JP7282469B2 - rotating connector - Google Patents

rotating connector Download PDF

Info

Publication number
JP7282469B2
JP7282469B2 JP2020006239A JP2020006239A JP7282469B2 JP 7282469 B2 JP7282469 B2 JP 7282469B2 JP 2020006239 A JP2020006239 A JP 2020006239A JP 2020006239 A JP2020006239 A JP 2020006239A JP 7282469 B2 JP7282469 B2 JP 7282469B2
Authority
JP
Japan
Prior art keywords
driving force
conductive member
force transmission
drive shaft
rotary connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020006239A
Other languages
Japanese (ja)
Other versions
JP2021114403A (en
Inventor
祥央 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2020006239A priority Critical patent/JP7282469B2/en
Priority to TW109145473A priority patent/TWI802832B/en
Priority to KR1020200184619A priority patent/KR102647957B1/en
Publication of JP2021114403A publication Critical patent/JP2021114403A/en
Application granted granted Critical
Publication of JP7282469B2 publication Critical patent/JP7282469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/18Contacts for co-operation with commutator or slip-ring, e.g. contact brush
    • H01R39/28Roller contacts; Ball contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R35/00Flexible or turnable line connectors, i.e. the rotation angle being limited

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Joints Allowing Movement (AREA)
  • Dowels (AREA)
  • Electrophotography Configuration And Component (AREA)

Description

本発明は、回転を伴う部材間において駆動力を伝達しながら通電を行うための回転コネクタに関する。 TECHNICAL FIELD The present invention relates to a rotary connector for energizing while transmitting driving force between members that rotate.

半導体製造機等の回転機器においては、回転駆動される駆動軸に対して通電を行うことにより半導体部品に対する表面処理を行うものが知られている。 2. Description of the Related Art In a rotating machine such as a semiconductor manufacturing machine, it is known that surface treatment is performed on a semiconductor component by energizing a drive shaft that is rotationally driven.

例えば、特許文献1においては、フープめっき設備において回転駆動される駆動軸に通電ロールが接続され駆動軸と共に回転するようになっている。駆動軸から通電ロールに供給された電流は、半導体部品の表面の電解処理に利用される。 For example, in Patent Document 1, a current-carrying roll is connected to a drive shaft that is rotationally driven in a hoop plating facility so that it rotates together with the drive shaft. The current supplied from the drive shaft to the current-carrying roll is used for electrolytic treatment of the surface of the semiconductor component.

また、駆動軸の端部は、通電ロールの端部において軸方向に凹む凹部に挿入された状態で、通電ロールを径方向に貫通するネジ孔に螺挿されるボルトの先端によって径方向に押圧され、駆動軸の端部の外周面が凹部の内周面に圧接されることにより接続されている。尚、駆動軸の端部に接続される通電ロールを異なる形状のものに付け換えることにより、複数種類の半導体部品の表面加工に対応できるようになっている。 In addition, the end of the drive shaft is pressed in the radial direction by the tip of a bolt that is screwed into a screw hole radially penetrating the current-carrying roll in a state of being inserted into a concave portion that is recessed in the axial direction at the end of the current-carrying roll. , the outer peripheral surface of the end of the drive shaft is connected by being pressed against the inner peripheral surface of the recess. By replacing the current-carrying roll connected to the end of the drive shaft with one having a different shape, it is possible to handle the surface processing of a plurality of types of semiconductor parts.

特開2011-222463号公報(第6頁、第5図)JP 2011-222463 A (page 6, FIG. 5)

特許文献1においては、ボルトの押圧力によって駆動軸と通電ロールとの間で機械的接続および電気的接続が成されており、回転駆動される駆動軸の駆動力を通電ロールに伝達しつつ駆動軸と通電ロールとの間に導電通路を形成している。しかしながら、駆動軸と通電ロールは回転を伴うことから接続部分においてボルトに緩みが生じることがあり、ボルトの押圧力が弱まることで駆動軸と通電ロールとの圧接状態が変化し、駆動軸と通電ロールとの間の接触抵抗が変動することにより、駆動軸から通電ロールへの通電が不安定になる虞があった。 In Patent Document 1, mechanical connection and electrical connection are made between the drive shaft and the energized roll by the pressing force of the bolt, and the driving force of the driven shaft that is rotationally driven is transmitted to the energized roll. A conductive path is formed between the shaft and the current-carrying roll. However, since the drive shaft and the current-carrying roll are rotated, the bolts may become loose at the connecting portion. Due to fluctuations in the contact resistance between the drive shaft and the rolls, there is a risk that the energization from the drive shaft to the energized rolls will become unstable.

本発明は、このような問題点に着目してなされたもので、回転を伴う部材間において安定した通電を維持することができる回転コネクタを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a rotary connector capable of maintaining stable conduction between rotating members.

前記課題を解決するために、本発明の回転コネクタは、
導電性を有し駆動力伝達部が設けられ回転駆動される一方の回転部材と、
導電性を有し駆動力伝達部が設けられ一方の前記回転部材に従動して回転する他方の回転部材と、
径方向に重なる両方の前記駆動力伝達部の外周面にそれぞれ圧接される弾性変形可能な一連の導電部材と、を備えている。
これによれば、弾性変形可能な一連に形成された導電部材が両方の回転部材の駆動力伝達部の外周面に圧接されていることから、導電部材が弾性変形することにより接触抵抗の変動が抑制され、当該圧接状態が回転駆動時にも維持されることにより、一方の駆動力伝達部の外周面、導電部材、他方の駆動力伝達部の外周面を繋ぐ導電経路が確実に形成される。このように、回転コネクタは、駆動力伝達部同士の係合により駆動力を伝達しつつ回転部材間において安定した通電を維持できる。また、導電部材は弾性変形可能であるため、一方の回転部材と他方の回転部材との機械的接続および電気的接続を簡単に行うことができる。
In order to solve the above problems, the rotary connector of the present invention has
one rotating member that is electrically conductive and provided with a driving force transmission section and that is driven to rotate;
the other rotating member having electrical conductivity and provided with a driving force transmission portion, which rotates following the one rotating member;
a series of elastically deformable conductive members that are pressed against the outer peripheral surfaces of both driving force transmission portions that overlap in the radial direction.
According to this, since the electrically conductive member formed in a series which is elastically deformable is pressed against the outer peripheral surfaces of the driving force transmission portions of both rotating members, the contact resistance fluctuates due to the elastic deformation of the electrically conductive member. By suppressing and maintaining the pressure contact state even during rotational driving, a conductive path connecting the outer peripheral surface of one driving force transmission portion, the conductive member, and the outer peripheral surface of the other driving force transmission portion is reliably formed. In this manner, the rotary connector can maintain stable energization between the rotary members while transmitting the driving force through the engagement of the driving force transmission portions. Moreover, since the conductive member is elastically deformable, mechanical connection and electrical connection between one rotating member and the other rotating member can be easily performed.

