JP7198195B2 - nitride semiconductor substrate - Google Patents

nitride semiconductor substrate Download PDF

Info

Publication number
JP7198195B2
JP7198195B2 JP2019232290A JP2019232290A JP7198195B2 JP 7198195 B2 JP7198195 B2 JP 7198195B2 JP 2019232290 A JP2019232290 A JP 2019232290A JP 2019232290 A JP2019232290 A JP 2019232290A JP 7198195 B2 JP7198195 B2 JP 7198195B2
Authority
JP
Japan
Prior art keywords
substrate
nitride semiconductor
layer
present
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019232290A
Other languages
Japanese (ja)
Other versions
JP2021100087A (en
Inventor
浩司 大石
純 小宮山
芳久 阿部
健一 江里口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2019232290A priority Critical patent/JP7198195B2/en
Priority to US17/095,195 priority patent/US11605716B2/en
Publication of JP2021100087A publication Critical patent/JP2021100087A/en
Application granted granted Critical
Publication of JP7198195B2 publication Critical patent/JP7198195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、特に、高周波デバイスに好適な窒化物半導体基板に関する。 The present invention particularly relates to nitride semiconductor substrates suitable for high frequency devices.

高周波デバイス用の窒化物半導体素子の作製には、絶縁性基板上に窒化物半導体層が形成された窒化物半導体基板が用いられる。例えば、特許文献1には、寄生損失の小さい高周波数用途に好適とされる、102Ω・cm超の抵抗率を有し、かつ1017/cm3未満の最大自由キャリア濃度の上面領域を含むシリコン基板と、シリコン基板の上面を覆うように形成されるIII族窒化物材料領域とを備える半導体構造の開示がある。 A nitride semiconductor substrate in which a nitride semiconductor layer is formed on an insulating substrate is used to fabricate a nitride semiconductor element for a high frequency device. For example, U.S. Pat. No. 5,300,003 discloses a top surface region having a resistivity greater than 10 2 Ω·cm and a maximum free carrier concentration less than 10 17 /cm 3 , which is said to be suitable for high frequency applications with low parasitic losses. There is disclosed a semiconductor structure comprising a silicon substrate comprising a silicon substrate and a III-nitride material region formed overlying the top surface of the silicon substrate.

近年、大口径(6インチ以上)の窒化物半導体基板を用いた高周波デバイスが注目されつつある。しかしながら、上記シリコン(Si)を下地基板として用いる従来の窒化物半導体基板では、大口径化や窒化物半導体層の厚膜化に十分対応できているとは言えない。 In recent years, high-frequency devices using nitride semiconductor substrates with a large diameter (6 inches or more) have been attracting attention. However, it cannot be said that the conventional nitride semiconductor substrate using silicon (Si) as the underlying substrate is sufficiently compatible with the increase in diameter and the increase in thickness of the nitride semiconductor layer.

この点、例えば特許文献2には、下地基板の一主面上にシード層を介して形成された化合物半導体層を備え、前記下地基板は焼結体からなり、前記シード層は単結晶からなり、
前記化合物半導体層は前記シード層上で結晶成長されたバッファー層および活性層が順
次積層された構造を含み、前記焼結体の熱膨張係数は前記化合物半導体層全体の平均熱膨張係数の0.7倍以上1.4倍以下であり、前記バッファー層のX線回折ピークの半値幅が800arcsec以下である化合物半導体基板が記載されている。このような手法であれば、大口径化や窒化物半導体層の厚膜化にも十分対応できると考えられる。
In this respect, for example, in Patent Document 2, a compound semiconductor layer is provided on one main surface of an underlying substrate via a seed layer, the underlying substrate is made of a sintered body, and the seed layer is made of a single crystal. ,
The compound semiconductor layer has a structure in which a buffer layer crystal-grown on the seed layer and an active layer are sequentially laminated, and the thermal expansion coefficient of the sintered body is 0.0 of the average thermal expansion coefficient of the entire compound semiconductor layer. A compound semiconductor substrate is disclosed in which the ratio is 7 times or more and 1.4 times or less and the half width of the X-ray diffraction peak of the buffer layer is 800 arcsec or less. It is considered that such a technique can sufficiently cope with an increase in the diameter and an increase in the thickness of the nitride semiconductor layer.

特表2008-522447号公報Japanese Patent Publication No. 2008-522447 特開2017-76687号公報JP 2017-76687 A

ところが、特許文献2に記載の発明で、単にシード層に特許文献1記載のSi単結晶を適用するだけでは、寄生容量以外の特性については、必ずしも十分なものが得られるものではなかった。 However, in the invention described in Patent Document 2, simply applying the Si single crystal described in Patent Document 1 to the seed layer did not always provide sufficient characteristics other than the parasitic capacitance.

本発明は、上記に鑑み、特に、多結晶無機材料基板上にSi単結晶からなるシード層を備えた構造において、より高周波デバイスとして好適な窒化物半導体基板を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a nitride semiconductor substrate suitable as a higher frequency device, particularly in a structure comprising a seed layer made of Si single crystals on a polycrystalline inorganic material substrate.

