JP7147099B1 - Optical system, lens device, imaging device - Google Patents

Optical system, lens device, imaging device Download PDF

Info

Publication number
JP7147099B1
JP7147099B1 JP2022118909A JP2022118909A JP7147099B1 JP 7147099 B1 JP7147099 B1 JP 7147099B1 JP 2022118909 A JP2022118909 A JP 2022118909A JP 2022118909 A JP2022118909 A JP 2022118909A JP 7147099 B1 JP7147099 B1 JP 7147099B1
Authority
JP
Japan
Prior art keywords
optical system
lens
conditional expression
focal length
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022118909A
Other languages
Japanese (ja)
Other versions
JP2022145730A (en
Inventor
誠 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021043282A external-priority patent/JP7146987B1/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022118909A priority Critical patent/JP7147099B1/en
Application granted granted Critical
Publication of JP7147099B1 publication Critical patent/JP7147099B1/en
Publication of JP2022145730A publication Critical patent/JP2022145730A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

【課題】 主光学系に挿抜される変倍光学系を有する光学系において、全系の軽量化を図りつつ良好な光学性能を得ることである。【解決手段】 光学系L0は、開口絞りSPを有する主光学系LMと、主光学系LMの開口絞りSPと像面IPとの間に挿脱される変倍光学系EXTを有する。変倍光学系EXTの挿脱の前後で主光学系LMの最も物体側のレンズ面から像面IPまでの距離は一定である。主光学系LMは複数の正レンズと複数の負レンズを有する。主光学系LMの最も物体側のレンズ面から主光学系LMに含まれる複数の負レンズのうち最も物体側に位置する負レンズG1Nの物体側のレンズ面までの距離と、主光学系LMの全長は所定の関係を満足する。【選択図】 図3An object of the present invention is to provide an optical system having a variable power optical system that is inserted into and removed from a main optical system, and to achieve good optical performance while reducing the weight of the entire system. SOLUTION: An optical system L0 has a main optical system LM having an aperture stop SP, and a variable magnification optical system EXT inserted between the aperture stop SP of the main optical system LM and an image plane IP. The distance from the most object-side lens surface of the main optical system LM to the image plane IP is constant before and after the variable power optical system EXT is inserted and removed. The main optical system LM has multiple positive lenses and multiple negative lenses. the distance from the most object-side lens surface of the main optical system LM to the object-side lens surface of the negative lens G1N positioned closest to the object among the plurality of negative lenses included in the main optical system LM; The total length satisfies a predetermined relationship. [Selection drawing] Fig. 3

Description

本発明は、光学系等に関し、デジタルビデオカメラ、デジタルスチルカメラ、放送用カメラ、銀塩フィルム用カメラ等の撮像装置に好適なものである。 The present invention relates to an optical system and the like, and is suitable for imaging apparatuses such as digital video cameras, digital still cameras, broadcasting cameras, and silver halide film cameras.

撮像装置に用いられる光学系の焦点距離を変化させる方式として、光路中に変倍光学系(エクステンダ)を挿入することにより、全系の焦点距離を変化させるコンバータ方式が知られている。 2. Description of the Related Art As a method for changing the focal length of an optical system used in an image pickup apparatus, there is known a converter method for changing the focal length of the entire system by inserting a variable magnification optical system (extender) in the optical path.

特許文献1には、主光学系の開口絞りより像側の所定の位置に挿抜可能な変倍光学系を有する光学系が開示されている。 Patent Document 1 discloses an optical system having a variable magnification optical system that can be inserted and removed at a predetermined position on the image side of an aperture stop of a main optical system.

特開2013-238827号公報JP 2013-238827 A

変倍光学系を内蔵する方式を採る場合、変倍光学系を含む全系の軽量化を図りつつ良好な光学性能を得るためには、変倍光学系の挿入位置を適切に選択することのみならず、主光学系を適切に構成することも重要である。特許文献1に開示された発明では、軽量化と光学性能の両立の観点で改善の余地があった。 When adopting a system with a built-in variable power optical system, the only way to achieve good optical performance while reducing the weight of the entire system, including the variable power optical system, is to select an appropriate insertion position for the variable power optical system. However, it is also important to properly configure the main optical system. The invention disclosed in Patent Document 1 has room for improvement from the viewpoint of achieving both weight reduction and optical performance.

本発明は、主光学系に挿抜される変倍光学系を有する光学系において、全系の軽量化を図りつつ良好な光学性能を得ることである。 SUMMARY OF THE INVENTION It is an object of the present invention to obtain good optical performance while reducing the weight of the entire system in an optical system having a variable magnification optical system that is inserted into and removed from a main optical system.

本発明の光学系は、開口絞りを有する主光学系と、前記開口絞りと像面との間に挿脱される変倍光学系を有し、前記変倍光学系の挿脱の前後で前記主光学系の最も物体側のレンズ面から像面までの距離は一定であり、前記主光学系は複数の正レンズと複数の負レンズを有し、
前記主光学系の最も物体側のレンズ面から前記複数の負レンズのうち最も物体側に位置する負レンズG1Nの物体側のレンズ面までの距離をD1N、前記主光学系の最も物体側のレンズ面から像面までの距離をLD、前記主光学系の前記変倍光学系が挿入される位置よりも像側に配置された部分光学系の焦点距離をfb、前記変倍光学系の焦点距離をfeとするとき、
0.20<D1N/LD<0.50
-3.5<fb/fe<-0.30
なる条件式を満足することを特徴とする。
An optical system of the present invention has a main optical system having an aperture stop, and a variable power optical system that is inserted and removed between the aperture stop and an image plane. The distance from the lens surface closest to the object side of the main optical system to the image plane is constant, the main optical system has a plurality of positive lenses and a plurality of negative lenses,
D1N is the distance from the most object-side lens surface of the main optical system to the object-side lens surface of the negative lens G1N positioned closest to the object side among the plurality of negative lenses, and the lens closest to the object side of the main optical system LD is the distance from the surface to the image plane, fb is the focal length of the partial optical system arranged on the image side of the position where the variable magnification optical system is inserted in the main optical system, and fb is the focal length of the variable magnification optical system. is fe,
0.20<D1N/LD<0.50
−3.5<fb/fe<−0.30
It is characterized by satisfying the following conditional expression.

本発明によれば、主光学系に挿抜される変倍光学系を有する光学系において、全系の軽量化を図りつつ良好な光学性能を得ることができる。 According to the present invention, in an optical system having a variable magnification optical system that is inserted into and removed from a main optical system, it is possible to obtain good optical performance while reducing the weight of the entire system.

実施例1の主光学系の断面図である。4 is a cross-sectional view of the main optical system of Example 1. FIG. 実施例1の主光学系の収差図である。4 is an aberration diagram of the main optical system of Example 1. FIG. 変倍光学系が挿入された状態での実施例1の光学系の断面図である。2 is a cross-sectional view of the optical system of Example 1 with the variable power optical system inserted; FIG. 変倍光学系が挿入された状態での実施例1の光学系の収差図である。FIG. 4 is an aberration diagram of the optical system of Example 1 in a state in which the variable magnification optical system is inserted; 実施例2の主光学系の断面図である。FIG. 8 is a cross-sectional view of the main optical system of Example 2; 実施例2の主光学系の収差図である。FIG. 10 is an aberration diagram of the main optical system of Example 2; 変倍光学系が挿入された状態での実施例2の光学系の断面図である。FIG. 10 is a cross-sectional view of the optical system of Example 2 with the variable power optical system inserted; 変倍光学系が挿入された状態での実施例2の光学系の収差図である。FIG. 10 is an aberration diagram of the optical system of Example 2 in a state where the variable magnification optical system is inserted; 実施例3の主光学系の断面図である。FIG. 11 is a cross-sectional view of the main optical system of Example 3; 実施例3の主光学系の収差図である。FIG. 11 is an aberration diagram of the main optical system of Example 3; 変倍光学系が挿入された状態での実施例3の光学系の断面図である。FIG. 10 is a cross-sectional view of the optical system of Example 3 with the variable power optical system inserted; 変倍光学系が挿入された状態での実施例3の光学系の収差図である。FIG. 11 is an aberration diagram of the optical system of Example 3 in a state where the variable magnification optical system is inserted; レンズ装置を示す概略図である。1 is a schematic diagram showing a lens device; FIG. 撮像装置を示す概略図である。1 is a schematic diagram showing an imaging device; FIG.