それぞれの前記駆動力伝達部は、中心軸に沿って延びる平坦面を有していてもよい。
これによれば、回転に伴って駆動力伝達部が互いにバランスよく力を受けるため、駆動力伝達部の外周面から導電部材に作用する力の周方向の偏りが小さく、接触抵抗の変動を抑制することができる。
Each driving force transmission portion may have a flat surface extending along the central axis.
According to this configuration, since the driving force transmission portions receive forces in a well-balanced manner as they rotate, the force acting on the conductive member from the outer peripheral surface of the driving force transmission portion is less biased in the circumferential direction, and fluctuations in contact resistance are suppressed. can do.

前記導電部材は、両方の前記回転部材の外周面にそれぞれ圧接される弾性圧接部を周方向に複数均等に有していてもよい。
これによれば、弾性圧接部を両方の回転部材の外周面に周方向にバランスよく圧接させることができる。
The conductive member may have a plurality of elastic pressure contact portions that are evenly spaced in the circumferential direction to be pressed against the outer peripheral surfaces of both of the rotating members.
According to this, the elastic pressure contact portion can be pressed against the outer peripheral surfaces of both rotary members in a well-balanced manner in the circumferential direction.

前記導電部材は、前記弾性圧接部を一連に繋ぐ環状の連結部を有していてもよい。
これによれば、回転に伴う導電部材の変形を抑制することができるとともに、両方の回転部材に外周から緊迫力を付与し両方の駆動力伝達部を確実に係合させることができる。
The conductive member may have an annular connecting portion that connects the elastic pressure contact portions in series.
According to this, it is possible to suppress the deformation of the conductive member due to the rotation, and to apply a straining force to both the rotating members from the outer periphery, so that both the driving force transmission portions can be reliably engaged.

前記導電部材は、両方の前記回転部材よりも導電率が高くてもよい。
これによれば、導電部材によって回転部材間における導電通路を確実に形成することができる。
The conductive member may have a higher electrical conductivity than both of the rotating members.
According to this, the conductive member can reliably form a conductive path between the rotating members.

一方の前記回転部材には、前記導電部材の軸方向の移動を規制する移動規制部材が固定されていてもよい。
これによれば、駆動力伝達部に対する導電部材の軸方向の移動を防止することができる。
A movement restricting member that restricts the movement of the conductive member in the axial direction may be fixed to one of the rotating members.
According to this, it is possible to prevent axial movement of the conductive member with respect to the driving force transmission portion.

前記移動規制部材は、前記導電部材を覆うカバーであってもよい。
これによれば、導電部材に対する外部からの接触を防止することができる。
The movement restricting member may be a cover that covers the conductive member.
According to this, it is possible to prevent external contact with the conductive member.

本発明の実施例における回転コネクタを示す斜視図である。1 is a perspective view showing a rotating connector in an embodiment of the invention; FIG. 実施例の回転コネクタの分解斜視図である。1 is an exploded perspective view of a rotary connector of an embodiment; FIG. 実施例の回転コネクタを示す一部断面図である。It is a partial cross-sectional view showing the rotary connector of the embodiment. 実施例の回転コネクタを示す図3のA-A断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 3 showing the rotary connector of the embodiment; 変形例1における回転コネクタを示す一部断面図である。FIG. 11 is a partial cross-sectional view showing a rotating connector in modification 1; 変形例2における回転コネクタを示す一部断面図である。FIG. 11 is a partial cross-sectional view showing a rotating connector in modification 2; 変形例2における駆動力伝達部の構造を示す斜視図である。尚、説明の便宜上、図7では駆動軸および従動軸のみを図示している。FIG. 11 is a perspective view showing the structure of a driving force transmission portion in Modification 2; For convenience of explanation, FIG. 7 shows only the drive shaft and the driven shaft.

本発明に係る回転コネクタを実施するための形態を実施例に基づいて以下に説明する。 A mode for implementing a rotary connector according to the present invention will be described below based on an embodiment.

実施例に係る回転コネクタにつき、図1から図4を参照して説明する。以下、図3の正面側から見て左右側を回転コネクタの左右側として説明する。 A rotary connector according to an embodiment will be described with reference to FIGS. 1 to 4. FIG. In the following description, the left and right sides of the rotating connector are defined as viewed from the front side of FIG.

本実施例の回転コネクタ1は、例えば半導体製造機の回転箇所に用いられ、回転駆動される一方の回転部材と、一方の回転部材に従動して回転する他方の回転部材との間で図示しない高周波電源から供給される高周波の電気を通電するものである。 The rotary connector 1 of the present embodiment is used, for example, in a rotating part of a semiconductor manufacturing machine, and is not shown in the figure, between one rotating member that is rotationally driven and the other rotating member that rotates following the one rotating member. High-frequency electricity supplied from a high-frequency power supply is applied.

図1~図3に示されるように、回転コネクタ1は、図示しない半導体製造機の駆動部により回転駆動される一方の回転部材としての駆動軸2と、該駆動軸2に従動して回転する他方の回転部材としての従動軸3と、駆動軸2および従動軸3を機械的に接続する駆動力伝達部20,30の外周面20d,30dにそれぞれ圧接される一連に形成された導電部材4と、駆動軸2に固定され導電部材4の外周を覆う移動規制部材としてのカバー5と、から構成されている。 As shown in FIGS. 1 to 3, the rotary connector 1 includes a drive shaft 2 as one rotary member that is driven to rotate by a drive unit of a semiconductor manufacturing machine (not shown), and rotates following the drive shaft 2. A driven shaft 3 as the other rotating member, and a series of conductive members 4 that are in pressure contact with outer peripheral surfaces 20d and 30d of driving force transmission portions 20 and 30 that mechanically connect the drive shaft 2 and the driven shaft 3, respectively. and a cover 5 as a movement restricting member that is fixed to the drive shaft 2 and covers the outer periphery of the conductive member 4 .

