JP7328525B2 - Welded structure - Google Patents

Welded structure Download PDF

Info

Publication number
JP7328525B2
JP7328525B2 JP2019148841A JP2019148841A JP7328525B2 JP 7328525 B2 JP7328525 B2 JP 7328525B2 JP 2019148841 A JP2019148841 A JP 2019148841A JP 2019148841 A JP2019148841 A JP 2019148841A JP 7328525 B2 JP7328525 B2 JP 7328525B2
Authority
JP
Japan
Prior art keywords
tubular member
welded
region
steel pipe
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019148841A
Other languages
Japanese (ja)
Other versions
JP2021030236A (en
Inventor
耕一 横関
隆行 米澤
知徳 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019148841A priority Critical patent/JP7328525B2/en
Publication of JP2021030236A publication Critical patent/JP2021030236A/en
Application granted granted Critical
Publication of JP7328525B2 publication Critical patent/JP7328525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、溶接構造物に関する。 The present invention relates to welded structures.

管状部材に形成された周溶接の溶接継手は、土木構造物や機械で多く見られる。このような溶接継手は、例えば外的な繰り返し荷重や、管内に気体や液体を充填する場合の内圧による繰り返し荷重を受ける。このような繰返し応力下にある溶接継手では、溶接金属の表面と母材の表面との交点、具体的には溶接止端や溶接ルート部から疲労き裂が発生する場合がある。溶接止端や溶接ルート部が疲労き裂の起点になりやすいのは、(1)形状急変部であるために応力が集中する、(2)溶接熱によって引っ張り残留応力が導入される場合がある、(3)溶接熱によって母材の組織が劣化する、などの理由による。このうち、溶接止端については、切削加工や打撃処理などの後処理によって上記の原因を取り除き、疲労き裂の発生を抑制することが提案されている。 Girth-welded weld joints formed in tubular members are often found in civil engineering structures and machinery. Such welded joints are subjected to, for example, repeated external loads and repeated loads due to internal pressure when a pipe is filled with gas or liquid. In welded joints under such repeated stress, fatigue cracks may occur at intersections between the surface of the weld metal and the surface of the base material, specifically at the weld toe or weld root. Weld toes and weld roots tend to be the starting points of fatigue cracks because (1) stress concentrates because they are rapidly changing parts, and (2) tensile residual stress may be introduced by welding heat. and (3) the structure of the base material deteriorates due to welding heat. Of these, it has been proposed that the weld toe be subjected to post-treatment such as cutting and impact treatment to remove the above causes and suppress the occurrence of fatigue cracks.

その一方で、特に片側からしかアクセスできない箇所における溶接ルート部については、上記のような後処理が困難であり、従って疲労き裂の発生を抑制することが容易ではなかった。そこで、例えば特許文献1では、流体圧シリンダでヘッド部材とシリンダチューブとの周溶接の溶接ルート部に発生する応力集中による疲労強度の低下を抑制するために、シリンダ表面に別の周溶接を施し、それによってヘッド部材とシリンダチューブとの周溶接部に圧縮残留応力を導入する技術が記載されている。 On the other hand, it has been difficult to perform post-treatment as described above, especially for a weld root portion that is accessible only from one side, and therefore it has not been easy to suppress the occurrence of fatigue cracks. Therefore, for example, in Patent Document 1, another circumferential weld is applied to the cylinder surface in order to suppress the decrease in fatigue strength due to the stress concentration generated at the weld root portion of the circumferential weld between the head member and the cylinder tube in the fluid pressure cylinder. , and thereby introduce a compressive residual stress into the circumferential weld between the head member and the cylinder tube.

特開2002-257238号公報JP-A-2002-257238

しかしながら、特許文献1に記載された技術では、溶接数が増えるのに加えて、過大応力による残留応力が抜ける場合は効果が小さく、また潜在的なき裂の起点は溶接ルート部のままである。 However, in the technique described in Patent Document 1, the number of welds increases, and the effect is small when the residual stress due to the excessive stress is removed, and the potential crack starting point remains the weld root.

そこで、本発明は、周溶接の溶接ルート部を起点とする疲労き裂の発生を効果的に抑制することが可能な溶接構造物を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a welded structure capable of effectively suppressing the occurrence of fatigue cracks originating from the weld root portion of girth welding.

本発明のある観点によれば、第1の管状部材、第2の部材、および第1の管状部材と第2の部材との間に充填または積層される溶接金属を含む溶接構造物であって、第1の管状部材と第2の部材との間に、溶接金属が充填または積層される溶接領域と、溶接金属が充填または積層されない非溶接領域とが形成され、非溶接領域に含まれる接触領域において、第1の管状部材と第2の部材とが接触することによって互いの間で応力が伝達される、溶接構造物が提供される。 According to one aspect of the invention, a welded structure comprising a first tubular member, a second member, and a weld metal filled or laminated between the first tubular member and the second member, , a weld region filled or laminated with weld metal and a non-welded region not filled or laminated with weld metal are formed between the first tubular member and the second member, and the contact included in the non-welded region A welded structure is provided wherein contact between the first tubular member and the second member in the region transfers stress between each other.

第1の管状部材または第2の部材の少なくともいずれかが、接触領域の近傍で弾性変形してもよい。 At least one of the first tubular member and the second member may elastically deform near the contact area.

第2の部材は、第1の管状部材の内周面または端面に向かって凸な形状を有し、接触領域では、第2の部材の凸な形状を有する部分と第1の管状部材とが接触してもよい。 The second member has a convex shape toward the inner peripheral surface or the end surface of the first tubular member, and in the contact area, the convex portion of the second member and the first tubular member may come into contact.

凸な形状を有する部分は、第2の部材の第1の管状部材の内周面または端面に対向する面の少なくとも一部に形成される斜角面の端縁であってもよい。 The portion having a convex shape may be an edge of an oblique surface formed on at least a part of the surface of the second member facing the inner peripheral surface or the end surface of the first tubular member.

第2の部材は第1の管状部材の内部空間を少なくとも部分的に閉塞する板状部材であり、溶接領域および非溶接領域は、管状部材の内周面と第2の部材の端面との間に形成されてもよい。 The second member is a plate-like member that at least partially closes the inner space of the first tubular member, and the welded area and the non-welded area are between the inner peripheral surface of the tubular member and the end surface of the second member. may be formed in

第2の部材は第1の管状部材の内部空間を少なくとも部分的に閉塞する板状部材であり、溶接領域および非溶接領域は、第1の管状部材の端部の内周面と第2の部材の周縁部に形成される段継ぎ面との間に形成されてもよい。 The second member is a plate-like member that at least partially closes the inner space of the first tubular member, and the welded region and the non-welded region are formed between the inner peripheral surface of the end of the first tubular member and the second tubular member. It may be formed between the stepped surface formed on the peripheral edge of the member.

溶接構造物は、第3の管状部材をさらに含み、第2の部材は、第1の管状部材と第3の管状部材とのそれぞれ内周面に当接され、溶接領域および非溶接領域は、第1の管状部材および第2の管状部材のそれぞれの内周面と第2の部材との間に形成されてもよい。 The welded structure further includes a third tubular member, the second member abutting against inner peripheral surfaces of the first tubular member and the third tubular member, and the welded region and the non-welded region are: It may be formed between the inner peripheral surface of each of the first tubular member and the second tubular member and the second member.

第2の部材は、第2の管状部材であり、溶接領域および非溶接領域は、第1の管状部材の端部の内周面と第2の管状部材の外周面との間に形成されてもよい。あるいは、第2の部材は、第2の管状部材であり、溶接領域および非溶接領域は、第1の管状部材の端面と第2の管状部材の端面との間に形成されてもよい。また、第1の管状部材の端面は、第2の部材の面に向かって凸な形状を有し、接触領域では、第1の管状部材の凸な形状を有する部分と第2の部材とが接触してもよい。 The second member is a second tubular member, and the welded region and the non-welded region are formed between the inner peripheral surface of the end of the first tubular member and the outer peripheral surface of the second tubular member. good too. Alternatively, the second member may be a second tubular member and the welded region and non-welded region may be formed between the end face of the first tubular member and the end face of the second tubular member. Further, the end surface of the first tubular member has a convex shape toward the surface of the second member, and in the contact area, the convex portion of the first tubular member and the second member may come into contact.

第1の管状部材または第2の部材の少なくともいずれかは、疲労耐久性の高い鋼材で形成されてもよい。 At least one of the first tubular member and the second member may be formed of a fatigue-resistant steel material.

上記の構成によれば、周溶接の溶接ルート部を起点とする疲労き裂の発生を効果的に抑制することができる。 According to the above configuration, it is possible to effectively suppress the occurrence of fatigue cracks originating from the weld root portion of the girth weld.