以下、本発明の光学系及びそれを有するレンズ装置や撮像装置の実施例について、添付の図面に基づいて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of an optical system of the present invention and a lens device and an imaging device having the optical system will be described with reference to the accompanying drawings.

図1、3、5、7、9、11は、それぞれ無限遠合焦時の実施例1から3の光学系L0の断面図である。各実施例の光学系L0は主光学系LMと変倍光学系EXTを有する。図1,5,9は各実施例の光学系L0の主光学系LMの断面図を示している。また、図3,7,11は各実施例の光学系L0において、主光学系LMの光路に変倍光学系EXTが挿入された状態の断面図を示している。各実施例の光学系L0は例えばデジタルビデオカメラ、デジタルスチルカメラ、放送用カメラ、銀塩フィルム用カメラ、監視用カメラ等の撮像装置に用いることができる。 1, 3, 5, 7, 9, and 11 are cross-sectional views of the optical systems L0 of Examples 1 to 3, respectively, when focusing on infinity. The optical system L0 of each embodiment has a main optical system LM and a variable magnification optical system EXT. 1, 5, and 9 show cross-sectional views of the main optical system LM of the optical system L0 of each embodiment. 3, 7, and 11 are cross-sectional views of the optical system L0 of each embodiment, with the variable magnification optical system EXT inserted in the optical path of the main optical system LM. The optical system L0 of each embodiment can be used, for example, in an imaging apparatus such as a digital video camera, a digital still camera, a broadcast camera, a silver halide film camera, a surveillance camera, and the like.

各断面図において、左側が物体側で、右側が像側である。SPは開口絞りである。IPは像面であり、各実施例の光学系L0をデジタルビデオカメラやデジタルスチルカメラ用の撮像光学系として用いる際には該像面IPにCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が配置される。各実施例の光学系L0を銀塩フィルム用カメラ用の撮像光学系として用いる際には像面IPにはフィルムの感光面が配置される。 In each sectional view, the left side is the object side and the right side is the image side. SP is the aperture stop. IP is an image plane, and when the optical system L0 of each embodiment is used as an imaging optical system for a digital video camera or a digital still camera, the image plane IP is a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor. element) is arranged. When the optical system L0 of each embodiment is used as an imaging optical system for a silver halide film camera, the photosensitive surface of the film is arranged on the image plane IP.

主光学系LMは単独でも撮影に用いることができる光学系であり、複数の正レンズと複数の負レンズを有する。変倍光学系EXTは主光学系LMの光路に対して挿脱可能に構成される。各実施例において変倍光学系EXTは負の屈折力を有し、変換倍率(焦点距離の拡大率)Mは1.4である。すなわち、変倍光学系EXTが主光学系LMの光路に挿入されることで、光学系L0の全系焦点距離が伸長される。各実施例において、変倍光学系EXTは開口絞りSPと像面IPとの間に挿脱される。また、各実施例において変倍光学系EXTの挿脱の前後においてレンズ全長(最も物体側のレンズ面から像面IPまでの距離)は一定である。 The main optical system LM is an optical system that can be used alone for photographing, and has a plurality of positive lenses and a plurality of negative lenses. The variable power optical system EXT is configured to be insertable and removable with respect to the optical path of the main optical system LM. In each embodiment, the variable magnification optical system EXT has a negative refractive power and a conversion magnification (magnification of focal length) M of 1.4. That is, by inserting the variable power optical system EXT into the optical path of the main optical system LM, the overall focal length of the optical system L0 is extended. In each embodiment, the variable power optical system EXT is inserted between the aperture stop SP and the image plane IP. Further, in each embodiment, the total lens length (the distance from the lens surface closest to the object side to the image plane IP) is constant before and after the variable power optical system EXT is inserted and removed.

各実施例の光学系L0では、フォーカシングに際して少なくとも1つのレンズ群が移動する。LF1、LF2、LFはフォーカシングに際して移動するフォーカスレンズ群である。各フォーカスレンズ群の無限遠から近距離へのフォーカシングに際しての移動方向は、各断面図に矢印で示している。各実施例の光学系L0において、フォーカシングに際して移動するレンズ群を1つだけとしても良いし、2以上としても良い。 In the optical system L0 of each embodiment, at least one lens group moves during focusing. LF1, LF2, and LF are focus lens groups that move during focusing. The direction of movement of each focus lens group during focusing from infinity to short distance is indicated by an arrow in each sectional view. In the optical system L0 of each embodiment, only one lens group may be moved during focusing, or two or more lens groups may be moved.

図2、図4、図6、図8、図10および図12はそれぞれ、各実施例の光学系の無限遠合焦状態での縦収差図である。このうち、図2,6,10は各実施例の光学系L0の主光学系LMの収差図を示している。また、図4,8,12は各実施例の光学系L0において、主光学系LMの光路に変倍光学系EXTが挿入された状態の収差図を示している。 2, 4, 6, 8, 10, and 12 are longitudinal aberration diagrams of the optical system of each embodiment in the infinity focused state. Among them, FIGS. 2, 6, and 10 show aberration diagrams of the main optical system LM of the optical system L0 of each embodiment. 4, 8, and 12 show aberration diagrams of the optical system L0 of each embodiment when the variable magnification optical system EXT is inserted in the optical path of the main optical system LM.

球面収差図においてFNoはFナンバーである。球面収差図では、d線(波長587.6nm)とg線(波長435.8nm)に対する球面収差量をそれぞれ実線と二点鎖線で示している。非点収差図においてΔSはサジタル像面における非点収差量(実線)、ΔMはメリディオナル像面における非点収差量(破線)を示している。歪曲収差図では、d線に対する歪曲収差量を示している。色収差図ではg線における色収差量を示している。なお、ωは半画角(°)である。 FNo in the spherical aberration diagram is the F number. In the spherical aberration diagram, the amount of spherical aberration for the d-line (wavelength of 587.6 nm) and the g-line (wavelength of 435.8 nm) are indicated by a solid line and a chain double-dashed line, respectively. In the astigmatism diagrams, ΔS indicates the amount of astigmatism (solid line) on the sagittal image plane, and ΔM indicates the amount of astigmatism (broken line) on the meridional image plane. The distortion diagram shows the amount of distortion with respect to the d-line. The chromatic aberration diagram shows the amount of chromatic aberration at the g-line. Note that ω is a half angle of view (°).

次に各実施例の光学系L0の特徴的な構成および条件について説明する。 Next, the characteristic configuration and conditions of the optical system L0 of each example will be described.

主光学系LMが望遠レンズである場合、物体側のレンズほど有効径が大きくなり、レンズ外径も大きくなる。このため、変倍光学系EXTを主光学系LMの比較的物体側の位置に挿入する場合、変倍光学系EXTの小型化が困難となる。さらに、変倍光学系EXTの挿入前後で光学系L0の球面収差やコマ収差の変動が大きくなってしまう場合がある。 When the main optical system LM is a telephoto lens, the lens closer to the object side has a larger effective diameter and a larger lens outer diameter. Therefore, when the variable power optical system EXT is inserted at a position relatively close to the object side of the main optical system LM, it is difficult to reduce the size of the variable power optical system EXT. Furthermore, there are cases where the spherical aberration and coma aberration of the optical system L0 fluctuate significantly before and after the variable magnification optical system EXT is inserted.