駆動軸2および従動軸3は、導電性を有する金属製の断面円形状の柱状体である。尚、駆動軸2および従動軸3は、金属製のものに限らず、導電性を有する樹脂等の導電材料により形成されていてもよい。また、駆動軸2と従動軸3は、同じ導電材料により形成されていてもよいし、異なる導電材料により形成されていてもよい。 The drive shaft 2 and the driven shaft 3 are columnar bodies made of conductive metal and having a circular cross section. The drive shaft 2 and the driven shaft 3 are not limited to being made of metal, and may be made of a conductive material such as resin having conductivity. Further, the drive shaft 2 and the driven shaft 3 may be made of the same conductive material, or may be made of different conductive materials.

図2~図4に示されるように、駆動軸2および従動軸3には、軸方向に対向する端部にそれぞれ径方向に重なる断面半円形状の駆動力伝達部20,30が設けられている。駆動力伝達部20,30は、駆動軸2および従動軸3の中心軸に沿って延び径方向に対向する平坦面20a,30aを有しており、両平坦面20a,30aが係合することで動力を伝達するようになっている。尚、駆動力伝達部において径方向に対向する面は、平坦面に限らず曲面であってもよい。さらに、駆動力伝達部において径方向に対向する面には、凹凸等が設けられていてもよい。 As shown in FIGS. 2 to 4, the driving shaft 2 and the driven shaft 3 are provided with driving force transmission portions 20 and 30 having semicircular cross-sections, which overlap radially at their axially opposite ends. there is The driving force transmission portions 20 and 30 have flat surfaces 20a and 30a that extend along the central axes of the drive shaft 2 and the driven shaft 3 and face each other in the radial direction. to transmit power. It should be noted that the surfaces of the driving force transmission portion that face each other in the radial direction are not limited to flat surfaces and may be curved surfaces. Furthermore, unevenness or the like may be provided on the surfaces of the driving force transmission portion that face each other in the radial direction.

駆動軸2は、駆動力伝達部20の平坦面20aを従動軸3の駆動力伝達部30の平坦面30aに径方向に当接させることにより、駆動軸2の駆動力が互いに係合する駆動力伝達部20,30によって従動軸3に伝達され、従動軸3は駆動軸2と共に回転するようになっている。 The driving force of the drive shaft 2 engages with each other by bringing the flat surface 20a of the driving force transmission portion 20 into contact with the flat surface 30a of the driving force transmission portion 30 of the driven shaft 3 in the radial direction. The force is transmitted to the driven shaft 3 by the force transmission portions 20 and 30, and the driven shaft 3 rotates together with the drive shaft 2. As shown in FIG.

また、図3に示されるように、駆動力伝達部20の先端面20bは、駆動力伝達部30の根元側に形成される従動軸3の端面30cに軸方向に当接するとともに、駆動力伝達部30の先端面30bは、駆動力伝達部20の根元側に形成される駆動軸2の端面20cに軸方向に当接している。すなわち、駆動力伝達部20,30は、相補的な形状を成している。 Further, as shown in FIG. 3, the tip surface 20b of the driving force transmission portion 20 axially abuts the end surface 30c of the driven shaft 3 formed on the root side of the driving force transmission portion 30, A tip surface 30b of the portion 30 abuts an end surface 20c of the drive shaft 2 formed on the root side of the driving force transmission portion 20 in the axial direction. That is, the driving force transmission portions 20 and 30 have complementary shapes.

駆動力伝達部20,30は、互いに軸方向に近づく方向への移動を規制している。尚、駆動力伝達部20,30は、導電部材4が常に駆動力伝達部20,30の外周面20d,30dにそれぞれ圧接される範囲内であれば、軸方向両側への移動が許容されていてもよい。 The driving force transmission portions 20 and 30 are restricted from moving toward each other in the axial direction. The driving force transmitting portions 20 and 30 are allowed to move to both sides in the axial direction as long as the conductive member 4 is always in pressure contact with the outer peripheral surfaces 20d and 30d of the driving force transmitting portions 20 and 30, respectively. may

図1~図3に示されるように、カバー5は、略円筒形状を成し、導電部材4を内径側に収容可能な円筒部50と、円筒部50の軸方向左端部から内径方向に延びる固定フランジ部51と、を有している。尚、カバー5は、セラミックスや樹脂等の絶縁体から形成されている。 As shown in FIGS. 1 to 3, the cover 5 has a substantially cylindrical shape and includes a cylindrical portion 50 capable of accommodating the conductive member 4 on the inner diameter side, and an axially left end portion of the cylindrical portion 50 extending in the inner diameter direction. and a fixed flange portion 51 . The cover 5 is made of an insulator such as ceramics or resin.

図3に示されるように、円筒部50の内径側に導電部材4が収容された状態において、導電部材4の外周面、詳しくは後述する連結部41,41の外周面は、円筒部50の内周面に沿って当接している。尚、導電部材4の外周面と円筒部50の内周面とは、径方向に離間していてもよい。 As shown in FIG. 3, in a state in which the conductive member 4 is housed in the inner diameter side of the cylindrical portion 50, the outer peripheral surface of the conductive member 4, more specifically, the outer peripheral surfaces of connecting portions 41, 41, which will be described later, are the same as those of the cylindrical portion 50. It abuts along the inner peripheral surface. Note that the outer peripheral surface of the conductive member 4 and the inner peripheral surface of the cylindrical portion 50 may be spaced apart in the radial direction.