本発明の第1の実施形態に係る溶接構造物の斜視図である。1 is a perspective view of a welded structure according to a first embodiment of the present invention; FIG. 図1のI-I線断面図である。FIG. 2 is a sectional view taken along line II of FIG. 1; 図1に示す溶接構造物の溶接継手部分を拡大して示す断面図である。2 is an enlarged cross-sectional view showing a welded joint portion of the welded structure shown in FIG. 1; FIG. 本発明の第1の実施形態における応力伝達を模式的に示す図である。FIG. 4 is a diagram schematically showing stress transmission in the first embodiment of the present invention; 比較例における応力伝達を模式的に示す図である。FIG. 5 is a diagram schematically showing stress transmission in a comparative example; 溶接継手部分の別の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of a welded joint portion; 溶接継手部分のさらに別の例を示す断面図である。FIG. 10 is a cross-sectional view showing yet another example of a welded joint portion; 本発明の第2の実施形態に係る溶接構造物の断面図である。FIG. 5 is a cross-sectional view of a welded structure according to a second embodiment of the present invention; 図8に示す溶接構造物の溶接継手部分の拡大図である。9 is an enlarged view of the welded joint portion of the welded structure shown in FIG. 8; FIG. 本発明の第3の実施形態に係る溶接構造物の断面図である。FIG. 5 is a cross-sectional view of a welded structure according to a third embodiment of the present invention; 図10に示す溶接構造物の溶接継手部分の拡大図である。11 is an enlarged view of the welded joint portion of the welded structure shown in FIG. 10; FIG. 本発明の第4の実施形態に係る溶接構造物の断面図である。FIG. 5 is a cross-sectional view of a welded structure according to a fourth embodiment of the present invention; 図12に示す溶接構造物の溶接継手部分の拡大図である。13 is an enlarged view of the welded joint portion of the welded structure shown in FIG. 12; FIG. 本発明の第5の実施形態に係る溶接構造物の断面図である。FIG. 5 is a cross-sectional view of a welded structure according to a fifth embodiment of the present invention; 図14に示す溶接構造物の溶接継手部分の拡大図である。15 is an enlarged view of the welded joint portion of the welded structure shown in FIG. 14; FIG. 図15に示した例の変形例を示す図である。FIG. 16 is a diagram showing a modification of the example shown in FIG. 15; 本発明の第6の実施形態に係る溶接構造物の断面図である。FIG. 11 is a cross-sectional view of a welded structure according to a sixth embodiment of the present invention; 図17に示す溶接構造物の溶接継手部分の拡大図である。18 is an enlarged view of the welded joint portion of the welded structure shown in FIG. 17; FIG. 本発明の実施例に係る試験装置を示す図である。It is a figure which shows the testing apparatus based on the Example of this invention. 本発明の実施例に係る試験装置を示す図である。It is a figure which shows the testing apparatus based on the Example of this invention. 本発明の実施例における試験結果を示すグラフである。4 is a graph showing test results in Examples of the present invention.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

(第1の実施形態)
図1は本発明の第1の実施形態に係る溶接構造物の斜視図であり、図2は図1のI-I線断面図である。図3は、図2に示す溶接構造物の溶接継手部分の拡大図である。本実施形態において、溶接構造物は、第1の管状部材である円形断面の鋼管1と、鋼管1の内部空間を少なくとも部分的に閉塞する板状部材であるダイヤフラム2とを含む。ダイヤフラム2の平面形状は円形であり、周縁の端面2Eが鋼管1の内周面1Sに周溶接されている。具体的には、ダイヤフラム2の端面2Eと鋼管1の内周面1Sとの間に溶接金属3が充填または積層されることによって、ダイヤフラム2が鋼管1に接合されている。なお、本明細書において、周溶接は管状部材の周方向の溶接を意味し、必ずしも管状部材の全周にわたる溶接でなくてもよい。
(First embodiment)
FIG. 1 is a perspective view of a welded structure according to a first embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II of FIG. 3 is an enlarged view of a welded joint portion of the welded structure shown in FIG. 2; FIG. In this embodiment, the welded structure includes a steel pipe 1 having a circular cross section, which is a first tubular member, and a diaphragm 2, which is a plate-shaped member that at least partially closes the internal space of the steel pipe 1 . The planar shape of the diaphragm 2 is circular, and the peripheral end face 2E is circumferentially welded to the inner peripheral surface 1S of the steel pipe 1 . Specifically, the diaphragm 2 is joined to the steel pipe 1 by filling or laminating the weld metal 3 between the end surface 2E of the diaphragm 2 and the inner peripheral surface 1S of the steel pipe 1 . In this specification, circumferential welding means welding in the circumferential direction of the tubular member, and does not necessarily have to be welding over the entire circumference of the tubular member.

上記のような溶接構造物では、例えば2枚のダイヤフラム2を鋼管1に取り付けるとこれらのダイヤフラム2の間が閉じられた空間になるため、鋼管1とダイヤフラム2との間の溶接継手部分には片側、すなわちダイヤフラム2に対して鋼管1の開口側からしかアクセスできない。従って、溶接金属3は、鋼管1の内周面1Sとダイヤフラム2の端面2Eとの間に、鋼管1の開口側から充填または積層され、溶接止端3A,3Bの後処理も同様に鋼管1の開口側からのアクセスのみによって行われる。 In the welded structure as described above, for example, when two diaphragms 2 are attached to the steel pipe 1, the space between these diaphragms 2 becomes a closed space. Access is only possible from one side, namely from the open side of the steel tube 1 to the diaphragm 2 . Therefore, the weld metal 3 is filled or laminated from the opening side of the steel pipe 1 between the inner peripheral surface 1S of the steel pipe 1 and the end face 2E of the diaphragm 2, and the post-treatment of the weld toes 3A and 3B is also performed in the same way. access only from the open side of the

このような場合において、ダイヤフラム2の外側に位置する溶接金属3の表面と母材の表面との交点、すなわち溶接止端3A,3Bについては、図示された例のように切削加工などの後処理を行うことで疲労き裂の発生を抑制することができる。なお、本実施形態において溶接止端3A,3Bの後処理は公知の手法によって適宜行われるため、詳細な説明は省略する。切削加工以外の方法で溶接止端3A,3Bの後処理が施されてもよく、また後処理が省略されてもよい。 In such a case, the intersection of the surface of the weld metal 3 located outside the diaphragm 2 and the surface of the base metal, that is, the weld toes 3A and 3B, is subjected to post-processing such as cutting as in the illustrated example. can suppress the occurrence of fatigue cracks. In addition, since post-processing of weld toe 3A, 3B is suitably performed by a well-known method in this embodiment, detailed description is abbreviate|omitted. The weld toes 3A and 3B may be post-treated by a method other than cutting, or the post-treatment may be omitted.

一方、ダイヤフラム2の内側に位置する溶接金属3の表面と母材の表面との交点、溶接ルート部3Cについては、アクセスが困難であることから、後処理によって疲労き裂の発生を抑制することが容易ではない。そこで、本実施形態では、以下で説明するように鋼管1とダイヤフラム2との間の非溶接領域で鋼材同士が接触して互いに応力を伝達することを可能にする構造を採用し、それによって溶接ルート部を起点とする疲労き裂の発生を効果的に抑制する。なお、簡単のため鋼管1の内周面1Sと溶接金属3との交点が溶接ルート部3Cとして図示されているが、ダイヤフラム2の端面2Eと溶接金属3との交点である溶接ルート部についても同様に疲労き裂の発生が抑制される。 On the other hand, since it is difficult to access the intersection of the surface of the weld metal 3 located inside the diaphragm 2 and the surface of the base metal, that is, the weld root portion 3C, the generation of fatigue cracks should be suppressed by post-treatment. is not easy. Therefore, in the present embodiment, as described below, a structure is adopted in which the steel materials are in contact with each other in the non-welding region between the steel pipe 1 and the diaphragm 2, thereby allowing stress to be transmitted to each other. It effectively suppresses the occurrence of fatigue cracks originating from the root portion. For simplicity, the intersection point between the inner peripheral surface 1S of the steel pipe 1 and the weld metal 3 is shown as the weld root portion 3C, but the weld root portion, which is the intersection point between the end surface 2E of the diaphragm 2 and the weld metal 3, is also shown. Similarly, the occurrence of fatigue cracks is suppressed.

図3に示されるように、鋼管1とダイヤフラム2との間の溶接継手部分では、ダイヤフラム2の外側から溶接金属3が充填または積層されることによって、鋼管1とダイヤフラム2との間に溶接領域R1と非溶接領域R2とが形成される。溶接領域R1は、鋼管1とダイヤフラム2との間に溶接金属が充填または積層される領域である。図3では、鋼管1の内周面1Sとダイヤフラム2の端面2Eとの間に形成される溶接領域R1が図示されている。なお、溶接領域R1では設計上、鋼管1の内周面1Sとダイヤフラム2の端面2Eとの間に溶接金属3が充填されるが、溶接によって母材である鋼管1およびダイヤフラム2と溶接金属3とが溶融するため、溶接後の溶接領域R1において内周面1Sおよび端面2Eが明確に判別できるとは限らない。 As shown in FIG. 3 , in the welded joint portion between the steel pipe 1 and the diaphragm 2 , the weld area between the steel pipe 1 and the diaphragm 2 is increased by filling or laminating the weld metal 3 from the outside of the diaphragm 2 . R1 and a non-welded region R2 are formed. Welding region R1 is a region where weld metal is filled or laminated between steel pipe 1 and diaphragm 2 . FIG. 3 shows a welded region R1 formed between the inner peripheral surface 1S of the steel pipe 1 and the end surface 2E of the diaphragm 2. As shown in FIG. In the welding region R1, the weld metal 3 is filled between the inner peripheral surface 1S of the steel pipe 1 and the end surface 2E of the diaphragm 2 from the design point of view. are melted, the inner peripheral surface 1S and the end surface 2E cannot always be clearly distinguished in the welded region R1 after welding.

