JP7271124B2 - 投光装置及び測距装置 - Google Patents

投光装置及び測距装置 Download PDF

Info

Publication number
JP7271124B2
JP7271124B2 JP2018190809A JP2018190809A JP7271124B2 JP 7271124 B2 JP7271124 B2 JP 7271124B2 JP 2018190809 A JP2018190809 A JP 2018190809A JP 2018190809 A JP2018190809 A JP 2018190809A JP 7271124 B2 JP7271124 B2 JP 7271124B2
Authority
JP
Japan
Prior art keywords
light
reflecting
deflection
incident
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018190809A
Other languages
English (en)
Other versions
JP2020060409A (ja
Inventor
孝典 落合
亮 出田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2018190809A priority Critical patent/JP7271124B2/ja
Publication of JP2020060409A publication Critical patent/JP2020060409A/ja
Application granted granted Critical
Publication of JP7271124B2 publication Critical patent/JP7271124B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、光を投光する投光装置及び光学的な測距を行う測距装置に関する。
従来から、光を対象物に照射し、当該対象物によって反射された光を検出することで、当該対象物までの距離を測定する測距装置が知られている。また、対象物の光走査を行い、当該対象物までの距離に加えて当該対象物の形状や向きなどに関する情報を得ることができる光走査型の測距装置が知られている。例えば、特許文献1には、回転軸に対して傾いた第1ミラー面及び第2ミラー面を備えたミラーユニットと、第1ミラー面に向けて光束を出射する少なくとも1つの光源を含む投光系と、を有する走査光学系が開示されている。
国際公開第2016/056545号公報
走査型の測距装置は、例えば、パルス光を走査領域に向けて投光する投光部を有する。そして、測距装置は、投光部からみたパルス光の各々の被照射領域を測距点とし、当該測距点の各々からの光を受光することで、走査領域内の走査情報を得る。
走査領域を漏れなくかつ無駄なく走査することを考慮すると、走査領域内においてパルス光が照射されない領域がないこと、また、パルス光が重複して照射される領域がないことが好ましい。
例えば、当該投光部は、回動式のミラーによって光を反射させ、当該反射された光を走査領域に向けて投光するように構成されている。また、回動軸に対して傾斜しかつその傾斜角度が互いに異なる複数の光反射面を備えた回動ミラーを用いて光を投光することで、当該回動軸の軸方向に沿って光の反射方向を変化させることができる。これによって、当該回動軸の軸方向に沿ってパルス光の投光領域を拡張し、走査領域を拡大することができる。
しかし、回動軸に対して傾斜した光反射面を当該回動軸の周りに回動させ、この光反射面に対して光を入射させる場合、当該光反射面によって反射される光の方向が3次元的に変化する。これによって、例えば、当該複数の光反射面を有する回動ミラーを用いる場合、走査領域の端部近傍では、パルス光の各々の投光位置の間隔がバラつく場合がある。
この場合、走査領域内においてパルス光が投光されない領域が形成され、また、複数回に亘って重複してパルス光が投光される領域が形成される場合がある。換言すれば、走査領域内における走査精度(測距精度)が低下する領域が形成される場合がある。
従って、例えば、回動軸に対して傾斜した光反射面を有する回動ミラーを用いる場合であっても、広範囲に亘って安定して所望の方向に光を投光できることが好ましい。また、これによって、広範囲に亘って高精度な測距を行うことができることが好ましい。
本発明は上記した点に鑑みてなされたものであり、回動する反射面を有する光反射素子を有し、広範囲に亘って所望の方向に光を投光することが可能な投光装置及び当該投光装置を含む測距装置を提供することを目的の1つとしている。
請求項1に記載の発明は、光を出射する光源と、光を方向可変に偏向させる偏向素子と、各々が回動軸の周りに回動し、各々が偏向素子を経た光を反射させ、かつ回動軸に対する角度が互いに異なる複数の反射面を有する反射素子と、を有することを特徴とする。
また、請求項9に記載の発明は、請求項1に記載の投光装置と、反射素子を経て投光されかつ対象物によって反射された光である反射光を受光する受光素子と、受光素子による反射光の受光結果に基づいて対象物までの距離を測定する測距部と、を有することを特徴とする。
実施例1に係る測距装置の全体構成を示す図である。 実施例1に係る測距装置における偏向素子の斜視図である。 実施例1に係る測距装置における反射素子の斜視図である。 実施例1に係る測距装置における反射素子での光の反射態様を示す図である。 実施例1に係る測距装置における反射素子での光の反射態様を示す図である。 実施例1に係る測距装置における反射素子での光の反射態様を示す図である。 実施例1に係る測距装置における偏向素子による光の偏向態様を示す図である。 実施例1に係る測距装置における反射素子の回動時の法線ベクトルの変化を示す図である。 実施例1に係る測距装置における反射素子での光の反射角度の変化を示す図である。 実施例1に係る測距装置における走査光の投光領域を示す図である。 比較例に係る測距装置における反射素子での光の反射角度の変化を示す図である。 比較例に係る測距装置における走査光の投光領域を示す図である。 実施例2に係る測距装置の全体構成を示す図である。 実施例2に係る測距装置における走査光の投光領域を示す図である。 実施例2に係る測距装置における偏向素子での光の偏向態様の制御例を示す図である。 実施例2に係る測距装置における偏向素子での光の偏向態様の制御例を示す図である。 実施例2に係る測距装置における受光素子の構成を示す図である。
以下に本発明の実施例について詳細に説明する。
図1は、実施例1に係る測距装置10の模式的な配置図である。測距装置10は、所定の領域(以下、走査領域と称する)R0の光走査を行い、走査領域R0内に存在する対象物OBまでの距離を測定する走査型の測距装置である。図1を用いて、測距装置10について説明する。なお、図1には、走査領域R0及び対象物OBを模式的に示している。