また、円筒部50の内径側に導電部材4が収容された状態において、導電部材4の軸方向左端は、固定フランジ部51の軸方向右端面に軸方向に当接し、導電部材4の軸方向右端は、円筒部50の軸方向右端と軸方向に揃って配置される。すなわち、円筒部50に対する導電部材4の挿入進度を固定フランジ部51との当接によって規定することができる。そのため、回転コネクタ1の組立作業性が高い。 In addition, in a state where the conductive member 4 is accommodated on the inner diameter side of the cylindrical portion 50 , the axial left end of the conductive member 4 abuts the axial right end surface of the fixed flange portion 51 in the axial direction. The right end is axially aligned with the axial right end of the cylindrical portion 50 . That is, the insertion progress of the conductive member 4 with respect to the cylindrical portion 50 can be defined by contact with the fixed flange portion 51 . Therefore, the assembling workability of the rotary connector 1 is high.

また、固定フランジ部51には、その内径側に軸方向に貫通する貫通孔51aが設けられている。カバー5は、貫通孔51aに駆動軸2が挿通された状態で駆動軸2の外周面に対して圧入固定される。すなわち、カバー5および導電部材4は、駆動軸2と共に回転する。尚、カバー5の駆動軸2への固定は圧入以外の方法であってもよい。 Further, the fixed flange portion 51 is provided with a through hole 51a penetrating in the axial direction on the inner diameter side thereof. The cover 5 is press-fitted onto the outer peripheral surface of the drive shaft 2 while the drive shaft 2 is inserted through the through hole 51a. That is, the cover 5 and the conductive member 4 rotate together with the drive shaft 2 . The cover 5 may be fixed to the drive shaft 2 by a method other than press-fitting.

図2~図4に示されるように、導電部材4は、金属製の略円筒形状の板バネであり、軸方向中央部が内径方向に撓む断面略円弧形状を成し周方向に12等配される弾性圧接部40と、各弾性圧接部40の軸方向両端をそれぞれ周方向に一連に繋ぐ環状の連結部41,41と、を有している。尚、導電部材4は、駆動軸2および従動軸3よりも導電率が高い導電材料から形成される。 As shown in FIGS. 2 to 4, the conductive member 4 is a substantially cylindrical plate spring made of metal, and has a substantially arcuate cross-sectional shape in which the central portion in the axial direction bends in the inner diameter direction, and 12 or so in the circumferential direction. It has an elastic pressure contact portion 40 arranged and annular connecting portions 41, 41 that connect both axial ends of each elastic pressure contact portion 40 in series in the circumferential direction. The conductive member 4 is made of a conductive material having higher conductivity than the drive shaft 2 and driven shaft 3 .

また、導電部材4の取り付け前の状態(図2参照)において、内径方向に撓む弾性圧接部40の軸方向中央部の内面40aにおける最小内径部Mの内径寸法は、駆動力伝達部20,30が機械的に接続された状態における駆動力伝達部20,30の外径寸法よりも小さく形成されている。 In addition, in the state before the conductive member 4 is attached (see FIG. 2), the inner diameter dimension of the minimum inner diameter portion M at the inner surface 40a of the axially central portion of the elastic pressure contact portion 40 that bends in the inner diameter direction is equal to the driving force transmission portion 20, 30 is formed to be smaller than the outer diameter dimension of the driving force transmission portions 20, 30 in a state in which they are mechanically connected.

すなわち、導電部材4の内径側に駆動力伝達部20,30が挿通されることにより、各弾性圧接部40の軸方向中央部が外径側に均等に押し広げられる。これにより、各弾性圧接部40は圧縮状態となり、その弾性復元力によって内面40aが駆動力伝達部20,30の外周面20d,30dに略均等な力で圧接され、駆動軸2と従動軸3とが導電部材4を介して電気的に接続される。 That is, by inserting the driving force transmission portions 20 and 30 into the inner diameter side of the conductive member 4, the axial central portions of the respective elastic pressure contact portions 40 are evenly spread outward. As a result, each elastic pressure contact portion 40 is in a compressed state, and the inner surface 40a is pressed against the outer peripheral surfaces 20d and 30d of the driving force transmission portions 20 and 30 with substantially equal force due to the elastic restoring force of the elastic pressure contact portion 40. are electrically connected via the conductive member 4 .

例えば、図4において矢印で示されるように、図示しない高周波電源から駆動軸2に供給された電流は、駆動力伝達部20の外周面20dから駆動力伝達部20の外周面20dに圧接される弾性圧接部40に流れ、連結部41,41を通って駆動力伝達部30の外周面30dに圧接される弾性圧接部40から駆動力伝達部30の外周面30dに流れ、従動軸3に供給される。尚、本実施例の回転コネクタ1は、上述したように導電部材4を介して駆動軸2と従動軸3とが電気的に接続されるものであり、駆動力伝達部20,30の径方向に対向する平坦面20a,30a間において電流は流れなくてもよい。 For example, as indicated by arrows in FIG. 4, a current supplied from a high-frequency power supply (not shown) to the drive shaft 2 is pressed against the outer peripheral surface 20d of the driving force transmitting portion 20 from the outer peripheral surface 20d of the driving force transmitting portion 20. It flows to the elastic pressure contact portion 40, passes through the connecting portions 41, 41 and is pressed against the outer peripheral surface 30d of the driving force transmission portion 30, flows from the elastic pressure contact portion 40 to the outer peripheral surface 30d of the driving force transmission portion 30, and is supplied to the driven shaft 3. be done. In the rotary connector 1 of this embodiment, the driving shaft 2 and the driven shaft 3 are electrically connected via the conductive member 4 as described above, and the driving force transmitting portions 20 and 30 are radially connected. No current may flow between the flat surfaces 20a and 30a facing the .