このため、各実施例の光学系はL0では、変倍が口径EXTを開口絞りSPと像面IPとの間に配置するようにしている。これにより、変倍光学系EXTに入射する光束径を小さくすることができ、結果として変倍光学系EXTの小型化を図っている。さらに、変倍光学系EXTの挿入前後で球面収差やコマ収差の変動を小さくしている。 Therefore, in the optical system L0 of each embodiment, the aperture EXT is arranged between the aperture stop SP and the image plane IP. This makes it possible to reduce the diameter of the luminous flux incident on the variable power optical system EXT, and as a result, miniaturization of the variable power optical system EXT is achieved. Furthermore, fluctuations in spherical aberration and coma aberration before and after insertion of the variable power optical system EXT are reduced.

ここで、主光学系の光路中に変倍光学系を挿抜可能とする構成を採る場合、変倍光学系を挿抜するための機構をレンズ装置に設ける必要があるため、レンズ装置全体が高重量化し易い。このため、主光学系を含んだ光学系全体の軽量化が重要となる。 Here, when adopting a configuration in which the variable power optical system can be inserted into and removed from the optical path of the main optical system, it is necessary to provide the lens device with a mechanism for inserting and removing the variable power optical system. easy to convert. Therefore, it is important to reduce the weight of the entire optical system including the main optical system.

光学系の軽量化には、光学系を構成する各レンズの重量を軽量化する必要がある。各レンズを軽量化するには、各レンズの有効径を小径化する必要がある。また、同等の屈折力を持つ正レンズと負レンズを比較すると、負レンズの方が高重量となり易い。 In order to reduce the weight of the optical system, it is necessary to reduce the weight of each lens that constitutes the optical system. In order to reduce the weight of each lens, it is necessary to reduce the effective diameter of each lens. Also, when a positive lens and a negative lens having the same refractive power are compared, the negative lens tends to be heavier.

このため各実施例の光学系L0では、主光学系LMが有する負レンズのうち最も物体側に配置される負レンズG1Nを適切に像側へ下げて配置するようにしている。これにより、負レンズG1Nの物体側に配置された1以上の正レンズによって十分に収斂された光線を負レンズG1Nに入射させることができるようになり、負レンズG1Nを有効に小径化させることが可能となる。結果として、光学系L0を軽量に構成することが可能となる。 Therefore, in the optical system L0 of each embodiment, the negative lens G1N arranged closest to the object side among the negative lenses of the main optical system LM is appropriately lowered toward the image side. As a result, a light beam sufficiently converged by one or more positive lenses arranged on the object side of the negative lens G1N can be made incident on the negative lens G1N, thereby effectively reducing the diameter of the negative lens G1N. It becomes possible. As a result, the optical system L0 can be made lightweight.

具体的には、各実施例の光学系L0は以下の条件式を満足するように構成されている。
0.20<D1N/LD<0.50 (1)
Specifically, the optical system L0 of each embodiment is configured to satisfy the following conditional expression.
0.20<D1N/LD<0.50 (1)

ここで、D1Nは光学系L0の最も物体側のレンズ面から負レンズG1Nの物体側のレンズ面までの距離である。LDは光学系L0の最も物体側のレンズ面から像面IPまでの距離(レンズ全長)である。 Here, D1N is the distance from the most object-side lens surface of the optical system L0 to the object-side lens surface of the negative lens G1N. LD is the distance (lens total length) from the most object-side lens surface of the optical system L0 to the image plane IP.

条件式(1)は光学系L0を軽量化しつつ、良好な光学性能とするための条件である。D1N/LDの値が条件式(1)の下限値を下回ると、負レンズG1Nが物体側に近づきすぎて、負レンズG1Nの有効径が大きくなりすぎてしまう。このため、負レンズG1Nの質量が増大してしまう。D1N/LDの値が条件式(1)の上限値を上回ると、負レンズG1Nが像側に近づきすぎて、負レンズG1Nに入射する軸上光線の入射高さが低くなりすぎる。この結果、負レンズG1Nによって光学系L0の球面収差を補正することが困難となる。 Conditional expression (1) is a condition for achieving good optical performance while reducing the weight of the optical system L0. If the value of D1N/LD is less than the lower limit of conditional expression (1), the negative lens G1N will come too close to the object side and the effective diameter of the negative lens G1N will become too large. Therefore, the mass of the negative lens G1N increases. When the value of D1N/LD exceeds the upper limit of conditional expression (1), the negative lens G1N is too close to the image side, and the incident height of the axial ray incident on the negative lens G1N becomes too low. As a result, it becomes difficult to correct the spherical aberration of the optical system L0 with the negative lens G1N.

以上の構成により、主光学系に挿抜される変倍光学系を有する光学系において、全系の軽量化を図りつつ良好な光学性能を得ることが可能となる。 With the above configuration, in an optical system having a variable-magnification optical system that is inserted into and removed from the main optical system, it is possible to obtain good optical performance while reducing the weight of the entire system.

なお、条件式(1)の数値範囲の上限値と下限値の少なくとも一方を、以下の条件式(1a)のようにすることがより好ましく、条件式(1b)のようにすることがさらに好ましい。
0.23<D1N/LD<0.47 (1a)
0.25<D1N/LD<0.45 (1b)
At least one of the upper limit and the lower limit of the numerical range of conditional expression (1) is more preferably set to conditional expression (1a) below, and more preferably conditional expression (1b). .
0.23<D1N/LD<0.47 (1a)
0.25<D1N/LD<0.45 (1b)

次に各実施例の光学系L0が満足することが好ましい条件について述べる。各実施例の光学系L0は以下の条件式のうち1つ以上を満足することが好ましい。
0.40<LD/f<1.20 (2)
0.40<Le/Lp<0.97 (3)
-0.80<fe/f<-0.20 (4)
1.0<fa/f<9.0 (5)
0.20<fb/f<0.90 (6)
-18<fa/fe<-2.0 (7)
-3.5<fb/fe<-0.30 (8)
1.58<ndG1N<1.89 (9)
22<νdG1N<55 (10)
-1.3<SFG1N<0.50 (11)
1.41<ndG1P<1.69 (12)
55<νdG1P<95 (13)
1.40<ndG2P<1.67 (14)
55<νdG2P<99 (15)
-0.95<fG1N/f<-0.08 (16)
0.50<fG1P/f<3.0 (17)
-9.9<fG1P/fG1N<-1.5 (18)
0.90<fG1P/fG2P<3.0 (19)
Next, the conditions that the optical system L0 of each embodiment preferably satisfies will be described. The optical system L0 of each embodiment preferably satisfies one or more of the following conditional expressions.
0.40<LD/f<1.20 (2)
0.40<Le/Lp<0.97 (3)
-0.80<fe/f<-0.20 (4)
1.0<fa/f<9.0 (5)
0.20<fb/f<0.90 (6)
-18<fa/fe<-2.0 (7)
-3.5<fb/fe<-0.30 (8)
1.58<ndG1N<1.89 (9)
22<νdG1N<55 (10)
-1.3 < SFG1N < 0.50 (11)
1.41<ndG1P<1.69 (12)
55<νdG1P<95 (13)
1.40<ndG2P<1.67 (14)
55<νdG2P<99 (15)
-0.95<fG1N/f<-0.08 (16)
0.50<fG1P/f<3.0 (17)
-9.9<fG1P/fG1N<-1.5 (18)
0.90<fG1P/fG2P<3.0 (19)

条件式(2)はレンズ全長LDと変倍光学系EXTが挿入されていないときの光学系全系の焦点距離fに関する条件を規定している。すなわちfは主光学系LMの焦点距離である。LD/fの値が条件式(2)の下限値を下回ると、レンズ全長が短くなり、軸上色収差と倍率色収差をバランス良く補正することが困難となる。LD/fの値が条件式(2)の上限値を上回ると、収差補正は容易となるが、光学系L0および光学系L0を保持する鏡筒が大型化してしまう。 Conditional expression (2) defines the conditions regarding the total lens length LD and the focal length f of the entire optical system when the variable power optical system EXT is not inserted. That is, f is the focal length of the main optical system LM. If the value of LD/f falls below the lower limit of conditional expression (2), the total length of the lens becomes short, making it difficult to correct longitudinal chromatic aberration and lateral chromatic aberration in a well-balanced manner. When the value of LD/f exceeds the upper limit of conditional expression (2), aberration correction becomes easy, but the optical system L0 and the lens barrel holding the optical system L0 become large.