まず、測距装置10は、パルス光(以下、1次光と称する)L1を生成及び出射する光源11を有する。本実施例においては、光源11は、1次光L1として赤外領域にピーク波長を有するレーザ光を生成し、これを断続的に出射する。
測距装置10は、光源11から出射された1次光L1を方向可変に偏向する偏向素子12を有する。偏向素子12は、周期的な動作を行って1次光L1の偏向方向を周期的に変化させる。偏向素子12は、1次光L1の進行方向を屈曲させつつ出射し、またその屈曲方向を周期的に変化させる。偏向素子12は、偏向された1次光L1を2次光L2として出射する。
本実施例においては、偏向素子12は、1つの揺動軸AXの周りに揺動し、1次光L1を反射させる揺動ミラーML1を有する。本実施例においては、偏向素子12は、揺動ミラーML1が揺動することで、1次光L1の反射方向を周期的に変化させる。本実施例においては、偏向素子12は、揺動ミラーML1によって反射された1次光L1を2次光L2として出射する。
測距装置10は、回動軸AYの周りに回動し、2次光L2、すなわち偏向素子12を経た1次光L1を反射させる少なくとも1つの反射面ML2を有する反射素子13を有する。反射素子13における反射面ML2の各々のうち、少なくとも1つの反射面ML2は、回動軸AYに対して角度を持つように配置されている。例えば、反射素子13は、3つの反射面ML2を有するポリゴンミラーを含む。
本実施例においては、反射素子13の反射面ML2の各々は、偏向素子12の揺動ミラーML1が揺動する揺動軸AXの軸方向に垂直な方向に延びる軸を回動軸AYとし、回動軸AYの周りに回動する。2次光L2は、回動する反射面ML2に反射されることで、その出射方向が周期的に変化する。
本実施例においては、反射素子13を経た2次光L2は、走査光(以下、3次光と称する)L3として、走査領域R0に向けて投光される。すなわち、反射素子13は、反射面ML2によって2次光L2を方向可変に偏向しつつ(反射させつつ)、3次光L3として走査領域R0に向けて投光する投光素子として機能する。
なお、走査領域R0は、偏向素子12及び反射素子13を経た1次光L1である3次光L3が投光される仮想の3次元空間である。図1においては、走査領域R0の外縁を破線で模式的に示した。
例えば、走査領域R0は、2次光L2の入射時における反射素子13の反射面ML2の回動軸AYに対する角度と法線ベクトルの変化とに対応する高さ方向(以下、第1の方向と称する)D1に沿った方向範囲及び幅方向(以下、第2の方向と称する)D2に沿った方向範囲と、3次光L3が所定の強度を維持できる距離方向の範囲(奥行範囲)と、を有する錐状の空間として定義されることができる。
また、走査領域R0内における反射素子13から所定の距離だけ離れた仮想の平面を走査面R1としたとき、走査面R1は、第1及び第2の方向D1及びD2に沿って広がる2次元的な領域として定義されることができる。3次光L3は、この走査面R1を走査するように、走査領域R0に向けて投光される。
また、図1に示すように、走査領域R0に対象物OB(すなわち1次光L1に対して反射性又は散乱性を有する物体又は物質)が存在する場合、3次光L3は、対象物OBによって反射又は散乱される。対象物OBによって反射された走査光L3は、その一部が、反射光(以下、4次光と称する場合がある)L4として、3次光L3とほぼ同一の光路を3次光L3とは反対の方向に向かって進み、反射素子13に戻って来る。
4次光L4は、反射素子13によって偏向される。すなわち、本実施例においては、反射素子13は、偏向素子12を経た1次光L1である2次光L2を方向可変に偏向しつつ3次光L3として投光し、対象物OBによって反射された3次光L3である4次光L4を受光して偏向する走査素子として機能する。4次光L4は、反射素子13によって偏向された後、2次光L2とほぼ同一の光路を2次光L2とは反対の方向に向かって進む。
測距装置10は、4次光L4を集光する受光光学系14と、受光光学系14によって集光された4次光L4を受光する受光素子15と、を有する。受光光学系14は、例えば少なくとも1つのレンズを含む。また、受光素子15は、4次光L4を検出する少なくとも1つの検出素子を含む。受光素子15は、4次光L4を受光し、4次光L4に応じた電気信号を生成する。
受光素子15は、当該電気信号を4次光L4の検出結果(受光結果)として生成する。すなわち、測距装置10は、受光素子15によって生成された当該電気信号を走査領域R0の走査結果として生成する。
なお、本実施例においては、測距装置10は、偏向素子12と反射素子13との間の2次光L2の光路上に設けられ、2次光L2及び4次光L4を分離する分離素子16を有する。例えば、分離素子16は、2次光L2を反射させかつ4次光L4を透過させることで2次光L2及び4次光L4を分離するビームスプリッタ又は穴あきミラーを含む。
測距装置10は、光源11、偏向素子12、反射素子13及び受光素子15を駆動し、また、その制御を行う制御部20を有する。制御部20は、光源11の駆動及び制御を行う光源制御部21と、偏向素子12の駆動及び制御を行う偏向素子制御部22と、反射素子13の駆動及び制御を行う反射素子制御部23と、を有する。
また、制御部20は、受光素子15による4次光L4の受光結果に基づいて対象物OBまでの距離を測定する測距部24を有する。本実施例においては、測距部24は、受光素子15によって生成された電気信号から4次光L4を示すパルスを検出する。また、測距部24は、3次光L3の投光タイミングと4次光L4の受光タイミングとの間の時間差に基づくタイムオブフライト法によって、対象物OB(又はその一部の表面領域)までの距離を測定する。また、測距部24は、測定した距離情報を示すデータ(測距データ)を生成する。
また、本実施例においては、測距部24は、走査領域R0(走査面R1)を複数の測距点(走査点)に区別し、当該複数の測距点の各々の測距結果(距離値)を画素として示す走査領域R0の画像(測距画像)を生成する。本実施例においては、測距部24は、測距点と反射素子13の反射面ML2の変位とを示す情報とを対応付け、走査領域R0の2次元マップ又は3次元マップを示す画像データを生成する。
また、測距部24は、例えば、3次光L3の投光方向の変化周期、すなわち走査領域R0を走査する周期である走査周期を測距画像の生成周期とし、当該走査周期毎に1つの測距画像を生成する。また、測距部24は、生成した複数の測距画像を時系列に沿って動画として表示する表示部(図示せず)を有していてもよい。
なお、走査周期とは、例えば、測距装置10が走査領域R0に対する光走査を周期的に行う場合において、反射素子13の反射面ML2の所定の変位が、その後に再度当該所定の変位に戻るまでの期間をいう。
図2は、偏向素子12の斜視図である。本実施例においては、偏向素子12は、揺動ミラーML1を有するMEMS(Micro Electro Mechanical System)ミラーである。まず、本実施例においては、偏向素子12は、フレーム部12Aと、フレーム部12Aによって支持され、揺動軸AXの周りに揺動する揺動部12Bとを有する。揺動部12Bは、一端がフレーム部12Aの内周部に固定され、揺動軸AXに沿って延び、かつ揺動軸AXの周方向の弾性を有する一対のトーションバーTXを有する。