一方、非溶接領域R2は、鋼管1とダイヤフラム2との間に溶接金属が充填または積層されない領域である。図3では、鋼管1の内周面1Sとダイヤフラム2の端面2Eとの間に形成される非溶接領域R2が図示されている。鋼管1の内周面1Sとダイヤフラム2の端面2Eとの間で溶接領域R1と非溶接領域R2との境界に位置する溶接金属3の端縁が、溶接ルート部3Cである。本実施形態では、この非溶接領域R2に含まれる接触領域R3において、鋼管1とダイヤフラム2とが接触することによって互いの間で応力が伝達される。より具体的には、図示された例において、ダイヤフラム2の端面2Eは全体が斜角面であり、接触領域R3では斜角面の端縁2Gを含む部分と鋼管1の内周面1Sとが接触する。 On the other hand, the non-welded region R2 is a region where the weld metal is not filled or laminated between the steel pipe 1 and the diaphragm 2. As shown in FIG. FIG. 3 shows a non-welded region R2 formed between the inner peripheral surface 1S of the steel pipe 1 and the end surface 2E of the diaphragm 2. As shown in FIG. The edge of the weld metal 3 located between the inner peripheral surface 1S of the steel pipe 1 and the end surface 2E of the diaphragm 2 at the boundary between the welded region R1 and the non-welded region R2 is the welded root portion 3C. In this embodiment, stress is transmitted between the steel pipe 1 and the diaphragm 2 by contacting each other in the contact region R3 included in the non-welded region R2. More specifically, in the illustrated example, the entire end surface 2E of the diaphragm 2 is a beveled surface, and in the contact region R3, a portion including the edge 2G of the beveled surface and the inner peripheral surface 1S of the steel pipe 1 are separated. Contact.

なお、図3に示された例では、接触領域R3において鋼管1とダイヤフラム2とが応力伝達が可能な程度に強く接触するため、接触領域R3の近傍で鋼管1が弾性変形している。なお、説明のために大きな弾性変形が図示されているが、必ずしもこのように大きな弾性変形が生じるとは限らない。鋼管1に加えてダイヤフラム2にも弾性変形が生じてもよく、ダイヤフラム2だけに弾性変形が生じてもよい。このような弾性変形は、例えば溶接後の熱収縮によってダイヤフラム2が鋼管1に対して押し付けられることによって発生する。 In the example shown in FIG. 3, the steel pipe 1 and the diaphragm 2 are in contact with each other strongly enough to allow stress transmission in the contact region R3, so the steel pipe 1 is elastically deformed in the vicinity of the contact region R3. Although large elastic deformation is illustrated for explanation, such large elastic deformation does not necessarily occur. In addition to the steel pipe 1, the diaphragm 2 may be elastically deformed, or only the diaphragm 2 may be elastically deformed. Such elastic deformation occurs, for example, when the diaphragm 2 is pressed against the steel pipe 1 due to heat shrinkage after welding.

また、図3に示された例では、ダイヤフラム2が、鋼管1に向かって凸な形状、具体的には端面2Eの全体に形成される斜角面の端縁2Gを有する。これによって、例えば、溶接前には端縁2Gが鋼管1の内周面1Sに接触しないか、またはわずかに接触する程度であったとしても、溶接後の熱収縮によって端面2Eと内周面1Sとの間の距離が縮まることによって端縁2Gを内周面1Sに押し付け、接触領域R3において鋼管1とダイヤフラム2との間で応力が伝達される状態を実現することができる。さらに、本実施形態では、鋼管1の径方向の熱収縮に加えて、鋼管1の周方向の熱収縮も生じるため、溶接前にはダイヤフラム2の端面2Eが内周面1Sから離隔していたとしても、溶接後に端縁2Gを内周面1Sに押し付け、接触領域において鋼管1とダイヤフラム2との間で応力が伝達される状態を実現することができる。 Further, in the example shown in FIG. 3, the diaphragm 2 has a convex shape toward the steel pipe 1, specifically, a beveled edge 2G formed on the entire end surface 2E. As a result, for example, even if the edge 2G does not come into contact with the inner peripheral surface 1S of the steel pipe 1 before welding, or even if it slightly comes into contact with the inner peripheral surface 1S of the steel pipe 1, the heat shrinkage after welding causes the end surface 2E and the inner peripheral surface 1S to contact each other. , the edge 2G is pressed against the inner peripheral surface 1S by shortening the distance between them, and a state in which stress is transmitted between the steel pipe 1 and the diaphragm 2 in the contact region R3 can be realized. Furthermore, in the present embodiment, in addition to thermal contraction of the steel pipe 1 in the radial direction, thermal contraction of the steel pipe 1 in the circumferential direction also occurs. Even so, the edge 2G is pressed against the inner peripheral surface 1S after welding, and a state in which stress is transmitted between the steel pipe 1 and the diaphragm 2 in the contact area can be realized.

図4は、本発明の第1の実施形態における応力伝達を模式的に示す図であり、図5は比較例における応力伝達を模式的に示す図である。図4に示される例では、ダイヤフラム2の端縁2Gを含む部分が鋼管1の内周面1Sに接触する接触領域R3(図3参照)で集中的に応力STが伝達されることによって、溶接ルート部3Cへの応力集中が緩和される。応力が集中する接触領域R3が疲労き裂の起点になる可能性はあるものの、上述のように接触領域R3は非溶接領域R2にあるため、溶接熱による残留応力や母材の組織劣化などの影響が小さく、従って接触領域R3を起点とする疲労き裂が発生する可能性は溶接ルート部3Cに比べて低い。母材、すなわち鋼管1またはダイヤフラム2の少なくともいずれかを、例えば特許第4000049号公報、特許第4466196号公報、および特許第5304619号公報などに記載されたような疲労耐久性が高い鋼材で形成することによって、接触領域R3から疲労き裂が発生する可能性をさらに小さくすることができる。また、接触領域R3を溶接領域R1から離隔させることによって、残留応力や母材の組織劣化などの影響をより小さくしてもよい。 FIG. 4 is a diagram schematically showing stress transmission in the first embodiment of the present invention, and FIG. 5 is a diagram schematically showing stress transmission in a comparative example. In the example shown in FIG. 4, the stress ST is intensively transmitted in the contact region R3 (see FIG. 3) where the portion including the edge 2G of the diaphragm 2 contacts the inner peripheral surface 1S of the steel pipe 1, thereby welding. Stress concentration on the root portion 3C is relieved. Although there is a possibility that the contact region R3 where stress concentrates may become the starting point of fatigue cracks, since the contact region R3 is in the non-welded region R2 as described above, residual stress due to welding heat and structural deterioration of the base material may occur. The influence is small, and therefore the possibility of occurrence of fatigue cracks starting from the contact region R3 is low compared to the weld root portion 3C. At least one of the base material, that is, the steel pipe 1 or the diaphragm 2, is formed of a steel material having high fatigue durability as described in, for example, Japanese Patent No. 4000049, Japanese Patent No. 4466196, and Japanese Patent No. 5304619. This can further reduce the possibility of fatigue cracks occurring from the contact region R3. Further, by separating the contact region R3 from the welding region R1, the effects of residual stress, structural deterioration of the base material, and the like may be reduced.

一方、図5に示される例では、非溶接領域R2において鋼管1とダイヤフラム2とが接触していないため、非溶接領域R2と溶接領域R1との境目に位置する溶接ルート部3Cに応力STが集中する。既に述べたように、溶接ルート部3Cでは溶接熱による残留応力や母材の組織劣化などの影響が大きいため、疲労き裂が発生しやすい。なお、図4および図5では、例として鋼管1の内周面1Sに対して平行な方向の応力STが図示されているが、ダイヤフラム2の板面に対して平行な方向の応力や、それぞれの方向の曲げ応力の伝達についても同様の傾向が示される。 On the other hand, in the example shown in FIG. 5, since the steel pipe 1 and the diaphragm 2 are not in contact with each other in the non-welded region R2, stress ST is applied to the weld root portion 3C located at the boundary between the non-welded region R2 and the welded region R1. concentrate. As described above, the welding root portion 3C is susceptible to fatigue cracking due to the large influence of residual stress and structural deterioration of the base metal due to welding heat. 4 and 5, the stress ST in the direction parallel to the inner peripheral surface 1S of the steel pipe 1 is illustrated as an example, but the stress in the direction parallel to the plate surface of the diaphragm 2 and A similar trend is shown for the transmission of bending stress in the direction of .

図6は、溶接継手部分の別の例を示す断面図である。図6に示された例では、ダイヤフラム2の端面2Eの一部に斜角面2Bが形成され、斜角面2Bの端縁2Gが非溶接領域R2に含まれる接触領域R3で鋼管1の内周面1Sに接触する。このように、ダイヤフラム2の端面2E(鋼管1の内周面に対向する面)に形成される斜角面の端縁が鋼管1に向かって凸な形状になり、この端縁を含む部分が鋼管1の内周面1Sに接触させられる構成については様々な変形例が可能である。 FIG. 6 is a cross-sectional view showing another example of a welded joint portion. In the example shown in FIG. 6, a beveled surface 2B is formed on a part of the end surface 2E of the diaphragm 2, and the edge 2G of the beveled surface 2B is the contact region R3 included in the non-welding region R2. It contacts the peripheral surface 1S. In this way, the edge of the beveled surface formed on the end face 2E of the diaphragm 2 (the surface facing the inner peripheral surface of the steel pipe 1) has a convex shape toward the steel pipe 1, and the portion including this edge is Various modifications are possible for the configuration that is brought into contact with the inner peripheral surface 1S of the steel pipe 1 .

