のみがBDセンサ6の受光面6aを通過するように構成されている。
なお、図4~図6において、矢印E方向における基準線(走査線L2の設計上の基準)CLsが座標軸上の原点「0」となっている。そして、図4~図6の矢印+E方向を座標軸上の「+方向」とする。また、図4~図6の矢印-E方向を座標軸上の「-方向」と定義する。BDセンサ6の受光面6aの中心線Cは、受光面6aの矢印E方向における上端部Bt(頂点)と下端部Bb(頂点)との中央を通り矢印D方向に平行な直線である。一方、走査線L2の中心線Lsは、レーザ光Lのスポットの矢印E方向における頂点Stと頂点Sbとの中央を通り矢印D方向に平行な直線である。
また、楕円形で表されるレーザ光Lは、中心線Lsを中心にして、矢印E方向において対称な形状である。また、長方形で表されるBDセンサ6の受光面6aも中心線Cを中心にして、矢印E方向において対称な形状である。
ポリゴンミラー4の各反射面11a~11dには、製造公差により面倒れが生じる。そのため、走査線L2と受光面6aとが重なる面積である受光面積Mは、図4~図6のハッチングで示した受光面積Mのように、反射面11a~11d毎に異なる。よって、受光面積Mを検出することによって、走査線L2の矢印E方向の位置(副走査方向の位置)を検出することができる。また、受光面積Mは反射面毎に異なるので、反射している面を特定することもできる。
走査線L2の副走査方向におけるずれ方向、そのずれ量、及び使用している反射面、を特定できれば、半導体レーザ1から出射するレーザ光Lに対して電気的補正を加えることで、感光ドラム8の表面上での副走査方向の濃度ムラを抑えることができる。この補正方法は後述する。
ところで、基準線CLsの位置と受光面6aの中心線Cの位置を副走査方向において予めずらした構成にしておいても、走査線L2が基準線CLsに対して+E方向へずれているのか、-E方向へずれているのか特定できないケースがある。
図11は、基準線CLsの位置を受光面6aの中心線Cに対して+E方向へ予めずらしてある光走査装置の、BDセンサ6と走査線L2(レーザ光L)の位置関係を示している。パターンAは、レーザ光Lが基準線CLsから+E方向へ幅aずれた場合である。パターンBは、レーザ光Lが基準線CLsから-E方向へ幅bずれた場合である。パターンA及びBの受光面積Mは同じ大きさになってしまっており、BDセンサ6からの出力によって、走査線L2が+E方向にずれているのか、-E方向にずれているのか区別できない。
しかしながら、複数の反射面11a~11dの中の一つの反射面による走査線L2の副走査方向へのずれ幅の範囲は、光走査装置を製造する段階で凡そ分かっている。そこで、面倒れ等の影響で走査線L2が基準線CLsから副走査方向にずれたとしても、各反射面11a~11dによる走査線L2と受光面6aの中心線Cの位置関係は次のように設定されている。即ち、その中心線Lsが、BDセンサ6の中心線Cに対して基準線CLsが設けられた側と同じ側に位置するように、各反射面11a~11dによる走査線L2と受光面6aの中心線Cの位置関係が設定されている。
この構成により、走査線L2が+E方向にずれているのか、-E方向にずれているのかを区別できないという状態を無くすことができる。
また、図10(a)で示したように、レーザ光Lの全てが受光面6aの範囲に入ってしまうケースが存在すると、レーザ光Lが副走査方向へ少しだけずれても、依然としてレーザ光Lの全てが受光面6aの範囲に入っていることが考えらえる。この場合、BDセンサ6の出力が同じなので、走査線L2のずれ量を検知できない。図10(b)のケースは、そもそもレーザ光Lを受光しないので、走査線L2のずれ量を検知できるはずがない。
したがって、BDセンサ6の出力によって走査線L2のずれの方向及びずれ量を検知するには、副走査方向における走査線L2の位置とBDセンサ6の位置の関係として必要な条件がある。この条件に関して以下説明する。
まず、光走査装置を製造する時、BDセンサ6の取り付け時の位置ずれ(公差)と、面倒れに起因する走査線L2のずれ、が夫々生じる。よって、BDセンサ6と走査線L2の位置関係を所望の関係に設定する場合、これらのずれ(公差)の幅を考慮する必要がある。
なお、BDセンサ6の受光面6aは、中心線Cを中心に矢印+E方向の上端部Btから矢印-E方向の下端部Bbまでの幅aを有している。