また、揺動部12Bは、一対のトーションバーTXの内側において揺動軸AXの周りに揺動可能なように一対のトーションバーTXの他端に接続された揺動板SPを有する。揺動板SPは、一対のトーションバーTXが揺動軸AXの周方向に沿ってねじれることで、揺動軸AXの周りに揺動する。
また、偏向素子12は、例えば、電磁気的、静電気的、圧電的又は熱的に揺動板SP1を揺動させる揺動力(すなわち揺動部12Bの駆動力)を生成する駆動力生成部(図示せず)を有する。制御部20の偏向素子制御部22は、当該駆動力生成部の外部接続端子(図示せず)に接続されている。揺動部12Bは、偏向素子制御部22から駆動信号を受けて揺動する。
また、偏向素子12は、揺動板SP上に形成された光反射膜12Cを有する。光反射膜12Cは、揺動板SPの揺動に従って、揺動軸AXの周りに揺動する。本実施例においては、光反射膜12Cは、偏向素子12における揺動ミラーML1として機能する。
図3は、反射素子13の斜視図である。本実施例においては、反射素子13は、回動軸AYの周りに回動する3つの反射面ML20、ML21及びML22を有するポリゴンミラーである。本実施例においては、反射素子13は、回動軸AYの周りに回動する回動体13Aと、回動体13Aに固定され、回動体13Aと共に回動する反射体13Bと、を有する。
反射体13Bは、回動軸AYとのなす角度が互いに異なる3つの側面S0、S1及びS2を有する。反射体13Bの当該3つの側面S0~S2は、それぞれ反射素子13における反射面ML20、ML21及びML22として機能する。
本実施例においては、反射面ML20は、回動軸AYに平行に延びる平面であり、回動軸AYとのなす角度が0°の平面である。反射面ML20は、反射素子13における基準反射面として機能する。一方、反射面ML21及び反射面ML22は、それぞれ回動軸AYに対して角度を持った平面である。
従って、本実施例においては、第1の反射面ML20の法線N0は、回動軸AYに垂直な方向に延びる。また、反射面ML21の法線N1及び反射面ML22の法線N2の各々は、回動軸AYの軸方向に沿った成分を持って延びる。以下においては、反射面ML20を基準反射面と称し、反射面ML21及びML22をそれぞれ第1及び第2の反射面と称する場合がある。
なお、本実施例においては、第1及び第2の反射面ML21及びML22は、回動軸AYに沿って互いに反対方向の成分を持つような法線N1及びN2をそれぞれ有するように構成されている。従って、第1及び第2の反射面ML21及びML22は、基準反射面ML20に対し、互いに反対方向に傾斜している。
図4A、図4B及び図4Cは、基準反射面ML20、第1及び第2の反射面ML21及びML22のそれぞれに2次光L2が入射する期間中の2次光L2及び3次光L3の進路の概略について模式的に示す図である。
以下においては、基準反射面ML20に入射する2次光L2を2次光L20と称し、基準反射面ML20によって反射された2次光L20を3次光L30と称する。また、基準反射面ML20に2次光L20が入射している期間を基準期間P0と称する。
同様に、第1及び第2の反射面ML21及びML22に入射する2次光L2をそれぞれ2次光L21及びL22と称し、第1及び第2の反射面ML21及びML22によって反射された2次光L21及びL22をそれぞれ3次光L31及びL32と称する。また、第1及び第2の反射面ML21及びML22に2次光L21及びL22が入射している期間をそれぞれ第1及び第2の期間P1及びP2と称する。
また、図4A~図4Cにおいては、図の明確さのため、各期間中において2次光L20~L22が回動軸AYに垂直な方向に沿った光軸、本実施例においては基準反射面ML20の法線N0のベクトルと同一の方向に沿った光軸で各反射面ML20、ML21及びML22に入射する場合について説明する。
また、図4A~図4Cにおいては、基準反射面ML20、第1及び第2の反射面ML21及びML22の各々における法線N0、N1及びN2のベクトルが2次光L2の光軸に沿った成分と回動軸AYに沿った成分のみを持った位置に配置された場合について示している。
また、本実施例においては、図4に示すように、回動軸AYの軸方向に沿った方向をz方向とする。また、基準反射面ML20が所定の位置にある状態の基準反射面ML20の法線N0のベクトルに沿った方向をx方向とする。また、x方向及びz方向の両方に垂直な方向をy方向と称する。また、2次光L2及び3次光L3は、x方向に沿ったx軸、y方向に沿ったy軸、及びz方向に沿ったz軸によって定義される3次元空間内を進むものとする。
まず、図4Aに示すように、基準反射面ML20に2次光L20が入射している基準期間P0内においては、基準反射面ML20によって反射された2次光L20は、2次光L20のベクトルと、基準反射面ML20の法線N0のベクトルと、に基づいたベクトルを持つ3次光L30となる。例えば、基準期間P0内においては、基準反射面ML20の回動に応じ、3次光L30のベクトルは、x方向及びy方向に沿って変化する。一方、基準期間P0内においては、3次光L30のベクトルは、z方向においては変化しない。
その一方、図4Bに示すように、第1の反射面ML21は、回動軸AYに対して角度を持った状態で回動軸AYの周りに回動する。従って、第1の反射面ML21に2次光L21が入射している第1の期間P1内においては、3次光L31のベクトルは、x方向及びy方向に沿って変化するのみならず、z方向に沿って変化する。これによって、3次光L31は、z方向において基準期間P0内の3次光L30とは異なる方向に出射される。
また、図4Cに示すように、第2の反射面ML22は、回動軸AYに対して第1の反射面ML21とは異なる角度を有する状態で回動する。従って、第2の反射面ML22に2次光L22が入射している第2の期間P2内においても、3次光L32のベクトルは、x方向、y方向及びz方向に沿って変化する。また、3次光L32は、z方向において3次光L30及びL31とは異なる方向に出射される。本実施例においては、3次光L32は、z方向において、3次光L30を基準として3次光L31とは反対方向に出射される。
このようにして、反射素子13は、2次光L2を方向可変に偏向しつつ、3次光L3として走査領域R0内の種々の領域に向けて投光される。3次光L3の被照射領域は走査点又は測距点となる。
図5A及び図5Bは、偏向素子12による1次光L1の偏向態様の概要について示す図である。本実施例においては、偏向素子12は、2次光L2のベクトルにおけるz方向の成分を変化させるように、1次光L1を方向可変に偏向する。以下においては、第1の反射面ML21に2次光L21が入射している第1の期間P1中における偏向素子12の動作について説明する。