以上説明したように、回転コネクタ1は、導電性を有し駆動力伝達部20が設けられ回転駆動される駆動軸2と、導電性を有し駆動力伝達部30が設けられ駆動軸2に従動して回転する従動軸3と、径方向に重なる駆動力伝達部20,30の外周面20d,30dにそれぞれ圧接される弾性変形可能な一連の導電部材4を備えている。これによれば、弾性変形可能な一連に形成された導電部材4の弾性圧接部40が駆動軸2および従動軸3の駆動力伝達部20,30の外周面20d,30dに圧接されていることから、導電部材4の弾性圧接部40が弾性変形することにより接触抵抗の変動が抑制され、当該圧接状態が回転駆動時にも維持されることにより、駆動力伝達部20の外周面20d、導電部材4、駆動力伝達部30の外周面30dを繋ぐ導電経路(図4参照)が確実に形成される。このように、回転コネクタ1は、駆動力伝達部20,30同士の係合により駆動力を伝達しつつ駆動軸2と従動軸3との間で安定した通電を維持できる。 As described above, the rotary connector 1 includes the drive shaft 2 which is provided with the driving force transmission portion 20 having conductivity and is driven to rotate, and the drive shaft 2 which is provided with the driving force transmission portion 30 having conductivity and is connected to the drive shaft 2. It has a driven shaft 3 that is driven and rotated, and a series of elastically deformable conductive members 4 that are pressed against the outer peripheral surfaces 20d and 30d of the radially overlapping driving force transmission portions 20 and 30, respectively. According to this, the elastic pressure contact portion 40 of the conductive member 4 formed in a series of elastically deformable portions is pressed against the outer peripheral surfaces 20d, 30d of the driving force transmission portions 20, 30 of the drive shaft 2 and the driven shaft 3. Therefore, the elastic pressure contact portion 40 of the conductive member 4 is elastically deformed to suppress the variation in the contact resistance, and the pressure contact state is maintained even during rotational driving. 4. A conductive path (see FIG. 4) connecting the outer peripheral surface 30d of the driving force transmission portion 30 is reliably formed. Thus, the rotary connector 1 can maintain stable energization between the drive shaft 2 and the driven shaft 3 while transmitting the driving force by the engagement between the driving force transmission portions 20 and 30 .

また、導電部材4は弾性変形可能であるため、駆動軸2と従動軸3との機械的接続および電気的接続を簡単に行うことができる。詳しくは、駆動軸2に固定されるカバー5の内径側に導電部材4が収容された状態で、図3において鎖線で示される挿入前状態の従動軸3の駆動力伝達部30の平坦面30aを駆動軸2の駆動力伝達部20の平坦面20aと径方向に対向させ、導電部材4の内径側に軸方向に挿入することにより、駆動軸2と従動軸3との機械的接続および電気的接続をワンタッチで簡単に行うことができる。 Moreover, since the conductive member 4 is elastically deformable, mechanical connection and electrical connection between the driving shaft 2 and the driven shaft 3 can be easily performed. Specifically, the flat surface 30a of the driving force transmission portion 30 of the driven shaft 3 in the state before insertion indicated by the chain line in FIG. is radially opposed to the flat surface 20a of the driving force transmission portion 20 of the drive shaft 2 and is axially inserted into the inner diameter side of the conductive member 4, thereby mechanically connecting and electrically connecting the drive shaft 2 and the driven shaft 3. can be easily connected with one touch.

また、駆動力伝達部20,30は、相補的な形状となっており、駆動力伝達部20,30の先端面20b,30bが駆動軸2および従動軸3の端面20c,30cに軸方向に当接することにより、導電部材4の内径側に軸方向に挿入される従動軸3の挿入進度が規定される。そのため、回転コネクタ1の組立作業性が高い。 Further, the driving force transmission portions 20 and 30 have complementary shapes, and the tip end surfaces 20b and 30b of the driving force transmission portions 20 and 30 are aligned with the end surfaces 20c and 30c of the drive shaft 2 and the driven shaft 3 in the axial direction. The abutment regulates the insertion progress of the driven shaft 3 axially inserted into the inner diameter side of the conductive member 4 . Therefore, the assembling workability of the rotary connector 1 is high.

また、駆動力伝達部20,30の外周面20d,30dと各弾性圧接部40の内面40aとの接触面積が確保された状態が維持されるため、高周波の電流が通電されても発熱が生じ難く、発熱による損傷を防止することができる。 Further, since the contact area between the outer peripheral surfaces 20d and 30d of the driving force transmission portions 20 and 30 and the inner surface 40a of each elastic pressure contact portion 40 is maintained, heat is generated even when a high-frequency current is applied. It is difficult and can prevent damage due to heat generation.

また、駆動力伝達部20,30は、中心軸に沿って延びる平坦面20a,30aを有するとともに、相補的な形状を成している。これによれば、回転に伴って駆動力伝達部20,30が互いにバランスよく力を受けるため、駆動力伝達部20,30の外周面20d,30dから導電部材4に作用する力の周方向の偏りが小さく、接触抵抗の変動を抑制することができる。 Further, the driving force transmission portions 20, 30 have flat surfaces 20a, 30a extending along the central axis and have complementary shapes. According to this configuration, since the driving force transmission portions 20 and 30 receive forces in a well-balanced manner as they rotate, the force acting on the conductive member 4 from the outer peripheral surfaces 20d and 30d of the driving force transmission portions 20 and 30 is distributed in the circumferential direction. The bias is small, and fluctuations in contact resistance can be suppressed.

また、導電部材4は、弾性圧接部40を周方向に複数均等に有している。これによれば、各弾性圧接部40の内面40aを駆動力伝達部20,30の外周面20d,30dに周方向にバランスよく圧接させることができ、駆動力伝達部20,30の外周面20d,30dから導電部材4に作用する力の周方向の偏りをさらに小さくすることができる。 In addition, the conductive member 4 has a plurality of elastic pressure contact portions 40 evenly arranged in the circumferential direction. According to this configuration, the inner surface 40a of each elastic pressure contact portion 40 can be pressed against the outer peripheral surfaces 20d and 30d of the driving force transmitting portions 20 and 30 in a well-balanced circumferential direction. , 30d acting on the conductive member 4 in the circumferential direction can be further reduced.

また、導電部材4は、駆動力伝達部20,30の外周面20d,30dに各弾性圧接部40の軸方向中央部の内面40aを圧接させているため、駆動力伝達部20,30の外周面20d,30dから導電部材4に作用する力を安定させることができる。また、各弾性圧接部40の内面40aは、駆動力伝達部20,30の外周面20d,30dにおける略同一の軸方向位置において圧接されるため、導電部材4を軸方向にコンパクトに構成することができる。 In addition, since the conductive member 4 presses the inner surface 40a of the axially central portion of each elastic pressure contact portion 40 against the outer peripheral surfaces 20d, 30d of the driving force transmitting portions 20, 30, the outer circumferences of the driving force transmitting portions 20, 30 The force acting on the conductive member 4 from the surfaces 20d and 30d can be stabilized. In addition, since the inner surface 40a of each elastic pressure contact portion 40 is pressed in substantially the same axial position on the outer peripheral surfaces 20d and 30d of the driving force transmission portions 20 and 30, the conductive member 4 can be configured compact in the axial direction. can be done.

