JP7190959B2 - Water purification agent and water purification method - Google Patents

Water purification agent and water purification method Download PDF

Info

Publication number
JP7190959B2
JP7190959B2 JP2019084908A JP2019084908A JP7190959B2 JP 7190959 B2 JP7190959 B2 JP 7190959B2 JP 2019084908 A JP2019084908 A JP 2019084908A JP 2019084908 A JP2019084908 A JP 2019084908A JP 7190959 B2 JP7190959 B2 JP 7190959B2
Authority
JP
Japan
Prior art keywords
water purification
water
ions
jute
purification agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019084908A
Other languages
Japanese (ja)
Other versions
JP2020179358A (en
Inventor
修二 大橋
泰祐 廣芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2019084908A priority Critical patent/JP7190959B2/en
Priority to PCT/JP2020/013647 priority patent/WO2020217841A1/en
Priority to CN202080030302.7A priority patent/CN113710342B/en
Priority to TW109110813A priority patent/TWI838505B/en
Publication of JP2020179358A publication Critical patent/JP2020179358A/en
Application granted granted Critical
Publication of JP7190959B2 publication Critical patent/JP7190959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • C02F1/64Heavy metal compounds of iron or manganese

Description

本発明は、水浄化剤、及び該水浄化剤を用いた水浄化方法に関する。 TECHNICAL FIELD The present invention relates to a water purification agent and a water purification method using the water purification agent.

近年、工場で種々の製品を製造する過程において、無機イオンとして金属イオンやフッ素イオン等の環境負荷物質を含む廃液が大量に発生している。 In recent years, in the process of manufacturing various products in factories, a large amount of waste liquid containing environmentally hazardous substances such as metal ions and fluorine ions as inorganic ions is generated.

これまでの水浄化剤においては、無機イオンの不溶化処理に塩化鉄、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)等の無機凝集剤を必要としているが、前記無機凝集剤の使用は環境負荷が高く、無機凝集剤を多量に添加すると汚泥発生量(汚泥含水率)が増加したり、薬剤コストの増加を招くことから、無機凝集剤の不使用又は使用量の削減を図ることが望まれている。
そこで、例えば、特定の塩基度を有するポリ塩化アルミニウムとジメチルジアリルアンモニウムクロライド系ポリマーとからなる凝集剤を用いることにより、無機凝集剤の添加量を低減できることが開示されている(例えば、特許文献1参照)。
また、長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、前記造粒物のメジアン径(D50)が250μm以上850μm以下である水浄化剤が提案されている(例えば、特許文献2参照)。
Conventional water purification agents require inorganic flocculants such as iron chloride, aluminum sulfate, and polyaluminum chloride (PAC) for insolubilization of inorganic ions. If a large amount of inorganic flocculant is added, the amount of sludge generated (sludge water content) increases and chemical costs increase.
Therefore, for example, it is disclosed that the addition amount of the inorganic flocculant can be reduced by using a flocculant composed of polyaluminum chloride having a specific basicity and a dimethyldiallylammonium chloride-based polymer (for example, Patent Document 1 reference).
A water purifying agent comprising a granule containing a mixture of Chosaku jute powder and a polymer flocculant, wherein the granule has a median diameter (D 50 ) of 250 μm or more and 850 μm or less. has been proposed (see, for example, Patent Document 2).

特許第6028826号公報Japanese Patent No. 6028826 特許第6133348号公報Japanese Patent No. 6133348

特許文献1に記載の技術では、無機凝集剤の使用量を低減できるとしても、汚泥含水率の低下による汚泥発生量の削減を図ることはできない。
また、特許文献2には、短時間で所望の濃度以下まで無機イオン濃度を減少させることができる水浄化性能については開示されているが、無機イオンの不溶化処理に用いる無機凝集剤の使用量の低減、及び汚泥発生量の削減効果については記載も示唆もなく、水浄化性能に優れ、無機凝集剤の使用量を減らすことができると共に、汚泥含水率の低下による汚泥発生量の削減が図れる水浄化剤の提供が望まれていた。
With the technique described in Patent Document 1, even if the amount of inorganic flocculant used can be reduced, it is not possible to reduce the amount of sludge generated due to a decrease in the sludge moisture content.
In addition, Patent Document 2 discloses a water purification performance that can reduce the concentration of inorganic ions to a desired concentration or less in a short period of time. There is no description or suggestion about the effect of reducing the amount of sludge generated, and the water has excellent water purification performance, can reduce the amount of inorganic coagulant used, and can reduce the amount of sludge generated by lowering the sludge moisture content. It has been desired to provide a cleaning agent.

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、水浄化性能に優れ、無機凝集剤の使用量を減らすことができると共に、汚泥含水率の低下による汚泥発生量の削減が図れる水浄化剤を提供することを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems and to achieve the following objects. That is, an object of the present invention is to provide a water purification agent which has excellent water purification performance, can reduce the amount of inorganic coagulant used, and can reduce the amount of sludge generated by lowering the water content of sludge.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、
前記造粒物の累積10%体積粒子径D10が100μm以上400μm以下であり、かつ累積90%体積粒子径D90が800μm以上1,200μm以下であることを特徴とする水浄化剤である。
<2> 前記長朔黄麻と前記高分子凝集剤の質量組成比が9:1~1:9である前記<1>に記載の水浄化剤である。
<3> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」である前記<1>から<2>のいずれかに記載の水浄化剤である。
<4> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品▲鑑▼登字第1209006の「「中黄麻3号」である前記<1>から<3>のいずれかに記載の水浄化剤である。
<5> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品▲鑑▼登字第1209001の「中紅麻」である前記<1>から<4>のいずれかに記載の水浄化剤である。
<6> 前記高分子凝集剤がポリアクリルアミドである前記<1>から<5>のいずれかに記載の水浄化剤である。
<7> 前記ポリアクリルアミドはアクリル酸塩又はカルボン酸塩を有する前記<6>に記載の水浄化剤である。
<8> 長朔黄麻の粉末と高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、
前記混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、
得られたシート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、
乾燥したシートを粉砕する粉砕工程と、
を含むことを特徴とする水浄化剤の製造方法である。
<9> 前記<1>から<7>のいずれかに記載の水浄化剤を水に溶かし、長朔黄麻の粉末及び高分子凝集剤の分散液を得、無機系不要物を含有する排水に前記分散液を供することにより、排水中の無機系不要物を除去することを特徴とする水浄化方法である。
<10> 前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である前記<9>に記載の水浄化方法である。
<11> 前記無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオン、ヒ素イオン、カドミウムイオン、錫イオン、及び鉛イオンの少なくともいずれかの無機イオンに対し不溶化処理を施した後、前記分散液を前記排水に供する前記<10>に記載の水浄化方法である。
<12> 前記不溶化処理に用いる無機凝集剤の使用量が4,500ppm以下である前記<11>に記載の水浄化方法である。
Means for solving the above problems are as follows. Namely
<1> A water purification agent comprising granules containing a mixture of Nagasaku jute powder and a polymer flocculant,
The water depurator is characterized in that the granules have a cumulative 10 % volume particle diameter D10 of 100 μm or more and 400 μm or less and a cumulative 90 % volume particle diameter D90 of 800 μm or more and 1,200 μm or less.
<2> The water depurator according to <1>, wherein the Nagasaku jute and the polymer flocculant have a mass composition ratio of 9:1 to 1:9.
<3> The water purifying agent according to any one of <1> to <2> above, wherein the Changsaku jute is "Chong Jute No. 4" of Kokukan Hemp 2013, the appraisal number by the Hemp Research Institute of the Chinese Academy of Agricultural Sciences. is.
<4> Any of the above <1> to <3>, wherein the Changsaku jute has an appraisal number by the Hemp Research Institute of the Chinese Academy of Agricultural Sciences that is ""Naka Jute No. 3" in Wanjin ▲Gan ▼ Registration No. 1209006 It is a water purification agent according to.
<5> Any one of <1> to <4> above, wherein the Changsaku jute is "Chinese red hemp" with an appraisal number by the Hemp Research Institute of the Chinese Academy of Agricultural Sciences, which is Wanjin ▲Gan▼ Registration No. 1209001. is a water purifier.
<6> The water depurator according to any one of <1> to <5>, wherein the polymer flocculant is polyacrylamide.
<7> The polyacrylamide is the water depurator according to <6>, which contains an acrylate or a carboxylate.
<8> A kneading step of mixing Chosaku jute powder and a polymer flocculant, adding water and kneading to obtain a kneaded product;
A stretching and sheeting step of forming the kneaded product into a sheet by a stretching method to obtain a sheet-shaped molded product;
A drying step of drying the obtained sheet-like molding to obtain a dried sheet;
a pulverizing step of pulverizing the dried sheet;
A method for producing a water purifier, comprising:
<9> The water purification agent according to any one of <1> to <7> is dissolved in water to obtain a dispersion of Nagasaku jute powder and a polymer flocculant, which is added to wastewater containing inorganic wastes. A water purification method characterized by removing inorganic wastes in waste water by providing the dispersion liquid.
<10> The wastewater according to <9> above, wherein the wastewater contains inorganic wastes containing at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. water purification method.
<11> Insolubilization treatment for at least one of inorganic ions selected from nickel ions, fluoride ions, iron ions, copper ions, zinc ions, chromium ions, arsenic ions, cadmium ions, tin ions, and lead ions in the inorganic unwanted matter The water purification method according to <10>, wherein the dispersion is subjected to the drainage after applying the.
<12> The water purification method according to <11>, wherein the amount of the inorganic flocculant used in the insolubilization treatment is 4,500 ppm or less.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、水浄化性能に優れ、無機凝集剤の使用量を減らすことができると共に、汚泥含水率の減少による汚泥発生量の削減が図れる水浄化剤を提供することができる。 According to the present invention, the above-mentioned problems in the conventional art can be solved and the above-mentioned objects can be achieved. It is possible to provide a water depurator capable of reducing the amount generated.

図1は、本発明で使用する「中黄麻3号」と「中紅麻」の鑑定番号を示す図である。FIG. 1 is a diagram showing appraisal numbers of "Chujuma No. 3" and "Chukoma" used in the present invention.

(水浄化剤)
本発明の水浄化剤は、長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、前記造粒物の累積10%体積粒子径D10が100μm以上400μm以下であり、かつ累積90%体積粒子径D90が800μm以上1,200μm以下である。
(Water purification agent)
The water purification agent of the present invention is a water purification agent comprising granules containing a mixture of Nagasaku jute powder and a polymer flocculant, wherein the cumulative 10 % volume particle diameter D10 of the granules is 100 μm. 400 μm or less, and the cumulative 90 % volume particle diameter D90 is 800 μm or more and 1,200 μm or less.