まず、図5Aに示すように、2次光L21のベクトルを入射ベクトルViと称し、第1の反射面ML21の法線N1のベクトルを法線ベクトルVnと称し、3次光L31のベクトルを反射ベクトルVrと称する。また、法線ベクトルVnがy方向の成分を持たない第1の反射面ML21の位置(x方向及びz方向の成分のみを持つ位置)を基準とする。
また、z方向に沿った方向から見たときの入射ベクトルViと反射ベクトルVrとがなす角度をy方向走査角度θhとする。また、y方向に沿った方向から見たときの入射ベクトルViとx軸とがなす角度をz方向入射角度θとする。また、y方向に沿った方向から見たときの反射ベクトルVrとx軸とがなす角度をz方向走査角度θvとする。また、反射ベクトルVrのz方向の成分(高さ方向の成分)を成分Vr(z)とする。
そして、図5Bに示すように、第1の反射面ML21が回動軸AYに対して角度βの角度を有しており、この第1の反射面ML21の法線ベクトルVnが回動軸AYの周りを角度γで回動する場合を考える。
なお、以下においては、説明の簡易さのため、入射ベクトルViがy方向の成分を持たない場合について説明する。この場合、入射ベクトルViにおけるx方向の成分、y方向の成分及びz方向の成分の各々は、以下の式(1)に示す行列として定義することができる。
Figure 0007271124000001
また、法線ベクトルVnにおけるx方向の成分、y方向の成分及びz方向の成分の各々は、以下の式(2)に示す行列として定義することができる。
Figure 0007271124000002
このとき、反射ベクトルVrにおけるx方向の成分、y方向の成分及びz方向の成分の各々は、角度θ、角度β及び角度γを用いて、以下の式(3)に示す行列式として表すことができる。
Figure 0007271124000003
この式(3)を展開すると、反射ベクトルVrを以下の式(4)に示す行列として表すことができる。
Figure 0007271124000004
式(4)は、第1の期間P1においては、反射ベクトルVrのx方向の成分、y方向の成分及びz方向の成分の全てが角度θ、角度β及び角度γに応じて変化することを示している。換言すれば、回動軸AYに対して角度β(β≠0)を持った反射面ML2である第1の反射面ML21を回動軸AYの周りに角度γで回動させた場合、入射ベクトルViが固定されていた場合(角度θが一定の場合)でも、反射ベクトルVrのz方向の成分Vr(z)が角度γに応じて変化することを示している。
また、反射ベクトルVrのy方向の成分の変化範囲は、走査面R1内における3次光L3の第2の方向D2に沿った投光方向の変化範囲に対応する。また、反射ベクトルVrのz方向の成分の変化範囲は、走査面R1内における3次光L3の第1の方向D1に沿った投光方向の変化範囲に対応する。
従って、第1の期間P1内において、3次光L31の投光方向は、第1の反射面ML21の回動(すなわち角度γの変化)に応じ、第1及び第2の方向D1及びD2の両方に沿って変化することとなる。これは、3次光L31の走査面R1上での軌跡が湾曲することを示している。
また、同様に、第2の期間P2において第2の反射面ML22によって反射されて投光される3次光L32の方向も、第2の反射光L22の回動に応じ、第1及び第2の方向D1及びD2の両方に沿って変化することとなる。また、3次光L32の軌跡は、3次光L31の軌跡とは異なる程度及び方向に湾曲することとなる。
従って、基準期間P0においては3次光L3の軌跡は第2の方向D2に沿って直線状に延びているにも関わらず、その他の期間における3次光L3の軌跡は湾曲することとなる。これは、走査領域R0内に走査漏れや重複走査が生ずることにつながる可能性が高い。
従って、走査漏れや重複走査を抑制することを抑制することを考慮すると、3次光L31及びL32の軌跡は第2の方向D2に沿って直線状に延びていることが好ましい。具体的には、例えば、第1の反射面ML21が回動した場合でも、3次光L31の投光方向は第1の方向D1に変化しないことが好ましい。また、例えば、第1の期間P1内において、y方向走査角度θhのみが変化し、z方向走査角度θvは一定となっていることが好ましい。
これに対し、本実施例においては、偏向素子12によって2次光L2のz方向の成分を変化させつつ反射素子13に2次光L2を入射させる。例えば、偏向素子12は、反射ベクトルVrのz方向の成分Vr(z)が一定となるように、1次光L1の偏向方向を変化させて2次光L2のz方向入射角度θを変化させる。
より具体的には、反射ベクトルVrのz方向の成分Vr(z)は、z方向走査角度θvを用いて、以下の式(5)で表すことができる。
Figure 0007271124000005
この式(5)をz方向入射角度θについて解くと、z方向入射角度θは、以下の式(6)で表すことができる。
Figure 0007271124000006
従って、z方向走査角度θvを制御するには、z方向走査角度θvの所望の値(例えば固定値)を式(6)に代入した上で、角度β及びγを変数として式(6)によって導出された値をz方向入射角度θの制御値とすればよい。本実施例においては、偏向素子12は、式(6)に従って1次光L1のz方向の成分を変化させるように1次光L1を偏向しつつ反射素子13に入射させる。
図6Aは、基準期間P0、第1及び第2の期間P1及びP2の各々におけるy方向走査角度θh及びz方向走査角度θvの変化のシミュレーション結果を示す図である。図6Aに示すように、各期間中において、z方向走査角度θvがほとんど変化していないことがわかる。これは、偏向素子12によってz方向入射角度θを制御することによる。
図6Bは、走査面R1上における3次光L30~L32の投光点及びその軌跡を模式的に示す図である。図6Bにおいては、基準反射面ML20からの3次光L30の軌跡TR0、第1の反射面ML31からの3次光L31の軌跡TR1、及び第2の反射面ML22からの3次光L32の軌跡TR2をそれぞれ破線で示している。また、3次光L30~L32の各々の投光ポイントの領域を実線で示している。
上記したように偏向素子12によって1次光L1の偏向方向を調節することで、図6Bに示すように、全ての反射面ML20~ML22からの3次光L3を第2の方向D2に沿った直線状の軌跡を描くように投光することができる。従って、走査領域R0内に走査漏れ又は重複走査の領域が生ずることが抑制される。
図7Aは、比較例に係る測距装置100による走査領域R0のy方向走査角度θh及びz方向走査角度θvの変化のシミュレーション結果を示す図である。また、図7Bは、測距装置100における走査光L30~L32の投光ポイント及びその軌跡を模式的に示す図である。
測距装置100は、偏向素子12を有していない点を除いては、測距装置10と同様の構成を有する。すなわち、測距装置100においては、z方向入射角度θが固定された状態で2次光L2が反射素子13に入射するように構成されている。
図7Aに示すように、測距装置100においては、基準反射面ML20からの3次光L30は、測距装置10と同様の軌跡TR0を描くように投光される。一方、第1及び第2の反射面ML21及びML22からの3次光L31及びL32の各々は、各期間P2及びP3内において、式(5)に従ってz方向走査角度θvを変化させながら投光される。