条件式(3)は変倍光学系EXTの最も物体側のレンズ面から像面IPまでの距離Leと、開口絞りSPから像面IPまでの距離Lpに関する条件を規定している。Le/Lpの値が条件式(3)の下限値を下回ると、変倍光学系EXTの挿脱位置が像面IPと近くなりすぎ、変倍光学系EXTを通過する軸外光線の入射高さが高くなってしまう。その結果、変倍光学系EXTの十分な小型化が困難となる。Le/Lpの値が条件式(3)の上限値を上回ると、変倍光学系EXTの挿脱位置が開口絞りSPと近くなりすぎ、変倍光学系EXTを通過する軸上光線の入射高さが高くなってしまう。この場合も、変倍光学系EXTの十分な小型化が困難となる。 Conditional expression (3) defines conditions relating to the distance Le from the most object-side lens surface of the variable power optical system EXT to the image plane IP and the distance Lp from the aperture stop SP to the image plane IP. If the value of Le/Lp is less than the lower limit of conditional expression (3), the insertion/removal position of the variable-magnification optical system EXT becomes too close to the image plane IP, and the incident height of off-axis rays passing through the variable-magnification optical system EXT is reduced. It becomes expensive. As a result, it becomes difficult to sufficiently reduce the size of the variable magnification optical system EXT. If the value of Le/Lp exceeds the upper limit of conditional expression (3), the insertion/removal position of the variable-magnification optical system EXT becomes too close to the aperture stop SP, and the incident height of the axial ray passing through the variable-magnification optical system EXT is reduced. It becomes expensive. In this case as well, it is difficult to sufficiently reduce the size of the variable magnification optical system EXT.

条件式(4)は変倍光学系EXTの焦点距離feと変倍光学系EXTが挿入されていないときの光学系全系の焦点距離fに関する条件を規定している。fe/fの値が条件式(4)の下限値を下回るほどに変倍光学系EXTの焦点距離feが長くなると、倍率変化が小さくなってしまい好ましくない。fe/fの値が条件式(4)の上限値を上回るほどに変倍光学系EXTの焦点距離feが短くなると、変倍光学系EXT挿脱前後の球面収差等の諸収差の変動を十分に抑制することが困難となる。 Conditional expression (4) defines a condition regarding the focal length fe of the variable magnification optical system EXT and the focal length f of the entire optical system when the variable magnification optical system EXT is not inserted. If the focal length fe of the variable-magnification optical system EXT is so long that the value of fe/f falls below the lower limit of conditional expression (4), the change in magnification becomes small, which is undesirable. If the focal length fe of the variable-magnification optical system EXT is so short that the value of fe/f exceeds the upper limit of conditional expression (4), fluctuations in various aberrations such as spherical aberration before and after insertion and removal of the variable-magnification optical system EXT can be sufficiently suppressed. It becomes difficult to suppress

条件式(5)は、主光学系LMの変倍光学系EXTが挿入される位置よりも物体側に配置された部分光学系の合成焦点距離faと変倍光学系EXTが挿入されていないときの光学系全系の焦点距離fに関する条件を規定している。fa/fの値が条件式(5)の下限値を下回る場合、変倍光学系EXTに入射する光線を十分に収斂させることができる点で変倍光学系EXTの小型化に有利ではあるが、変倍光学系EXTの挿入位置に対する像面位置の敏感度が高くなりすぎる。この結果、製造が困難となるため、好ましくない。fa/fの値が条件式(5)の上限値を上回ると、変倍光学系EXTに入射する光線がアフォーカルに近づき、変倍光学系EXTを通過する軸上光線の入射高さが高くなってしまう。この結果、変倍光学系EXTの十分な小型化が困難となる。 Conditional expression (5) defines the combined focal length fa of the partial optical system arranged closer to the object than the position where the variable-magnification optical system EXT of the main optical system LM is inserted, and when the variable-magnification optical system EXT is not inserted defines the conditions for the focal length f of the entire optical system. If the value of fa/f is less than the lower limit of conditional expression (5), it is advantageous for miniaturization of the variable-magnification optical system EXT in that light rays incident on the variable-magnification optical system EXT can be sufficiently converged. , the sensitivity of the image plane position to the insertion position of the variable magnification optical system EXT becomes too high. As a result, manufacturing becomes difficult, which is not preferable. When the value of fa/f exceeds the upper limit of conditional expression (5), the light rays incident on the variable-magnification optical system EXT become afocal, and the incident height of the axial light rays passing through the variable-magnification optical system EXT increases. turn into. As a result, it becomes difficult to sufficiently reduce the size of the variable magnification optical system EXT.

条件式(6)は主光学系LMの変倍光学系EXTが挿入される位置よりも像側に配置された部分光学系の合成焦点距離fbと変倍光学系EXTが挿入されていないときの光学系全系の焦点距離fに関する条件を規定している。fb/fの値が条件式(6)の下限値を下回ると、変倍光学系EXTが挿入される位置よりも像側の焦点距離が短くなりすぎ、変倍光学系EXTが挿入される位置よりも像側のレンズ群で発生する像面湾曲等の諸収差の十分な補正が困難となる。fb/fの値が条件式(6)の上限値を上回ると、変倍光学系EXTが挿入される位置よりも像側の焦点距離が長くなりすぎ、変倍光学系EXTから像面IPまでの距離が長くなってしまう。この結果、光学系L0の十分な小型化が困難となる。 Conditional expression (6) defines the combined focal length fb of the partial optical system arranged on the image side of the position where the variable magnification optical system EXT of the main optical system LM is inserted and the focal length fb when the variable magnification optical system EXT is not inserted. It defines the conditions for the focal length f of the entire optical system. If the value of fb/f falls below the lower limit of conditional expression (6), the focal length on the image side becomes too short from the position where the variable-magnification optical system EXT is inserted, and the position where the variable-magnification optical system EXT is inserted becomes too short. It becomes difficult to sufficiently correct various aberrations such as curvature of field generated in the lens group on the image side. If the value of fb/f exceeds the upper limit of conditional expression (6), the focal length on the image side becomes too long from the position where the variable-magnification optical system EXT is inserted, and the distance from the variable-magnification optical system EXT to the image plane IP becomes too long. becomes longer. As a result, it becomes difficult to sufficiently reduce the size of the optical system L0.

条件式(7)は主光学系LMの変倍光学系EXTが挿入される位置よりも物体側の焦点距離faと変倍光学系EXTの焦点距離feに関する条件を規定している。fa/feの値が条件式(7)の下限値を下回ると、変倍光学系EXTに入射する光線がアフォーカルに近づき、変倍光学系EXTを通過する軸上光線の入射高さが高くなってしまう。この結果、変倍光学系EXTの十分な小型化が困難となる。fa/feの値が条件式(7)の上限値を上回ると、変倍光学系EXTに入射する光線を十分に収斂させることができる点で変倍光学系EXTの小型化に有利ではあるが、変倍光学系EXTの挿入位置に対する像面位置の敏感度が高くなりすぎる。この結果、製造が困難となるため、好ましくない。 Conditional expression (7) defines the condition regarding the focal length fa on the object side of the position where the variable magnification optical system EXT is inserted in the main optical system LM and the focal length fe of the variable magnification optical system EXT. When the value of fa/fe falls below the lower limit of conditional expression (7), the light rays incident on the variable-magnification optical system EXT become afocal, and the incident height of the axial light rays passing through the variable-magnification optical system EXT increases. turn into. As a result, it becomes difficult to sufficiently reduce the size of the variable magnification optical system EXT. When the value of fa/fe exceeds the upper limit of conditional expression (7), it is advantageous for downsizing the variable-magnification optical system EXT in that light rays incident on the variable-magnification optical system EXT can be sufficiently converged. , the sensitivity of the image plane position to the insertion position of the variable magnification optical system EXT becomes too high. As a result, manufacturing becomes difficult, which is not preferable.