また、例えば、ダイヤフラム2が全体として凹状であって、ダイヤフラム2の端部が鋼管1に対して直角ではなく角度をもって当接される場合(つまり、鋼管1の内周面1Sとダイヤフラム2の端面2Eとの間に自然開先が形成されるような場合)、端面2Eに斜角面を形成しなくても、端面2Eの端縁が鋼管1に向かって凸な形状になり、この端縁を含む部分を鋼管1の内周面1Sに接触させることによって、接触領域R3において鋼管1とダイヤフラム2との間で応力が伝達される状態を実現することができる。 Further, for example, when the diaphragm 2 is concave as a whole and the end of the diaphragm 2 contacts the steel pipe 1 not at a right angle but at an angle (that is, when the inner peripheral surface 1S of the steel pipe 1 and the end surface of the diaphragm 2 2E), the edge of the end face 2E becomes convex toward the steel pipe 1 even if the beveled face is not formed on the end face 2E, and this edge By contacting the inner peripheral surface 1S of the steel pipe 1 with the portion including the , it is possible to realize a state in which stress is transmitted between the steel pipe 1 and the diaphragm 2 in the contact region R3.

図7は、溶接継手部分のさらに別の例を示す断面図である。図7に示された例では、ダイヤフラム2の端面2Eに斜角面2Bが形成されるが、斜角面の端部が角張った端縁を形成するのではなく、曲面2Cを形成する。曲面2Cは、例えば円筒断面であってもよい。この場合も、曲面2Cが鋼管1に向かって凸な形状になり、ダイヤフラム2の曲面2Cを含む部分が接触領域R3で鋼管1に接触することによって応力が伝達される。この例のように、ダイヤフラム2に形成される凸な形状は必ずしも角張った形状でなくてもよい。接触領域R3における鋼管1とダイヤフラム2との間の接触は、必ずしも線状(断面では点状)の領域における接触でなくてもよく、ある程度の幅をもった領域における接触であってもよい。また、溶接線に沿った方向(管状部材の周方向、図7では奥行き方向)について、接触領域R3における鋼管1とダイヤフラム2との間の接触状態は一様でなくてもよい。具体的には、例えば、溶接線に沿った方向で接触領域R3の幅が変化したり、一部の区間では接触領域R3が途切れたりしてもよい。 FIG. 7 is a cross-sectional view showing still another example of a welded joint portion. In the example shown in FIG. 7, the end surface 2E of the diaphragm 2 is formed with a beveled surface 2B, but the end of the beveled surface forms a curved surface 2C rather than forming an angular edge. The curved surface 2C may be, for example, a cylindrical cross section. In this case as well, the curved surface 2C has a convex shape toward the steel pipe 1, and the stress is transmitted when the portion including the curved surface 2C of the diaphragm 2 contacts the steel pipe 1 at the contact region R3. As in this example, the convex shape formed on the diaphragm 2 does not necessarily have to be angular. The contact between the steel pipe 1 and the diaphragm 2 in the contact region R3 does not necessarily have to be a linear (point-like in cross section) contact, and may be a contact having a certain width. Further, the contact state between the steel pipe 1 and the diaphragm 2 in the contact region R3 may not be uniform in the direction along the weld line (the circumferential direction of the tubular member, the depth direction in FIG. 7). Specifically, for example, the width of the contact region R3 may change in the direction along the weld line, or the contact region R3 may be interrupted in some sections.

以上、本発明の第1の実施形態について説明した。なお、本実施形態の構成は、鋼管1とダイヤフラム2を含む溶接構造物だけではなく、同様に第1の管状部材と第2の部材とを断面においてT形に組み合せることによって構成される継手を含む様々な溶接構造物に適用することが可能である。 The first embodiment of the present invention has been described above. The configuration of this embodiment is not limited to a welded structure including the steel pipe 1 and the diaphragm 2, but also a joint configured by combining a first tubular member and a second member in a T-shaped cross section. It is possible to apply to various welded structures including

(第2の実施形態)
図8は本発明の第2の実施形態に係る溶接構造物の断面図であり、図9は図8に示す溶接構造物の溶接継手部分の拡大図である。本実施形態において、溶接構造物は、第1の管状部材である鋼管11と、鋼管11の内部空間を少なくとも部分的に閉塞する板状部材である蓋体12とを含む。蓋体12の平面形状は円形であり、周縁部には板面に対して略垂直な段継ぎ面12Pが形成されている。鋼管11は、端部の内周面11Sが蓋体12の段継ぎ面12Pに対向するように蓋体12に嵌合される。ここで、図9に示された例では鋼管11の端面11Eが斜角面を含み、端面11Eと段継ぎ面12Pに隣接する蓋体12の立ち上がり面12Qとの間に形成される開先に溶接金属3が充填または積層される。溶接金属3は開先の底部まで到達し、溶接ルート部3Cは鋼管11の内周面11Sと蓋体12の段継ぎ面12Pとの間に形成される。
(Second embodiment)
FIG. 8 is a cross-sectional view of a welded structure according to a second embodiment of the present invention, and FIG. 9 is an enlarged view of a welded joint portion of the welded structure shown in FIG. In this embodiment, the welded structure includes a steel pipe 11 that is a first tubular member and a lid 12 that is a plate-like member that at least partially closes the internal space of the steel pipe 11 . The planar shape of the lid body 12 is circular, and a stepped surface 12P substantially perpendicular to the plate surface is formed on the peripheral edge. The steel pipe 11 is fitted to the lid 12 so that the inner peripheral surface 11S of the end faces the stepped surface 12P of the lid 12 . Here, in the example shown in FIG. 9, the end surface 11E of the steel pipe 11 includes an oblique surface, and the groove formed between the end surface 11E and the rising surface 12Q of the lid body 12 adjacent to the stepped surface 12P The weld metal 3 is filled or laminated. The weld metal 3 reaches the bottom of the groove, and a weld root portion 3C is formed between the inner peripheral surface 11S of the steel pipe 11 and the joint surface 12P of the lid body 12.

上記のような図8および図9に示された例では、鋼管11の内周面11Sと蓋体12の段継ぎ面12Pとの間に溶接領域R1と非溶接領域R2とが形成され、非溶接領域R2は接触領域R3が含まれる。ここで、溶接領域R1は、鋼管11の端面11Eと蓋体12の立ち上がり面12Qとの間に形成された開先に充填または積層された溶接金属3が流れ込むことによって、鋼管11の内周面11Sと蓋体12の段継ぎ面12Pとが部分的に溶融した領域である。図示された例において、段継ぎ面12Pは全体が斜角面である。接触領域R3では斜角面である段継ぎ面12Pの端縁12Gを含む部分と鋼管11の内周面11Sとが接触する。 In the example shown in FIGS. 8 and 9 as described above, the welded region R1 and the non-welded region R2 are formed between the inner peripheral surface 11S of the steel pipe 11 and the stepped surface 12P of the lid body 12. Welding region R2 includes contact region R3. Here, the weld region R1 is formed by the weld metal 3 filled or laminated into the groove formed between the end surface 11E of the steel pipe 11 and the rising surface 12Q of the lid body 12. 11S and the stepped surface 12P of the lid body 12 are partially melted regions. In the illustrated example, the stepped surface 12P is a beveled surface as a whole. In the contact region R3, a portion including the edge 12G of the step joint surface 12P, which is an oblique surface, and the inner peripheral surface 11S of the steel pipe 11 come into contact with each other.

これによって、図8および図9に示された例でも、鋼管11の内周面11Sと蓋体12の段継ぎ面12Pとの間に形成される溶接ルート部への応力集中を緩和し、溶接ルート部を起点とする疲労き裂の発生を効果的に抑制することができる。蓋体12の段継ぎ面12Pの構成として、例えば上記で図6および図7を参照して説明したような例を採用することも可能である。 As a result, even in the examples shown in FIGS. 8 and 9, the stress concentration on the weld root portion formed between the inner peripheral surface 11S of the steel pipe 11 and the step joint surface 12P of the lid body 12 is alleviated, and welding is performed. It is possible to effectively suppress the occurrence of fatigue cracks originating from the root portion. As the configuration of the stepped surface 12P of the lid body 12, for example, it is possible to employ the example described above with reference to FIGS.

(第3の実施形態)
図10は本発明の第3の実施形態に係る溶接構造物の断面図であり、図11は図10に示す溶接構造物の溶接継手部分の拡大図である。本実施形態において、溶接構造物は、第1の管状部材である鋼管21の端面21Eと、第3の管状部材である鋼管23の端面23Eとが互いに突き合わされることによって構成される突合せ管継手を含む。図示された例において、嵌合リング22は鋼管21,23のそれぞれの内側に嵌合することによって鋼管21,23の内周面21S,23Sに当接される嵌合管状部材である。鋼管23の端面23Eは斜角面を含み、鋼管21の端面21Eと鋼管23の端面23Eとの間に形成される開先に溶接金属3が充填または積層される。溶接金属3は開先の底部まで到達し、溶接ルート部3Cは鋼管21の内周面21Sと嵌合リング22の外周面22Sとの間、および鋼管23の内周面23Sと嵌合リング22の外周面22Sとの間にそれぞれ形成される。
(Third embodiment)
FIG. 10 is a cross-sectional view of a welded structure according to a third embodiment of the present invention, and FIG. 11 is an enlarged view of a welded joint portion of the welded structure shown in FIG. In this embodiment, the welded structure is a butt pipe joint constructed by abutting the end surface 21E of the steel pipe 21, which is the first tubular member, and the end surface 23E of the steel pipe 23, which is the third tubular member. including. In the illustrated example, the fitting ring 22 is a fitting tubular member that abuts against the inner peripheral surfaces 21S, 23S of the steel pipes 21, 23 by fitting inside the steel pipes 21, 23, respectively. The end surface 23E of the steel pipe 23 includes a beveled surface, and the weld metal 3 is filled or laminated in the groove formed between the end surface 21E of the steel pipe 21 and the end surface 23E of the steel pipe 23 . The weld metal 3 reaches the bottom of the groove, and the weld root portion 3C is formed between the inner peripheral surface 21S of the steel pipe 21 and the outer peripheral surface 22S of the fitting ring 22, and between the inner peripheral surface 23S of the steel pipe 23 and the fitting ring 22. are formed between the outer peripheral surface 22S of the .