従って、図7Bに示すように、3次光L31及びL32の各々の軌跡TR10及びTR20は、第2の方向D2における走査面R1の端部の近傍で、第1の方向D1において3次光L30の軌跡に接近する。従って、走査面R1における第2の方向D2の端部の近傍では、走査されない領域及び重複走査が行われる領域が形成され、走査精度が大きく低下する。従って、正確な走査情報を得ることを考慮して、走査領域R0を小さくすること余儀なくされる場合がある。
これに対し、本実施例においては、偏向素子12が1次光L1のz方向の成分を変化させるように1次光L1を偏向しつつ反射素子13に入射させる。各反射面ML20~ML22に入射する全ての2次光L2を所望の領域に向けて投光することができる。従って、走査領域R0の全域に向けて3次光L3をムラがなくかつ無駄のないように投光することができる。従って、3次光L3の投光領域の広範囲に亘って走査漏れ及び重複走査が抑制され、広範囲に亘って正確な走査情報を得ることができる。
このように、本実施例においては、偏向素子12は、反射素子13における第1及び第2の反射面ML21及びML22に入射する2次光L21及びL22の入射ベクトルViのz方向入射角度θを、反射素子13の回動に応じて変化させる。従って、2次光L21及びL22の反射ベクトルVr、すなわち3次光L31及びL32の投光方向が所望の方向となるように調節することができる。従って、広範囲に亘って所望の方向に光を投光することができる。
なお、本実施例においては、反射素子13が3つの反射面ML20~ML22を有し、反射面ML20の各々が回動軸AYに対して互いに異なる角度を有するポリゴンミラーからなる場合について説明した。しかし、反射素子13の構成はこれに限定されない。
反射素子13は、少なくとも1つの反射面を有していればよい。例えば、反射素子13は、第1の反射面ML21のみを有するガルバノミラー又はMEMSミラーであってもよい。反射素子13は、回動軸AYの周りに回動し、偏向素子12を経た1次光L1を反射させかつ回動軸AYと角度を持った反射面ML2を有していればよい。
また、本実施例においては、反射面ML2が平面である場合について説明した。しかし、反射面ML2の一部が凹凸構造を有していたり、湾曲していてもよい。反射素子12は、少なくとも2次光L2が入射する領域において回動軸AYに対して角度を有する反射面MLを有していればよい。
また、本実施例においては、偏向素子12が反射素子13の回動軸AYに垂直な方向の揺動軸AXの周りに揺動する揺動ミラーML1を有するMEMSミラーからなる場合について説明した。しかし、偏向素子12の構成はこれに限定されない。
偏向素子12は、1次光L1を方向可変に偏向するように構成されていればよい。例えば、偏向素子12は、可動式のレンズを有していても良いし、液晶レンズを有していてもよい。また、偏向素子12における1次光L1の偏向方向の可変範囲は、z方向のみに限定されない。例えば、偏向素子12は、z方向を含む種々の方向に沿って1次光L1を方向可変に偏向するように構成されていてもよい。
また、本実施例においては、偏向素子12は、反射面ML2の回動軸AYに対する傾斜角度β及び回動角度γに応じて、1次光L1の偏向方向を、式(6)に従って変化させるように構成される場合について説明した。例えば、偏向素子12は、各期間中のz方向走査角度θvを固定値としてz方向入射角度θを制御する場合について説明した。しかし、偏向素子12による1次光L1の偏向態様はこれに限定されない。
例えば、偏向素子12は、式(6)に従う場合に限定されず、反射面ML2の回動に応じて(角度γの変化に応じて)1次光L1の偏向方向を変化させるように構成されていればよい。なお、この場合、例えば、偏向素子12は、反射面ML2の法線ベクトルVnの変化に応じて1次光L1の偏向方向を変化させることが好ましい。
また、例えば、偏向素子12は、z方向に沿った1次光L1の成分、すなわち回動軸AYの軸方向に沿った1次光L1の成分を変化させるように、1次光L1を偏向させることが好ましい。また、例えば、偏向素子12は、反射面ML2と回動軸AYとがなす角度、すなわち角度βに応じて1次光L1の偏向方向を変化させることが好ましい。
しかし、これらの偏向素子12による1次光L1の偏向態様は一例に過ぎない。すなわち、光源11と反射素子13との間に、1次光L1を方向可変に偏向する偏向素子12が設けられていればよい。これによって、偏向素子12を動作させることで、広範囲に亘って所望の方向に光を投光することが可能となる。そして、広範囲に亘って安定して正確な測距を行うことができる。
また、本実施例においては、光源11が点状のビーム形状の1次光L1を出射する場合について説明した。しかし、光源11の構成はこれに限定されない。例えば、光源11は、線状のビーム形状を有する1次光L1を出射するように構成されていてもよい。また、光源11は、各々がレーザ光を出射する複数の出射口を有し、当該複数のレーザ光の全体を1次光L1として出射してもよい。
また、本実施例においては、光源11、偏向素子12及び反射素子13の動作が制御部20によって制御される場合について説明した。しかし、光源11、偏向素子12及び反射素子13は、それぞれ自身が制御プログラムを有し、互いに連携しつつ動作するように構成されていればよい。すなわち、光源制御部21、偏向素子制御部22及び反射素子制御部23は設けられていなくてもよい。
上記したように、本実施例においては、測距装置10は、光(1次光L1)を出射する光源11と、当該光を方向可変に偏向させる偏向素子12と、回動軸AYの周りに回動し、偏向素子12を経た光を反射させかつ回動軸AYと角度を持った反射面ML2を有する反射素子13と、反射素子13を経て投光されかつ対象物OBによって反射された光である反射光(4次光L4)を受光する受光素子15と、受光素子15による当該反射光の受光結果に基づいて対象物OBまでの距離を測定する測距部24と、を有する。従って、広範囲に亘って所望の方向に光を投光することで広範囲に亘って高精度な走査及び測距を行うことが可能な測距装置10を提供することができる。
なお、測距装置10における受光素子15の4次光L4の受光結果は、測距以外の用途、例えば単純な検出用途にも有用な情報である。従って、測距装置10は測距部24を有していなくてもよい。この場合、測距装置10は走査装置として機能する。
また、測距装置10は、測距部24に加え、受光素子15を有していなくてもよい。反射素子13を経て投光される3次光L3は、照明などの投光用途にも十分に使用されることができる。すなわち、測距装置10は、受光素子15及び測距部24を有していない場合、光源11、偏向素子12及び反射素子13は、投光装置として機能する。
このように、本実施例に係る投光装置は、光(1次光L1)を出射する光源11と、当該光を方向可変に偏向させる偏向素子12と、回動軸AYの周りに回動し、偏向素子12を経た光を反射させかつ回動軸AYと角度を持った反射面ML2を有する反射素子13と、を有する。従って、回動する反射面ML2を有する反射素子13を有し、広範囲に亘って所望の方向に光を投光することが可能な投光装置を提供することができる。