本発明は、基板、13族窒化物半導体からなるバッファー層、13族窒化物半導体からなる動作層がこの順で積層されており、前記基板は、多結晶の窒化アルミニウムからなる第一基板と、前記第一基板上に設けられ比抵抗100Ω・cm以上のSi単結晶からなる
第二基板で構成され、前記第一基板は平均粒径4.0~7.0μmであることを特徴とする。
In the present invention, a substrate, a buffer layer made of a Group 13 nitride semiconductor, and an operating layer made of a Group 13 nitride semiconductor are laminated in this order, the substrate being a first substrate made of polycrystalline aluminum nitride; The second substrate is composed of a Si single crystal having a specific resistance of 100 Ω·cm or more provided on the first substrate, and the first substrate has an average grain size of 4.0 to 7.0 μm. .

かかる構成を有することで、高周波デバイスの作製に好適な窒化物半導体基板とすることができる。 By having such a configuration, a nitride semiconductor substrate suitable for manufacturing a high frequency device can be obtained.

本発明によれば、特に、大口径化や窒化物半導体層の厚膜化に対応して高周波デバイスの作製に好適な、多結晶無機材料上にSi単結晶からなるシード層を備えた窒化物半導体基板を提供できる。 According to the present invention, a nitride having a seed layer made of Si single crystal on a polycrystalline inorganic material is particularly suitable for fabricating high-frequency devices in response to a larger diameter and a thicker nitride semiconductor layer. A semiconductor substrate can be provided.

本発明の一態様に係る窒化物半導体の層構造を示す断面概略図Schematic cross-sectional view showing a layer structure of a nitride semiconductor according to one embodiment of the present invention

以下、図面も参照して本発明を詳細に説明する。本発明の窒化物半導体基板は、基板、13族窒化物半導体からなるバッファー層、13族窒化物半導体からなる動作層がこの順で積層されており、前記基板は、多結晶の窒化アルミニウムからなる第一基板と、前記第一基板上に設けられ比抵抗100Ω・cm以上のSi単結晶からなる第二基板で構成され、前記第一基板を形成するAlNの平均粒径は3~9μmである。 The present invention will be described in detail below with reference to the drawings as well. In the nitride semiconductor substrate of the present invention, a substrate, a buffer layer made of a Group 13 nitride semiconductor, and an operating layer made of a Group 13 nitride semiconductor are laminated in this order, and the substrate is made of polycrystalline aluminum nitride. It is composed of a first substrate and a second substrate made of Si single crystal having a specific resistance of 100 Ω·cm or more provided on the first substrate, and the average grain size of AlN forming the first substrate is 3 to 9 μm. .

図1は、本発明の一態様に係る窒化物半導体の層構造を示す断面概略図である。なお、本発明で示す概略図は、説明のために形状を模式的に簡素化かつ強調したものであり、細部の形状、寸法、および比率は実際と異なる。また、同一の構成については符号を省略、さらに、説明に不要なその他の構成は記載していない。 FIG. 1 is a schematic cross-sectional view showing a layer structure of a nitride semiconductor according to one embodiment of the present invention. It should be noted that the schematic diagrams shown in the present invention are schematic simplifications and exaggerated shapes for the sake of explanation, and the shapes, dimensions, and proportions of details differ from the actual ones. Reference numerals are omitted for the same configurations, and other configurations unnecessary for explanation are not described.

図1に示す通り、窒化物半導体基板Zは、下地となる基板Wの一主面上にバッファー層Bと動作層Gが順次積層されたものである。半導体素子として利用する場合は、電極Eが付与される。基板Wは、さらに、多結晶の窒化アルミニウム(AlN)からなる第一基板1と、第一基板1上のSi単結晶からなる第二基板2で構成されている。 As shown in FIG. 1, the nitride semiconductor substrate Z is obtained by sequentially stacking a buffer layer B and an operating layer G on one main surface of a substrate W serving as a base. When used as a semiconductor element, an electrode E is provided. The substrate W further comprises a first substrate 1 made of polycrystalline aluminum nitride (AlN) and a second substrate 2 made of Si single crystal on the first substrate 1 .

窒化物半導体基板Zの基本的な構成は、特許文献2に記載された発明の化合物半導体基板Zと同じであるが、さらに本発明は、基板Wの構成が従来にない特徴を有するものである。その詳細は後述する。 The basic structure of the nitride semiconductor substrate Z is the same as that of the compound semiconductor substrate Z of the invention described in Patent Document 2, but the structure of the substrate W of the present invention has a feature not found in the prior art. . The details will be described later.

本発明における窒化物半導体は、Ga、Al、インジウム(In)等の13族元素のうち少なくとも一つと、窒素(N)からなる。必要に応じて、酸素(O)、Si、マグネシウム(Mg)等の各種元素がドーピングされていてもよい。 The nitride semiconductor in the present invention consists of at least one of group 13 elements such as Ga, Al, and indium (In), and nitrogen (N). Various elements such as oxygen (O), Si, and magnesium (Mg) may be doped as necessary.