上記のような図10および図11に示された例では、鋼管21の内周面21Sと嵌合リング22の外周面22Sとの間に溶接領域R1と非溶接領域R2とが形成され、非溶接領域R2は接触領域R3を含む。ここで、溶接領域R1は、鋼管21の端面21Eと鋼管23の端面23Eとの間に形成された開先に充填または積層された溶接金属3が流れ込むことによって、鋼管21の内周面21Sと嵌合リング22の外周面22Sとが部分的に溶融した領域である。鋼管21の内周面21Sに対向する嵌合リング22の外周面22Sの一部には斜角面22Bが形成され(つまり、嵌合リング22は少なくとも片側が裾広がりになった形状を有し)、斜角面22Bの端縁22Gを含む部分が接触領域R3で鋼管21の内周面21Sに接触する。 In the example shown in FIGS. 10 and 11 as described above, the welded region R1 and the non-welded region R2 are formed between the inner peripheral surface 21S of the steel pipe 21 and the outer peripheral surface 22S of the fitting ring 22. Weld region R2 includes contact region R3. Here, the weld region R1 is formed between the inner peripheral surface 21S of the steel pipe 21 and the inner peripheral surface 21S of the steel pipe 21 by the weld metal 3 filled or laminated into the groove formed between the end surface 21E of the steel pipe 21 and the end surface 23E of the steel pipe 23. It is a region where the outer peripheral surface 22S of the fitting ring 22 is partially melted. An oblique surface 22B is formed on a portion of the outer peripheral surface 22S of the fitting ring 22 facing the inner peripheral surface 21S of the steel pipe 21 (that is, the fitting ring 22 has a shape in which at least one side is widened at the bottom). ), the portion including the edge 22G of the beveled surface 22B contacts the inner peripheral surface 21S of the steel pipe 21 at the contact region R3.

これによって、図10および図11に示された例でも、鋼管21の内周面21Sと嵌合リング22の外周面22Sとの間に形成される溶接ルート部3Cへの応力集中を緩和し、溶接ルート部3Cを起点とする疲労き裂の発生を効果的に抑制することができる。嵌合リング22の外周面22Sの構成として、例えば上記で図3および図6を参照して説明したような例を採用することも可能である。また、図示されているように、鋼管23の内周面23Sと嵌合リング22の外周面22Sとの間にも溶接領域および非溶接領域が形成され、非溶接領域に含まれる接触領域で外周面22Sと内周面23Sとを互いに接触させることによって応力を伝達させ、鋼管23側での溶接ルート部を起点とする疲労き裂の発生を抑制してもよい。なお、嵌合リングは全周にわたって一体的に形成された部材でなくてもよく、例えば周方向に2つ、または3つの部分に分割されていてもよい。また、管状またはリング状ではない部材を突合せ管継手の周方向の一部で鋼管21,23の内周面21S,23Sに当接させた状態で溶接を実施することによって、上記の嵌合リング22の例と同様に溶接ルート部を起点とする疲労き裂の発生を抑制してもよい。 10 and 11, the stress concentration on the weld root portion 3C formed between the inner peripheral surface 21S of the steel pipe 21 and the outer peripheral surface 22S of the fitting ring 22 is alleviated, It is possible to effectively suppress the occurrence of fatigue cracks originating from the weld root portion 3C. As the configuration of the outer peripheral surface 22S of the fitting ring 22, for example, it is possible to employ the example described above with reference to FIGS. Further, as shown in the figure, a welded region and a non-welded region are also formed between the inner peripheral surface 23S of the steel pipe 23 and the outer peripheral surface 22S of the fitting ring 22. Stress may be transmitted by bringing the surface 22S and the inner peripheral surface 23S into contact with each other, thereby suppressing the occurrence of fatigue cracks originating from the weld root portion on the steel pipe 23 side. It should be noted that the fitting ring may not be a member integrally formed over the entire circumference, and may be divided into, for example, two or three parts in the circumferential direction. In addition, welding is performed in a state in which a member that is not tubular or ring-shaped is brought into contact with the inner peripheral surfaces 21S, 23S of the steel pipes 21, 23 at a part of the circumferential direction of the butt pipe joint, so that the fitting ring As in the example of No. 22, the occurrence of fatigue cracks originating from the weld root portion may be suppressed.

(第4の実施形態)
図12は本発明の第4の実施形態に係る溶接構造物の断面図であり、図13は図12に示す溶接構造物の溶接継手部分の拡大図である。本実施形態において、溶接構造物は、第1の管状部材である鋼管31と、第2の管状部材である鋼管32とを含む。鋼管32の外周面の一部が、鋼管31に接続される端部において切り欠かれて段継ぎ面32Pを形成している。鋼管31は、端部の内周面31Sが段継ぎ面32Pに対向するように鋼管32の端部に嵌合される。ここで、図示された例では鋼管31の端面31Eが斜角面を含み、端面31Eと段継ぎ面32Pに隣接する鋼管32の立ち上がり面32Qとの間に形成される開先に溶接金属3が充填または積層される。溶接金属3は開先の底部まで到達し、溶接ルート部は鋼管31の内周面31Sと鋼管32の段継ぎ面32Pとの間に形成される。本実施形態において、段継ぎ面32Pは全体が斜角面であり、段継ぎ面32Pの端縁32Gを含む部分が鋼管31の内周面31Sに接触することによって、例えば上述した第2の実施形態と同様の溶接領域R1、非溶接領域R2、および接触領域R3が形成される。接触領域R3で集中的に応力が伝達されることによって、溶接ルート部への応力集中を緩和することができる。
(Fourth embodiment)
12 is a cross-sectional view of a welded structure according to a fourth embodiment of the present invention, and FIG. 13 is an enlarged view of a welded joint portion of the welded structure shown in FIG. In this embodiment, the welded structure includes a steel pipe 31 as a first tubular member and a steel pipe 32 as a second tubular member. A portion of the outer peripheral surface of the steel pipe 32 is notched at the end connected to the steel pipe 31 to form a stepped surface 32P. The steel pipe 31 is fitted to the end of the steel pipe 32 so that the inner peripheral surface 31S of the end faces the stepped surface 32P. Here, in the illustrated example, the end surface 31E of the steel pipe 31 includes an oblique surface, and the weld metal 3 is formed in the groove formed between the end surface 31E and the rising surface 32Q of the steel pipe 32 adjacent to the stepped surface 32P. Filled or laminated. The weld metal 3 reaches the bottom of the groove, and the weld root is formed between the inner peripheral surface 31S of the steel pipe 31 and the joint surface 32P of the steel pipe 32. In this embodiment, the stepped surface 32P is an oblique surface as a whole. A welded region R1, a non-welded region R2, and a contact region R3 similar to the form are formed. Stress concentration on the weld root portion can be alleviated by intensive transmission of stress in the contact region R3.

なお、図12に示された例では鋼管31の外径と鋼管32の外径とが一致するため鋼管32の外周面の一部を段継ぎ面32Pとしているが、例えば鋼管32の外径が鋼管31の外径よりも小さく鋼管31の内径と同程度である場合には、段継ぎ面32Pを形成することなく鋼管31の端面31Eと鋼管32の外周面との間に重ね継手状の溶接部を形成してもよい。この場合、鋼管31の内周面31Sと鋼管32の外周面(段継ぎ面ではない)との間に上記のような溶接領域R1、非溶接領域R2、および接触領域R3が形成される。 In the example shown in FIG. 12, since the outer diameter of the steel pipe 31 and the outer diameter of the steel pipe 32 are the same, a part of the outer peripheral surface of the steel pipe 32 is used as the stepped surface 32P. If the outer diameter of the steel pipe 31 is smaller than the inner diameter of the steel pipe 31, the lap joint-like welding is performed between the end surface 31E of the steel pipe 31 and the outer peripheral surface of the steel pipe 32 without forming the stepped surface 32P. may form a part. In this case, the above-described welded region R1, non-welded region R2, and contact region R3 are formed between the inner peripheral surface 31S of the steel pipe 31 and the outer peripheral surface (not the stepped surface) of the steel pipe 32.