一方、レーザ光Lは、走査線L2の中心線Lsを中心に矢印+E方向の頂点Stから矢印-E方向の頂点Sbまでの幅Aを有している。光走査装置100は、BDセンサ6の受光面6a上にレーザ光Lを集光させるためのBDレンズを用いていない。このため矢印E方向において、レーザ光Lの幅Aは、BDセンサ6の受光面6aの幅aと同等の幅を有している。
走査線L2の中心線Lsは、ポリゴンミラー4の面倒れや照射位置ずれが要因で、基準線CLsを中心として+E方向に最大で幅h、-E方向に最大で幅h、合わせて最大で幅2hの位置ずれが発生する。また、BDセンサ6の受光面6aの中心線Cは、BDセンサ6の取り付けのバラつき等が要因で基準線CLsを中心として+E方向に最大で幅e、-E方向に最大で幅e、合わせて最大で2eの位置ずれが発生する。
位置ずれ幅h及び幅eを考慮すると、図5に示すように、中心線Cと基準線CLsの偏心量(間隔)Hは以下の(1)式を満たす必要がある。
-H≦-e-h (1)
この(1)式を満たしていれば、走査線L2が-E方向への最大ずれ幅である幅eずれても、走査線L2の中心線Lsは、BDセンサ6の中心線Cに対して必ず+E方向の側に位置する。
また、走査線L2が図5の矢印-E方向に最も位置ずれした際に、レーザ光Lの全てがBDセンサ6の受光面6aに入らないように構成しなければならない。
そのためには、走査線L2が-E方向への最大ずれ幅である幅eずれていてもレーザ光Lの一部がBDセンサ6の受光面6aの外を通過する必要がある。具体的には、走査線L2が-E方向への最大ずれ幅である幅eずれていても、レーザ光Lの頂点StがBDセンサ6の受光面6aの上端部Btよりも図5の矢印+E方向の側に位置するように設定する。
そのためには、以下の(2)式を満たす必要がある。
(A/2)-h>(a/2)-H (2)
上記(2)式の左辺「(A/2)-h」は、図5に示すように、基準線CLsに対して、レーザ光Lが最も-E方向へずれた場合の頂点Stの位置を示している。
一方、上記数2式の右辺「(a/2)-H」は、図5に示すように、基準線CLsに対して、BDセンサ6が最も+E方向にずれて取り付けられていた場合の受光面6aの上端部Btの位置を示している。
即ち、上記(2)式は、レーザ光Lの頂点Stが、BDセンサ6の受光面6aの上端部Btよりも外側に位置していることを示す。
次に、図6に示すように、走査線L2の中心線Lsの位置が基準線CLsよりも+E方向に最大幅hずれている場合を考慮する。この場合、図10(b)のような、レーザ光Lの全てがBDセンサ6の受光面6aの外を移動する状態を避ける必要がある。
これを解決するためには、図6に示すように、レーザ光Lの一部がBDセンサ6の受光面6a内を移動するように構成する必要がある。具体的には、レーザ光Lの頂点SbがBDセンサ6の上端部Btよりも-E方向の側に位置するように設定する。そのためには、以下の(3)式を満たす必要がある。
-(A/2)+h<(a/2)-H (3)
上記(3)式の左辺「-(A/2)+h」は、図6に示すように、基準線CLsに対して、レーザ光Lが最も+E方向へずれた場合の頂点Sbの位置を示している。
一方、上記(3)式の右辺「(a/2)-H」は、図6に示すように、基準線CLsに対して、BDセンサ6が最も-E方向にずれて取り付けられていた場合の受光面6aの上端部Btの位置を示している。
即ち、上記(3)式は、レーザ光Lの頂点Sbが、BDセンサ6の受光面6aの内側に位置していることを示す。
上記(2)式及び(3)式を満たす位置にBDセンサ6が配置される。これにより、各反射面11a~11dによる走査線L2は、全て、その一部のみがBDセンサ6の受光面6aを通過する。
尚、本実施形態では、図4の実線で示すように、BDセンサ6の受光面6aを基準線CLsから-E方向にずれた位置に配置した一例であるが、図4の破線で示すように、BDセンサ6の受光面6aを基準線CLsから+E方向にずれた位置に配置しても良い。
本実施形態では、レーザ光Lの幅Aは、3.0mmである。BDセンサ6の受光面6aの幅aは、2.5mmである。また、走査線L2の最大位置ずれ幅±hは、±0.08mmである。
また、BDセンサ6の最大位置ずれ幅±eは、±1.0mmである。BDセンサ6の中心線Cの基準線CLsから偏心幅「-H」は、前記数1式を用いて、以下の(4)式のように設定する必要がある。
-H≦-e-h=-1.0-0.08
=-1.08
-H≦-1.08mm (4)
本実施形態では、偏心幅「-H」を、(4)式を満たす-1.1mmとした。これらの条件を(2)式に当てはめると、以下の(5)式で表されるように、(2)式の関係を満たす。
(A/2)-h>(a/2)-H