本発明者らは、水浄化性能に優れた水浄化剤を提供するため、植物粉末を含む水浄化剤について鋭意検討を行った。その結果、長朔黄麻の粉末と高分子凝集剤とを混練して得られた造粒物の累積10%体積粒子径D10及び累積90%体積粒子径D90が特定の範囲であることで、水浄化性能に優れ、無機凝集剤の使用量を減らすことができると共に、汚泥含水率の減少による汚泥発生量の削減が図れることを見出した。 In order to provide a water purifying agent with excellent water purifying performance, the present inventors have extensively studied a water purifying agent containing plant powder. As a result, the cumulative 10% volume particle diameter D 10 and the cumulative 90% volume particle diameter D 90 of the granules obtained by kneading the Nagasaku jute powder and the polymer flocculant were within specific ranges. It was found that the water purification performance is excellent, the amount of inorganic flocculant used can be reduced, and the amount of sludge generated can be reduced by reducing the sludge water content.

その理由は明らかではないが、以下のように考えられる。
本発明では、工業排水、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、鉛等の無機系不要物を含有する工業排水を対象とし、その排水から無機系不要物を除去する(「水の浄化」ともいう)のに、無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオン等の無機イオンを無機凝集剤により不溶化し、懸濁固形物(本発明では、「ミクロフロック」ともいう)を形成させ、該ミクロフロックを凝集沈降させ、固液分離することにより行っている。かかる水の浄化の際に、長朔黄麻の粉末と高分子凝集剤とからなる造粒物を使うと、
(i)高分子凝集剤により排水中の無機イオンのミクロフロック化が促進される、
(ii)長朔黄麻の粉末により排水中の無機イオンの吸着効果が高まる、
(iii)長朔黄麻の粉末に存在する細孔によりミクロフロックを吸着する効果が高まる、と考えている。
Although the reason is not clear, it is considered as follows.
In the present invention, industrial wastewater, for example, industrial wastewater containing inorganic wastes such as nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead, is targeted, and inorganic wastes are removed from the wastewater. In order to remove (also called "water purification"), inorganic ions such as nickel ions, fluoride ions, and iron ions in inorganic wastes are insolubilized by an inorganic flocculant, and suspended solids (in the present invention, " (also referred to as "microflocs") are formed, the microflocs are aggregated and sedimented, and solid-liquid separation is performed. When using granules made of Nagasaku jute powder and a polymer flocculant for such water purification,
(i) the polymer flocculant promotes microflocculation of inorganic ions in the wastewater;
(ii) the Changsaku jute powder enhances the adsorption effect of inorganic ions in the wastewater;
(iii) It is believed that the pores present in the powder of Chosaku jute enhance the effect of adsorbing microflocs.

その際、長朔黄麻が急速に吸水し沈降してしまうと、上記吸着効果を発揮することができず、一方、長朔黄麻の繊維の空隙(ポーラス)部分と排水とが十分接触できないと、陽イオン交換機能を有する長朔黄麻による上記(ii)及び(iii)の効果を発揮することができない。
造粒物の累積10%体積粒子径D10が100μm未満であり、かつ累積90%体積粒子径D90が800μm未満であると、造粒物の比表面積が小さくなり、造粒物による吸着効果を十分発揮させることができない。
一方、浄化の際、長朔黄麻は沈降が遅いので、造粒物の粒径は比較的大きくすることができるが、造粒物の累積10%体積粒子径D10が400μmを超え、かつ累積90%体積粒子径D90が1200μmを超えると、沈降速度が早くなってしまい、造粒物の吸着効果を十分に発揮させることができない。
したがって、累積10%体積粒子径D10及び累積90%体積粒子径D90が特定の範囲である造粒物は、長朔黄麻の特徴を十分に活かすことができ、十分なミクロフロックの吸着効果がある優れた水浄化性能を示し、無機イオンの不溶化処理に用いる無機凝集剤の量を減らすことができ、汚泥含水率の減少による汚泥発生量の削減が図れると考えている。
At that time, if Nagasaku jute rapidly absorbs water and settles, the above-mentioned adsorption effect cannot be exhibited, and on the other hand, if the porous part of the Nagasaku jute fiber does not come into sufficient contact with the drainage, The above effects (ii) and (iii) by Nagasaku jute having a cation exchange function cannot be exhibited.
When the cumulative 10% volume particle diameter D10 of the granules is less than 100 μm and the cumulative 90 % volume particle diameter D90 is less than 800 μm, the specific surface area of the granules becomes small, and the adsorption effect of the granules cannot be fully demonstrated.
On the other hand, since Changsaku jute settles slowly during purification, the particle size of the granules can be relatively large, but the cumulative 10 % volume particle diameter D10 of the granules exceeds 400 μm, and the cumulative If the 90 % volume particle diameter D90 exceeds 1200 μm, the sedimentation velocity will be too high, and the adsorption effect of the granules cannot be exhibited sufficiently.
Therefore, the granules in which the cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 are in a specific range can fully utilize the characteristics of Nagasaku jute, and the adsorption effect of sufficient microfloc It is thought that the amount of inorganic coagulant used for insolubilizing inorganic ions can be reduced, and the amount of sludge generated can be reduced by reducing the sludge water content.

本発明で規定する造粒物は、後述する製造方法により好ましく作製できる。
以下、水浄化剤の具体的な構成について説明する。
The granules defined in the present invention can be preferably produced by the production method described below.
A specific configuration of the water purification agent will be described below.

<長朔黄麻>
前記長朔黄麻の粉末は、陽イオン交換機能が高く、また前記無機イオンを含む排水中のミクロフロックを吸着し得る細孔を有するため、好ましく用いることができる。
長朔黄麻の部位としては、葉又は茎が、好ましく使用できる。
<Nagasaku Jute>
The Nagasaku jute powder can be preferably used because it has a high cation exchange function and has pores capable of adsorbing microflocs in the wastewater containing the inorganic ions.
Leaves or stems can be preferably used as parts of Nagasaku jute.

また、長朔黄麻の中でも、中国の長沙市産の長朔黄麻、又は中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」、鑑定番号が皖品▲鑑▼登字第1209006の「中黄麻3号」、鑑定番号がXPD005-2005の「中黄麻1号」、若しくは鑑定番号が皖品▲鑑▼登字第1209001の「中紅麻」が好ましく使用できる。更に、前記「中黄麻4号」、前記「中黄麻3号」、及び前記「中紅麻」がより好ましく、前記「中黄麻4号」が特に好ましい。
なお、前記「中黄麻3号」と前記「中紅麻」の鑑定番号を図1に示す。
In addition, among the Changsaku jute, there is Changsaku jute from Changsha, China, or the appraisal number by the Hemp Research Institute of the Chinese Academy of Agricultural Sciences is Guokan Hemp 2013, "Chong Jute No. 4", and the appraisal number is 皖品 ▲Kan ▼. "Nakajuma No. 3" with registered letter No. 1209006, "Nakajuma No. 1" with appraisal number XPD005-2005, or "Nakajuma No. 1" with appraisal number No. 1209001 can be preferably used. Furthermore, the above-mentioned "Nakajuma No. 4", the above-mentioned "Nakajuma No. 3", and the above-mentioned "Nakajuma" are more preferred, and the above-mentioned "Nakajuma No. 4" is particularly preferred.
Fig. 1 shows the appraisal numbers of "Nakajuma No. 3" and "Nakakoma".

前記「中黄麻4号」は、以下の特性を有する。
農産物種類:黄麻
品種の出所:湘黄麻3号×0-4(l)交雑F1代と湘黄麻3号で繁殖したもの
特徴特性:中黄麻4号は、長果種の通常品の黄麻で、緑茎で、茎が円筒状で、葉っぱが分散した針の形で、葉の柄が緑色で、主茎との角が小さくて、側芽・托葉がある。萼が緑色で、長果円筒形で、五室、種が晩熟品種である。
The above-mentioned "Middle Jute No. 4" has the following properties.
Agricultural product type: Jute Variety source: Shojute No. 3 x 0-4 (l) Crossed F1 generation and Shojute No. 3. It is a green stem, with a cylindrical stem, needle-like leaves with scattered leaves, green petioles, small corners with the main stem, and lateral buds and stipules. The calyx is green, the long fruit is cylindrical, and the seeds are late-ripening.

<高分子凝集剤>
前記高分子凝集剤としては、上記長朔黄麻と同様、排水中の前記無機系不要物を除去する効果を示すものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリアクリルアミド(PAM)、ポリアクリルアミドの部分加水分解塩、ポリアミン、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロース(CMC)ナトリウム塩などが挙げられる。これらの中でも、ポリアクリルアミドが好ましい。
ポリアクリルアミドとしては、例えば、アクリル酸塩、又はカルボン酸塩を有するものなどが挙げられる。
前記ポリアクリルアミドとしては、市販品を用いることができ、前記市販品としては、例えば、Flopan AN934(側鎖にアクリル酸塩を有するポリアクリルアミド)、Flopan AN913(側鎖にカルボン酸塩を有するポリアクリルアミド)(いずれも、株式会社エス・エヌ・エフ製)などが挙げられる。
<Polymer flocculant>
The polymer flocculant is not particularly limited as long as it exhibits the effect of removing the inorganic wastes in the wastewater, as with the Nagasaku jute, and can be appropriately selected according to the purpose. Examples thereof include polyacrylamide (PAM), partially hydrolyzed salts of polyacrylamide, polyamines, sodium alginate, sodium polyacrylate, sodium carboxymethylcellulose (CMC) and the like. Among these, polyacrylamide is preferred.
Polyacrylamides include, for example, those having acrylates or carboxylates.
Commercially available products can be used as the polyacrylamide, and examples of the commercially available products include Flopan AN934 (polyacrylamide having an acrylate in the side chain), Flopan AN913 (polyacrylamide having a carboxylate in the side chain). ) (both manufactured by SNF Co., Ltd.).

<長朔黄麻の粉末と高分子凝集剤との混合物の造粒物>
前記長朔黄麻の粉末と前記高分子凝集剤の質量組成比は、9:1~1:9が好ましく、5:5~1:9がより好ましく、3:7~1:9が更に好ましい。この質量組成比の範囲であれば、十分なミクロフロックの吸着効果がある優れた水浄化性能が発揮される。なお、上記質量組成比は、乾燥質量をもとに算出することができる。
前記造粒物は、以下の特性を示す。
<Granulated mixture of Chosaku jute powder and polymer flocculant>
The mass composition ratio of the Chosaku jute powder and the polymer flocculant is preferably 9:1 to 1:9, more preferably 5:5 to 1:9, and even more preferably 3:7 to 1:9. Within this mass composition ratio range, excellent water purification performance with sufficient microfloc adsorption effect is exhibited. The mass composition ratio can be calculated based on the dry mass.
The granules exhibit the following properties.