(第5の実施形態)
図14は本発明の第5の実施形態に係る溶接構造物の断面図であり、図15は図14に示す溶接構造物の溶接継手部分の拡大図である。本実施形態において、溶接構造物は、第1の管状部材である鋼管41と、鋼管41の内部空間を少なくとも部分的に閉塞する板状部材である蓋体42とを含む。蓋体42の平面形状は円形である。鋼管41は、端面41Eが蓋体42の板面42Sに対向するように蓋体42に当接される。ここで、図15に示された例では鋼管41の端面41Eが斜角面を含み、端面41Eと蓋体42の板面42Sとの間に形成される開先に溶接金属3が充填または積層される。従って、溶接ルート部3Cは鋼管41の端面41Eと蓋体42の板面42Sとの間に形成される。
(Fifth embodiment)
14 is a cross-sectional view of a welded structure according to a fifth embodiment of the present invention, and FIG. 15 is an enlarged view of a welded joint portion of the welded structure shown in FIG. In this embodiment, the welded structure includes a steel pipe 41 that is a first tubular member and a lid 42 that is a plate-like member that at least partially closes the internal space of the steel pipe 41 . The planar shape of the lid 42 is circular. The steel pipe 41 is brought into contact with the lid 42 so that the end face 41E faces the plate surface 42S of the lid 42 . Here, in the example shown in FIG. 15, the end surface 41E of the steel pipe 41 includes an oblique surface, and the groove formed between the end surface 41E and the plate surface 42S of the lid 42 is filled or laminated with the weld metal 3. be done. Therefore, the weld root portion 3C is formed between the end surface 41E of the steel pipe 41 and the plate surface 42S of the lid 42. As shown in FIG.

上記のような図14および図15に示された例では、鋼管41の端面41Eと蓋体42の板面42Sとの間に溶接領域R1と非溶接領域R2とが形成され、非溶接領域R2には接触領域R3が含まれる。ここで、溶接領域R1は、溶接金属3が充填または積層されることによって鋼管41の端面41Eと蓋体42の板面42Sとが部分的に溶融した領域である。図示された例において、端面41Eは全体が斜角面であり、接触領域R3では斜角面である端面41Eの端縁41Gを含む部分と蓋体42の板面42Sとが接触する。 In the example shown in FIGS. 14 and 15 as described above, the welded region R1 and the non-welded region R2 are formed between the end surface 41E of the steel pipe 41 and the plate surface 42S of the lid 42, and the non-welded region R2 contains the contact region R3. Here, the welded region R1 is a region where the end surface 41E of the steel pipe 41 and the plate surface 42S of the lid 42 are partially melted by filling or laminating the weld metal 3 . In the illustrated example, the entire end surface 41E is an oblique surface, and the portion including the edge 41G of the end surface 41E, which is an oblique surface, and the plate surface 42S of the lid 42 come into contact with each other in the contact region R3.

図16は、図15に示した例の変形例を示す図である。図16に示された例では、鋼管41の端面41Eと蓋体42の板面42Sとの間に開先が形成される点は図15の例と同様であるが、図15の例とは逆に蓋体42の板面42Sの一部に斜角面が形成される。この場合、接触領域R3では、板面42Sに形成された斜角面の端縁42Gを含む部分と鋼管41の端面41Eとが接触する。 FIG. 16 is a diagram showing a modification of the example shown in FIG. 15. In FIG. The example shown in FIG. 16 is the same as the example in FIG. 15 in that a groove is formed between the end surface 41E of the steel pipe 41 and the plate surface 42S of the lid body 42, but is different from the example in FIG. Conversely, a beveled surface is formed on a part of the plate surface 42S of the lid 42 . In this case, in the contact region R3, the end face 41E of the steel pipe 41 contacts the portion including the edge 42G of the beveled surface formed on the plate surface 42S.

上記の図14から図16に示された例でも、非溶接領域R2に含まれる接触領域R3において鋼管41の端面41Eと蓋体42の板面42Sとを接触させることによって、溶接ルート部への応力集中を緩和し、溶接ルート部を起点とする疲労き裂の発生を効果的に抑制することができる。 14 to 16, by bringing the end surface 41E of the steel pipe 41 into contact with the plate surface 42S of the lid 42 in the contact area R3 included in the non-welding area R2, the welding root portion is Stress concentration can be alleviated, and the occurrence of fatigue cracks originating from the weld root portion can be effectively suppressed.

(第6の実施形態)
図17は本発明の第6の実施形態に係る溶接構造物の断面図であり、図18は図17に示す溶接構造物の溶接継手部分の拡大図である。本実施形態において、溶接構造物は、第1の管状部材である鋼管51Aと、第2の管状部材である鋼管51Bとを含む。鋼管51A,52Bは、それぞれの端面511E,512Eが互いに対向するように配置される。図示された例では、鋼管51Bの端面512Eが斜角面を含み、端面512Eと端面511Eとの間に形成される開先に溶接金属3が充填または積層される。溶接ルート部3Cは、鋼管51A,51Bの端面511E,512Eの間に形成される。本実施形態において、鋼管51Bの端面512Eの斜角面の端縁512Gを含む部分が鋼管51Aの端面511Eに接触することによって、鋼管51A,51Bの間に溶接領域R1、非溶接領域R2、および接触領域R3が形成される。接触領域R3で集中的に応力が伝達されることによって、溶接ルート部3Cへの応力集中を緩和することができる。
(Sixth embodiment)
17 is a cross-sectional view of a welded structure according to a sixth embodiment of the present invention, and FIG. 18 is an enlarged view of a welded joint portion of the welded structure shown in FIG. In this embodiment, the welded structure includes a steel pipe 51A as a first tubular member and a steel pipe 51B as a second tubular member. The steel pipes 51A, 52B are arranged so that their end faces 511E, 512E face each other. In the illustrated example, the end face 512E of the steel pipe 51B includes an oblique face, and the weld metal 3 is filled or laminated in the groove formed between the end face 512E and the end face 511E. The weld root portion 3C is formed between the end faces 511E, 512E of the steel pipes 51A, 51B. In the present embodiment, a portion including the beveled edge 512G of the end surface 512E of the steel pipe 51B contacts the end surface 511E of the steel pipe 51A, thereby forming a welded region R1, a non-welded region R2, and a welded region R1 between the steel pipes 51A and 51B. A contact region R3 is formed. Stress concentration on the weld root portion 3C can be alleviated by intensive transmission of stress in the contact region R3.

なお、図17に示された例において鋼管51Bは鋼管51Aに連続する管状部材であるが、他の例では、第2の管状部材が短い管状部分と管状部分に接合された蓋部分とを含み、鋼管51Aの内部空間を閉塞してもよい。この場合も、鋼管51Aと第2の管状部材とが管状部分の端面で接合されるのであれば、上記で図17および図18に示された例と同様に溶接構造物を構成することが可能である。 In the example shown in FIG. 17, steel pipe 51B is a tubular member continuous with steel pipe 51A, but in other examples, the second tubular member includes a short tubular portion and a lid portion joined to the tubular portion. , may close the internal space of the steel pipe 51A. Also in this case, if the steel pipe 51A and the second tubular member are joined at the end face of the tubular portion, it is possible to construct a welded structure similar to the examples shown in FIGS. 17 and 18 above. is.

続いて、本発明の実施例について説明する。図19Aおよび図19Bは、本発明の実施例に係る試験装置を示す図である。図19Aに示されるように、試験では、両側を支持された梁81の中央に被溶接材82を溶接した試験体を用いた。この試験体は、例えば上記で図1から図3を参照して説明した鋼管を含む溶接構造物の溶接継手部分を、鋼管の周方向について所定の幅で切り出したものに相当する。梁81と被溶接材82と間の溶接継手部分から両側の支点までの距離がL1、溶接継手部分から繰り返し荷重の載荷点までの距離がL2として図示されている。繰り返し荷重の載荷によって梁81には曲げモーメントが発生し、曲げモーメントによって溶接継手部分には引張応力または圧縮応力が発生する。図19Bに示されるように、被溶接材82の端面82Eには斜角面は形成されておらず、被溶接材82を梁81に対して78°の角度で(すなわち、直角から12°傾けて)当接させた状態で溶接金属83を用いて溶接することによって、梁81と被溶接材82とを非溶接領域で接触させた。 Next, examples of the present invention will be described. 19A and 19B are diagrams showing a testing device according to an embodiment of the invention. As shown in FIG. 19A, the test used a specimen in which a material to be welded 82 was welded to the center of a beam 81 supported on both sides. This specimen corresponds to, for example, the welded joint portion of the welded structure including the steel pipe described above with reference to FIGS. The distance from the welded joint portion between the beam 81 and the material to be welded 82 to the fulcrums on both sides is shown as L1, and the distance from the welded joint portion to the loading point of the repeated load is shown as L2. A bending moment is generated in the beam 81 by applying a repeated load, and a tensile stress or a compressive stress is generated in the welded joint portion by the bending moment. As shown in FIG. 19B, the end surface 82E of the material to be welded 82 is not formed with a beveled surface, and the material to be welded 82 is positioned at an angle of 78° with respect to the beam 81 (that is, at an angle of 12° from the right angle). The beam 81 and the material 82 to be welded are brought into contact with each other in the non-welding region by welding using the weld metal 83 in the contact state.