(3/2)-0.08>(2.5/2)-1.1
1.42>0.15 (5)
更に、これらの条件を(3)式に当てはめると、以下の(6)式で表されるように、(3)式の関係を満たす。
-(A/2)+h<(a/2)-H
-(3/2)+0.08<(2.5/2)-1.1
-1.42<0.15 (6)
ポリゴンミラー4の面倒れや照射位置ずれやBDセンサ6の配置の位置ずれにより走査線L2とBDセンサ6の受光面6aとが矢印E方向に位置ずれする。その際に、上記の設計値に設定することにより、走査線L2の矢印E方向の位置に応じて、受光面積Mが異なるようにすることができる。
次に、図7及び図8を用いて、本実施形態におけるポリゴンミラー4の各反射面11a~11dで反射された各レーザ光Lの各走査線LA~LDと、BDセンサ6との位置関係について説明する。図7(a),(b)及び図8は、本実施形態の光走査装置100のポリゴンミラー4の各反射面11a~11dで反射された各レーザ光Lの各走査線LA~LDとBDセンサ6との位置関係を説明する図である。
一般的にポリゴンミラー4の各反射面11a~11dは、製造時の切削精度や偏向器5への組み付け精度により面倒れを有する。このため図7及び図8に示す走査線LA~LDの図7及び図8の矢印E方向の位置は、各反射面11a~11dごとに、ばらつきを有している。
図7(a)に示すように、走査線LA,LBの矢印E方向における中心線La,Lbは、基準線CLsから位置ずれしていない。また、図7(b)に示すように、走査線LCの矢印E方向における中心線Lcは、基準線CLsよりも+E方向に幅hc位置ずれしている。また、図8に示すように、走査線LDの中心線Ldは、基準線CLsよりも-E方向に幅-hd位置ずれしている。
<走査線の矢印E方向の位置の検出方法>
次に、図9を用いて、走査線L2の矢印E方向の位置の検出方法について説明する。図9(a),(b)は、BDセンサ6の受光量と、出力するBD信号を説明する図である。図9(a)は、図4に示すように、走査線L2の中心線Lsが基準線CLsを通るときにBDセンサ6が出力するBD信号を説明する図である。
図9(a)に示すPsは、走査線L2の受光量である。このとき、BDセンサ6が閾値としての光量Pth以上の受光量Psを検知すると、BDセンサ6が出力するBD信号の電位を「Low」に下げてBD信号を発生させる。走査線L2に沿ってレーザ光Lが走査されたときにBDセンサ6が出力するBD信号は、BD信号がON(電位は「Low」)の状態にあるパルス幅としての基準時間幅Tsを有している。
図9(a)に示す受光量Psは、走査線L2の中心線Lsが基準線CLsを通過するときの基準受光情報の一例である。
図9(b)は、図7(a),(b)及び図8に示した各走査線LA~LDのBD信号を示した図である。図9(b)に示すPa,Pbは、走査線LA,LBの受光量である。また、Ta,Tbは、そのときのBDセンサ6が出力するBD信号のBDパルス幅である。
図7(b)に示すように、走査線LCとBDセンサ6の受光面6aとが重なる受光面積Mを面積Mcとする。この受光面積Mcは、図7(a)に示す走査線LA,LBとBDセンサ6の受光面6aとが重なる受光面積Ma,Mbよりも小さくなる。
そのため図9(b)に示すように、走査線LCによる受光面6aの受光量Pcは、走査線LA,LBによる受光面6aの受光量Pa,Pbと比較して減少する。受光量Pcに対応するBD信号の時間幅Tcは、受光量Pa、Pbに対応するBD信号の時間幅Ta,Tbよりも短くなる。
また、図8に示すように、走査線LDとBDセンサ6の受光面6aとが重なる受光面積Mを面積Mdとする。この受光面積Mdは、受光面積Ma,Mbよりも大きくなる。
そのため、図9(b)に示すように、走査線LDによる受光面6aの受光量Pdは、走査線LA,LBによる受光面6aの受光量Pa,Pbよりも増加する。
そのため、受光量Pdに対応する時間幅Tdは、受光量Pa、Pbに対応する時間幅Ta,Tbよりも長くなる。したがって、時間幅Ta~Tdは、以下の(7)式の関係になる。
Tc<Ta=Tb<Td (7)
このように、受光面積Ma,Mb,Mc,Mdに応じて、BDセンサ6が出力するBD信号の時間幅Ta,Tb,Tc,Td(パルス幅)が異なる。そして、時間幅Ta~Tdに基づいて各走査線LA~LDの基準線CLsからの位置ずれ幅hc,-hdを検出することができる。つまり、各走査線LA~LDの矢印E方向の位置を検出することができる。