バッファー層Bは、用途や目的に応じて、公知の構造を適時適用できる。本発明では、高周波デバイスに用いることも考慮して、高抵抗化されたバッファー層Bが好適である。高抵抗化は、窒化物半導体層にCまたは鉄(Fe)をドーピングすることで達成される。 A well-known structure can be appropriately applied to the buffer layer B depending on the application and purpose. In the present invention, the buffer layer B having a high resistance is suitable in consideration of its use in high-frequency devices. A high resistance is achieved by doping the nitride semiconductor layer with C or iron (Fe).

動作層Gは、図1では、電子走行層3と、これよりバンドギャップの大きい電子供給層4を例示するが、格別これに限定されるものではなく、必要に応じて、キャップ層、スペーサー層、p型層、等を適時追加してもよく、更に、上記した各層の層厚や不純物濃度も、目的に応じて適時設計される。 The operating layer G is illustrated in FIG. 1 by the electron transit layer 3 and the electron supply layer 4 having a larger bandgap than this, but is not particularly limited to these. , a p-type layer, etc., may be added as appropriate, and the layer thickness and impurity concentration of each of the layers described above are also appropriately designed according to the purpose.

本発明では、高周波デバイスに好適な大口径の窒化物半導体基板として、バッファー層Bと動作層Gの厚さの総計は、5~20μmの範囲とする。単一材料の基板では、例えば5μmの窒化物半導体層の積層でも、近年要求される反りや転位密度のレベルを得ることが困難であるが、本発明の基板Wでは、さらに厚いバッファー層Bの積層が可能である。 In the present invention, as a large-diameter nitride semiconductor substrate suitable for high-frequency devices, the total thickness of the buffer layer B and the operating layer G is in the range of 5 to 20 μm. With a substrate made of a single material, it is difficult to obtain the levels of warpage and dislocation density required in recent years, even with a stack of nitride semiconductor layers of 5 μm, for example. Stacking is possible.

窒化物半導体層の厚膜化は、高周波デバイスにおける寄生容量低下にも寄与するので好ましいが、前記厚さの総計が20μmを超えると、耐圧向上や寄生容量低減という特性向上効果は十分に得られるものの、反りの制御性は大幅に劣化し、かつ、製造コストが特性向上に見合うものでなくなってくる。 Increasing the thickness of the nitride semiconductor layer is preferable because it also contributes to the reduction of parasitic capacitance in high-frequency devices. However, the controllability of warpage is greatly deteriorated, and the manufacturing cost does not correspond to the improvement of the characteristics.

基板Wは、多結晶のAlNからなる第一基板1と、第一基板1上に設けられたSi単結晶からなり比抵抗100Ω・cm以上の第二基板2で構成される。 The substrate W is composed of a first substrate 1 made of polycrystalline AlN and a second substrate 2 made of Si single crystal provided on the first substrate 1 and having a specific resistance of 100 Ω·cm or more.

まず、第一基板1は、多結晶のAlNからなるが、基本的な構成は、特許文献2に記載の化合物半導体基板Zに準ずる。第一基板1は、単体のAlNでもよいが、必要に応じて、AlNからなる基板表面および裏面に、Si酸化膜、Si窒化膜、その他各種無機材料からなる層が、少なくとも一層以上形成された複合体が適用されてもよい。 First, the first substrate 1 is made of polycrystalline AlN, and its basic configuration conforms to the compound semiconductor substrate Z described in Patent Document 2. The first substrate 1 may be a single AlN, but if necessary, at least one layer or more layers made of Si oxide film, Si nitride film, and other various inorganic materials are formed on the front and back surfaces of the substrate made of AlN. Complexes may be applied.

特に、窒化物半導体基板で要求される高い放熱性を効果的に得るには、第一基板1の熱伝導率を第二基板2の熱伝導率より高くするとよい。Siは熱伝導率が100W/mK強であるのに対して、AlNは材料設計を最適化することで100~250W/mKの範囲で熱伝導率を得ることが可能である。しかしながら、高熱伝導率を有するAlNは粒界相を追い出すために十分な焼結が必要となり、結果として粒径が大きくなり機械的強度は低くなる。放熱性と強度のバランスを考慮すると、第二基板2にSiを用いた場合の第一基板1の熱伝導率は、150~200W/mKが好ましい。 In particular, the thermal conductivity of the first substrate 1 should be higher than that of the second substrate 2 in order to effectively obtain the high heat dissipation required of the nitride semiconductor substrate. Si has a thermal conductivity of over 100 W/mK, whereas AlN can achieve a thermal conductivity in the range of 100 to 250 W/mK by optimizing the material design. However, AlN, which has high thermal conductivity, requires sufficient sintering to expel the grain boundary phase, resulting in large grain size and low mechanical strength. Considering the balance between heat dissipation and strength, the thermal conductivity of the first substrate 1 when Si is used for the second substrate 2 is preferably 150 to 200 W/mK.