図20は、本発明の実施例における試験結果を示すグラフである。図20のグラフには、応力比(最小応力の最大応力に対する比)が-1(溶接継手部分に引張応力を発生させる荷重と圧縮応力を発生させる荷重とが同じ大きさで交互に載荷される)および0.1(溶接継手部分に引張応力を発生させる所定の荷重を載荷した状態とその1/10の荷重を載荷した状態とが交互に繰り返される)の場合について、応力範囲(N/mm)と疲労寿命(疲労き裂によって試験体が構造物としての機能を失うまでの繰り返し回数)との関係が示されている(いずれも対数表示)。なお、矢印がつけられている結果は、疲労き裂が発生しないまま所定の繰り返し回数に到達したために試験が終了したケースである。 FIG. 20 is a graph showing test results in Examples of the present invention. In the graph of FIG. 20, the stress ratio (the ratio of the minimum stress to the maximum stress) is -1 (a load that generates a tensile stress and a load that generates a compressive stress are alternately applied to the welded joint portion with the same magnitude). ) and 0.1 (the state where a predetermined load that generates a tensile stress in the welded joint portion and the state where a load of 1/10 of that load is alternately repeated), the stress range (N/mm 2 ) and the fatigue life (the number of repetitions until the specimen loses its function as a structure due to fatigue cracks) is shown (both in logarithmic representation). The results indicated by arrows are the cases where the test was terminated because the predetermined number of repetitions was reached without causing fatigue cracks.

グラフに示されているように、本発明の実施例に係る試験結果では、いずれも、応力範囲と疲労寿命との関係について規定された日本鋼構造協会(JSSC:Japanese Society of Steel Construction)の疲労等級Aに相当する。この疲労等級Aは、一般に溶接継手部分ではなく鋼材自体の疲労強度の評価に用いられる(つまり、一般の溶接継手部分は、より低い疲労等級になる)ことから、本発明の実施形態に従って溶接継手部分が形成された溶接構造物では、溶接ルート部を起点とする疲労き裂の発生が効果的に抑制されているといえる。また、応力比を0.1とした場合にも疲労き裂の発生が抑制されたことから、例えば接触領域R3を接触方向に開口させるような外力が継続的に作用する場合でも、本発明によって疲労き裂の発生を効果的に抑制できるといえる。 As shown in the graph, in the test results according to the examples of the present invention, the fatigue of the Japan Society of Steel Construction (JSSC), which defines the relationship between the stress range and fatigue life Corresponds to grade A. Since this fatigue grade A is generally used to evaluate the fatigue strength of the steel material itself rather than the welded joint portion (that is, the welded joint portion in general has a lower fatigue grade), the welded joint according to the embodiment of the present invention It can be said that the occurrence of fatigue cracks originating from the weld root portion is effectively suppressed in the welded structure in which the portion is formed. In addition, even when the stress ratio was set to 0.1, the occurrence of fatigue cracks was suppressed. It can be said that the occurrence of fatigue cracks can be effectively suppressed.

また、上述したように、例えば溶接継手が鋼管の内周面に形成される場合、鋼管の径方向の熱収縮に加えて鋼管の周方向の熱収縮の影響を受ける。本実施例に係る試験装置では鋼管の周方向の熱収縮は考慮されていないが、実際の鋼管の内周面に形成される溶接継手では被溶接材82が梁81に対してより大きな力で当接させられ、より確実に非溶接領域での接触が実現される結果、疲労き裂の発生を抑制する効果はより高くなる。 Further, as described above, for example, when a welded joint is formed on the inner peripheral surface of a steel pipe, it is affected by thermal contraction in the circumferential direction of the steel pipe in addition to thermal contraction in the radial direction of the steel pipe. Although the test apparatus according to the present embodiment does not take into consideration the thermal contraction of the steel pipe in the circumferential direction, in the actual welded joint formed on the inner peripheral surface of the steel pipe, the material to be welded 82 exerts a greater force on the beam 81. As a result of being brought into contact with each other and realizing contact in the non-welded region more reliably, the effect of suppressing the occurrence of fatigue cracks is enhanced.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、各種の変形例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

1,11,21,23,31,41,51A,51B…鋼管、1S,11S,21S,23S,31S…内周面、2…ダイヤフラム、2B…斜角面、2C…曲面、2E…端面、2G,12G…端縁、3…溶接金属、3C…溶接ルート部、11E,21E,23E,31E,41E,511E,512E…端面、12,42…蓋体、22…嵌合リング、12G,22G,32G…端縁、12P…段継ぎ面、12Q…立ち上がり面、22S…外周面、42S…板面、81…梁、82…被溶接材、82E…端面、83…溶接金属。 1, 11, 21, 23, 31, 41, 51A, 51B... steel pipe, 1S, 11S, 21S, 23S, 31S... inner peripheral surface, 2... diaphragm, 2B... beveled surface, 2C... curved surface, 2E... end face, 2G, 12G... edge 3... weld metal 3C... weld root part 11E, 21E, 23E, 31E, 41E, 511E, 512E... end surface 12, 42... lid body 22... fitting ring 12G, 22G , 32G... edge, 12P... step joint surface, 12Q... rising surface, 22S... outer peripheral surface, 42S... plate surface, 81... beam, 82... material to be welded, 82E... end face, 83... weld metal.

Claims (8)