条件式(8)は主光学系LMの変倍光学系EXTが挿入される位置よりも像側の焦点距離fbと変倍光学系EXTの焦点距離feに関する条件を規定している。fb/feの値が条件式(8)の下限値を下回ると、変倍光学系EXTが挿入される位置よりも像側の焦点距離が長くなり、変倍光学系EXTから像面IPまでの距離が長くなってしまう。この結果、光学系L0の十分な小型化が困難となる。fb/feの値が条件式(8)の上限値を上回ると、変倍光学系EXTが挿入される位置よりも像側の焦点距離が短くなり、変倍光学系EXTが挿入される位置よりも像側のレンズ群で発生する像面湾曲等の諸収差の十分な補正が困難となる。 Conditional expression (8) defines a condition regarding the focal length fb of the main optical system LM on the image side of the position where the variable magnification optical system EXT is inserted and the focal length fe of the variable magnification optical system EXT. When the value of fb/fe falls below the lower limit of conditional expression (8), the focal length on the image side becomes longer than the position where the variable-magnification optical system EXT is inserted, and the distance from the variable-magnification optical system EXT to the image plane IP becomes longer. distance becomes longer. As a result, it becomes difficult to sufficiently reduce the size of the optical system L0. When the value of fb/fe exceeds the upper limit of conditional expression (8), the focal length on the image side becomes shorter than the position where the variable-magnification optical system EXT is inserted. Also, it becomes difficult to sufficiently correct various aberrations such as curvature of field generated in the lens group on the image side.

条件式(9)は負レンズG1Nの屈折率ndG1Nに関する条件を規定している。一般的にレンズの材料の屈折率が高くなると、レンズ材料の比重が大きくなる。ndG1Nの値が条件式(9)の下限値を下回ると、負レンズG1Nに所望の屈折力を与えるために付与すべきレンズ面の曲率半径が小さくなりすぎ、球面収差等の諸収差が発生しやすくなる。ndG1Nの値が条件式(9)の上限値を上回ると、負レンズG1Nの比重が大きくなり、十分な軽量化が困難となる。 Conditional expression (9) defines the condition regarding the refractive index ndG1N of the negative lens G1N. In general, the higher the refractive index of the lens material, the higher the specific gravity of the lens material. If the value of ndG1N is less than the lower limit of conditional expression (9), the radius of curvature of the lens surface to be given to give the desired refractive power to the negative lens G1N becomes too small, and various aberrations such as spherical aberration occur. easier. If the value of ndG1N exceeds the upper limit of conditional expression (9), the specific gravity of the negative lens G1N increases, making it difficult to achieve sufficient weight reduction.

条件式(10)は負レンズG1Nのアッベ数νdG1Nに関する条件を規定している。ここで、ある材料のアッベ数νdはフラウンホーファー線のd線(587.6nm)、F線(486.1nm)、C線(656.3nm)における屈折率をNd、NF、NCとするとき、次式で表される。
νd=(Nd-1)/(NF-NC)
Conditional expression (10) defines the condition regarding the Abbe number νdG1N of the negative lens G1N. Here, the Abbe number νd of a certain material is given by Nd, NF, and NC as the refractive indices at the Fraunhofer d-line (587.6 nm), F-line (486.1 nm), and C-line (656.3 nm). It is represented by the following formula.
νd = (Nd-1)/(NF-NC)

νdG1Nの値が条件式(10)の下限値を下回る場合、負レンズG1Nとして分散の大きな硝材を使用することになる。この場合、波長ごとの球面収差のばらつきが大きくなり易くなってしまう。また、一般的にレンズの材料のアッベ数が大きくなると、レンズ材料の屈折率が低くなる。νdG1Nの値が条件式(10)の上限値を上回ると、色収差補正のために十分な屈折力を得ようとしたとき、負レンズG1Nの曲率半径が小さくなりすぎてしまう。この結果、コマ収差の十分な補正が難しくなってしまう。 If the value of νdG1N is less than the lower limit of conditional expression (10), a glass material with large dispersion is used as the negative lens G1N. In this case, variations in spherical aberration for each wavelength tend to increase. Further, generally, as the Abbe number of the lens material increases, the refractive index of the lens material decreases. If the value of νdG1N exceeds the upper limit of conditional expression (10), the radius of curvature of the negative lens G1N becomes too small when attempting to obtain sufficient refractive power for correcting chromatic aberration. As a result, it becomes difficult to sufficiently correct coma.

条件式(11)は最も物体側に位置する負レンズG1Nのシェープファクタ(形状因子)SFG1Nに関する条件を規定している。ここで、あるレンズのシェープファクタはそのレンズの物体側面の曲率半径をR1、像側面の曲率半径をR2としたとき、次式で定義される。非球面形状の場合は、そのベースR(基準となる2次曲面の半径)を曲率半径として用いる。
SF=(R2+R1)/(R2-R1)
Conditional expression (11) defines the condition regarding the shape factor SFG1N of the negative lens G1N positioned closest to the object side. Here, the shape factor of a certain lens is defined by the following equation, where R1 is the radius of curvature of the object side surface of the lens and R2 is the radius of curvature of the image side surface of the lens. In the case of an aspherical shape, its base R (radius of a quadratic curved surface serving as a reference) is used as the radius of curvature.
SF=(R2+R1)/(R2-R1)

SFG1Nの値が条件式(11)の下限値を下回ると、負レンズG1Nの物体側の曲率半径が大きくなり、軸上色収差の抑制とコマ収差の補正の十分な両立が困難となる。SFG1Nの値が条件式(11)の上限値を上回ると、負レンズG1Nの物体側の曲率半径が小さくなり、コマ収差の十分な補正が難しくなる。 If the value of SFG1N is less than the lower limit of conditional expression (11), the radius of curvature of the negative lens G1N on the object side becomes large, making it difficult to achieve both suppression of axial chromatic aberration and correction of coma. If the value of SFG1N exceeds the upper limit of conditional expression (11), the radius of curvature of the negative lens G1N on the object side becomes small, making it difficult to sufficiently correct coma.

条件式(12)は光学系L0の最も物体側に位置する正レンズG1Pの屈折率ndG1Pに関する条件を規定している。条件式(12)の下限値を下回ると、レンズの屈折力を得るために面の曲率半径が小さくなり、球面収差等の諸収差が発生するため、好ましくない。条件式(12)の上限値を上回ると、正レンズG1Pの比重が大きくなり、軽量化が困難となるため、好ましくない。 Conditional expression (12) defines the condition regarding the refractive index ndG1P of the positive lens G1P located closest to the object side of the optical system L0. If the lower limit of conditional expression (12) is not reached, the radius of curvature of the surface becomes small in order to obtain the refractive power of the lens, and various aberrations such as spherical aberration occur, which is not preferable. Exceeding the upper limit of conditional expression (12) is not preferable because the specific gravity of the positive lens G1P increases, making it difficult to reduce the weight.

条件式(13)は光学系L0の最も物体側に位置する正レンズG1Pのアッベ数νdG1Pに関する条件を規定している。νdG1Pの値が条件式(13)の下限値を下回ると、軸上色収差と倍率色収差の十分な抑制が困難となる。νdG1Pの値が条件式(13)の上限値を上回ると、正レンズG1Pの屈折率が低くなり、球面収差やコマ収差の十分な抑制が困難となる。 Conditional expression (13) defines the condition regarding the Abbe number νdG1P of the positive lens G1P located closest to the object side of the optical system L0. When the value of νdG1P falls below the lower limit of conditional expression (13), it becomes difficult to sufficiently suppress axial chromatic aberration and lateral chromatic aberration. If the value of νdG1P exceeds the upper limit of conditional expression (13), the refractive index of the positive lens G1P becomes low, making it difficult to sufficiently suppress spherical aberration and coma.