図8は、実施例2に係る測距装置30の全体構成を示す図である。測距装置30は、偏向素子31、受光素子32及び制御部40の構成を除いては、測距装置10と同様の構成を有する。測距装置30においては、偏向素子31は、反射面MLによって反射された2次光L2が互いに離間した複数の軌跡に沿って投光されるように1次光L1の偏向方向を変化させるように構成されている。偏向素子31は、例えば、偏向素子12と同様の構成を有し、駆動信号によって偏向態様が変化するように構成されている。
また、受光素子32は、当該複数の軌跡に沿って投光された3次光L3に対応する4次光L4の各々を受光するように構成されている。また、制御部40は、偏向素子31に供給する駆動信号を調節する偏向素子制御部41と、受光素子32から得られた複数の受光結果に基づいて複数の測距点における対象物OBまでの測距を一括で行う測距部42と、を有する。
なお、本実施例においても、測距装置30は、回動軸AYの周りに回動し、回動軸AYとの角度βが互いに異なる複数の反射面ML20~ML22を有する反射素子13を有する。
本実施例においては、偏向素子31は、上記式(6)において、z方向入射角度θを、離散的な値として設定したz方向走査角度θvに従って制御する。より具体的には、偏向素子31は、例えば、第1の反射面ML21に入射する2次光L2が、互いに異なる離散的な固定値のz方向走査角度θv(例えば、第1、第2及び第3のz方向走査角度)で反射されるように、1次光L1の偏向方向を変化させる。
換言すれば、偏向素子31は、例えば、反射面ML20~ML22のうち、2次光L2が入射している第1の反射面ML21における2次光L2の第1の反射面ML21への入射期間内に第1の反射面ML21によって反射された2次光L2(3次光L3)のz方向の成分Vr(z)が複数の離散値となるように、1次光L1の偏向方向を変化させる。
すなわち、本実施例においては、偏向素子31は、3次光L3の軌跡を調整(補正)するのみならず、3次光L3の軌跡を増加させることで走査領域R0を第1の方向D1に拡大するように、1次光L1を偏向する。従って、測距装置30においては、偏向素子31と反射素子13の両方が走査素子として機能する。
図9は、測距装置30による走査面R1上の3次光L3の投光ポイント及びその軌跡を模式的に示す図である。本実施例においては、偏向素子31は、3つの反射面ML20~ML22の各々において、3つの離散的な値のz方向走査角度θvに基づいたz方向入射角度θの制御を行う。
従って、基準反射面ML20によって反射された3次光L3は、第1の方向D1に沿って互いに離間しかつ第2の方向D2に沿って延びる3つの軌跡TR01~TR03を描くように投光される3次光L301~L303となる。
同様に、第1の反射面ML21によって反射された3次光L3は、第1の方向D1に沿って互いに離間しかつ第2の方向D2に沿って延びる3つの軌跡TR11~TR13を描くように投光される3次光L311~L313となる。
また、第2の反射面ML22によって反射された3次光L3は、第1の方向D1に沿って互いに離間しかつ第2の方向D2に沿って延びる3つの軌跡TR21~TR23を描くように投光される3次光L321~L323となる。
これによって、3つの反射面ML20~ML22を用いて、第1の方向D1に沿って9段階で互いに異なる軌跡に沿った3次光L3の投光を行うことができる。また、3次光L3の各々は、その全域でムラ及び無駄のない配置間隔で投光される。従って、広範囲に亘って、所望の方向に光を投光することで、高精度な測距を行うことが可能となる。
図10は、偏向素子31による1次光L1の偏向態様の制御例を示す図である。例えば、偏向素子31は、各反射面ML20~ML22に2次光L2が入射している期間の中で3次光L3の投光方向を変化させるように、1次光L1の偏向動作を行ってもよい。この場合、図10に示すように、基準期間P0の終了直後には、3次光L311~L313の各々がそれぞれ、第1、第2及び第3のz方向走査角度θv(ML20)に対応する軌跡TR01、TR02及びTR03を描くように投光される。
そして、第1及び第2の期間P1及びP2の終了後には、第1、第2及び第3のz方向走査角度θv(ML20)、第1、第2及び第3のz方向走査角度θv(ML21)並びに第1、第2及び第3のz方向走査角度θv(ML22)の全てに対応する軌跡TR01~TR03、TR11~TR13及びTR21~TR23に沿った3次光L3の投光が終了する。この場合、短時間で広範囲に亘って3次光L3を投光することができる。
図11は、偏向素子31による1次光L1の偏向態様の他の制御例を示す図である。例えば、偏向素子31は、各反射面ML20~ML22に2次光L2が入射している期間内ではz方向走査角度θvを変化させず、当該期間毎にz方向走査角度θvを変化させるように、1次光L1の偏向動作を行ってもよい。
この場合、図11に示すように、例えば、基準反射面ML20に2次光L2が入射している第1の期間P11内においては、第1のz方向走査角度θv(ML20)に対応する1つの軌跡TR01に沿って3次光L301が投光される。同様に、第1の反射面ML21に2次光L2が入射している第2の期間P21内においては、第1のz方向走査角度θv(ML21)1つの軌跡TR11に沿って3次光L311が投光される。また、第2の反射面ML22に2次光L2が入射している第3の期間P31内においては、第1のz方向走査角度θv(ML22)1つの軌跡TR31に沿って3次光L321が投光される。
そして、第1の期間P11の次に基準反射面ML20に2次光L2が入射している第4の期間P12内においては、第2のz方向走査角度θv(ML20)に対応する1つの軌跡TR02に沿って3次光L302が投光される。同様に、第2及び第3の期間P21及びP31の次に第1及び第2の反射面ML21及びML22に2次光L2が入射している第5及び第6の期間P22及びP32においては、それぞれ、第2のz方向走査角度θv(ML21)及びθv(ML22)に対応する軌跡TR22及びTR32に沿って3次光L312及びL322が投光される。
同様に、第7、第8及び第9の期間P13、P23及びP33においては、それぞれ、第3のz方向走査角度θv(ML20)、θv(ML21)及びθv(ML22)に対応する軌跡TR03、TR13及びTR23に沿って、3次光L303、L313及びL323が投光される。
このように、偏向素子31は、9つの期間に亘ってそれぞれ異なる軌跡に沿って3次光L3が投光されるように、1次光L1のz方向に沿った偏向方向を変化させてもよい。これによって、偏向素子31の制御が容易になり、安定して所望の方向に3次光L3を投光することができる。
図12は、受光素子32の受光面32Aの構成例を示す平面図である。図12に示すように、受光素子32は、第1の方向D1に沿って配列された3つの受光セグメントSG1、SG2及びSG3からなる受光面32Aを有する。3つの受光セグメントSG1~SG3は、互いに独立して4次光L4の受光動作を行う。例えば、受光素子32は、第1の方向D1に沿って延びる受光面32Aを有するラインセンサである。