また、導電部材4は、各弾性圧接部40を一連に繋ぐ環状の連結部41、41を有している。これによれば、回転に伴う導電部材4の変形を抑制することができるとともに、駆動軸2および従動軸3に外周から緊迫力を付与し駆動力伝達部20,30を確実に係合させることができる。さらに、導電部材4は、各弾性圧接部40の軸方向両端が環状の連結部41、41により一連に繋がれることにより略円筒形状を成しているため、回転に伴う導電部材4の変形がさらに抑制されている。 In addition, the conductive member 4 has annular connecting portions 41, 41 that connect the respective elastic pressure contact portions 40 in series. According to this, it is possible to suppress the deformation of the conductive member 4 due to the rotation, and to apply a tightening force to the drive shaft 2 and the driven shaft 3 from the outer circumferences so that the driving force transmission portions 20 and 30 are reliably engaged. can be done. Further, since the conductive member 4 has a substantially cylindrical shape in which both ends of the elastic pressure contact portions 40 in the axial direction are connected in series by the annular connecting portions 41, 41, deformation of the conductive member 4 due to rotation is prevented. further suppressed.

また、導電部材4は、駆動軸2および従動軸3よりも導電率が高い導電材料により形成されている。これによれば、導電部材4によって駆動力伝達部20,30間における導電通路を確実に形成することができる。 Also, the conductive member 4 is made of a conductive material having a higher conductivity than the drive shaft 2 and the driven shaft 3 . According to this, a conductive path between the driving force transmission portions 20 and 30 can be reliably formed by the conductive member 4 .

また、回転駆動する駆動軸2には、導電部材4の軸方向の移動を規制する移動規制部材としてのカバー5が固定されている。これによれば、駆動力伝達部20,30に対する導電部材4の軸方向の移動を防止することができ、各弾性圧接部40の内面40aを駆動力伝達部20,30の外周面20d,30dに確実に圧接させることができる。 A cover 5 as a movement restricting member that restricts axial movement of the conductive member 4 is fixed to the drive shaft 2 that is rotationally driven. According to this, it is possible to prevent the axial movement of the conductive member 4 with respect to the driving force transmission portions 20 and 30, and the inner surfaces 40a of the respective elastic pressure contact portions 40 are aligned with the outer peripheral surfaces 20d and 30d of the driving force transmission portions 20 and 30. can be reliably press-contacted.

また、カバー5により導電部材4の外周が覆われているため、導電部材4に対する外部からの接触を防止することができる。 In addition, since the outer periphery of the conductive member 4 is covered with the cover 5, contact with the conductive member 4 from the outside can be prevented.

また、カバー5の内径側においては、導電部材4の連結部41,41の外周面が円筒部50の内周面に沿って当接しているため、連結部41,41の強度が高められ、各弾性圧接部40を安定して弾性変形させることができる。また、カバー5により、導電部材4の過剰な変形による破損が防止されるため、駆動力伝達部20,30における機械的接続および導電部材4による駆動力伝達部20,30間の電気的接続が確実に保たれる。 Further, on the inner diameter side of the cover 5, since the outer peripheral surfaces of the connecting portions 41, 41 of the conductive member 4 are in contact with the inner peripheral surface of the cylindrical portion 50, the strength of the connecting portions 41, 41 is increased. Each elastic pressure contact portion 40 can be stably elastically deformed. Further, since the cover 5 prevents damage due to excessive deformation of the conductive member 4, the mechanical connection between the driving force transmission portions 20 and 30 and the electrical connection between the driving force transmission portions 20 and 30 by the conductive member 4 are prevented. securely preserved.

また、導電部材4およびカバー5は、駆動軸2および従動軸3と共に回転するため、これらの部材間において回転による摩耗が発生することがなく、メンテナンス性が高い。 In addition, since the conductive member 4 and the cover 5 rotate together with the drive shaft 2 and the driven shaft 3, wear due to rotation does not occur between these members, and maintainability is high.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and any changes or additions within the scope of the present invention are included in the present invention. be

例えば、前記実施例では、駆動軸2および従動軸3の駆動力伝達部20,30は、駆動軸2および従動軸3の中心軸に沿って延びる平坦面20a,30aを有する断面半円形状に形成されるものとして説明したが、これに限らず、駆動力伝達部は、径方向に重なり駆動力を回転軸から従動軸に伝達できるものであれば、例えば図5に示される変形例1のように、駆動軸102および従動軸103の中心軸に対して傾斜する傾斜面102a,103aをそれぞれ有する形状に形成されてもよい。 For example, in the above-described embodiment, the driving force transmission portions 20 and 30 of the drive shaft 2 and the driven shaft 3 have a semicircular cross section with flat surfaces 20a and 30a extending along the central axes of the drive shaft 2 and the driven shaft 3. However, the driving force transmission portion is not limited to this. , may be formed in a shape having inclined surfaces 102a and 103a that are inclined with respect to the central axes of the drive shaft 102 and the driven shaft 103, respectively.