条件式(14)は正レンズG1Pの像側に配置された正レンズの中で最も物体側に配置された正レンズG2Pの屈折率ndG2Pに関する条件を規定している。ndG2Pの値が条件式(14)の下限値を下回ると、正レンズG2Pとして必要な屈折力を得るために付与するべき曲率半径が小さくなり、球面収差等の諸収差が発生し易くなる。ndG2Pの値が条件式(14)の上限値を上回ると、正レンズG2Pの比重が大きくなり、十分な軽量化が困難となる。 Conditional expression (14) defines the condition regarding the refractive index ndG2P of the positive lens G2P arranged closest to the object side among the positive lenses arranged on the image side of the positive lens G1P. If the value of ndG2P is below the lower limit of conditional expression (14), the radius of curvature that should be given to obtain the necessary refractive power of the positive lens G2P becomes small, and various aberrations such as spherical aberration are likely to occur. If the value of ndG2P exceeds the upper limit of conditional expression (14), the specific gravity of the positive lens G2P increases, making it difficult to achieve sufficient weight reduction.

条件式(15)は正レンズG2Pのアッベ数νdG2Pに関する条件を規定している。νdG2Pの値が条件式(15)の下限値を下回ると、軸上色収差と倍率色収差の十分な抑制が困難となる。νdG2Pの値が条件式(15)の上限値を上回ると、正レンズG2Pの屈折率が低くなりすぎ、球面収差やコマ収差の十分な抑制が困難となる。 Conditional expression (15) defines the condition regarding the Abbe number νdG2P of the positive lens G2P. When the value of νdG2P is below the lower limit of conditional expression (15), it becomes difficult to sufficiently suppress axial chromatic aberration and lateral chromatic aberration. If the value of νdG2P exceeds the upper limit of conditional expression (15), the refractive index of the positive lens G2P becomes too low, making it difficult to sufficiently suppress spherical aberration and coma.

条件式(16)は負レンズG1Nの焦点距離fG1Nと変倍光学系EXTが挿入されていないときの光学系全系の焦点距離fに関する条件を規定している。fG1N/fの値が条件式(16)の下限値を下回ると、負レンズG1Nのパワーが弱くなりすぎ、軸上色収差と倍率色収差を良好に補正することが困難となる。fG1N/fの値が条件式(16)の上限値を上回ると、負レンズG1Nのパワーが強くなりすぎ、球面収差等の諸収差を十分に抑制することが困難となる。 Conditional expression (16) defines a condition regarding the focal length fG1N of the negative lens G1N and the focal length f of the entire optical system when the variable magnification optical system EXT is not inserted. If the value of fG1N/f is less than the lower limit of conditional expression (16), the power of the negative lens G1N becomes too weak, making it difficult to satisfactorily correct axial chromatic aberration and lateral chromatic aberration. If the value of fG1N/f exceeds the upper limit of conditional expression (16), the power of the negative lens G1N becomes too strong, making it difficult to sufficiently suppress various aberrations such as spherical aberration.

条件式(17)は最も物体側に位置する正レンズG1Pの焦点距離fG1Pと変倍光学系EXTが挿入されていないときの光学系全系の焦点距離fに関する条件を規定している。fG1P/fの値が条件式(17)の下限値を下回ると、正レンズG1Pのパワーが強くなりすぎ、球面収差等の諸収差を十分に抑制することが困難となる。fG1P/fの値が条件式(17)の上限値を上回ると、正レンズG1Pのパワーが弱くなりすぎ、軸上色収差と倍率色収差を良好に補正することが困難となる。 Conditional expression (17) defines the focal length fG1P of the positive lens G1P located closest to the object side and the focal length f of the entire optical system when the variable magnification optical system EXT is not inserted. If the value of fG1P/f is less than the lower limit of conditional expression (17), the power of the positive lens G1P becomes too strong, making it difficult to sufficiently suppress various aberrations such as spherical aberration. If the value of fG1P/f exceeds the upper limit of conditional expression (17), the power of the positive lens G1P becomes too weak, making it difficult to satisfactorily correct axial chromatic aberration and lateral chromatic aberration.

条件式(18)は最も物体側に位置する正レンズG1Pの焦点距離fG1Pと負レンズG1Nの焦点距離fG1Nに関する条件を規定している。fG1P/fG1Nの値が条件式(18)の下限値を下回ると、正レンズG1Pのパワーが弱くなりすぎ、軸上色収差と倍率色収差を良好に補正することが困難となる。fG1P/fG1Nの値が条件式(18)の上限値を上回ると、正レンズG1Pのパワーが強くなりすぎ、球面収差等の諸収差を十分に抑制することが困難となる。また、正レンズG1Pのパワーが強くなると正レンズG1Pの曲率半径が小さくなる結果、正レンズG1Pの体積が大きくなってしまい、十分な軽量化が困難となる。 Conditional expression (18) defines the condition regarding the focal length fG1P of the positive lens G1P located closest to the object and the focal length fG1N of the negative lens G1N. If the value of fG1P/fG1N is less than the lower limit of conditional expression (18), the power of the positive lens G1P becomes too weak, making it difficult to satisfactorily correct longitudinal chromatic aberration and lateral chromatic aberration. If the value of fG1P/fG1N exceeds the upper limit of conditional expression (18), the power of the positive lens G1P becomes too strong, making it difficult to sufficiently suppress various aberrations such as spherical aberration. Further, as the power of the positive lens G1P increases, the radius of curvature of the positive lens G1P decreases, resulting in an increase in the volume of the positive lens G1P, which makes it difficult to achieve a sufficient weight reduction.

条件式(19)は最も物体側に位置する正レンズG1Pの焦点距離fG1Pと正レンズG1Pの像側に配置された正レンズの中で最も物体側に配置された正レンズG2Pの焦点距離fG2Pに関する条件を規定している。fG1P/fG2Pの値が条件式(19)の下限値を下回ると、正レンズG1Pのパワーが強くなりすぎ、球面収差等の諸収差を十分に抑制することが困難となる。また、正レンズG1Pのパワーが強くなると正レンズG1Pの曲率半径が小さくなる結果、正レンズG1Pの体積が大きくなってしまい、十分な軽量化が困難となる。fG1P/fG2Pの値が条件式(19)の上限値を上回ると、正レンズG1Pのパワーが弱くなりすぎ、軸上色収差と倍率色収差を良好に補正することが困難となる。 Conditional expression (19) relates to the focal length fG1P of the positive lens G1P positioned closest to the object side and the focal length fG2P of the positive lens G2P positioned closest to the object side among the positive lenses positioned on the image side of the positive lens G1P. stipulates the conditions. If the value of fG1P/fG2P is less than the lower limit of conditional expression (19), the power of the positive lens G1P becomes too strong, making it difficult to sufficiently suppress various aberrations such as spherical aberration. Further, as the power of the positive lens G1P increases, the radius of curvature of the positive lens G1P decreases, resulting in an increase in the volume of the positive lens G1P, which makes it difficult to achieve a sufficient weight reduction. If the value of fG1P/fG2P exceeds the upper limit of conditional expression (19), the power of the positive lens G1P becomes too weak, making it difficult to satisfactorily correct longitudinal chromatic aberration and lateral chromatic aberration.