上記に鑑みて、第一基板1では、その平均粒径が3~9μmである。この平均粒径は、コード法で測定される。 In view of the above, the first substrate 1 has an average grain size of 3 to 9 μm. This average particle size is measured by the code method.

第一基板1の熱伝導率を、上記の150~200W/mKにしようとすると、それなりの大きさの粒径にしないといけないが、前述の強度との兼ね合いで、粒径をむやみに大きくできない。そこで本発明では、第一基板1の平均粒径を決定する指標として、さらに熱伝導性と強度のバランスをとることを考慮している。 If the thermal conductivity of the first substrate 1 is to be 150 to 200 W/mK as described above, the particle size must be of a certain size. . Therefore, in the present invention, as an index for determining the average grain size of the first substrate 1, the balance between thermal conductivity and strength is taken into consideration.

平均粒径が3μmを下回ると、十分な焼結を完了することが出来ず十分な強度が得られないとともに粒界相も多く残存することから第一基板1の熱伝導率を150~200W/mKとすることが困難になる。しかしながら、平均粒径が9μmを超える焼結プロセスを経ると粒界相が減少し十分な熱伝導率が得られるが、その一方で強度の低下が懸念される。 If the average grain size is less than 3 μm, sufficient sintering cannot be completed, sufficient strength cannot be obtained, and a large amount of the grain boundary phase remains. mK becomes difficult. However, when the average grain size exceeds 9 μm through a sintering process, the grain boundary phase is reduced and sufficient thermal conductivity is obtained, but on the other hand, there is concern about a decrease in strength.

上記した各事情を勘案して、第一基板1の平均粒径を3~9μmとする。より好適には、第一基板1の平均粒径は4.0~7.0μmである。なお、平均粒径は、原料粉の粒度分布、焼成温度やバインダーの種類等の変更、その他公知の技術を用いて、適時調製される。 Considering the above circumstances, the average grain size of the first substrate 1 is set to 3 to 9 μm. More preferably, the average grain size of the first substrate 1 is 4.0-7.0 μm. Incidentally, the average particle size is appropriately adjusted by changing the particle size distribution of the raw material powder, the firing temperature, the type of binder, and other known techniques.

第二基板2は、第一基板1上に設けられた比抵抗100Ω・cm以上のSi単結晶基板である。この第二基板2は、高周波デバイスとして好適であるという観点から、特許文献1に記載の技術思想に倣って高抵抗とし、少なくとも比抵抗100Ω・cm以上とする。 The second substrate 2 is a Si single crystal substrate provided on the first substrate 1 and having a specific resistance of 100 Ω·cm or more. From the viewpoint of being suitable as a high-frequency device, the second substrate 2 has a high resistance following the technical idea described in Patent Document 1, and has a specific resistance of at least 100 Ω·cm.

本発明では、第二基板2がMCZ法で製造されたものであると好ましい。通常、高周波デバイス用基板にSi単結晶を用いる場合、高抵抗を得る目的で、FZ法にて製造されたSi単結晶基板(FZウェハ)が適用される。一方、FZ法ほど高抵抗品ではないが、比較的安価に製造が可能なMCZ法で製造されたSi単結晶基板(MCZウェハ)があるが、本発明では、このMCZウェハが適用される。 In the present invention, it is preferable that the second substrate 2 is manufactured by the MCZ method. Generally, when a Si single crystal is used for a high-frequency device substrate, a Si single crystal substrate (FZ wafer) manufactured by the FZ method is used for the purpose of obtaining high resistance. On the other hand, there is a Si single crystal substrate (MCZ wafer) manufactured by the MCZ method, which is not as high resistance as the FZ method but can be manufactured relatively inexpensively, and this MCZ wafer is applied in the present invention.

しかしながら、第二基板2に寄生容量の低減を目的とした高抵抗のSiを用いた場合、AlNの多結晶体からなる第一基板1、窒化物半導体からなるバッファー層Bおよび動作層Gと比較すると、高抵抗のSiは、どうしても両者に比べて強度の面で劣る。 However, when high-resistance Si is used for the second substrate 2 for the purpose of reducing parasitic capacitance, compared with the first substrate 1 made of polycrystalline AlN, the buffer layer B made of a nitride semiconductor, and the operation layer G, Then, Si, which has a high resistance, is inferior in strength to both.

特に、第二基板2の上下に、第二基板2より強度の高い層が形成されている構造では、窒化物半導体基板Z全体に発生する反りやひずみによる応力が、最も強度で劣る第二基板2に集中する。第二基板2がFZウェハでは、この応力の集中に持ちこたえられない懸念が生じる。 In particular, in a structure in which layers having higher strength than the second substrate 2 are formed above and below the second substrate 2, the stress due to warping and strain generated in the entire nitride semiconductor substrate Z is the second substrate with the lowest strength. Concentrate on 2. If the second substrate 2 is an FZ wafer, there arises a concern that this stress concentration cannot be endured.