尚、画像書き出し位置の基準となるBD信号の生成タイミングは、図9(b)に示す各時間幅Ta~Tdの中心値TBにより取得している。各時間幅Ta~Tdの中心値TBは一定である。各走査線LA~LDの図7及び図8の矢印E方向の位置が異なっていたとしても各時間幅Ta~Tdの中心値TBは一定である。このためBD信号の生成タイミングのばらつきが無く、各走査線LA~LDの図7及び図8の矢印E方向の位置が異なることに起因する主走査方向の画像劣化は生じない。
画像形成装置101には、図3に示すように、制御部としてのCPU20と、記憶部としてのメモリ21が設けられている。CPU20は、各時間幅Ta~Tdに基づいて、レーザ光Lの矢印E方向の位置を検知する。メモリ21には、予め走査線L2が基準線CLsを通過する場合の基準時間幅Tsが記憶されている。CPU20には、半導体レーザ1とBDセンサ6が接続されている。BDセンサ6が出力するBD信号のパルス幅としての時間幅Tの情報は、CPU20に送られる。
CPU20は、時間幅Ta~Tdと基準時間幅Tsを比較して各走査線の位置ずれ幅hc,-hdを検出する。
時間幅Ta~Tdは、各受光量Pa~Pdが、所定の光量Pth(閾値)に到達した各時刻ta1,tb1,tc1,td1、及び各受光量Pa~Pdが、所定の光量Pthよりも減少した各時刻ta2,tb2,tc2,td2から算出できる。
各時間幅Ta~Tdと、基準線CLsからの位置ずれ幅hc,-hdと、を関連付けたデータテーブルは、メモリ21に記憶されている。
本実施形態では、BDセンサ6の受光面6aにより検出したレーザ光Lの検出受光情報として各受光量Pa~Pdを用いた。
受光量以外に、各受光面積Ma~Mdを用いることもできる。
この場合は、各受光面積Ma~Mdと、基準線CLsからの位置ずれ幅hc,-hdと、を関連付けてデータテーブルを作成し、メモリ21に記憶しておく。受光面6aは、複数の光電変換素子のセルがマトリクス状に配置されており、レーザ光Lを受光してONになった光電変換素子のセルの数を各受光面積Ma~Mdに置き換えることができる。
CPU20は、BDセンサ6の受光面6aで受光した受光面積Ma~Mdに基づいて、メモリ21に記憶されているデータテーブルから基準線CLsからの走査線LA~LDの位置ずれ幅hc,-hdを検出することができる。走査線LA~LDの位置ずれ幅hc,-hdを検出すれば、走査線LA~LDの副走査方向における間隔(走査線間隔)も検出できる。
CPU20は、各走査線LA~LDの副走査方向の位置情報(又は走査線間隔の情報)を基に、半導体レーザ1を駆動制御してレーザ光Lの光量を変化させる。メモリ21には、走査線間隔と補正光量の関係の補正テーブルが記憶されている。
具体的には、走査線間隔が密になっている走査線L2に対しては、メモリ21に記憶された補正テーブルに基づいてレーザ光Lの光量を低下させる。一方、走査線間隔が疎になっている走査線L2に対しては、レーザ光Lの光量を増加させる。
その結果、ポリゴンミラー4の面倒れに起因するバンディング(周期的な帯状の濃淡ムラ)による画質低下を低減することができる。
半導体レーザ1から出射されるレーザ光Lの光量の補正制御は、画像形成装置101の最初の使用時に実施する。カラーの光走査装置100においては、時間の経過とともにレーザ光Lの矢印E方向の位置が変化していく現象が現れる。その際には、レーザ光Lの矢印E方向の位置検出を常時実施しても良い。
なお、副走査方向における走査線L2の間隔が密な領域に対応するレーザ光Lの光量が、疎な領域に対応するレーザ光Lの光量よりも低くなるように、密な領域に対応するレーザ光Lと、疎な領域に対応するレーザ光Lの少なくとも一方を制御すればよい。
本実施形態では、矢印E方向のバンディングによる画質低下を低減させるためにレーザ光Lの光量を補正したが、他の方法を用いてバンディングによる画質低下を低減させても良い。
1 半導体レーザ
2 アナモフィックレンズ
3 開口絞り
4 ポリゴンミラー
5 偏向器
6 BDセンサ
7 fθレンズ
8 感光ドラム
9 光学箱
10 蓋
11a 反射面
12 回路基板
13 レジストローラ
14 排出トレイ
15 現像ローラ
16 クリーニングユニット
17 現像ユニット
18 帯電ローラ
19 記録材
20 CPU
21 メモリ
100 光走査装置
101 画像形成装置
102 光学台
103 給送ユニット
104 給送ローラ
105 転写ローラ
106 定着装置
106a 加熱ローラ
106b 加圧ローラ
107 プロセスカートリッジ
108 排出ローラ