<<累積10%体積粒子径D10、累積90%体積粒子径D90>>
本発明で規定する造粒物の累積10%体積粒子径D10が100μm以上400μm以下であり、かつ累積90%体積粒子径D90が800μm以上1,200μm以下である。
造粒物の累積10%体積粒子径D10が100μm以上400μm以下であり、かつ累積90%体積粒子径D90が800μm以下であると、長朔黄麻の粉末によるミクロフロックの吸着効果を十分に発揮させることができる。
造粒物の累積10%体積粒子径D10が100μmを下回ると、微粉が発生し、製造時の不具合や投入時の粉塵発生が懸念される。
一方、D90が1200μmを上回ると、不溶解分が発生し、配管での目詰まりや水処理効率の悪化が懸念される。
また、D10が400μmを上回る、及びD90が800μmを下回る場合は、造粒物のD50(メジアン径)が、良好な水浄化性能を発揮する領域から外れる可能性がある。
ここで、体積基準の粒度分布に基づいて測定された小粒子側から10%累積部の粒子径を累積10%体積粒子径D10といい、体積基準の粒度分布に基づいて測定された小粒子側から90%累積部の粒子径を累積90%体積粒子径D90という。
また、前記D10及びD90は、例えば、マスターサイザー2000(マルバーン インスツルメント社製)等の市販の粒度分布測定機により計測することができる。
<< Cumulative 10% volume particle diameter D 10 , Cumulative 90% volume particle diameter D 90 >>
The granules defined in the present invention have a cumulative 10 % volume particle diameter D10 of 100 μm or more and 400 μm or less, and a cumulative 90 % volume particle diameter D90 of 800 μm or more and 1,200 μm or less.
When the cumulative 10 % volume particle diameter D10 of the granules is 100 μm or more and 400 μm or less, and the cumulative 90 % volume particle diameter D90 is 800 μm or less, the adsorption effect of microfloc by Nagasaku jute powder is sufficiently obtained. can be demonstrated.
When the cumulative 10 % volume particle diameter D10 of the granules is less than 100 μm, fine powder is generated, and there is concern about problems during production and generation of dust during charging.
On the other hand, when the D90 exceeds 1200 μm, insoluble matter is generated, and there is concern about clogging of pipes and deterioration of water treatment efficiency.
In addition, when D 10 exceeds 400 μm and D 90 is less than 800 μm, D 50 (median diameter) of the granules may deviate from the region where good water purification performance is exhibited.
Here, the particle diameter of the 10% cumulative portion from the small particle side measured based on the volume-based particle size distribution is referred to as the cumulative 10 % volume particle diameter D10, and the small particles measured based on the volume-based particle size distribution. The particle diameter of the 90% cumulative portion from the side is called the cumulative 90 % volume particle diameter D90.
Also, the D10 and D90 can be measured by a commercially available particle size distribution analyzer such as Mastersizer 2000 (manufactured by Malvern Instruments).

<造粒物の製造方法>
本発明で規定する造粒物は、前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、該混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、該シート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、該乾燥したシートを粉砕する粉砕工程とを含む製造方法により製造される。
更に、前記粉砕工程後に、ふるいにより造粒物を分級する分級工程を含んでもよい。
<Method for producing granules>
The granules defined in the present invention include a kneading step of mixing the Nagasaku jute powder and the polymer flocculant, adding water and kneading to obtain a kneaded product, and stretching the kneaded product into a sheet form. a step of stretching and sheeting to obtain a sheet-like molded product, a drying step of drying the sheet-like molded product to obtain a dried sheet, and a pulverizing step of pulverizing the dried sheet manufactured by the method.
Furthermore, a classification step of classifying the granules with a sieve may be included after the pulverization step.

本発明者らは、造粒する際、混練物に剪断力(シェア)を強くかけ過ぎると、長朔黄麻の繊維のポーラス部分に高分子凝集剤が入り込んでしまうことを実験により確認した。
造粒物には、長朔黄麻の繊維構造により穴がたくさん空いている空隙(ポーラス)が存在する多孔質形状が形成されている。
延伸・シート化工程による造粒法で造粒物を製造したところ、混練物にかかるシェアをコントロールすることができ、そのような延伸・シート化工程で製造した造粒物は、排水と接する長朔黄麻のポーラス部分を十分確保することができ、無機系不要物に対する良好な吸着効果を示すことがわかった。
The inventors of the present invention have confirmed by experiments that if too strong a shearing force (shear) is applied to the kneaded material during granulation, the polymer flocculant enters into the porous portions of the fibers of Nagasaku jute.
The granules have a porous shape in which voids (porous) with many holes are present due to the fibrous structure of Nagasaku jute.
When granules were produced by a granulation method using a stretching and sheeting process, it was possible to control the share of the kneaded product. It was found that the porous portion of the jute can be sufficiently secured, and that it exhibits a good adsorption effect on inorganic wastes.

更に、前記延伸・シート化工程では、混練物はローラーにより徐々に伸ばされていき、段階を踏んで所定の厚みのシート状成形物が形成される。この方法によれば、混練物の粘度が良好に保たれたまま成形物を製造することができ、このことも長朔黄麻の吸着効果を発揮させる上で、効果的に作用しているのではないかと思われる。 Further, in the stretching/sheet forming process, the kneaded material is gradually stretched by rollers, and step by step, a sheet-like molding having a predetermined thickness is formed. According to this method, the molded product can be produced while the viscosity of the kneaded product is maintained at a good level. I don't think so.

前記混練工程では、長朔黄麻の乾燥物を粗粉砕をし、次に微粉砕をし、所望の大きさの長朔黄麻の粉末を得、その後、得られた長朔黄麻の粉末と、高分子凝集剤とを混合し、水分を加えて混練を行う。
ここで、水の添加量としては、例えば、長朔黄麻の粉末と高分子凝集剤とを混合した合計質量に対し、例えば、3倍の質量程度の水を加えることが好ましい。
混練は、ミキサー、例えば、プラネタリーミキサー等の縦型ミキサーなどを用い、回転数、及び時間を所定の範囲に設定して行うことが好ましい。
ミキサーにおける混練の際の回転数、及び時間は、長朔黄麻の粉末と高分子凝集剤との混合比等の条件を考慮しつつ適宜設定することができるが、例えば、回転数は20rpm~150rpmが好ましく、時間は、5分~25分が好ましい。
前記延伸・シート化工程では、得られた混練物に対しローラーを用い延伸法により、厚さ4mm~20mmになるよう、好ましくは10mm程度になるまで延伸し、シート状に成形するとよい。
In the kneading step, the dried Nagasaku jute is coarsely pulverized and then finely pulverized to obtain a Nagasaku jute powder of a desired size. It is mixed with a molecular flocculant, added with water, and kneaded.
Here, the amount of water to be added is preferably, for example, about three times the total mass of the mixture of Nagasaku jute powder and the polymer flocculant.
The kneading is preferably carried out by using a mixer, for example, a vertical mixer such as a planetary mixer, and setting the rotation speed and time within a predetermined range.
The rotation speed and time during kneading in the mixer can be appropriately set while considering conditions such as the mixing ratio of Nagasaku jute powder and the polymer flocculant. is preferred, and the time is preferably 5 to 25 minutes.
In the stretching/sheet forming step, the obtained kneaded product is preferably stretched by a stretching method using a roller so as to have a thickness of 4 mm to 20 mm, preferably about 10 mm, and formed into a sheet.

前記混練工程における、長朔黄麻の粉末と高分子の混合比率、加水量、混合速度(混練時のミキサーの回転数)、混合時間(ミキサーでの混練時間)等の条件や、あるいは前記延伸・シート化工程における、延伸条件を適宜変更することにより、混練物にかかるシェアをコントロールすることができる。 In the kneading step, conditions such as the mixing ratio of the Nagasaku jute powder and the polymer, the amount of water added, the mixing speed (the number of revolutions of the mixer during kneading), the mixing time (kneading time in the mixer), or the stretching and By appropriately changing the stretching conditions in the sheeting process, the shear applied to the kneaded product can be controlled.

前記乾燥工程では、得られた成形物に対し、多段階熱風式乾燥機を用い、80℃~150℃の温度で2時間~12時間乾燥させることが好ましい。
前記粉砕工程では、粉砕機、例えば気流式超微粉砕機を用いメジアン径が250μm~850μmの範囲になるように粉砕することが好ましい。
前記分級工程では、粉砕した粉末を、分級機、例えば、振動ふるい機、あるいはカートリッジ式ふるい機を用い、累積10%体積粒子径D10が100μm以上400μm以下であり、かつ累積90%体積粒子径D90が800μm以上1,200μm以下となるように造粒物を分級することが好ましい。
更に本発明では、ふるいにかけ、100μm未満の造粒物や1200μmより大きい造粒物を積極的に分別・排除(カット)し、粒子径が100μm以上1,200μm以下の範囲の造粒物のみ使用すると、より好ましい。
In the drying step, it is preferable to dry the obtained molded product at a temperature of 80° C. to 150° C. for 2 to 12 hours using a multi-stage hot air dryer.
In the pulverization step, pulverization is preferably carried out using a pulverizer such as an airflow ultrafine pulverizer so that the median diameter is in the range of 250 μm to 850 μm.
In the classification step, the pulverized powder is classified using a classifier such as a vibrating sieve or a cartridge sieve, and the cumulative 10 % volume particle diameter D10 is 100 μm or more and 400 μm or less, and the cumulative 90% volume particle diameter It is preferable to classify the granules so that the D90 is 800 μm or more and 1,200 μm or less.
Furthermore, in the present invention, granules less than 100 μm and granules larger than 1200 μm are sieved to actively separate and exclude (cut), and only granules with a particle size in the range of 100 μm or more and 1,200 μm or less are used. Then it is more preferable.

(水浄化方法)
本発明の水浄化方法は、上述した本発明の水浄化剤を水に溶かし、長朔黄麻の粉末と高分子凝集剤との分散液を得、前記分散液を排水に供することにより排水中の無機系不要物を除去する。
前記無機系不要物としては、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物などが挙げられる。
(Water purification method)
In the water purification method of the present invention, the water purification agent of the present invention described above is dissolved in water to obtain a dispersion of Nagasaku jute powder and a polymer flocculant, and the dispersion is subjected to waste water, whereby Remove inorganic waste.
Examples of the inorganic waste include inorganic waste containing at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead.