そこで、好適な本発明の一態様として、第二基板2を、FZウェハと比較して寄生容量の低減効果では劣るが、高抵抗でありながら酸素濃度が高く強度に優れるMCZウェハとするものである。 Therefore, as a preferred aspect of the present invention, the second substrate 2 is an MCZ wafer that has high resistance, high oxygen concentration, and excellent strength, although it is inferior in the effect of reducing parasitic capacitance compared to the FZ wafer. be.

第二基板2にMCZウェハを用いると、FZウェハを用いた場合と比べて寄生容量低減効果は相対的に劣るが、これを、バッファー層Bの厚膜化で補完することができる。本発明では、バッファー層Bの厚膜化は、第一基板1に本発明の多結晶AlN(平均粒径3~9μm)を用いることで可能となる。 When an MCZ wafer is used for the second substrate 2, the effect of reducing parasitic capacitance is relatively inferior to when an FZ wafer is used. In the present invention, the thickness of the buffer layer B can be increased by using the polycrystalline AlN of the present invention (average grain size: 3 to 9 μm) for the first substrate 1 .

本発明の第二基板2は、酸素濃度が1E+18~9E+18atoms/cm3、比抵抗が100~1000Ω・cmであると、より好適である。第二基板2の比抵抗が100Ω・cm未満では、寄生容量の低減効果が十分に得られず、1000Ω・cmを超えるものは酸素濃度を1E+18atoms/cm3より高くできないので、窒化物半導体基板Z全体として必要な強度が保持できない、という問題が懸念される。ただし、酸素濃度は9E+18atoms/cm3を超えると、強度(硬さ)は十分だが逆に脆くなるので好ましくない。 More preferably, the second substrate 2 of the present invention has an oxygen concentration of 1E+18 to 9E+18 atoms/cm 3 and a specific resistance of 100 to 1000 Ω·cm. If the specific resistance of the second substrate 2 is less than 100 Ω·cm, the effect of reducing the parasitic capacitance cannot be sufficiently obtained, and if it exceeds 1000 Ω·cm, the oxygen concentration cannot be made higher than 1E+18 atoms/cm 3 . There is a concern that the required strength cannot be maintained as a whole. However, if the oxygen concentration exceeds 9E+18 atoms/cm 3 , although the strength (hardness) is sufficient, the material becomes brittle, which is not preferable.

第二基板2は、あまりに厚いと、第一基板1、および、各窒化物半導体層に比べて強度が不足しているので、反りや外周部の膜剥がれを誘発するリスクが生じる。そのため、特に基板Wの口径が6インチ以上の場合は、該厚さは0.1~1.0μmが好ましい。 If the second substrate 2 is too thick, its strength is insufficient compared to the first substrate 1 and each nitride semiconductor layer, so there is a risk of warping or peeling of the outer peripheral film. Therefore, especially when the diameter of the substrate W is 6 inches or more, the thickness is preferably 0.1 to 1.0 μm.

なお基板Wは、第一基板1と第二基板2を、公知の基板接合技術を用いて貼り合わせたものである。その際、第一基板1と第二基板2の界面に、例えばシリコン酸化膜(厚さ500~1000nm程度)が介在していてもよい。 The substrate W is obtained by bonding the first substrate 1 and the second substrate 2 together using a known substrate bonding technique. At that time, for example, a silicon oxide film (about 500 to 1000 nm thick) may be interposed at the interface between the first substrate 1 and the second substrate 2 .

このように、本発明の基板Wを用いた窒化物半導体基板Zは、適切な熱伝導性(第一基板1の平均粒径3~9μmで達成)、基板の強度確保(第一基板1の平均粒径+第二基板2がMCZウェハの組み合わせで達成)、そして十分な寄生容量低減効果(前記の基板強度向上でバッファー層Bの厚膜化が可能になることで実現)を、同時に得ることができる。 As described above, the nitride semiconductor substrate Z using the substrate W of the present invention has an appropriate thermal conductivity (achieved with an average grain size of 3 to 9 μm of the first substrate 1) and secures the strength of the substrate (the thickness of the first substrate 1 (Average grain size + second substrate 2 achieved by combining MCZ wafer) and sufficient parasitic capacitance reduction effect (achieved by increasing the thickness of the buffer layer B due to the above-mentioned improvement in substrate strength) can be obtained at the same time. be able to.

以下、本発明を実験例に基づいて具体的に説明するが、本発明は、これらにより制限されるものではない。 EXAMPLES The present invention will be specifically described below based on experimental examples, but the present invention is not limited to these.