なお、より好ましくは条件式(2)~(19)の上限値または下限値の少なくとも一方を以下の条件式(2a)から(19a)に規定される値とすると良い。
0.50<LD/f<1.15 (2a)
0.45<Le/Lp<0.95 (3a)
-0.75<fe/f<-0.25 (4a)
1.1<fa/f<8.0 (5a)
0.22<fb/f<0.85 (6a)
-16<fa/fe<-2.2 (7a)
-3.3<fb/fe<-0.35 (8a)
1.59<ndG1N<1.87 (9a)
23<νdG1N<53 (10a)
-1.2<SFG1N<0.40 (11a)
1.42<ndG1P<1.67 (12a)
58<νdG1P<85 (13a)
1.41<ndG2P<1.65 (14a)
58<νdG2P<97 (15a)
-0.95<fG1N/f<-0.08 (16a)
0.55<fG1P/f<2.8 (17a)
-9.5<fG1P/fG1N<-1.7 (18a)
0.95<fG1P/fG2P<2.8 (19a)
More preferably, at least one of the upper limit value and the lower limit value of conditional expressions (2) to (19) should be set to the values defined by the following conditional expressions (2a) to (19a).
0.50<LD/f<1.15 (2a)
0.45<Le/Lp<0.95 (3a)
-0.75<fe/f<-0.25 (4a)
1.1<fa/f<8.0 (5a)
0.22<fb/f<0.85 (6a)
-16<fa/fe<-2.2 (7a)
-3.3<fb/fe<-0.35 (8a)
1.59<ndG1N<1.87 (9a)
23<νdG1N<53 (10a)
-1.2 < SFG1N < 0.40 (11a)
1.42<ndG1P<1.67 (12a)
58<νdG1P<85 (13a)
1.41<ndG2P<1.65 (14a)
58<νdG2P<97 (15a)
-0.95<fG1N/f<-0.08 (16a)
0.55<fG1P/f<2.8 (17a)
-9.5<fG1P/fG1N<-1.7 (18a)
0.95<fG1P/fG2P<2.8 (19a)

また、さらに好ましくは条件式(2)~(19)の上限値または下限値の少なくとも一方を以下の条件式(2b)から(19b)に規定される値とすると良い。
0.60<LD/f<1.10 (2b)
0.50<Le/Lp<0.90 (3b)
-0.70<fe/f<-0.30 (4b)
1.2<fa/f<7.0 (5b)
0.25<fb/f<0.80 (6b)
-14<fa/fe<-2.5 (7b)
-3.0<fb/fe<-0.40 (8b)
1.60<ndG1N<1.86 (9b)
24<νdG1N<50 (10b)
-1.1<SFG1N<0.30 (11b)
1.43<ndG1P<1.65 (12b)
60<νdG1P<82 (13b)
1.42<ndG2P<1.63 (14b)
60<νdG2P<96 (15b)
-0.90<fG1N/f<-0.10 (16b)
0.60<fG1P/f<2.5 (17b)
-9.0<fG1P/fG1N<-2.0 (18b)
1.0<fG1P/fG2P<2.5 (19b)
More preferably, at least one of the upper limit value and the lower limit value of conditional expressions (2) to (19) should be a value defined by the following conditional expressions (2b) to (19b).
0.60<LD/f<1.10 (2b)
0.50<Le/Lp<0.90 (3b)
-0.70<fe/f<-0.30 (4b)
1.2<fa/f<7.0 (5b)
0.25<fb/f<0.80 (6b)
-14<fa/fe<-2.5 (7b)
-3.0<fb/fe<-0.40 (8b)
1.60<ndG1N<1.86 (9b)
24<νdG1N<50 (10b)
-1.1 < SFG1N < 0.30 (11b)
1.43<ndG1P<1.65 (12b)
60<νdG1P<82 (13b)
1.42<ndG2P<1.63 (14b)
60<νdG2P<96 (15b)
-0.90<fG1N/f<-0.10 (16b)
0.60<fG1P/f<2.5 (17b)
-9.0<fG1P/fG1N<-2.0 (18b)
1.0<fG1P/fG2P<2.5 (19b)

次に、各実施例の光学系L0において満足することが好ましい構成について述べる。 Next, the configuration that is preferably satisfied in the optical system L0 of each embodiment will be described.

また、変倍光学系EXTは2つ以上の負レンズと1つ以上の正レンズを含む構成とすることが好ましい。これにより、ペッツバール和が過剰に負の値となることを抑制でき、像面湾曲を良好に補正することが可能となる。 Moreover, it is preferable that the variable power optical system EXT includes two or more negative lenses and one or more positive lenses. As a result, the Petzval sum can be prevented from becoming an excessively negative value, and field curvature can be satisfactorily corrected.

また、各実施例の光学系L0において、主光学系LMの一部のレンズを光軸に対して垂直方向に駆動させる像振れ補正レンズ群としても良い。この際、開口絞りSPより像側のレンズは有効径が小さくなりやすいため、開口絞りSPより像側の位置に像振れ補正レンズ群を配置すると良い。これにより、像振れ補正レンズ群を保持する保持機構および駆動する駆動機構を簡略化でき、光学系L0を含むレンズ装置を軽量化できる。 Further, in the optical system L0 of each embodiment, a part of the lenses of the main optical system LM may be configured as an image blur correction lens group that is driven in the direction perpendicular to the optical axis. In this case, since the effective diameter of the lens on the image side of the aperture stop SP tends to be small, it is preferable to arrange the image blur correction lens group on the image side of the aperture stop SP. This makes it possible to simplify the holding mechanism for holding the image blur correction lens group and the drive mechanism for driving it, and to reduce the weight of the lens device including the optical system L0.

好ましくは、変倍光学系EXTは主光学系LMに含まれるレンズとレンズの間の位置に挿抜される。すなわち、変倍光学系EXTは主光学系LMの最も像側でない位置に挿抜される。これにより、変倍光学系EXTをより小径化することができる。 Preferably, the variable power optical system EXT is inserted/removed between lenses included in the main optical system LM. That is, the variable-magnification optical system EXT is inserted into and removed from the main optical system LM at a position that is not closest to the image side. Thereby, the diameter of the variable magnification optical system EXT can be further reduced.

また、変倍光学系EXTの挿抜に伴い、フォーカシングに際して移動するレンズ群を移動させても良い。変倍光学系EXTの挿抜に伴い合焦位置が変化し得るが、フォーカスレンズ群を適切に移動させることで変倍光学系EXTの挿抜に伴う合焦位置の変化を低減させることが可能となる。 Also, the lens group that moves during focusing may be moved along with the insertion and removal of the variable-magnification optical system EXT. Although the focus position may change as the variable power optical system EXT is inserted or removed, it is possible to reduce the change in the focus position due to the insertion or removal of the variable power optical system EXT by appropriately moving the focus lens group. .

好ましくは、変倍光学系EXTは最も物体側に正の単レンズを有する。また、変倍光学系EXTは少なくとも1つの接合レンズを有する。少なくとも1つの接合レンズは、正レンズと負レンズを接合した接合レンズ、負レンズと正レンズと負レンズを接合した接合レンズ、正レンズと負レンズを接合した接合レンズの少なくとも1つであり得る。変倍光学系EXTはこれらの接合レンズを全て有していても良い。変倍光学系EXTに少なくとも1つの接合レンズを設けることで、色収差を低減しつつ製造容易性を向上させることができる。 Preferably, variable magnification optical system EXT has a positive single lens closest to the object side. Also, the variable magnification optical system EXT has at least one cemented lens. The at least one cemented lens can be at least one of a cemented positive lens and a negative lens cemented, a negative lens cemented with a positive lens and a negative lens cemented, and a positive lens cemented with a negative lens. The variable magnification optical system EXT may have all of these cemented lenses. By providing at least one cemented lens in the variable power optical system EXT, it is possible to reduce chromatic aberration and improve manufacturability.