本発明の水浄化方法について具体的に説明する。
排水中の無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオンなどの無機イオンに対して無機凝集剤を添加する不溶化処理を施し、ミクロフロックを形成させる。この排水に、0.1質量%~0.2質量%の水溶液とした前記分散液を供する。そして、ミクロフロックを凝集沈降させ、沈降分離された沈殿物を取り除くと、排水は浄化される。
前記不溶化処理では、例えば、排水に塩基を加え排水を塩基性にしてから無機凝集剤を添加し前記無機イオンを不溶化させる。
無機凝集剤としては、例えば、塩化第二鉄、ポリ硫酸第二鉄、硫酸第一鉄、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)、消石灰などが挙げられる。
無機凝集剤の使用量は、特に制限はなく、排水の種類、排水中の無機系不要物の量、無機凝集剤の種類などに応じて異なり一概には規定できないが、4,500ppm以下であることが好ましく、4,000ppm以下がより好ましい。
なお、排水に塩基を加え、無機凝集剤を添加した後、本発明の水浄化剤を添加する前に、高分子凝集剤を単独で添加してもよい。本発明の水浄化剤を添加する前に、高分子凝集剤を単独で添加しておくと、排水中のミクロフロックのフロックサイズを大きくすることができる。
The water purification method of the present invention will be specifically described.
Inorganic ions such as nickel ions, fluoride ions, and iron ions in inorganic wastes in wastewater are subjected to an insolubilization treatment by adding an inorganic coagulant to form microflocs. The effluent is provided with the above-described dispersion in the form of an aqueous solution of 0.1% to 0.2% by weight. Then, the microflocs are aggregated and sedimented, and the sedimented sediment is removed to purify the waste water.
In the insolubilization treatment, for example, a base is added to the waste water to make the waste water basic, and then an inorganic coagulant is added to insolubilize the inorganic ions.
Examples of inorganic flocculants include ferric chloride, polyferric sulfate, ferrous sulfate, aluminum sulfate, polyaluminum chloride (PAC), and slaked lime.
The amount of the inorganic flocculant used is not particularly limited, and varies depending on the type of wastewater, the amount of inorganic wastes in the wastewater, the type of inorganic flocculant, etc., and cannot be defined unconditionally, but is 4,500 ppm or less. is preferred, and 4,000 ppm or less is more preferred.
The polymer flocculant may be added alone after adding the base to the waste water, adding the inorganic flocculant, and before adding the water purification agent of the present invention. If a polymer flocculant is added alone before adding the water purifying agent of the present invention, the floc size of micro flocs in the waste water can be increased.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
<排水>
処理する排水として、Zn、Ni系原水排水(Zn濃度:300ppm、Ni濃度:100ppm)を用いた。
(Example 1)
<Drainage>
As waste water to be treated, Zn and Ni-based raw water waste water (Zn concentration: 300 ppm, Ni concentration: 100 ppm) was used.

<一次凝集>
次に、上記排水に、無機凝集剤としてのポリ塩化アルミニウム(PAC)を5,000ppm添加し、pHが8.0になるように水酸化ナトリウムを添加しながら撹拌した。この操作により、排水は、ミクロフロックを含む上澄み液と沈殿物に分離した。
<Primary aggregation>
Next, 5,000 ppm of polyaluminum chloride (PAC) as an inorganic coagulant was added to the above waste water, and the mixture was stirred while adding sodium hydroxide so that the pH became 8.0. By this operation, the wastewater was separated into a supernatant containing microflocs and a sediment.

<水浄化剤の作製>
次に、長朔黄麻(中国の長沙市産)と、高分子凝集剤(ポリアクリルアミド(PAM1)、Flopan AN913、側鎖にカルボン酸塩を有するポリアクリルアミド、株式会社エス・エヌ・エフ製)との質量組成比が2:8である造粒物を下記に示す製造方法により作製し、造粒物を得、この造粒物を水浄化剤A1として使用した。
<Preparation of water purification agent>
Next, Changshu jute (produced in Changsha City, China) and a polymer flocculant (polyacrylamide (PAM1), Flopan AN913, polyacrylamide having a carboxylate in the side chain, manufactured by SNF Co., Ltd.) A granule having a mass composition ratio of 2:8 was produced by the manufacturing method shown below to obtain a granule, and this granule was used as water purification agent A1.

<<水浄化剤の製造方法>>
長朔黄麻の粉末1500gと、高分子凝集剤(ポリアクリルアミド(PAM1))6000gとを合わせた固形分の質量に対し3倍の質量の水を加えて得られた混練物(長朔黄麻の粉末+高分子凝集剤+水=30kg)を、プラネタリーミキサー(株式会社愛工舎製作所製、混合機ACM-110、容量110L)に入れ、回転数80rpm、15分混合の条件にてシェアをかけ混練した。
得られた混練物を、プレス機(コマツ産機株式会社製、45tプレス機)を用いてローラーによる延伸を施し、厚さ10mm程度のシート状の成形物を作製した。
この成形物を、多段階熱風式乾燥機(株式会社七洋製作所製、ラック式オーブン装置)を用いて、120℃で3時間、更に150℃で2時間乾燥させた。
次に、乾燥させたシートを、気流式超微粉砕機(増幸産業株式会社製、セレンミラー)を用いて粉砕した。
次に、得られた粉砕物について、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が282μmであり、かつ累積90%体積粒子径D90が962μmに調整した。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径1000μmより大きいものは公称目開き1mm(メッシュNo.18)、及び粒子径300μmより小さいものは公称目開き300μm(メッシュNo.50)のふるいにかけ取り除く。
(B)粒子径300μmより大きいものは公称目開き300μm(メッシュNo.50)、及び粒子径250μmより小さいものは公称目開き250μm(メッシュNo.60)のふるいにかけ取り除く。
(C)粒子径1000μmより大きいものは公称目開き1mm(メッシュNo.18)、及び粒子径850mより小さいものは公称目開き850μm(メッシュNo.20)のふるいにかけ取り除く。
以上により、造粒物を得、この造粒物を水浄化剤A1とした。
<<Method for producing water purification agent>>
A kneaded product (Nagasaku jute powder + polymer flocculant + water = 30 kg) is placed in a planetary mixer (manufactured by Aikosha Seisakusho Co., Ltd., mixer ACM-110, capacity 110 L), and kneaded with a shear under the conditions of a rotation speed of 80 rpm and mixing for 15 minutes. did.
The resulting kneaded material was stretched by rollers using a press (45t press machine manufactured by Komatsu Sanki Co., Ltd.) to prepare a sheet-like molding having a thickness of about 10 mm.
This molding was dried at 120° C. for 3 hours and further at 150° C. for 2 hours using a multi-stage hot air dryer (manufactured by Nanayo Seisakusho Co., Ltd., rack-type oven).
Next, the dried sheet was pulverized using an airflow ultrafine pulverizer (Selene Miller, manufactured by Masuko Sangyo Co., Ltd.).
Next, the obtained pulverized product is mixed at a ratio of 60% (A), 20% (B), and 20% (C) as follows, and the cumulative 10% volume particle diameter of the granulated product The D10 was adjusted to 282 μm, and the cumulative 90 % volume particle diameter D90 was adjusted to 962 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 1000 μm in diameter are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18), and particles smaller than 300 μm in diameter are sifted through a sieve with a nominal opening of 300 μm (mesh No. 50) to remove them.
(B) Particles larger than 300 μm are sifted through a sieve with a nominal opening of 300 μm (mesh No. 50), and particles smaller than 250 μm are sifted through a sieve with a nominal opening of 250 μm (mesh No. 60).
(C) Particles larger than 1000 μm in diameter are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18), and particles smaller than 850 m in diameter are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20) to remove them.
As described above, a granule was obtained, and this granule was used as water purification agent A1.

<浄化処理>
次に、得られた水浄化剤A1を水に溶かし、0.1質量%水溶液の分散液を作製した。この分散液を、上記ミクロフロックを含む上澄み液と沈殿物からなる排水に対して、撹拌しながら、3mL/分間の速度で滴下した。この際、上記排水中の固形分に対して15ppmになるように水浄化剤A1を添加した。ここで、「固形分」の測定方法は、排水中のスラリー濃度を水分計にて計測し、逆算することにより、求めた。
滴下後、1分間撹拌を維持した後、以下のようにして、「Zn濃度とNi濃度」「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表1に示した。
<Purification treatment>
Next, the obtained water depurator A1 was dissolved in water to prepare a 0.1% by mass aqueous dispersion. This dispersion was added dropwise at a rate of 3 mL/min to the waste water consisting of the supernatant containing the microflocs and the sediment while stirring. At this time, the water purification agent A1 was added so as to be 15 ppm with respect to the solid content in the waste water. Here, the method for measuring the "solid content" was determined by measuring the slurry concentration in the waste water with a moisture meter and calculating back.
After dropping, stirring was maintained for 1 minute, and then "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge water content" were measured as follows. Table 1 shows the results.

<Zn、Ni濃度の測定>
撹拌停止後60秒間後の上澄みをサンプリングし、高周波誘導結合プラズマ発光分光装置ICP-AES(SPECTRO社製)でZn濃度、Ni濃度を測定した。
<Measurement of Zn and Ni concentrations>
The supernatant was sampled 60 seconds after the stirring was stopped, and the Zn concentration and Ni concentration were measured with a high frequency inductively coupled plasma emission spectrometer ICP-AES (manufactured by SPECTRO).

<浮遊物質(SS)の量>
撹拌停止後、2分間後の上澄みをサンプリングし、分光光度計(DR2800、HACK社製)を用い、波長810nmの吸光度を測定することで、浮遊物質(SS)の量を測定した。
<Amount of suspended solids (SS)>
Two minutes after stopping the stirring, the supernatant was sampled, and the absorbance at a wavelength of 810 nm was measured using a spectrophotometer (DR2800, manufactured by HACK) to measure the amount of suspended solids (SS).

<汚泥含水率>
試験水を濾過して回収し、その汚泥の質量Aを測定した。続いて、105℃のオーブンで絶乾状態(水分量0.05%以下)にした汚泥の質量Bを測定した。ここで、水分量の確認には加熱乾燥式水分計MX-50(エー・アンド・デイ社製)を用いた。これらより、汚泥に含まれる水分の質量(A-B)を汚泥の質量(A)で除し百分率とすることで、汚泥含水率を求めた。
<Water content of sludge>
The test water was filtered and collected, and the mass A of the sludge was measured. Subsequently, the mass B of the sludge made absolutely dry (water content of 0.05% or less) in an oven at 105° C. was measured. Here, a heat drying type moisture meter MX-50 (manufactured by A&D Co., Ltd.) was used to confirm the moisture content. From these, the sludge water content was obtained by dividing the mass of water contained in the sludge (A−B) by the mass of the sludge (A) and calculating the percentage.

(実施例2)
実施例1の<一次凝集>において、ポリ塩化アルミニウム(PAC)の添加量を4,375ppmに変更した以外は、実施例1と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表1に示した。
(Example 2)
Purification treatment was performed in the same manner as in Example 1, except that in <primary aggregation> of Example 1, the amount of polyaluminum chloride (PAC) added was changed to 4,375 ppm. "Amount of suspended solids (SS)" and "sludge water content" were measured. Table 1 shows the results.

(実施例3)
実施例1の<一次凝集>において、ポリ塩化アルミニウム(PAC)の添加量を3,750ppmに変更した以外は、実施例1と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表1に示した。
(Example 3)
Purification treatment was performed in the same manner as in Example 1, except that in <primary aggregation> of Example 1, the amount of polyaluminum chloride (PAC) added was changed to 3,750 ppm. "Amount of suspended solids (SS)" and "sludge water content" were measured. Table 1 shows the results.

(実施例4)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が100μmであり、かつ累積90%体積粒子径D90が800μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径850μmより大きいものは公称目開き850μm(メッシュNo.20)、及び粒子径150μmより小さいものは公称目開き150μm(メッシュNo.100)のふるいにかけ取り除く。
(B)粒子径125μmより大きいものは公称目開き125μm(メッシュNo.120)、及び粒子径75μmより小さいものは公称目開き75μm(メッシュNo.200)のふるいにかけ取り除く。
(C)粒子径850μmより大きいものは公称目開き850μm(メッシュNo.20)、及び粒子径710μmより小さいものは公称目開き710μm(メッシュNo.25)のふるいにかけ取り除く。
(Example 4)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 100 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 800 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20), and particles smaller than 150 μm are sifted through a sieve with a nominal opening of 150 μm (mesh No. 100).
(B) Particles larger than 125 μm are sifted through a sieve with a nominal opening of 125 μm (mesh No. 120), and particles smaller than 75 μm are sifted through a sieve with a nominal opening of 75 μm (mesh No. 200).
(C) Particles larger than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20), and particles smaller than 710 μm are sifted through a sieve with a nominal opening of 710 μm (mesh No. 25).