また、図6および図7に示される変形例2のように、駆動軸202および従動軸203の軸方向に対向する端部から軸方向に突出する鉤状の凸部220,230と、凹部221,231とが互いにキー結合されることにより駆動力伝達部が構成されていてもよい。この場合、図6に示されるように、導電部材204の各弾性圧接部240の内面240aは、駆動力伝達部の位置における外周面220a,230aに対して軸方向に異なる位置でそれぞれ圧接されていてもよい。 6 and 7, hook-shaped protrusions 220 and 230 and a recess 221 protrude axially from the ends of the drive shaft 202 and the driven shaft 203 that face each other in the axial direction. , 231 may be keyed to each other to form a driving force transmission unit. In this case, as shown in FIG. 6, the inner surface 240a of each elastic pressure contact portion 240 of the conductive member 204 is pressed against the outer peripheral surfaces 220a and 230a at the position of the driving force transmission portion at different positions in the axial direction. may

また、前記実施例では、導電部材4は、略円筒形状の板バネから構成されるものとして説明したが、これに限らず、導電部材は、例えば連結部がC字状に形成される有端状の板バネから構成されていてもよい。また、導電部材は、弾性変形可能なものであれば、板バネ以外から構成されていてもよい。さらに、導電部材は、全体が弾性変形可能である必要はなく、少なくとも駆動力伝達部に当接する部位が弾性変形可能であればよい。 Further, in the above-described embodiment, the conductive member 4 was described as being composed of a substantially cylindrical leaf spring, but the present invention is not limited to this, and the conductive member may have a C-shaped connecting portion. It may be composed of a leaf spring having a shape. Also, the conductive member may be composed of a material other than a leaf spring as long as it is elastically deformable. Furthermore, the conductive member does not need to be elastically deformable as a whole, and it is sufficient that at least the portion that contacts the driving force transmission section is elastically deformable.

また、前記実施例では、導電部材4は、各弾性圧接部40の軸方向両端が連結部41,41により一連に繋がっているものとして説明したが、これに限らず、例えば、各弾性圧接部の軸方向一端のみが連結部により一連に繋がっていてもよい。 Further, in the above-described embodiment, the conductive member 4 is described as one in which both ends of the elastic pressure contact portions 40 in the axial direction are connected in series by the connecting portions 41, 41. However, the present invention is not limited to this. may be connected in series by the connecting portion only at one end in the axial direction.

また、弾性圧接部は、軸方向中央部が周方向に繋がってその内面が駆動力伝達部の外周面に環状に圧接されていてもよい。 Further, the elastic pressure contact portion may be connected in the circumferential direction at the axial center portion and the inner surface thereof may be annularly pressed against the outer peripheral surface of the driving force transmission portion.

また、前記実施例では、弾性圧接部40は、周方向に12等配されるものとして説明したが、これに限らず、導電部材における弾性圧接部の数や配置は自由に構成されてよい。 Also, in the above embodiment, the elastic pressure contact portions 40 were described as being equally distributed 12 times in the circumferential direction.

また、前記実施例では、弾性圧接部40は、軸方向中央部が内径方向に撓む断面略円弧形状を成すものとして説明したが、これに限らず、弾性圧接部は他の断面形状を有するものであってもよい。 Further, in the above embodiment, the elastic pressure contact portion 40 has been described as having a substantially arcuate cross-sectional shape in which the central portion in the axial direction bends in the radial direction, but the elastic pressure contact portion may have other cross-sectional shapes. can be anything.

また、導電部材は、駆動軸および従動軸よりも導電率が高い導電材料から形成されるものに限らず、導電部材は、駆動軸および従動軸と導電率が同じ導電材料から形成されてもよいし、導電率が低い導電材料から形成されてもよい。 Moreover, the conductive member is not limited to being made of a conductive material having a higher conductivity than that of the drive shaft and the driven shaft, and the conductive member may be made of a conductive material having the same conductivity as that of the drive shaft and the driven shaft. However, it may be formed from a conductive material with low conductivity.

また、回転コネクタは、導電部材の外周を覆うカバーを有していなくてもよい。この場合、導電部材の軸方向の移動を規制する移動規制部材は、例えば導電部材と軸方向に当接する前記実施例の固定フランジ部51のような円板形状に構成されてもよい。 Also, the rotary connector may not have a cover that covers the outer periphery of the conductive member. In this case, the movement restricting member that restricts the axial movement of the conductive member may be configured in a disk shape like the fixed flange portion 51 of the above-described embodiment that abuts the conductive member in the axial direction.

また、移動規制部材は、駆動軸に固定されるものに限らず、従動軸に固定されていてもよい。 Moreover, the movement restricting member is not limited to being fixed to the drive shaft, and may be fixed to the driven shaft.

また、回転コネクタは、移動規制部材を有していなくてもよい。 Also, the rotary connector may not have a movement restricting member.

また、前記実施例では、回転コネクタ1は、回転を伴う部材間において高周波の電気を通電するものとして説明したが、これに限らず、回転を伴う部材間において低周波の電気を通電するものや電気信号を伝達するものであってもよい。また、回転コネクタは、半導体製造機以外の回転機器に適用されてもよい。 Further, in the above-described embodiment, the rotary connector 1 is described as one that conducts high-frequency electricity between members that rotate. It may be one that transmits an electrical signal. Also, the rotary connector may be applied to rotary equipment other than semiconductor manufacturing machines.

1 回転コネクタ
2 駆動軸(一方の回転部材)
3 従動軸(他方の回転部材)
4 導電部材
5 カバー(移動規制部材)
20,30 駆動力伝達部
20a,30a 平坦面
20d,30d 外周面
40 弾性圧接部
40a 内面
41 連結部
50 円筒部
51 固定フランジ部
220,230 凸部(駆動力伝達部)
221,231 凹部(駆動力伝達部)
1 rotating connector 2 drive shaft (one rotating member)
3 driven shaft (other rotating member)
4 conductive member 5 cover (movement restricting member)
20, 30 driving force transmission portions 20a, 30a flat surfaces 20d, 30d outer peripheral surface 40 elastic pressure contact portion 40a inner surface 41 connecting portion 50 cylindrical portion 51 fixed flange portion 220, 230 convex portion (driving force transmission portion)
221, 231 concave portion (driving force transmission portion)

Claims (7)