(第一基板1の準備)
直径6インチ、厚さ1000μmのAlN焼結体から成る基板を準備し、これを第一基板1とした。この下地基板の一の主面を、算術平均粗さRa=100nm以下となるように、公知の研磨加工方法で鏡面とした。そして、この鏡面におけるAlNの平均粒径は5μmであった。
(Preparation of first substrate 1)
A substrate made of AlN sintered body having a diameter of 6 inches and a thickness of 1000 μm was prepared as the first substrate 1 . One main surface of the base substrate was mirror-finished by a known polishing method so as to have an arithmetic mean roughness Ra of 100 nm or less. The average grain size of AlN on this mirror surface was 5 μm.

(第二基板2の準備)
口径6インチ、厚さ675μm、面方位(111)、比抵抗500Ω・cm、酸素濃度3E+18atoms/cm3のMCZウェハを準備した。この片面を算術平均粗さRa=50nmに鏡面加工した後、これを、半導体用熱処理炉を用いて、酸素100%雰囲気下1000℃で2時間の酸化処理を行い、鏡面に酸化膜を形成した。
(Preparation of second substrate 2)
An MCZ wafer having a diameter of 6 inches, a thickness of 675 μm, a plane orientation of (111), a resistivity of 500 Ω·cm, and an oxygen concentration of 3E+18 atoms/cm 3 was prepared. After mirror-finishing this one side to an arithmetic mean roughness Ra of 50 nm, this was subjected to oxidation treatment at 1000° C. for 2 hours in a 100% oxygen atmosphere using a heat treatment furnace for semiconductors to form an oxide film on the mirror surface. .

(基板Wの作製~第一基板1と第二基板2の接合と研磨)
上記のように作製した第一基板1の鏡面と第二基板2の鏡面同士を、公知の方法で熱圧
着して接合した後、第二基板2の厚さが0.5μmになるまで表面を研削加工し、最後に算術平均粗さRa=50nmで鏡面加工した。以上の様にして基板Wを得た。
(Fabrication of Substrate W ~ Bonding and Polishing of First Substrate 1 and Second Substrate 2)
After bonding the mirror surface of the first substrate 1 and the mirror surface of the second substrate 2 prepared as described above by thermocompression bonding by a known method, the surfaces are polished until the thickness of the second substrate 2 reaches 0.5 μm. It was ground and finally mirror-finished with an arithmetic mean roughness Ra of 50 nm. A substrate W was obtained as described above.

[バッファー層Bの製造条件]
次に、原料として、トリメチルアルミニウム(TMAl)、トリメチルガリウム(TMGa)、アンモニア(NH3)を用いて、AlN層100nm上にAl0.2Ga0.8N層150nmを積層した初期層、AlN層5nmとAl0.2Ga0.8N層30nmの2層を20回繰り返し積層した多層、GaN層7300nmの単層を、上記した順で気相成長させて積層したものをバッファー層Bとした。ここで、バッファー層Bの層厚は8000nmである。
[Conditions for manufacturing buffer layer B]
Next, using trimethylaluminum (TMAl), trimethylgallium (TMGa), and ammonia (NH 3 ) as raw materials, an initial layer in which an Al 0.2 Ga 0.8 N layer of 150 nm is laminated on an AlN layer of 100 nm, an AlN layer of 5 nm and an Al A buffer layer B was formed by stacking a multi-layer stack of 30 nm 0.2 Ga 0.8 N layers repeated 20 times and a single GaN layer of 7300 nm thickness in the order described above. Here, the layer thickness of the buffer layer B is 8000 nm.

[動作層Gの製造条件]
次に、動作層Gは、電子走行層3をGaN層100nm、電子供給層4をAl0.22Ga0.78N層20nmとして、この順で積層した。ここで、バッファー層B、および、動作層Gの成長条件は、成長温度1050℃と成長圧力60hPaを、それぞれおよその基準値として、各層を成長させる時に適時変更した。以上の通り、実験例1の窒化物半導体基板Zを作製した。
第一基板1の平均粒径と、第二基板2の酸素濃度および比抵抗を表1に示すように変更した以外は、実験例1に準じて、実験例2~10の窒化物半導体基板Zを作製した。
[Manufacturing Conditions for Operating Layer G]
Next, in the active layer G, the electron transit layer 3 is a GaN layer of 100 nm, and the electron supply layer 4 is an Al 0.22 Ga 0.78 N layer of 20 nm, which are laminated in this order. Here, the growth conditions for the buffer layer B and the operating layer G were changed as appropriate when growing each layer, using a growth temperature of 1050° C. and a growth pressure of 60 hPa as approximate reference values. As described above, the nitride semiconductor substrate Z of Experimental Example 1 was produced.
Nitride semiconductor substrates Z of Experimental Examples 2 to 10 were produced according to Experimental Example 1, except that the average grain size of the first substrate 1 and the oxygen concentration and resistivity of the second substrate 2 were changed as shown in Table 1. was made.