得られた造粒物からなる水浄化剤A1を用いて、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表1に示した。 Using the water purification agent A1 composed of the obtained granules, purification treatment was performed in the same manner as in Example 2, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge Moisture content" was measured. Table 1 shows the results.

(実施例5)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が400μmであり、かつ累積90%体積粒子径D90が1200μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径1180μmより大きいものは公称目開き1.18mm(メッシュNo.18)、及び粒子径500μmより小さいものは公称目開き500μm(メッシュNo.35)のふるいにかけ取り除く。
(B)粒子径425μmより大きいものは公称目開き425μm(メッシュNo.40)、及び粒子径355μmより小さいものは公称目開き355μm(メッシュNo.45)のふるいにかけ取り除く。
(C)粒子径1400μmより大きいものは公称目開き1.4mm(メッシュNo.14)、及び粒子径1000μmより小さいものは公称目開き1mm(メッシュNo.18)のふるいにかけ取り除く。
(Example 5)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 400 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 1200 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 1180 μm in diameter are sifted through a sieve with a nominal opening of 1.18 mm (mesh No. 18), and those smaller than 500 μm are removed through a sieve with a nominal opening of 500 μm (mesh No. 35).
(B) Particles larger than 425 μm are sifted through a sieve with a nominal opening of 425 μm (mesh No. 40), and particles smaller than 355 μm are sifted through a sieve with a nominal opening of 355 μm (mesh No. 45).
(C) Particles larger than 1400 μm in diameter are sifted through a sieve with a nominal opening of 1.4 mm (mesh No. 14), and those smaller than 1000 μm are removed through a sieve with a nominal opening of 1 mm (mesh No. 18).

得られた造粒物からなる水浄化剤A1を用いて、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表1に示した。 Using the water purification agent A1 composed of the obtained granules, purification treatment was performed in the same manner as in Example 2, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge Moisture content" was measured. Table 1 shows the results.

(実施例6)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が200μmであり、かつ累積90%体積粒子径D90が900μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径850μmより大きいものは公称目開き850μm(メッシュNo.20)、及び粒子径150μmより小さいものは公称目開き150μm(メッシュNo.100)のふるいにかけ取り除く。
(B)粒子径250mより大きいものは公称目開き250μm(メッシュNo.60)、は及び粒子径150μmより小さいものは公称目開き150μm(メッシュNo.60)のふるいにかけ取り除く。
(C)粒子径1180μmより大きいものは公称目開き1180μm(メッシュNo.16)、及び粒子径850μmより小さいものは公称目開き850μm(メッシュNo.20)のふるいにかけ取り除く。
(Example 6)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 200 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 900 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20), and particles smaller than 150 μm are sifted through a sieve with a nominal opening of 150 μm (mesh No. 100).
(B) Particles larger than 250 m in diameter are sifted through a sieve with a nominal opening of 250 µm (mesh No. 60), and particles smaller than 150 µm are sifted through a sieve with a nominal opening of 150 µm (mesh No. 60).
(C) Particles larger than 1180 μm are sifted through a sieve with a nominal opening of 1180 μm (mesh No. 16), and particles smaller than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20).

得られた造粒物からなる水浄化剤A1を用いて、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表2に示した。 Using the water purification agent A1 composed of the obtained granules, purification treatment was performed in the same manner as in Example 2, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge Moisture content" was measured. Table 2 shows the results.

(実施例7)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が350μmであり、かつ累積90%体積粒子径D90が1100μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径1000μmより大きいものは公称目開き1mm(メッシュNo.18)、及び粒子径425μmより小さいものは公称目開き425μm(メッシュNo.18)のふるいにかけ取り除く。
(B)粒子径425μmより大きいものは公称目開き425μm(メッシュNo.18)、及び粒子径300μmより小さいものは公称目開き300μm(メッシュNo.50)のふるいにかけ取り除く。
(C)粒子径1180μmより大きいものは公称目開き1180μm(メッシュNo.16)、及び粒子径1mmより小さいものは公称目開き1mm(メッシュNo.18)のふるいにかけ取り除く。
(Example 7)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 350 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 1100 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 1000 μm in diameter are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18), and particles smaller than 425 μm in diameter are sifted through a sieve with a nominal opening of 425 μm (mesh No. 18) to remove them.
(B) Particles larger than 425 μm in diameter are sifted through a sieve with a nominal opening of 425 μm (mesh No. 18), and those smaller than 300 μm are removed through a sieve with a nominal opening of 300 μm (mesh No. 50).
(C) Particles larger than 1180 μm are sifted through a sieve with a nominal opening of 1180 μm (mesh No. 16), and particles smaller than 1 mm are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18).

得られた造粒物からなる水浄化剤A1を用いて、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表2に示した。 Using the water purification agent A1 composed of the obtained granules, purification treatment was performed in the same manner as in Example 2, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge Moisture content" was measured. Table 2 shows the results.

(実施例8)
実施例1の<<水浄化剤の製造方法>>において、長朔黄麻の粉末750gと、高分子凝集剤(ポリアクリルアミド(PAM1))6750gに変更した以外は、実施例1と同様にして、長朔黄麻と高分子凝集剤との質量組成比が1:9である造粒物を得、この造粒物を水浄化剤A2とした。
得られた水浄化剤A2を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表2に示した。
(Example 8)
In the <<manufacturing method of water purification agent>> of Example 1, in the same manner as in Example 1, except that 750 g of Nagasaku jute powder and 6750 g of polymer flocculant (polyacrylamide (PAM1)) were changed. A granule having a mass composition ratio of Nagasaku jute and a polymer flocculant of 1:9 was obtained, and this granule was designated as water purification agent A2.
Purification treatment was performed in the same manner as in Example 2, except that the obtained water purification agent A2 was used, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge water content" was measured. Table 2 shows the results.

(実施例9)
実施例1の<<水浄化剤の製造方法>>において、長朔黄麻の粉末2250gと、高分子凝集剤(ポリアクリルアミド(PAM1))5250gに変更した以外は、実施例1と同様にして、長朔黄麻と高分子凝集剤との質量組成比が3:7である造粒物を得、この造粒物を水浄化剤A3とした。
得られた水浄化剤A3を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表2に示した。
(Example 9)
In the <<manufacturing method of water purification agent>> of Example 1, in the same manner as in Example 1, except that 2250 g of Nagasaku jute powder and 5250 g of polymer flocculant (polyacrylamide (PAM1)) were changed. A granule having a mass composition ratio of Nagasaku jute and a polymer flocculant of 3:7 was obtained, and this granule was designated as water purification agent A3.
Purification treatment was performed in the same manner as in Example 2, except that the obtained water purification agent A3 was used, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge water content" was measured. Table 2 shows the results.

(実施例10)
実施例1の<<水浄化剤の製造方法>>において、高分子凝集剤(ポリアクリルアミド(PAM1))を高分子凝集剤(ポリアクリルアミド(PAM2)、商品名:Flopan AN934、株式会社エス・エヌ・エフ、側鎖にアクリル酸塩を有するポリアクリルアミド)に変更した以外は、実施例1と同様にして、造粒物を得た。
得られた造粒物からなる水浄化剤A4を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表2に示した。
(Example 10)
In the <<manufacturing method of water purification agent>> of Example 1, the polymer flocculant (polyacrylamide (PAM1)) was replaced with the polymer flocculant (polyacrylamide (PAM2), trade name: Flopan AN934, S.N. Co., Ltd. A granule was obtained in the same manner as in Example 1, except that F, polyacrylamide having an acrylate in the side chain was changed.
Purification treatment was performed in the same manner as in Example 2, except that the water purification agent A4 made of the obtained granules was used, and the "Zn concentration and Ni concentration", the "suspended solids (SS) amount", and The "sludge moisture content" was measured. Table 2 shows the results.

(比較例1)
実施例1において、水浄化剤A1の代わりに、高分子凝集剤A(N-110、MTアクアポリマー株式会社製)からなる水浄化剤A5を用いた以外は、実施例1と同様にして、浄化処理を行い、「Zn濃度とNi濃度」「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表3に示した。
(Comparative example 1)
In Example 1, in the same manner as in Example 1, except that water purification agent A5 made of polymer flocculant A (N-110, manufactured by MT Aquapolymer Co., Ltd.) was used instead of water purification agent A1. Purification treatment was performed, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge water content" were measured. Table 3 shows the results.

(比較例2)
実施例2において、水浄化剤A1の代わりに、高分子凝集剤A(N-110、MTアクアポリマー株式会社製)からなる水浄化剤A5を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表3に示した。
(Comparative example 2)
In Example 2, in the same manner as in Example 2, except that water purification agent A5 made of polymer flocculant A (N-110, manufactured by MT Aquapolymer Co., Ltd.) was used instead of water purification agent A1. Purification treatment was performed, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge water content" were measured. Table 3 shows the results.

(比較例3)
実施例3において、水浄化剤A1の代わりに、高分子凝集剤A(N-110、MTアクアポリマー株式会社製)からなる水浄化剤A5を用いた以外は、実施例3と同様にして、浄化処理を行い、「Zn濃度とNi濃度」「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表3に示した。
(Comparative Example 3)
In Example 3, in the same manner as in Example 3, except that water purification agent A5 made of polymer flocculant A (N-110, manufactured by MT Aquapolymer Co., Ltd.) was used instead of water purification agent A1. Purification treatment was performed, and "Zn concentration and Ni concentration", "amount of suspended solids (SS)", and "sludge water content" were measured. Table 3 shows the results.

(比較例4)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が90μmであり、かつ累積90%体積粒子径D90が790μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)造粒物全量の60%は粒子径710μmより大きいものは公称目開き710μm(メッシュNo.18)、及び粒子径150μmより小さいものは公称目開き150μm(メッシュNo.100)のふるいにかけ取り除く。
(B)粒子径75μmより大きいものは公称目開き75μm(メッシュNo.200)、及び粒子径106μmより小さいものは公称目開き106μm(メッシュNo.140)のふるいにかけ取り除く。
(C)粒子径850μmより大きいものは公称目開き850μm(メッシュNo.20)、及び粒子径710μmより小さいものは公称目開き710μm(メッシュNo.25)のふるいにかけ取り除く。
(Comparative Example 4)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 90 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 790 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) 60% of the total amount of the granules is sieved with a nominal mesh size of 710 µm (mesh No. 18) for those with a particle size larger than 710 µm, and with a nominal mesh size of 150 µm (mesh No. 100) for those with a particle size smaller than 150 µm. remove.
(B) Particles larger than 75 μm in diameter are sifted through a sieve with a nominal opening of 75 μm (mesh No. 200), and particles smaller than 106 μm in diameter are sifted through a sieve with a nominal opening of 106 μm (mesh No. 140).
(C) Particles larger than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20), and particles smaller than 710 μm are sifted through a sieve with a nominal opening of 710 μm (mesh No. 25).