Claims (8)

  1. 感光体と、
    前記感光体を前記画像情報に応じたレーザ光で走査するスキャナユニットであって、前記レーザ光を出射する光源と、前記レーザ光を反射する回転多面鏡を有し前記レーザ光を偏向する偏向部と、前記偏向部で偏向されたレーザ光を受光するセンサと、を有するスキャナユニットと、
    前記センサの出力に応じて、前記レーザ光による走査開始タイミングを制御する制御部と、
    を有し、記録材に画像情報に応じた画像を形成する画像形成装置において、
    副走査方向における前記レーザ光の走査線の基準位置と、前記副走査方向における前記センサの受光面の中心位置がずれており、
    前記副走査方向において、前記回転多面鏡の各反射面による走査線は全て、その一部のみが前記センサの前記受光面を通過するように設定されている、
    ことを特徴とする画像形成装置。
  2. 前記回転多面鏡の各反射面による走査線と前記センサの前記中心位置の位置関係は更に、前記走査線が前記基準位置から前記副走査方向にずれたとしても、前記走査線の前記副走査方向における中心が、前記センサの前記中心位置に対して前記基準位置が設けられた側と同じ側に位置するように、設定されている、
    ことを特徴とする請求項1に記載の画像形成装置。
  3. 前記制御部は、
    前記受光面で前記レーザ光を受光した時の受光量に応じて、前記副走査方向における前記走査線の位置を検出する、
    ことを特徴とする請求項1又は請求項2に記載の画像形成装置。
  4. 前記制御部は、
    前記受光面で前記レーザ光を受光した時の受光面積に応じて、前記副走査方向における前記走査線の位置を検出する、
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の画像形成装置。
  5. 前記制御部は、
    前記副走査方向における前記走査線の位置に応じて、前記光源の光量を制御する、
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の画像形成装置。
  6. 前記制御部は、
    前記副走査方向における前記走査線の間隔に応じて、前記光源の光量を制御する、
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の画像形成装置。
  7. 前記制御部は、
    前記副走査方向における前記走査線の間隔が密な領域に対応するレーザ光の光量が、疎な領域に対応するレーザ光の光量よりも低くなるように、前記密な領域に対応するレーザ光と、前記疎な領域に対応するレーザ光の少なくとも一方を制御する、
    ことを特徴とする請求項1から請求項6のいずれか1項に記載の画像形成装置。
  8. レーザ光を出射する光源と、
    前記レーザ光を反射する回転多面鏡を有し前記レーザ光を偏向する偏向部と、
    前記偏向部で偏向されたレーザ光を受光し、前記レーザ光による走査開始タイミングを制御するために用いられるセンサと、
    を有し、感光体を画像情報に応じた前記レーザ光で走査するスキャナユニットにおいて、
    副走査方向における前記レーザ光の走査線の基準位置と、前記副走査方向における前記センサの受光面の中心位置がずれており、
    前記副走査方向において、前記回転多面鏡の各反射面による走査線は全て、その一部のみが前記センサの前記受光面を通過するように設定されている、
    ことを特徴とするスキャナユニット。
JP2020032975A 2019-03-29 2020-02-28 スキャナユニット及びそれを用いた画像形成装置 Active JP7395386B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/828,060 US11194264B2 (en) 2019-03-29 2020-03-24 Optical scanning apparatus with offset beam detect sensor for scan line positioning in sub-scan direction and image forming apparatus with optical scanning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019066221 2019-03-29
JP2019066221 2019-03-29