第1の管状部材、第2の部材、および前記第1の管状部材と前記第2の部材との間に充填または積層される溶接金属を含む溶接構造物であって、
前記第1の管状部材と前記第2の部材との間に、前記溶接金属が充填または積層される溶接領域と、前記溶接金属が充填または積層されない非溶接領域とが形成され、
前記非溶接領域に含まれる接触領域において、前記第1の管状部材と前記第2の部材とが接触することによって互いの間で応力が伝達され
前記第2の部材は前記第1の管状部材の内部空間を少なくとも部分的に閉塞する板状部材であり、
前記溶接領域および前記非溶接領域は、前記第1の管状部材の内周面と前記第2の部材の端面との間に形成され、
前記接触領域では、前記第2の部材の端面に形成された斜角面の端縁が前記第1の管状部材の内周面に接触する、溶接構造物。
A welded structure comprising a first tubular member, a second member, and a weld metal filled or laminated between the first tubular member and the second member,
forming a weld region filled or laminated with the weld metal and a non-welded region not filled or laminated with the weld metal between the first tubular member and the second member;
contacting the first tubular member and the second member in a contact region included in the non-welded region to transmit stress between each other ;
the second member is a plate-like member that at least partially closes the internal space of the first tubular member;
The welded region and the non-welded region are formed between the inner peripheral surface of the first tubular member and the end surface of the second member,
A welded structure, wherein in the contact area, the edge of the beveled surface formed on the end surface of the second member contacts the inner peripheral surface of the first tubular member.
第1の管状部材、第2の部材、および前記第1の管状部材と前記第2の部材との間に充填または積層される溶接金属を含む溶接構造物であって、 A welded structure comprising a first tubular member, a second member, and a weld metal filled or laminated between the first tubular member and the second member,
前記第1の管状部材と前記第2の部材との間に、前記溶接金属が充填または積層される溶接領域と、前記溶接金属が充填または積層されない非溶接領域とが形成され、 forming a weld region filled or laminated with the weld metal and a non-welded region not filled or laminated with the weld metal between the first tubular member and the second member;
前記非溶接領域に含まれる接触領域において、前記第1の管状部材と前記第2の部材とが接触することによって互いの間で応力が伝達され、 contacting the first tubular member and the second member in a contact region included in the non-welded region to transmit stress between each other;
前記第2の部材は前記第1の管状部材の内部空間を少なくとも部分的に閉塞する板状部材であり、 the second member is a plate-like member that at least partially closes the internal space of the first tubular member;
前記溶接領域および前記非溶接領域は、前記第1の管状部材の端部の内周面と前記第2の部材の周縁部に形成される段継ぎ面との間に形成され、 The welded region and the non-welded region are formed between the inner peripheral surface of the end of the first tubular member and the stepped surface formed on the peripheral edge of the second member,
前記接触領域では、前記段継ぎ面に形成された斜角面の端縁が前記第1の管状部材の内周面に接触する、溶接構造物。 A welded structure, wherein in the contact area, an edge of the beveled surface formed on the stepped surface contacts the inner peripheral surface of the first tubular member.
第1の管状部材、第2の部材、および前記第1の管状部材と前記第2の部材との間に充填または積層される溶接金属を含む溶接構造物であって、 A welded structure comprising a first tubular member, a second member, and a weld metal filled or laminated between the first tubular member and the second member,
前記第1の管状部材と前記第2の部材との間に、前記溶接金属が充填または積層される溶接領域と、前記溶接金属が充填または積層されない非溶接領域とが形成され、 forming a weld region filled or laminated with the weld metal and a non-welded region not filled or laminated with the weld metal between the first tubular member and the second member;
前記非溶接領域に含まれる接触領域において、前記第1の管状部材と前記第2の部材とが接触することによって互いの間で応力が伝達され、 contacting the first tubular member and the second member in a contact region included in the non-welded region to transmit stress between each other;
前記溶接構造物は、第3の管状部材をさらに含み、 the welded structure further comprising a third tubular member;
前記第2の部材は、前記第1の管状部材と前記第3の管状部材とのそれぞれの内周面に当接され、 the second member is in contact with the inner peripheral surfaces of the first tubular member and the third tubular member;
前記溶接領域および前記非溶接領域は、前記第1の管状部材および前記第3の管状部材のそれぞれの内周面と前記第2の部材との間に形成される、溶接構造物。 The welded structure, wherein the welded region and the non-welded region are formed between the inner peripheral surface of each of the first tubular member and the third tubular member and the second member.
第1の管状部材、第2の部材、および前記第1の管状部材と前記第2の部材との間に充填または積層される溶接金属を含む溶接構造物であって、 A welded structure comprising a first tubular member, a second member, and a weld metal filled or laminated between the first tubular member and the second member,
前記第1の管状部材と前記第2の部材との間に、前記溶接金属が充填または積層される溶接領域と、前記溶接金属が充填または積層されない非溶接領域とが形成され、 forming a weld region filled or laminated with the weld metal and a non-welded region not filled or laminated with the weld metal between the first tubular member and the second member;
前記非溶接領域に含まれる接触領域において、前記第1の管状部材と前記第2の部材とが接触することによって互いの間で応力が伝達され、 contacting the first tubular member and the second member in a contact region included in the non-welded region to transmit stress between each other;
前記第2の部材は、第2の管状部材であり、 the second member is a second tubular member;
前記溶接領域および前記非溶接領域は、前記第1の管状部材の端部の内周面と前記第2の管状部材の外周面との間に形成され、 The welded region and the non-welded region are formed between the inner peripheral surface of the end of the first tubular member and the outer peripheral surface of the second tubular member,
前記接触領域では、前記第2の管状部材の外周面に形成された斜角面の端縁が前記第1の管状部材の内周面に接触する、溶接構造物。 The welded structure, wherein in the contact area, the edge of the beveled surface formed on the outer peripheral surface of the second tubular member contacts the inner peripheral surface of the first tubular member.
第1の管状部材、第2の部材、および前記第1の管状部材と前記第2の部材との間に充填または積層される溶接金属を含む溶接構造物であって、 A welded structure comprising a first tubular member, a second member, and a weld metal filled or laminated between the first tubular member and the second member,
前記第1の管状部材と前記第2の部材との間に、前記溶接金属が充填または積層される溶接領域と、前記溶接金属が充填または積層されない非溶接領域とが形成され、 forming a weld region filled or laminated with the weld metal and a non-welded region not filled or laminated with the weld metal between the first tubular member and the second member;
前記非溶接領域に含まれる接触領域において、前記第1の管状部材と前記第2の部材とが接触することによって互いの間で応力が伝達され、 contacting the first tubular member and the second member in a contact region included in the non-welded region to transmit stress between each other;
前記第2の部材は、第2の管状部材であり、 the second member is a second tubular member;
前記溶接領域および前記非溶接領域は、前記第1の管状部材の端面と前記第2の管状部材の端面との間に形成され、 The welded region and the non-welded region are formed between an end surface of the first tubular member and an end surface of the second tubular member;
前記接触領域では、前記第2の管状部材の端面に形成された斜角面の端縁が前記第1の管状部材の端面に接触する、溶接構造物。 A welded structure, wherein in the contact area, the edge of the beveled surface formed on the end face of the second tubular member contacts the end face of the first tubular member.
第1の管状部材、第2の部材、および前記第1の管状部材と前記第2の部材との間に充填または積層される溶接金属を含む溶接構造物であって、 A welded structure comprising a first tubular member, a second member, and a weld metal filled or laminated between the first tubular member and the second member,
前記第1の管状部材と前記第2の部材との間に、前記溶接金属が充填または積層される溶接領域と、前記溶接金属が充填または積層されない非溶接領域とが形成され、 forming a weld region filled or laminated with the weld metal and a non-welded region not filled or laminated with the weld metal between the first tubular member and the second member;
前記非溶接領域に含まれる接触領域において、前記第1の管状部材と前記第2の部材とが接触することによって互いの間で応力が伝達され、 contacting the first tubular member and the second member in a contact region included in the non-welded region to transmit stress between each other;
前記第2の部材は前記第1の管状部材の内部空間を少なくとも部分的に閉塞する板状部材であり、 the second member is a plate-like member that at least partially closes the internal space of the first tubular member;
前記第1の管状部材の端面は斜角面を含み、 the end surface of the first tubular member includes a beveled surface;
前記接触領域では、前記第1の管状部材の端面に形成された斜角面の端縁と前記第2の部材の板面とが接触するか、または前記第2の部材の板面に形成された斜角面の端縁と前記第1の管状部材の端面とが接触する、溶接構造物。 In the contact area, the edge of the oblique surface formed on the end surface of the first tubular member and the plate surface of the second member are in contact with each other, or the contact area is formed on the plate surface of the second member. Welded structure, wherein the edge of the beveled surface and the end face of the first tubular member are in contact.
前記第1の管状部材または前記第2の部材の少なくともいずれかが、前記接触領域の近傍で弾性変形している、請求項1から請求項6のいずれか1項に記載の溶接構造物。 7. The welded structure of any preceding claim, wherein at least one of the first tubular member or the second member is elastically deformed near the contact area. 前記第1の管状部材または前記第2の部材の少なくともいずれかは、疲労耐久性の高い鋼材で形成される、請求項1から請求項のいずれか1項に記載の溶接構造物。 8. The welded structure according to any one of claims 1 to 7 , wherein at least one of the first tubular member and the second member is made of steel having high fatigue durability.
JP2019148841A 2019-08-14 2019-08-14 Welded structure Active JP7328525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019148841A JP7328525B2 (en) 2019-08-14 2019-08-14 Welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019148841A JP7328525B2 (en) 2019-08-14 2019-08-14 Welded structure

Publications (2)

Publication Number Publication Date
JP2021030236A JP2021030236A (en) 2021-03-01
JP7328525B2 true JP7328525B2 (en) 2023-08-17

Family

ID=74674633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019148841A Active JP7328525B2 (en) 2019-08-14 2019-08-14 Welded structure

Country Status (1)

Country Link
JP (1) JP7328525B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158131A (en) 1998-11-30 2000-06-13 Tokai Rubber Ind Ltd Butt welding coupling structure
JP2005329435A (en) 2004-05-20 2005-12-02 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus welding container
DE102005023230A1 (en) 2005-05-04 2006-11-09 Bayerische Motoren Werke Ag Method for welding a ring gear with a differential housing of a transmission
JP2007247702A (en) 2006-03-14 2007-09-27 Mitsubishi Heavy Ind Ltd Pipe joint structure
WO2011089706A1 (en) 2010-01-22 2011-07-28 トヨタ自動車株式会社 Welded structure and welding method
JP2011167746A (en) 2010-02-22 2011-09-01 Nissan Motor Co Ltd Beam-welded member and differential gear equipped with the same
JP2017194088A (en) 2016-04-18 2017-10-26 Kyb株式会社 Pressure resistant apparatus and fluid pressure cylinder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314066U (en) * 1989-06-27 1991-02-13
JPH03180275A (en) * 1989-12-08 1991-08-06 Sato Tekko Kk One-side welding procedure
JP3959794B2 (en) * 1997-09-17 2007-08-15 石川島播磨重工業株式会社 Pipe welded joint

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158131A (en) 1998-11-30 2000-06-13 Tokai Rubber Ind Ltd Butt welding coupling structure
JP2005329435A (en) 2004-05-20 2005-12-02 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus welding container
DE102005023230A1 (en) 2005-05-04 2006-11-09 Bayerische Motoren Werke Ag Method for welding a ring gear with a differential housing of a transmission
JP2007247702A (en) 2006-03-14 2007-09-27 Mitsubishi Heavy Ind Ltd Pipe joint structure
WO2011089706A1 (en) 2010-01-22 2011-07-28 トヨタ自動車株式会社 Welded structure and welding method
JP2011167746A (en) 2010-02-22 2011-09-01 Nissan Motor Co Ltd Beam-welded member and differential gear equipped with the same
JP2017194088A (en) 2016-04-18 2017-10-26 Kyb株式会社 Pressure resistant apparatus and fluid pressure cylinder

Also Published As

Publication number Publication date
JP2021030236A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP5234185B2 (en) Welded structure and welding method
JP5333459B2 (en) Welded structure and welding method
JP5953272B2 (en) Preventive maintenance repair method for welded part of membrane panel for boiler
JP2015174147A (en) Process for welding pipe connections for high temperature applications
JP7328525B2 (en) Welded structure
JP2007222929A (en) Welding-assembled box pillar
JP5304392B2 (en) Dissimilar joint structure and manufacturing method thereof
CN107002914B (en) Fluid conduit element and method for forming a fluid conduit element
JP5408031B2 (en) Circumferential welded joint of high-strength steel pipe with excellent low cycle fatigue resistance and its manufacturing method
JP6380672B2 (en) Welded joint and its manufacturing method
JP2012170964A (en) Welding method and welding joint of high-chrome steel
JP6071867B2 (en) Repair welding method and repair weld structure of welded part
JP5896933B2 (en) How to repair welds
JP2016175119A (en) Manufacturing method of pre-assembly welded h-section steel
JP2021030235A (en) Welded structure
JP2020143430A (en) Joint structure of square steel pipe column
JP2009291828A (en) Pipe joining method
JP2020011274A (en) Repair welding method
JPS62168685A (en) Welding structure
JP4028684B2 (en) Steel pipe joint structure
JP2022072463A (en) Backing ring for connecting steel pipe of different diameter
JP2012000659A (en) Method for manufacturing welded structure and welded structure
JP2013117489A (en) Wrapper tube for fast reactor and its joint method
JP2023005950A (en) H-shaped steel beam for weld assembling, and column-beam joint structure
JP2022077926A (en) Pipe joint, under-peening method using the pipe joint, and structure equipped with the pipe joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R151 Written notification of patent or utility model registration

Ref document number: 7328525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151