得られた造粒物からなる水浄化剤A1を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表3に示した。 Purification treatment was performed in the same manner as in Example 2, except that the water purification agent A1 made of the obtained granules was used, and the "Zn concentration and Ni concentration", the "suspended solids (SS) amount", and The "sludge moisture content" was measured. Table 3 shows the results.

(比較例5)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が410μmであり、かつ累積90%体積粒子径D90が1210μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径1180μmより大きいものは公称目開き1180μm(メッシュNo.16)、及び粒子径425μmより小さいものは公称目開き425μm(メッシュNo.40)のふるいにかけ取り除く。
(B)粒子径425μmより大きいものは公称目開き425μm(メッシュNo.40)、及び粒子径355μmより小さいものは公称目開き355μm(メッシュNo.45)のふるいにかけ取り除く。
(C)粒子径1400μmより大きいものは公称目開き1400μm(メッシュNo.14)、及び粒子径1180μmより小さいものは公称目開き1180μm(メッシュNo.16)のふるいにかけ取り除く。
(Comparative Example 5)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 410 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 1210 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 1180 μm are sifted through a sieve with a nominal opening of 1180 μm (mesh No. 16), and particles smaller than 425 μm are sifted through a sieve with a nominal opening of 425 μm (mesh No. 40).
(B) Particles larger than 425 μm are sifted through a sieve with a nominal opening of 425 μm (mesh No. 40), and particles smaller than 355 μm are sifted through a sieve with a nominal opening of 355 μm (mesh No. 45).
(C) Particles larger than 1400 μm are sifted through a sieve with a nominal opening of 1400 μm (mesh No. 14), and particles smaller than 1180 μm are sifted through a sieve with a nominal opening of 1180 μm (mesh No. 16).

得られた造粒物からなる水浄化剤A1を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表3に示した。 Purification treatment was performed in the same manner as in Example 2, except that the water purification agent A1 made of the obtained granules was used, and the "Zn concentration and Ni concentration", the "suspended solids (SS) amount", and The "sludge moisture content" was measured. Table 3 shows the results.

(比較例6)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が90μmであり、かつ累積90%体積粒子径D90が962μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径850μmより大きいものは公称目開き850μm(メッシュNo.20)、及び粒子径106μmより小さいものは公称目開き106μm(メッシュNo.140)のふるいにかけ取り除く。
(B)粒子径106μmより大きいものは公称目開き106μm(メッシュNo.140)、及び粒子径75μmより小さいものは公称目開き75μm(メッシュNo.200)のふるいにかけ取り除く。
(C)粒子径1mmより大きいものは公称目開き1mm(メッシュNo.18)、及び粒子径850μmより小さいものは公称目開き850μm(メッシュNo.20)のふるいにかけ取り除く。
(Comparative Example 6)
In the <<manufacturing method of water purifier>> of Example 1, 60% of (A), 20% of (B), and 20% of (C) were mixed as follows, and granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 90 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 962 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 850 μm in diameter are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20), and particles smaller than 106 μm in diameter are sifted through a sieve with a nominal opening of 106 μm (mesh No. 140).
(B) Particles larger than 106 μm are sifted through a sieve with a nominal opening of 106 μm (mesh No. 140), and particles smaller than 75 μm are sifted through a sieve with a nominal opening of 75 μm (mesh No. 200).
(C) Particles larger than 1 mm in diameter are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18), and those smaller than 850 μm are removed through a sieve with a nominal opening of 850 μm (mesh No. 20).

得られた造粒物からなる水浄化剤A1を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表4に示した。 Purification treatment was performed in the same manner as in Example 2, except that the water purification agent A1 made of the obtained granules was used, and the "Zn concentration and Ni concentration", the "suspended solids (SS) amount", and The "sludge moisture content" was measured. Table 4 shows the results.

(比較例7)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が282μmであり、かつ累積90%体積粒子径D90が790μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径850μmより大きいものは公称目開き850μm(メッシュNo.20)、及び粒子径300μmより小さいものは公称目開き300μm(メッシュNo.50)のふるいにかけ取り除く。
(B)粒子径300μmより大きいものは公称目開き300μm(メッシュNo.50)、及び粒子径250μmより小さいものは公称目開き250μm(メッシュNo.60)のふるいにかけ取り除く。
(C)粒子径850μmより大きいものは公称目開き850μm(メッシュNo.20)、及び粒子径710μmより小さいものは公称目開き710μm(メッシュNo.25)のふるいにかけ取り除く。
(Comparative Example 7)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 282 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 790 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20), and particles smaller than 300 μm are sifted through a sieve with a nominal opening of 300 μm (mesh No. 50).
(B) Particles larger than 300 μm are sifted through a sieve with a nominal opening of 300 μm (mesh No. 50), and particles smaller than 250 μm are sifted through a sieve with a nominal opening of 250 μm (mesh No. 60).
(C) Particles larger than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20), and particles smaller than 710 μm are sifted through a sieve with a nominal opening of 710 μm (mesh No. 25).

得られた造粒物からなる水浄化剤A1を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表4に示した。 Purification treatment was performed in the same manner as in Example 2, except that the water purification agent A1 made of the obtained granules was used, and the "Zn concentration and Ni concentration", the "suspended solids (SS) amount", and The "sludge moisture content" was measured. Table 4 shows the results.

(比較例8)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が410μmであり、かつ累積90%体積粒子径D90が962μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径1mmより大きいものは公称目開き1mm(メッシュNo.18)、及び粒子径425μmより小さいものは公称目開き425μm(メッシュNo.40)のふるいにかけ取り除く。
(B)粒子径425μmより大きいものは公称目開き425μm(メッシュNo.40)、及び粒子径355μmより小さいものは公称目開き355μm(メッシュNo.45)のふるいにかけ取り除く。
(C)粒子径1mmより大きいものは公称目開き1mm(メッシュNo.18)、及び粒子径850μmより小さいものは公称目開き850μm(メッシュNo.20)のふるいにかけ取り除く。
(Comparative Example 8)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 410 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 962 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 1 mm in diameter are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18), and particles smaller than 425 μm in diameter are sifted through a sieve with a nominal opening of 425 μm (mesh No. 40) to remove them.
(B) Particles larger than 425 μm are sifted through a sieve with a nominal opening of 425 μm (mesh No. 40), and particles smaller than 355 μm are sifted through a sieve with a nominal opening of 355 μm (mesh No. 45).
(C) Particles larger than 1 mm in diameter are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18), and those smaller than 850 μm are removed through a sieve with a nominal opening of 850 μm (mesh No. 20).

得られた造粒物からなる水浄化剤A1を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表4に示した。 Purification treatment was performed in the same manner as in Example 2, except that the water purification agent A1 made of the obtained granules was used, and the "Zn concentration and Ni concentration", the "suspended solids (SS) amount", and The "sludge moisture content" was measured. Table 4 shows the results.

(比較例9)
実施例1の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が282μmであり、かつ累積90%体積粒子径D90が1210μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径300μmより大きいものは公称目開き300μm(メッシュNo.50)、及び粒子径1180μmより小さいものは公称目開き1180μm(メッシュNo.16)のふるいにかけ取り除く。
(B)粒子径300μmより大きいものは公称目開き300μm(メッシュNo.50)、及び粒子径250μmより小さいものは公称目開き250μm(メッシュNo.60)のふるいにかけ取り除く。
(C)粒子径1400μmより大きいものは公称目開き1400μm(メッシュNo.14)、及び粒子径1180μmより小さいものは公称目開き1180μm(メッシュNo.16)のふるいにかけ取り除く。
(Comparative Example 9)
In the <<manufacturing method of water purification agent>> of Example 1, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and the granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 282 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 1210 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 300 μm are sifted through a sieve with a nominal opening of 300 μm (mesh No. 50), and particles smaller than 1180 μm are sifted through a sieve with a nominal opening of 1180 μm (mesh No. 16).
(B) Particles larger than 300 μm are sifted through a sieve with a nominal opening of 300 μm (mesh No. 50), and particles smaller than 250 μm are sifted through a sieve with a nominal opening of 250 μm (mesh No. 60).
(C) Particles larger than 1400 μm are sifted through a sieve with a nominal opening of 1400 μm (mesh No. 14), and particles smaller than 1180 μm are sifted through a sieve with a nominal opening of 1180 μm (mesh No. 16).

得られた造粒物からなる水浄化剤A1を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表4に示した。 Purification treatment was performed in the same manner as in Example 2, except that the water purification agent A1 made of the obtained granules was used, and the "Zn concentration and Ni concentration", the "suspended solids (SS) amount", and The "sludge moisture content" was measured. Table 4 shows the results.

(比較例10)
実施例2において、水浄化剤A1の代わりに、長朔黄麻からなる水浄化剤A6を用いた以外は、実施例2と同様にして、浄化処理を行い、「Zn濃度とNi濃度」「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表4に示した。
(Comparative Example 10)
In Example 2, purification treatment was performed in the same manner as in Example 2, except that water purification agent A6 made of Nagasaku jute was used instead of water purification agent A1. Amount of material (SS)" and "sludge water content" were measured. Table 4 shows the results.

Figure 0007190959000001
Figure 0007190959000001

Figure 0007190959000002
Figure 0007190959000002

Figure 0007190959000003
Figure 0007190959000003

Figure 0007190959000004
Figure 0007190959000004

(実施例11)
<排水>
処理する排水として、フッ素系原水排水(F濃度:1,000ppm)を用いた。
(Example 11)
<Drainage>
Fluorinated raw water wastewater (F concentration: 1,000 ppm) was used as the wastewater to be treated.

<一次凝集>
次に、上記排水に、無機凝集剤としての15質量%消石灰を2,000ppm添加し、pHが8になるように5質量%HSOを添加しながら撹拌した。この操作により、排水は、ミクロフロックを含む上澄み液と沈殿物に分離した。
<Primary aggregation>
Next, 2,000 ppm of 15% by mass slaked lime as an inorganic flocculant was added to the waste water, and the mixture was stirred while adding 5% by mass of H 2 SO 4 so that the pH became 8. By this operation, the wastewater was separated into a supernatant containing microflocs and a sediment.

<水浄化剤の作製>
次に、長朔黄麻(中国の長沙市産)と、高分子凝集剤(ポリアクリルアミド(PAM1)、AN913、株式会社エス・エヌ・エフ製、側鎖にカルボン酸塩を有するポリアクリルアミド)との質量組成比が2:8である造粒物を下記に示す製造方法により作製し、造粒物を得、この造粒物を水浄化剤B1として使用した。
<Preparation of water purification agent>
Next, Changsaku jute (produced in Changsha City, China) and a polymer flocculant (polyacrylamide (PAM1), AN913, manufactured by SNF Co., Ltd., polyacrylamide having a carboxylate in the side chain) A granule having a mass composition ratio of 2:8 was produced by the manufacturing method shown below to obtain a granule, and this granule was used as water purification agent B1.