導電性を有し駆動力伝達部が設けられ回転駆動される一方の回転部材と、
導電性を有し駆動力伝達部が設けられ一方の前記回転部材に従動して回転する他方の回転部材と、
径方向に重なる両方の前記駆動力伝達部の外周面にそれぞれ圧接される弾性変形可能な一連の導電部材と、を備えている回転コネクタ。
one rotating member that is electrically conductive and provided with a driving force transmission section and that is driven to rotate;
the other rotating member having electrical conductivity and provided with a driving force transmission portion, which rotates following the one rotating member;
and a series of elastically deformable conductive members that are pressed against the outer peripheral surfaces of both of the driving force transmission portions that overlap in the radial direction.
それぞれの前記駆動力伝達部は、中心軸に沿って延びる平坦面を有している請求項1に記載の回転コネクタ。 2. The rotary connector according to claim 1, wherein each driving force transmission portion has a flat surface extending along the central axis. 前記導電部材は、両方の前記回転部材の外周面にそれぞれ圧接される弾性圧接部を周方向に複数均等に有している請求項1または2に記載の回転コネクタ。 3. The rotary connector according to claim 1, wherein the conductive member has a plurality of elastic pressure contact portions that are evenly spaced in the circumferential direction and press against the outer peripheral surfaces of both of the rotary members. 前記導電部材は、前記弾性圧接部を一連に繋ぐ環状の連結部を有している請求項3に記載の回転コネクタ。 4. The rotary connector according to claim 3, wherein said conductive member has an annular connecting portion that connects said elastic pressure contact portions in series. 前記導電部材は、両方の前記回転部材よりも導電率が高い請求項1ないし4のいずれかに記載の回転コネクタ。 5. A rotary connector as claimed in any preceding claim, wherein the conductive member has a higher conductivity than both of the rotary members. 一方の前記回転部材には、前記導電部材の軸方向の移動を規制する移動規制部材が固定されている請求項1ないし5のいずれかに記載の回転コネクタ。 6. The rotary connector according to any one of claims 1 to 5, wherein a movement restricting member for restricting axial movement of the conductive member is fixed to one of the rotating members. 前記移動規制部材は、前記導電部材を覆うカバーである請求項6に記載の回転コネクタ。 7. The rotary connector according to claim 6, wherein the movement restricting member is a cover that covers the conductive member.
JP2020006239A 2020-01-17 2020-01-17 rotating connector Active JP7282469B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020006239A JP7282469B2 (en) 2020-01-17 2020-01-17 rotating connector
TW109145473A TWI802832B (en) 2020-01-17 2020-12-22 Rotary joint
KR1020200184619A KR102647957B1 (en) 2020-01-17 2020-12-28 Rotary connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006239A JP7282469B2 (en) 2020-01-17 2020-01-17 rotating connector

Publications (2)

Publication Number Publication Date
JP2021114403A JP2021114403A (en) 2021-08-05
JP7282469B2 true JP7282469B2 (en) 2023-05-29

Family

ID=77077129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006239A Active JP7282469B2 (en) 2020-01-17 2020-01-17 rotating connector

Country Status (3)

Country Link
JP (1) JP7282469B2 (en)
KR (1) KR102647957B1 (en)
TW (1) TWI802832B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171525A1 (en) 2012-05-25 2015-06-18 Auto-Kabel Management Gmbh Electrical Connection System

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52170970U (en) * 1976-06-21 1977-12-26
JPS61166233U (en) * 1985-04-04 1986-10-15
JPH0229320U (en) * 1988-08-15 1990-02-26
NL8902490A (en) * 1989-10-06 1991-05-01 Leonardus Mathijs Marie Nevels METHOD FOR CLEANING FLUE GASES
JPH0484920U (en) * 1990-11-30 1992-07-23
JP2000346086A (en) 1999-06-01 2000-12-12 Asano Kenkyusho:Kk Rotary shaft connecting structure
JP2003072567A (en) 2001-08-31 2003-03-12 Koyo Seiko Co Ltd Electric power steering device
TWM313881U (en) * 2006-11-13 2007-06-11 Cheng Uei Prec Ind Co Ltd Power connector
JP3145697U (en) * 2008-08-06 2008-10-16 株式会社荻野精機製作所 Axial joint
JP2011222463A (en) 2010-04-07 2011-11-04 Yamaguchi Seisakusho Co Ltd Rotary electric connector
KR102207574B1 (en) * 2015-02-03 2021-01-27 현대모비스 주식회사 Motor driven power steering system
DE102015122303B3 (en) * 2015-12-15 2017-04-20 Amphenol-Tuchel Electronics Gmbh connector socket
TWI659570B (en) * 2017-02-16 2019-05-11 揚明光學股份有限公司 Connecting system
CN110350375B (en) * 2018-04-03 2020-12-29 深圳市默孚龙科技有限公司 Slip ring

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171525A1 (en) 2012-05-25 2015-06-18 Auto-Kabel Management Gmbh Electrical Connection System

Also Published As

Publication number Publication date
KR20210093161A (en) 2021-07-27
TW202130075A (en) 2021-08-01
KR102647957B1 (en) 2024-03-14
JP2021114403A (en) 2021-08-05
TWI802832B (en) 2023-05-21

Similar Documents

Publication Publication Date Title
KR101648808B1 (en) fixing apparatus for lead ball screw both ends is rotating part, motor shaft coupling and rectilinear movement apparatus including the same
EP0669662B1 (en) Piezoelectric rotating motor
KR20190059847A (en) Servo and robot having the same
JP7282469B2 (en) rotating connector
KR102423802B1 (en) Elastic shaft coupling
JP5664213B2 (en) Rolling bearing unit with mounting plate
WO2016006545A1 (en) Joint driving device
CA3033935C (en) Drive rod and method of manufacturing a drive rod
JPH0849727A (en) Joint structure of shaft and outer ring of constant velocity joint
JP2004526107A (en) Method of forming a tapered roller bearing assembly
CN113677910B (en) Miniature brake and assembly method thereof
JPH02203020A (en) Bearing mechanism
JP4076836B2 (en) Double degree of freedom drive
JP7275435B2 (en) motor
JP2006250283A (en) Torque limiter
JP2000240746A (en) Traction drive type driving device
JP3828418B2 (en) Ultrasonic motor and stator of ultrasonic motor
JP5111563B2 (en) Rotating electric machine
US20170365968A1 (en) Multi-directional high current slip ring
JP7275437B2 (en) motor
KR200271941Y1 (en) Pre pressure apparatus for feed screw
KR100390407B1 (en) hinge-assembly
JP2004064832A (en) Motor structure
US20230408196A1 (en) Veneer dewatering apparatus and method of dewatering veneer
JP4524765B2 (en) Electromagnetic clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7282469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150