(参考例)
基板Wを、第一基板1は適用せず、第二基板2を、口径4インチ、厚さ525μm、面方位(111)、比抵抗2000Ω・cm、酸素濃度1E+17atoms/cm3のFZ法で製造されたSi単結晶基板とし、バッファー層BのGaN層を500nmとした以外は、実験例1に準じて、参考例の窒化物半導体基板を作製した。そして、これを寄生容量のベンチマークとした。
(Reference example)
The first substrate 1 is not applied to the substrate W, and the second substrate 2 is manufactured by the FZ method with a diameter of 4 inches, a thickness of 525 μm, a plane orientation of (111), a specific resistance of 2000 Ω·cm, and an oxygen concentration of 1E+17 atoms/cm 3 . A nitride semiconductor substrate of Reference Example was fabricated according to Experimental Example 1, except that the Si single-crystal substrate was used as a single-crystal Si substrate, and the GaN layer of the buffer layer B was 500 nm. And this was used as a benchmark for parasitic capacitance.

(評価1~高周波特性)
高周波特性は、実験例1~10と参考例のサンプル表面にアルミ電極1ペア形成し、それに対してベクトルネットワークアナライザを用いた電極間での反射係数測定を行い、それを変換して得られるインピーダンスのリアクタンス成分を寄生容量と捉えて評価した。測定周波数は5GHzとした。サンプル間の比較は、実験例1の測定値で規格化した相対値にて行った。
(Evaluation 1 to high frequency characteristics)
The high-frequency characteristics are obtained by forming a pair of aluminum electrodes on the surface of the samples of Experimental Examples 1 to 10 and Reference Example, measuring the reflection coefficient between the electrodes using a vector network analyzer, and converting the resulting impedance. was evaluated by regarding the reactance component of the parasitic capacitance. The measurement frequency was 5 GHz. Comparison between samples was performed using relative values normalized by the measured values of Experimental Example 1.

(評価2~基板強度)
基板強度は、窒化物半導体基板Zの反りで評価した。すなわち、公知の半導体ウェハの反り測定装置を用いて、基板全体の反り(BOW値)を測定して比較した。そして、-70μm以上+50μm以下を合格(〇)とし、この範囲外を不合格(×)とした。
(Evaluation 2 to substrate strength)
The substrate strength was evaluated by the warp of the nitride semiconductor substrate Z. That is, the warp (BOW value) of the entire substrate was measured and compared using a known semiconductor wafer warp measuring device. Then, -70 μm or more and +50 μm or less were evaluated as acceptable (◯), and those outside this range were evaluated as unacceptable (x).

(評価3~熱伝導性)
試料厚さ方向の熱伝導性は、各実験例1~10、参考例の窒化物半導体基板Zを用いて、レーザーフラッシュ法にて比較した。レーザーフラッシュ法では、熱拡散率を測定し、それに試料の比熱と密度をかけることで熱伝導率を得ることができるが、ここでは試料の構造が複雑であるため、正確な熱伝導率を評価することが困難である。今回の実験では試料の形状パラメータは共通であることから、あるパラメータを仮定して得られた熱拡散係数の測定値を試料間の熱伝導率の差を表す指標としてサンプル間で指標とした。寄生容量と同じく、サンプル間の比較は、実験例1の測定値で規格化した相対値にて行った。
(Evaluation 3 ~ thermal conductivity)
The thermal conductivity in the thickness direction of the samples was compared by the laser flash method using the nitride semiconductor substrates Z of Experimental Examples 1 to 10 and Reference Example. In the laser flash method, the thermal conductivity can be obtained by measuring the thermal diffusivity and multiplying it by the specific heat and density of the sample. It is difficult to In this experiment, since the shape parameters of the samples were common, the measured value of the thermal diffusion coefficient obtained by assuming a certain parameter was used as an index representing the difference in thermal conductivity between the samples. Similar to the parasitic capacitance, comparison between samples was performed using relative values normalized by the measured values of Experimental Example 1.

第一基板1の平均粒径、第二基板2の酸素濃度または比抵抗を変更した、複数の実験例を、以下の表1に示す内容でそれぞれ作製した。この時、変更したパラメータ以外は、全て実験例1に準じて作製した。 A plurality of experimental examples in which the average grain size of the first substrate 1 and the oxygen concentration or specific resistance of the second substrate 2 were changed were produced as shown in Table 1 below. At this time, all of them were produced according to Experimental Example 1 except for the changed parameters.

上記した参考例、各実験例の条件、および、それらの評価結果を、まとめて表1に示す。 Table 1 summarizes the above-described reference examples, the conditions of each experimental example, and the evaluation results thereof.

Figure 0007198195000001
Figure 0007198195000001

表1の結果から明らかなように、本発明の範囲内にある実験例1~7は、反り、熱伝導性が良好であり、寄生容量も、FZウェハを用いた参考例をしのいでいるといえる。一方、本発明の範囲外にある実験例8、9、10は、寄生容量、反り、熱伝導性のいずれかが、実験例1~7と比べて劣るものであり、特に実験例10においては、基板にクラックが発生した。 As is clear from the results in Table 1, Experimental Examples 1 to 7 within the scope of the present invention have good warpage and thermal conductivity, and the parasitic capacitance exceeds the reference example using the FZ wafer. I can say. On the other hand, Experimental Examples 8, 9, and 10, which are outside the scope of the present invention, are inferior to Experimental Examples 1 to 7 in any of parasitic capacitance, warpage, and thermal conductivity. , a crack occurred in the substrate.