<<水浄化剤の製造方法>>
長朔黄麻の粉末1500gと、高分子凝集剤(ポリアクリルアミド(PAM1))6000gとを合わせた固形分の質量に対し3倍の質量の水を加えて得られた混練物(長朔黄麻の粉末+高分子凝集剤+水=30kg)を、プラネタリーミキサー(株式会社愛工舎製作所製、混合機ACM-110、容量110L)に入れ、回転数80rpm、15分混合の条件にてシェアをかけ混練した。
得られた混練物を、プレス機(コマツ産機株式会社製、45tプレス機)を用いてローラーによる延伸を施し、厚さ10mm程度のシート状の成形物を作製した。
この成形物を、多段階熱風式乾燥機(株式会社七洋製作所製、ラック式オーブン装置)を用いて、120℃で3時間、更に150℃で2時間乾燥させた。
次に乾燥させたシートを、気流式超微粉砕機(増幸産業株式会社製、セレンミラー)を用いて粉砕した。
次に、得られた粉砕物について、以下のように(A)を60%、(B)を20%、(c)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が282μmであり、かつ累積90%体積粒子径D90が962μmに調整した。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径1000μmより大きいものは公称目開き1mm(メッシュNo.18)、及び粒子径300μmより小さいものは公称目開き300μm(メッシュNo.50)のふるいにかけ取り除く。
(B)粒子径300μmより大きいものは公称目開き300μm(メッシュNo.50)、及び粒子径250μmより小さいものは公称目開き250μm(メッシュNo.60)のふるいにかけ取り除く。
(C)粒子径1000μmより大きいものは公称目開き1mm(メッシュNo.18)、及び粒子径850mより小さいものは公称目開き850μm(メッシュNo.20)のふるいにかけ取り除く。
以上により、造粒物を得、水浄化剤B1とした。
<<Method for producing water purification agent>>
A kneaded product (Nagasaku jute powder + polymer flocculant + water = 30 kg) is placed in a planetary mixer (manufactured by Aikosha Seisakusho Co., Ltd., mixer ACM-110, capacity 110 L), and kneaded with a shear under the conditions of a rotation speed of 80 rpm and mixing for 15 minutes. did.
The resulting kneaded material was stretched by rollers using a press (45t press machine manufactured by Komatsu Sanki Co., Ltd.) to prepare a sheet-like molding having a thickness of about 10 mm.
This molding was dried at 120° C. for 3 hours and further at 150° C. for 2 hours using a multi-stage hot air dryer (manufactured by Nanayo Seisakusho Co., Ltd., rack-type oven).
Next, the dried sheet was pulverized using an airflow ultrafine pulverizer (Selene Miller, manufactured by Masuko Sangyo Co., Ltd.).
Next, the resulting pulverized product is mixed at a ratio of 60% (A), 20% (B), and 20% (c) as follows, and the cumulative 10% volume particle diameter of the granules The D10 was adjusted to 282 μm, and the cumulative 90 % volume particle diameter D90 was adjusted to 962 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 1000 μm in diameter are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18), and particles smaller than 300 μm in diameter are sifted through a sieve with a nominal opening of 300 μm (mesh No. 50) to remove them.
(B) Particles larger than 300 μm are sifted through a sieve with a nominal opening of 300 μm (mesh No. 50), and particles smaller than 250 μm are sifted through a sieve with a nominal opening of 250 μm (mesh No. 60).
(C) Particles larger than 1000 μm in diameter are sifted through a sieve with a nominal opening of 1 mm (mesh No. 18), and particles smaller than 850 m in diameter are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20) to remove them.
As described above, a granule was obtained and designated as water purification agent B1.

<浄化処理>
次に、得られた水浄化剤B1を水に溶かし、0.1質量%水溶液の分散液を作製した。この分散液を、上記ミクロフロックを含む上澄み液と沈殿物からなる排水に対して、撹拌しながら、3mL/分間の速度で滴下した。この際、上記排水中の固形分に対して4.5ppmになるように水浄化剤B1を添加した。ここで、「固形分」の測定方法は、排水中のスラリー濃度を水分計にて計測し、逆算することにより、求めた。
滴下後、1分間撹拌を維持した後、以下のようにして、「F濃度」を測定し、実施例1と同様にして「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表5に示した。
<Purification treatment>
Next, the obtained water depurator B1 was dissolved in water to prepare a 0.1% by mass aqueous dispersion. This dispersion was added dropwise at a rate of 3 mL/min to the waste water consisting of the supernatant containing the microflocs and the sediment while stirring. At this time, the water purification agent B1 was added so as to be 4.5 ppm with respect to the solid content in the waste water. Here, the method for measuring the "solid content" was determined by measuring the slurry concentration in the waste water with a moisture meter and calculating back.
After dropping, after maintaining stirring for 1 minute, the "F concentration" is measured as follows, and the "suspended solids (SS) amount" and "sludge water content" are measured in the same manner as in Example 1. did. Table 5 shows the results.

<F濃度の測定>
撹拌停止後2分間後の上澄みをサンプリングし、ラムダ(Λ)9000(共立理化学研究所製)により、フッ素(F)濃度を測定した。
<Measurement of F concentration>
Two minutes after the stirring was stopped, the supernatant was sampled, and the fluorine (F) concentration was measured with a lambda (Λ) 9000 (manufactured by Kyoritsu Scientific Research Institute).

(実施例12)
実施例11において、<一次凝集>における消石灰の添加量を1,800ppmに変更した以外は、実施例11と同様にして、浄化処理を行い、「F濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表5に示した。
(Example 12)
In Example 11, purification treatment was performed in the same manner as in Example 11, except that the amount of slaked lime added in <primary flocculation> was changed to 1,800 ppm. ”, and “sludge moisture content” were measured. Table 5 shows the results.

(実施例13)
実施例11において、<一次凝集>における消石灰の添加量を1,600ppmに変更した以外は、実施例11と同様にして、浄化処理を行い、「F濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表5に示した。
(Example 13)
In Example 11, purification treatment was performed in the same manner as in Example 11, except that the amount of slaked lime added in <primary flocculation> was changed to 1,600 ppm. ”, and “sludge moisture content” were measured. Table 5 shows the results.

(実施例14)
実施例11の<<水浄化剤の製造方法>>において、以下のように(A)を60%、(B)を20%、(C)を20%の割合で混合し、造粒物の累積10%体積粒子径D10が200μmであり、かつ累積90%体積粒子径D90が900μmに調整した以外は、実施例1と同様にして、造粒物を得た。なお、累積10%体積粒子径D10及び累積90%体積粒子径D90は、マスターサイザー2000(マルバーン インスツルメント社製)により測定した。
(A)粒子径850μmより大きいものは公称目開き850μm(メッシュNo.20)、及び粒子径150μmより小さいものは公称目開き150μm(メッシュNo.100)のふるいにかけ取り除く。
(B)粒子径250mより大きいものは公称目開き250μm(メッシュNo.60)、は及び粒子径150μmより小さいものは公称目開き150μm(メッシュNo.60)のふるいにかけ取り除く。
(C)粒子径1180μmより大きいものは公称目開き1180μm(メッシュNo.16)、及び粒子径850μmより小さいものは公称目開き850μm(メッシュNo.20)のふるいにかけ取り除く。
(Example 14)
In the <<manufacturing method of water purification agent>> of Example 11, (A) was mixed at a ratio of 60%, (B) at 20%, and (C) at 20% as follows, and granules were obtained. Granules were obtained in the same manner as in Example 1, except that the cumulative 10 % volume particle diameter D10 was 200 μm and the cumulative 90 % volume particle diameter D90 was adjusted to 900 μm. The cumulative 10 % volume particle diameter D10 and the cumulative 90 % volume particle diameter D90 were measured by Mastersizer 2000 (manufactured by Malvern Instruments).
(A) Particles larger than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20), and particles smaller than 150 μm are sifted through a sieve with a nominal opening of 150 μm (mesh No. 100).
(B) Particles larger than 250 m in diameter are sifted through a sieve with a nominal opening of 250 µm (mesh No. 60), and particles smaller than 150 µm are sifted through a sieve with a nominal opening of 150 µm (mesh No. 60).
(C) Particles larger than 1180 μm are sifted through a sieve with a nominal opening of 1180 μm (mesh No. 16), and particles smaller than 850 μm are sifted through a sieve with a nominal opening of 850 μm (mesh No. 20).

得られた造粒物からなる水浄化剤B1を用いた以外は、実施例12と同様にして、浄化処理を行い、「F濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表5に示した。 Purification treatment was performed in the same manner as in Example 12, except that the water purification agent B1 made of the obtained granules was used, and the "F concentration", "amount of suspended solids (SS)", and "sludge water content rate” was measured. Table 5 shows the results.

Figure 0007190959000005
Figure 0007190959000005

(実施例15)
<排水>
処理する排水として、メッキ系原水排水(Cu濃度:100ppm)を用いた。
(Example 15)
<Drainage>
As waste water to be treated, raw water waste water for plating (Cu concentration: 100 ppm) was used.

<一次凝集>
次に、上記排水に、無機凝集剤としてのFeClを200ppm添加し、pHが11になるようにCa(OH)を添加しながら撹拌した。この操作により、排水は、ミクロフロックを含む上澄み液と沈殿物に分離した。
<Primary aggregation>
Next, 200 ppm of FeCl 2 as an inorganic flocculant was added to the above waste water, and the mixture was stirred while adding Ca(OH) 2 so that the pH became 11. By this operation, the wastewater was separated into a supernatant containing microflocs and a sediment.

次に、実施例1において、水浄化剤A1を6ppm添加した以外は、実施例1と同様にして、浄化処理を行い、以下のようにして「Cu濃度」を測定し、実施例1と同様にして「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表6に示した。 Next, in Example 1, purification treatment was performed in the same manner as in Example 1 except that 6 ppm of the water purification agent A1 was added, and the "Cu concentration" was measured as described below. Then, the "amount of suspended solids (SS)" and the "sludge water content" were measured. Table 6 shows the results.

<Cu濃度の測定>
撹拌停止後60秒間後の上澄みをサンプリングし、高周波誘導結合プラズマ発光分光装置ICP-AES(SPECTRO社製)でCu濃度を測定した。
<Measurement of Cu concentration>
The supernatant was sampled 60 seconds after the stirring was stopped, and the Cu concentration was measured with a high frequency inductively coupled plasma emission spectrometer ICP-AES (manufactured by SPECTRO).

(実施例16)
実施例15において、<一次凝集>における無機凝集剤としてのFeClを添加しなかった以外は、実施例15と同様にして、浄化処理を行い、「Cu濃度」、「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表6に示した。
(Example 16)
In Example 15, purification treatment was performed in the same manner as in Example 15, except that FeCl 2 was not added as an inorganic flocculant in <primary flocculation>. amount” and “sludge moisture content” were measured. Table 6 shows the results.