Publications (2)

Publication Number Publication Date
JP2020166242A JP2020166242A (ja) 2020-10-08
JP7395386B2 true JP7395386B2 (ja) 2023-12-11

Family

ID=72716321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032975A Active JP7395386B2 (ja) 2019-03-29 2020-02-28 スキャナユニット及びそれを用いた画像形成装置

Country Status (1)

Country Link
JP (1) JP7395386B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238330A (ja) 1999-02-24 2000-09-05 Fuji Xerox Co Ltd 画像形成装置
JP2011197320A (ja) 2010-03-18 2011-10-06 Canon Inc 画像形成装置及びその制御方法
JP2015227986A (ja) 2014-06-02 2015-12-17 株式会社リコー 光走査装置および光走査装置の調整方法、並びに画像形成装置
CN107678157A (zh) 2016-08-02 2018-02-09 京瓷办公信息系统株式会社 光扫描装置以及具备该光扫描装置的图像形成装置
US20190302448A1 (en) 2018-03-30 2019-10-03 Kabushiki Kaisha Toshiba Image forming apparatus and control method of image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238330A (ja) 1999-02-24 2000-09-05 Fuji Xerox Co Ltd 画像形成装置
JP2011197320A (ja) 2010-03-18 2011-10-06 Canon Inc 画像形成装置及びその制御方法
JP2015227986A (ja) 2014-06-02 2015-12-17 株式会社リコー 光走査装置および光走査装置の調整方法、並びに画像形成装置
CN107678157A (zh) 2016-08-02 2018-02-09 京瓷办公信息系统株式会社 光扫描装置以及具备该光扫描装置的图像形成装置
US20190302448A1 (en) 2018-03-30 2019-10-03 Kabushiki Kaisha Toshiba Image forming apparatus and control method of image forming apparatus

Also Published As

Publication number Publication date
JP2020166242A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6147042B2 (ja) 画像形成装置
US11194264B2 (en) Optical scanning apparatus with offset beam detect sensor for scan line positioning in sub-scan direction and image forming apparatus with optical scanning apparatus
JP2009145569A (ja) 走査光学装置及びそれを用いた画像形成装置
JP2009198890A (ja) 光走査装置
JP2007025498A (ja) 光走査装置及び画像形成装置
JP2004184657A (ja) 走査光学装置及びそれを用いた画像形成装置
JP3564026B2 (ja) 光走査装置及びマルチビーム光走査装置及びそれを用いた画像形成装置
US20090059338A1 (en) Optical scanning device and image forming apparatus
JP5343063B2 (ja) 光走査装置及び画像形成装置
JP4818070B2 (ja) 走査式光学装置及び画像形成装置
JP2010122248A (ja) 光走査装置および画像形成装置
JP2011048085A (ja) 走査光学装置及び電子写真画像形成装置
JP7395386B2 (ja) スキャナユニット及びそれを用いた画像形成装置
JP4878158B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2008112041A5 (ja)
JP4430143B2 (ja) 光学装置
EP1892647A2 (en) Beam scanning lens, beam scanning apparatus having the same, and image forming apparatus and method
US10042281B2 (en) Image forming apparatus
JP2008304607A (ja) 光走査装置及びそれを用いた画像形成装置
US6888559B2 (en) Laser beam scanner forming a scanning line along a main scanning direction
JP6016645B2 (ja) 光走査装置、及びそれを備えた画像形成装置
JP2010107561A (ja) 光ビーム走査装置および画像形成装置
JP2017159538A (ja) 画像形成装置
JP2017102144A (ja) 画像形成装置
JP6436657B2 (ja) 光走査装置および画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R151 Written notification of patent or utility model registration

Ref document number: 7395386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151