本実施例においては、受光セグメントSG1は、各反射面ML20~ML22からの3次光L3のうちの1つ、例えば、3次光L303、L313及びL323に対応する4次光L4を受光するように構成及び配置されている。同様に、受光セグメントSG2は、3次光L301、L311及びL321に対応する4次光L4を受光するように構成及び配置されている。また、受光セグメントSG3は、3次光L302、L312及びL322に対応する4次光L4を受光するように構成及び配置されている。
受光素子32が複数の受光セグメントSG1~SG3によって4次光L4を受光することで、全ての3次光L301~L303、L311~L313及びL321~L323に対応する4次光L4を個別に受光することができる。従って、例えば図10に示すような態様で3次光L3を投光した場合にも、同一期間中に投光された3次光L3の各々に対応する4次光L4を一括でかつ個別に受光することができる。また、測距部24は、これらの受光結果を用いて、例えば一括で測距動作を行うことができる。
なお、本実施例においても、反射素子13による2次光L2の偏向態様は一例に過ぎない。反射素子13は、実施例1において記載したような種々の態様で2次光L2を反射させることが可能である。また、受光素子32は、複数の受光セグメントSG1~SG3を有する場合に限定されず、4次光L4を受光するように構成されていればよい。
このように、本実施例においては、測距装置30は、光源11と、光源11から出射された1次光L1を方向可変に偏向する偏向素子31と、回動軸AYに対する角度βが互いに異なる複数の反射面ML20~ML22を有し、当該複数の反射面ML20~ML22の各々によって偏向素子31を経た1次光L1を反射させる反射素子13と、対象物OBからの反射光L4を受光する複数の受光セグメントSG1~SG3を有する受光素子32と、受光素子32による反射光L4の受光結果に基づいて対象物OBまでの距離を測定する測距部42と、を有する。従って、複数の反射面ML20~ML22の各々に入射させる2次光L2の方向を偏向素子31によって変化させることで、広範囲に亘って所望の方向に光を投光することで広範囲に亘って高精度な測距を行うことが可能な測距装置30を提供することができる。
また、本実施例においては、測距装置30は、受光素子32及び測距部42を有していなくてもよい。この場合、例えば、光源11、偏向素子31及び反射素子13は、投光装置として機能する。
従って、例えば、本実施例に係る投光装置は、光(1次光L1)を出射する光源11と、当該光を方向可変に偏向させる偏向素子31と、回動軸AYの周りに回動し、回動軸AYとの角度βが互いに異なる複数の反射面ML20~ML22を有する反射素子13と、を有する。従って、広範囲に亘って所望の方向に光を投光することが可能な投光装置を提供することができる。
10、30 測距装置
11 光源
12、31 偏向素子
13 反射素子
15、32 受光素子
24、42 測距部

Claims (9)

  1. 光を出射する光源と、
    前記光を方向可変に偏向させる偏向素子と、
    各々が回動軸の周りに回動し、各々が前記偏向素子を経た前記光を反射させ、かつ前記回動軸に対する角度が互いに異なる複数の反射面を有する反射素子と、を有し、
    前記偏向素子は、前記光が前記複数の反射面のうちの1の反射面に入射している期間内の前記1の反射面の回動角の変化に応じて前記光の偏向方向を変化させ、かつ、前記複数の反射面のうち、前記光が入射している反射面における前記光の前記反射面への入射期間内の前記反射面の法線ベクトルの変化に応じて前記光の偏向方向を変化させることを特徴とする投光装置。
  2. 前記偏向素子は、前記回動軸の軸方向に沿った前記光の成分を変化させるように、前記光を偏向させることを特徴とする請求項1に記載の投光装置。
  3. 前記偏向素子は、前記回動軸と前記複数の反射面の各々とがなす角度に応じて前記光の偏向方向を変化させることを特徴とする請求項1又は2に記載の投光装置。
  4. 前記偏向素子は、前記複数の反射面のうち、前記光が入射している反射面における前記光の前記反射面への入射期間内に前記反射面によって反射された前記光の前記回動軸の軸方向に沿った成分が一定となるように、前記光の偏向方向を変化させることを特徴とする請求項1乃至のいずれか1つに記載の投光装置。
  5. 前記偏向素子は、前記複数の反射面のうち、前記光が入射している反射面によって反射された前記光が前記回動軸の軸方向において互いに離間した複数の軌跡に沿って投光されるように、前記光の偏向方向を変化させることを特徴とする請求項1乃至のいずれか1つに記載の投光装置。
  6. 前記偏向素子は、前記光が前記反射面に入射している第1の期間内において前記反射面によって反射された光が前記複数の軌跡のうちの1つの軌跡に沿って投光され、前記光が前記反射面に入射している前記第1の期間とは異なる第2の期間内において前記反射面によって反射された光が前記複数の軌跡のうちの他の軌跡に沿って投光されるように、前記光の偏向方向を変化させることを特徴とする請求項に記載の投光装置。
  7. 光を出射する光源と、
    前記光を方向可変に偏向させる偏向素子と、
    各々が回動軸の周りに回動し、各々が前記偏向素子を経た前記光を反射させ、かつ前記回動軸に対する角度が互いに異なる複数の反射面を有する反射素子と、を有し、
    前記偏向素子は、前記複数の反射面のうち、前記光が入射している反射面における前記光の前記反射面への入射期間内の前記反射面の法線ベクトルの変化に応じて前記光の偏向方向を変化させることを特徴とする投光装置。
  8. 光を出射する光源と、
    前記光を方向可変に偏向させる偏向素子と、
    各々が回動軸の周りに回動し、各々が前記偏向素子を経た前記光を反射させ、かつ前記回動軸に対する角度が互いに異なる複数の反射面を有する反射素子と、を有し、
    前記偏向素子は、前記光が前記複数の反射面のうちの1の反射面に入射している期間内の前記1の反射面の回動角の変化に応じて前記光の偏向方向を変化させ、かつ、前記複数の反射面のうち、前記光が入射している反射面における前記光の前記反射面への入射期間内に前記反射面によって反射された前記光の前記回動軸の軸方向に沿った成分が一定となるように、前記光の偏向方向を変化させることを特徴とする投光装置。
  9. 請求項1乃至のいずれか1つに記載の投光装置と、
    前記反射素子を経て投光されかつ対象物によって反射された前記光である反射光を受光する受光素子と、
    前記受光素子による前記反射光の受光結果に基づいて前記対象物までの距離を測定する測距部と、を有することを特徴とする測距装置。