(比較例11)
実施例15において、水浄化剤A1の代わりに、高分子凝集剤A(A-120、MTアクアポリマー株式会社製)からなる水浄化剤A5を用いた以外は、実施例15と同様にして、浄化処理を行い、「Cu濃度」「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表6に示した。
(Comparative Example 11)
In Example 15, in the same manner as in Example 15, except that water purification agent A5 made of polymer flocculant A (A-120, manufactured by MT Aquapolymer Co., Ltd.) was used instead of water purification agent A1. Purification treatment was performed, and "Cu concentration", "amount of suspended solids (SS)", and "sludge water content" were measured. Table 6 shows the results.

(比較例12)
実施例16において、水浄化剤A1の代わりに、高分子凝集剤A(A-120、MTアクアポリマー株式会社製)からなる水浄化剤A5を用いた以外は、実施例16と同様にして、浄化処理を行い、「Cu濃度」「浮遊物質(SS)の量」、及び「汚泥含水率」を測定した。結果を表6に示した。
(Comparative Example 12)
In Example 16, in the same manner as in Example 16, except that water purification agent A5 made of polymer flocculant A (A-120, manufactured by MT Aquapolymer Co., Ltd.) was used instead of water purification agent A1. Purification treatment was performed, and "Cu concentration", "amount of suspended solids (SS)", and "sludge water content" were measured. Table 6 shows the results.

Figure 0007190959000006
Figure 0007190959000006

以上、実施例1から16の結果から、本発明の水浄化剤は、水浄化性能に優れ、無機凝集剤の使用量を減らすことができると共に、汚泥含水率の減少による汚泥発生量の削減が図れることが確認できた。 As described above, from the results of Examples 1 to 16, the water purification agent of the present invention has excellent water purification performance, can reduce the amount of inorganic flocculant used, and reduces the amount of sludge generated by reducing the sludge water content. It was confirmed that it could be done.

本発明の水浄化剤は、水浄化性能に優れ、無機凝集剤の使用量を減らすことができると共に、汚泥含水率の減少による汚泥発生量の削減が図れるので、排水処理、水浄化処理や汚泥の濃縮などに好適に用いることができる。 The water purification agent of the present invention has excellent water purification performance, can reduce the amount of inorganic flocculant used, and can reduce the amount of sludge generated by reducing the water content of sludge. can be suitably used for concentration of

Claims (12)

長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤であって、
前記造粒物の累積10%体積粒子径D10が100μm以上400μm以下であり、かつ累積90%体積粒子径D90が800μm以上1,200μm以下であることを特徴とする水浄化剤。
A water purifying agent comprising granules containing a mixture of Nagasaku jute powder and a polymer flocculant,
A water depurator, wherein the granules have a cumulative 10 % volume particle diameter D10 of 100 µm or more and 400 µm or less, and a cumulative 90 % volume particle diameter D90 of 800 µm or more and 1,200 µm or less.
前記長朔黄麻と前記高分子凝集剤の質量組成比が9:1~1:9である請求項1に記載の水浄化剤。 The water purification agent according to claim 1, wherein the mass composition ratio of the Nagasaku jute and the polymer flocculant is 9:1 to 1:9. 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」である請求項1から2のいずれかに記載の水浄化剤。 3. The water purification agent according to any one of claims 1 and 2, wherein the Changsaku jute has an appraisal number of Guokan Hemp 2013 "Chongjuu No. 4" by the Institute of Hemp, Chinese Academy of Agricultural Sciences. 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品▲鑑▼登字第1209006の「「中黄麻3号」である請求項1からのいずれかに記載の水浄化剤。 3. The water purification agent according to any one of claims 1 and 2 , wherein the Changsaku jute has an appraisal number by the Institute of Hemp Research, Chinese Academy of Agricultural Sciences, and is ""Zhong Jute No. 3" of 皖品类军标号1209006. . 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品▲鑑▼登字第1209001の「中紅麻」である請求項1からのいずれかに記載の水浄化剤。 3. The water purification agent according to any one of claims 1 and 2 , wherein the Changsaku jute is "Central red hemp" with appraisal number 1209001 by the Hemp Research Institute of the Chinese Academy of Agricultural Sciences. 前記高分子凝集剤がポリアクリルアミドである請求項1から5のいずれかに記載の水浄化剤。 6. The water purification agent according to any one of claims 1 to 5, wherein said polymer flocculant is polyacrylamide. 前記ポリアクリルアミドはアクリル酸塩又はカルボン酸塩を有する請求項6に記載の水浄化剤。 7. The water purification agent according to claim 6, wherein said polyacrylamide has an acrylate or a carboxylate. 請求項1から7のいずれかに記載の水浄化剤を製造する方法であって、
長朔黄麻の粉末と高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、
前記混練物を延伸法によりシート状に成形し、シート状の成形物を得る延伸・シート化工程と、
得られたシート状の成形物を乾燥させ、乾燥したシートを得る乾燥工程と、
乾燥したシートを粉砕する粉砕工程と、
を含むことを特徴とする水浄化剤の製造方法。
A method for producing the water purification agent according to any one of claims 1 to 7,
A kneading step of mixing Nagasaku jute powder and a polymer flocculant, adding water and kneading to obtain a kneaded product;
A stretching and sheeting step of forming the kneaded product into a sheet by a stretching method to obtain a sheet-shaped molded product;
A drying step of drying the obtained sheet-like molding to obtain a dried sheet;
a pulverizing step of pulverizing the dried sheet;
A method for producing a water purification agent, comprising:
請求項1から7のいずれかに記載の水浄化剤を水に溶かし、長朔黄麻の粉末及び高分子凝集剤の分散液を得、無機系不要物を含有する排水に前記分散液を供することにより、排水中の無機系不要物を除去することを特徴とする水浄化方法。 Dissolving the water purification agent according to any one of claims 1 to 7 in water to obtain a dispersion of Nagasaku jute powder and a polymer flocculant, and providing the dispersion to waste water containing inorganic wastes. A water purification method characterized by removing inorganic wastes in waste water by 前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である請求項9に記載の水浄化方法。 10. The water purification method according to claim 9, wherein the waste water contains inorganic wastes containing at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. 前記無機系不要物におけるニッケルイオン、フッ素イオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオン、ヒ素イオン、カドミウムイオン、錫イオン、及び鉛イオンの少なくともいずれかの無機イオンに対し不溶化処理を施した後、前記分散液を前記排水に供する請求項10に記載の水浄化方法。 At least one of inorganic ions selected from nickel ions, fluoride ions, iron ions, copper ions, zinc ions, chromium ions, arsenic ions, cadmium ions, tin ions, and lead ions in the inorganic unwanted matter is insolubilized. 11. The method for water purification according to claim 10, wherein the dispersion is subsequently subjected to the drainage. 前記不溶化処理に用いる無機凝集剤の量が4,500ppm以下である請求項11に記載の水浄化方法。 12. The water purification method according to claim 11, wherein the amount of the inorganic flocculant used for the insolubilization treatment is 4,500 ppm or less.
JP2019084908A 2019-04-26 2019-04-26 Water purification agent and water purification method Active JP7190959B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019084908A JP7190959B2 (en) 2019-04-26 2019-04-26 Water purification agent and water purification method
PCT/JP2020/013647 WO2020217841A1 (en) 2019-04-26 2020-03-26 Water-purifying agent and water-purifying method
CN202080030302.7A CN113710342B (en) 2019-04-26 2020-03-26 Water purifying agent and water purifying method
TW109110813A TWI838505B (en) 2019-04-26 2020-03-30 Water purifier and water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019084908A JP7190959B2 (en) 2019-04-26 2019-04-26 Water purification agent and water purification method

Publications (2)

Publication Number Publication Date
JP2020179358A JP2020179358A (en) 2020-11-05
JP7190959B2 true JP7190959B2 (en) 2022-12-16

Family

ID=72942604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019084908A Active JP7190959B2 (en) 2019-04-26 2019-04-26 Water purification agent and water purification method

Country Status (3)

Country Link
JP (1) JP7190959B2 (en)
CN (1) CN113710342B (en)
WO (1) WO2020217841A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263406A (en) 2001-03-13 2002-09-17 Yashio:Kk Flocculant and method for producing the same
JP2015221406A (en) 2014-05-22 2015-12-10 黒崎白土工業株式会社 Sewage disposal agent
WO2016158256A1 (en) 2015-03-30 2016-10-06 デクセリアルズ株式会社 Water cleaning agent and water cleaning method
WO2016158433A1 (en) 2015-03-30 2016-10-06 デクセリアルズ株式会社 Water-purifying agent and water purification method
WO2018051849A1 (en) 2016-09-15 2018-03-22 デクセリアルズ株式会社 Water purification dispersion, production method for water purification dispersion, and waste water treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482384B2 (en) * 2003-06-10 2009-01-27 Toda Kogyo Corporation Iron composite particles for purifying soil or ground water, process for producing the same, purifying agent containing the same, process for producing the purifying agent and method for purifying soil or ground water
JP2016052654A (en) * 2015-10-05 2016-04-14 月島機械株式会社 Water purification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263406A (en) 2001-03-13 2002-09-17 Yashio:Kk Flocculant and method for producing the same
JP2015221406A (en) 2014-05-22 2015-12-10 黒崎白土工業株式会社 Sewage disposal agent
WO2016158256A1 (en) 2015-03-30 2016-10-06 デクセリアルズ株式会社 Water cleaning agent and water cleaning method
WO2016158433A1 (en) 2015-03-30 2016-10-06 デクセリアルズ株式会社 Water-purifying agent and water purification method
WO2018051849A1 (en) 2016-09-15 2018-03-22 デクセリアルズ株式会社 Water purification dispersion, production method for water purification dispersion, and waste water treatment method

Also Published As

Publication number Publication date
JP2020179358A (en) 2020-11-05
CN113710342B (en) 2023-02-24
TW202039050A (en) 2020-11-01
WO2020217841A1 (en) 2020-10-29
CN113710342A (en) 2021-11-26

Similar Documents

Publication Publication Date Title
JP6885826B2 (en) Water purification agent manufacturing method and wastewater treatment method
TWI685469B (en) Water purifying agent and water purifying method
JP6826011B2 (en) Water purification dispersion, manufacturing method of the water purification dispersion, and wastewater treatment method
TWI705128B (en) Water purifying agent and water purifying method
JP2020054992A (en) Anionic flocculant, anionic flocculant production method, and treatment method
JP7190959B2 (en) Water purification agent and water purification method
JP3715615B2 (en) Flocculant for wastewater treatment
TWI756264B (en) Dispersion liquid for water purification,method for producing the dispersion liquid for water purification,and method for treating wastewater
TWI746638B (en) Method for producing water-purifying agent and method for treating wastewater
TWI680789B (en) Filtration aid and filtration method
WO2022070745A1 (en) Organic coagulant and method for producing same, and water-cleaning agent and method for producing same
JP6722807B1 (en) Water treatment agent and method for producing the same, and water treatment method
JP2022059562A (en) Organic coagulant and method for producing the same, and water-cleaning agent and method for producing the same
WO2020067284A1 (en) Anionic flocculant, anionic flocculant production method, and treatment method
CN114249405A (en) Efficient defluorinating agent and preparation method and use method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221206

R150 Certificate of patent or registration of utility model

Ref document number: 7190959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150