W 基板
1 第一基板(多結晶AlN)
2 第二基板(Si単結晶)
B バッファー層
E 電極
G 動作層
3 電子走行層
4 電子供給層
W substrate 1 first substrate (polycrystalline AlN)
2 Second substrate (Si single crystal)
B buffer layer E electrode G operation layer 3 electron transit layer 4 electron supply layer

Claims (1)

基板、13族窒化物半導体からなるバッファー層、13族窒化物半導体からなる動作層がこの順で積層されており、前記基板は、多結晶の窒化アルミニウムからなる第一基板と、前記第一基板上に設けられ比抵抗100Ω・cm以上のSi単結晶からなる第二基板で構成され、前記第一基板を形成するAlNの平均粒径が4.0~7.0μmであることを特徴とする窒化物半導体基板。
A substrate, a buffer layer made of a Group 13 nitride semiconductor, and an operating layer made of a Group 13 nitride semiconductor are laminated in this order, and the substrates are a first substrate made of polycrystalline aluminum nitride, and the first substrate. The second substrate is composed of a Si single crystal having a specific resistance of 100 Ω·cm or more provided on the second substrate, and the average grain size of AlN forming the first substrate is 4.0 to 7.0 μm. nitride semiconductor substrate.
JP2019232290A 2019-12-17 2019-12-24 nitride semiconductor substrate Active JP7198195B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019232290A JP7198195B2 (en) 2019-12-24 2019-12-24 nitride semiconductor substrate
US17/095,195 US11605716B2 (en) 2019-12-17 2020-11-11 Nitride semiconductor substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019232290A JP7198195B2 (en) 2019-12-24 2019-12-24 nitride semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2021100087A JP2021100087A (en) 2021-07-01
JP7198195B2 true JP7198195B2 (en) 2022-12-28

Family

ID=76541387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232290A Active JP7198195B2 (en) 2019-12-17 2019-12-24 nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP7198195B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023074067A (en) 2021-11-17 2023-05-29 信越半導体株式会社 Nitride semiconductor substrate and manufacturing method of nitride semiconductor substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059598A (en) 2015-09-14 2017-03-23 株式会社東芝 Wafer and semiconductor device
JP2019528576A (en) 2016-08-23 2019-10-10 クロミス,インコーポレイテッド Electronic power device integrated with processed substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059598A (en) 2015-09-14 2017-03-23 株式会社東芝 Wafer and semiconductor device
JP2019528576A (en) 2016-08-23 2019-10-10 クロミス,インコーポレイテッド Electronic power device integrated with processed substrate

Also Published As

Publication number Publication date
JP2021100087A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP5665676B2 (en) Group III nitride epitaxial substrate and manufacturing method thereof
JP5781292B2 (en) Nitride semiconductor device and nitride semiconductor package
US7652282B2 (en) Semiconductor wafer, devices made therefrom, and method of fabrication
TWI689611B (en) Group III nitride layered body and light-emitting device having the layered body
JP5665745B2 (en) Epitaxial substrate for electronic device and manufacturing method thereof
JP5462377B1 (en) Group III nitride epitaxial substrate and manufacturing method thereof
WO2016051908A1 (en) Light-emitting element and method for manufacturing light-emitting element
KR20150054785A (en) Aluminium nitride substrate and group-iii nitride laminate
JP4980616B2 (en) Method for fabricating a semiconductor chip
US10068858B2 (en) Compound semiconductor substrate
JP5384450B2 (en) Compound semiconductor substrate
JP7198195B2 (en) nitride semiconductor substrate
CN107845712A (en) nitrogen-containing semiconductor element
TWI762501B (en) Growth of epitaxial gallium nitride material using a thermally matched substrate
CN117410405A (en) Deep ultraviolet light-emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light-emitting diode
CN116960248A (en) Light-emitting diode epitaxial wafer and preparation method thereof
US11605716B2 (en) Nitride semiconductor substrate and method of manufacturing the same
WO2017221863A1 (en) Group iii nitride laminate and vertical semiconductor device provided with said laminate
JP7533793B2 (en) Nitride semiconductor substrate and method for producing same
JP7533794B2 (en) Method for manufacturing nitride semiconductor substrate
WO2022259651A1 (en) Nitride semiconductor substrate and method for producing same
JP7215630B1 (en) Nitride semiconductor substrate and manufacturing method thereof
WO2023188742A1 (en) Group 13 nitride single crystal substrate
WO2024142754A1 (en) Method for producing epitaxial substrate, and epitaxial substrate
WO2023119916A1 (en) Nitride semiconductor substrate and method for manufacturing nitride semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221216

R150 Certificate of patent or registration of utility model

Ref document number: 7198195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350