JP2018190809A 2018-10-09 2018-10-09 投光装置及び測距装置 Active JP7271124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018190809A JP7271124B2 (ja) 2018-10-09 2018-10-09 投光装置及び測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190809A JP7271124B2 (ja) 2018-10-09 2018-10-09 投光装置及び測距装置

Publications (2)

Publication Number Publication Date
JP2020060409A JP2020060409A (ja) 2020-04-16
JP7271124B2 true JP7271124B2 (ja) 2023-05-11

Family

ID=70219618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190809A Active JP7271124B2 (ja) 2018-10-09 2018-10-09 投光装置及び測距装置

Country Status (1)

Country Link
JP (1) JP7271124B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197575A (ja) 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 光走査装置及び距離測定装置
JP2012053438A (ja) 2010-05-20 2012-03-15 Ricoh Co Ltd 光走査装置及び画像形成装置
EP2983030A2 (de) 2014-08-05 2016-02-10 Sick Ag Mehrebenenscanner und verfahren zum erfassen von objekten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261105A (ja) * 1994-03-23 1995-10-13 Omron Corp 光走査装置並びに当該光走査装置を用いた光センサ装置、符号情報読み取り装置及びposシステム
JP3446466B2 (ja) * 1996-04-04 2003-09-16 株式会社デンソー 車間距離制御装置用の反射測定装置及びこれを利用した車間距離制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197575A (ja) 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 光走査装置及び距離測定装置
JP2012053438A (ja) 2010-05-20 2012-03-15 Ricoh Co Ltd 光走査装置及び画像形成装置
EP2983030A2 (de) 2014-08-05 2016-02-10 Sick Ag Mehrebenenscanner und verfahren zum erfassen von objekten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARAI, Takeji 外1名,"New optical control system for precision and fine laser drilling device",PROCEEDINGS OF SPIE,2004年09月01日,Volume 5456,Pages 175-185,<DOI: 10.1117/12.554278 >

Also Published As

Publication number Publication date
JP2020060409A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
CN108205124B (zh) 一种基于微机电振镜的光学装置和激光雷达系统
JP7409532B2 (ja) 光学装置、計測装置、ロボット、電子機器、移動体、および造形装置
US20090080046A1 (en) Optical scanning element, driving method for same, and optical scanning probe employing optical scanning element
CN104221058A (zh) 装有万向接头的扫描镜阵列
ES2837073T3 (es) Sistemas y procedimientos para la detección de la posición de un haz de luz
JP6724663B2 (ja) スキャナミラー
JP2021535996A (ja) 光検出および測距、すなわち、lidar測定のための同軸設定
JP2024028338A (ja) 走査装置
KR102017186B1 (ko) 3차원 형상 측정 장치
US10642025B2 (en) Method for controlling position of a linear MEMS mirror with variable resolution and/or light intensity
JP2020020703A (ja) 走査装置、走査装置の制御方法、プログラム及び記録媒体並びに測距装置
JP7271124B2 (ja) 投光装置及び測距装置
JP2021170033A (ja) 走査装置
JP7534862B2 (ja) 走査装置、走査方法及び走査プログラム
JP2020060408A (ja) 投光装置及び測距装置
JP2020101587A (ja) 可動装置、距離測定装置、画像投影装置、及び車両
JP7375471B2 (ja) 可動装置、画像投影装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、物体認識装置、及び車両
JP7501309B2 (ja) 光学装置、計測装置、ロボット、電子機器および造形装置
JP2021184009A (ja) 画像投影装置
JP6617444B2 (ja) 圧電アクチュエータ装置、光偏向器、画像投影装置、画像形成装置及び移動体装置
WO2024028938A1 (ja) 画像センシング装置
JP2019174126A (ja) 測距装置
JP2022159438A (ja) 測距装置
US20210156967A1 (en) Method and system for detecting fiber position in a fiber scanning projector
JP2022164850A (ja) 光学装置、測距装置及び測距方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7271124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150