実施例1の光学系L0における変倍光学系EXTは、物体側から像側へ順に配置された、正レンズ、正レンズと負レンズを接合した接合レンズ、負レンズと正レンズと負レンズを接合した接合レンズ、正レンズと負レンズを接合した接合レンズから成る。 The variable-magnification optical system EXT in the optical system L0 of Example 1 includes a positive lens, a cemented lens cemented with a positive lens and a negative lens, and a cemented negative lens cemented with a positive lens and a negative lens, which are arranged in order from the object side to the image side. It consists of a cemented lens that is cemented with a positive lens and a negative lens cemented together.

実施例2の光学系L0における変倍光学系EXTは、物体側から像側へ順に配置された、正レンズ、正レンズと負レンズを接合した接合レンズ、負レンズと正レンズと負レンズを接合した接合レンズ、正レンズと負レンズを接合した接合レンズから成る。 The variable-magnification optical system EXT in the optical system L0 of Example 2 includes a positive lens, a cemented lens that cements a positive lens and a negative lens, and cements a negative lens, a positive lens, and a negative lens, which are arranged in order from the object side to the image side. It consists of a cemented lens that is cemented with a positive lens and a negative lens cemented together.

実施例3の光学系L0における変倍光学系EXTは、物体側から像側へ順に配置された、正レンズ、正レンズと負レンズを接合した接合レンズ、負レンズと正レンズと負レンズを接合した接合レンズ、正レンズと負レンズを接合した接合レンズから成る。 The variable-magnification optical system EXT in the optical system L0 of Example 3 includes a positive lens, a cemented lens in which a positive lens and a negative lens are cemented, and a negative lens, a positive lens, and a negative lens, which are arranged in order from the object side to the image side. It consists of a cemented lens that is cemented with a positive lens and a negative lens cemented together.

次に、実施例1から3にそれぞれ対応する数値実施例1から3を示す。 Numerical Examples 1 to 3 corresponding to Examples 1 to 3, respectively, are shown below.

各数値実施例において、光学系の各面には物体側からの面番号i(iは自然数)を付している。rは各面の曲率半径(mm)、dは面番号iの面と面番号(i+1)の面との間の光軸上のレンズ厚又は距離(空気間隔)(mm)、ndは各面を有する光学部材の材料のd線に対する屈折率である。νdは各面を有する光学部材の材料のd線に対するアッベ数である。 In each numerical example, each surface of the optical system is given a surface number i (i is a natural number) from the object side. r is the radius of curvature of each surface (mm), d is the lens thickness or distance (air gap) (mm) on the optical axis between the surface with surface number i and the surface with surface number (i+1), and nd is each surface is the refractive index for the d-line of the material of the optical member having νd is the Abbe number for the d-line of the material of the optical member having each surface.

焦点距離(mm)、Fナンバーおよび半画角(°)は光学系が無限遠物体に合焦した状態での値である。レンズ全長は、光学系の最前面(最も物体側のレンズ面)から最終面(最も像側のレンズ面)までの光軸上の距離にバックフォーカスSKを加えた長さである。バックフォーカスSKは、光学系の最終面から像面IPまでの距離である。 Focal length (mm), F-number and half angle of view (°) are values when the optical system is focused on an object at infinity. The total lens length is the length obtained by adding the back focus SK to the distance on the optical axis from the frontmost lens surface (the lens surface closest to the object side) to the final surface (the lens surface closest to the image side) of the optical system. The back focus SK is the distance from the final surface of the optical system to the image plane IP.

数値例1~3における前述した条件式(1)~(19)に対応する値を表1にまとめて示す。 Table 1 summarizes the values corresponding to the above-described conditional expressions (1) to (19) in Numerical Examples 1 to 3.

各数値実施例において、光学系の各面には物体側からの面番号i(iは自然数)を付している。rは各面の曲率半径(mm)、dは面番号iの面と面番号(i+1)の面との間の光軸上のレンズ厚又は距離(空気間隔)(mm)、ndは各面を有する光学部材の材料のd線に対する屈折率である。νdは各面を有する光学部材の材料のd線に対するアッベ数である。 In each numerical example, each surface of the optical system is given a surface number i (i is a natural number) from the object side. r is the radius of curvature of each surface (mm), d is the lens thickness or distance (air gap) (mm) on the optical axis between the surface with surface number i and the surface with surface number (i+1), and nd is each surface is the refractive index for the d-line of the material of the optical member having νd is the Abbe number for the d-line of the material of the optical member having each surface.

焦点距離(mm)、Fナンバーおよび半画角(°)は光学系が無限遠物体に合焦した状態での値である。レンズ全長は、光学系の最前面(最も物体側のレンズ面)から最終面(最も像側のレンズ面)までの光軸上の距離にバックフォーカスSKを加えた長さである。バックフォーカスSKは、光学系の最終面から像面IPまでの空気換算距離である。 Focal length (mm), F-number and half angle of view (°) are values when the optical system is focused on an object at infinity. The total lens length is the length obtained by adding the back focus SK to the distance on the optical axis from the frontmost lens surface (the lens surface closest to the object side) to the final surface (the lens surface closest to the image side) of the optical system. The back focus SK is the air conversion distance from the final surface of the optical system to the image plane IP.

[数値実施例1]
<変倍光学系未挿入状態の光学系(主光学系)>
単位 mm

面データ
面番号 r d nd νd
1 443.570 8.20 1.48749 70.2
2 -1502.142 0.10
3 227.620 12.00 1.43387 95.1
4 1755.996 97.18
5 173.310 11.00 1.43387 95.1
6 -251.525 0.11
7 -260.995 2.90 1.67300 38.3
8 261.833 59.16
9 79.404 6.60 1.92286 20.9
10 737.207 0.14
11 585.117 1.70 2.00069 25.5
12 52.050 8.90 1.49700 81.5
13 325.993 (可変)
14 73.892 6.20 1.49700 81.5
15 -10892.169 (可変)
16 742.447 1.80 1.75500 52.3
17 63.613 (可変)
18(絞り) ∞ 7.09
19 250.640 1.80 1.51742 52.4
20 51.522 3.81
21 -330.459 4.07 1.75211 25.0
22 -59.091 1.80 1.49700 81.5
23 55.745 4.60
24 87.576 3.80 1.49700 81.5
25 -198.126 40.26
26 528.989 5.50 1.51742 52.4
27 -57.284 5.00
28 ∞ 1.50 1.51633 64.1
29 ∞ 5.42
30 -351.519 1.50 1.49700 81.5
31 43.426 8.80 1.72916 54.7
32 -141.620 5.35
33 -97.918 1.50 1.96300 24.1
34 212.566 53.83
像面 ∞

各種データ

焦点距離 389.00
Fナンバー 2.91
半画角(°) 3.18
像高 21.64
レンズ全長 406.00
BF 53.83

d13 12.82
d15 2.00
d17 19.58
[Numerical Example 1]
<Optical system (main optical system) with no variable power optical system inserted>
unit mm

Surface data surface number rd nd νd
1 443.570 8.20 1.48749 70.2
2 -1502.142 0.10
3 227.620 12.00 1.43387 95.1
4 1755.996 97.18
5 173.310 11.00 1.43387 95.1
6 -251.525 0.11
7 -260.995 2.90 1.67300 38.3
8 261.833 59.16
9 79.404 6.60 1.92286 20.9
10 737.207 0.14
11 585.117 1.70 2.00069 25.5
12 52.050 8.90 1.49700 81.5
13 325.993 (variable)
14 73.892 6.20 1.49700 81.5
15 -10892.169 (variable)
16 742.447 1.80 1.75500 52.3
17 63.613 (variable)
18 (Aperture) ∞ 7.09
19 250.640 1.80 1.51742 52.4
20 51.522 3.81
21 -330.459 4.07 1.75211 25.0
22 -59.091 1.80 1.49700 81.5
23 55.745 4.60
24 87.576 3.80 1.49700 81.5
25 -198.126 40.26
26 528.989 5.50 1.51742 52.4
27 -57.284 5.00
28 ∞ 1.50 1.51633 64.1
29 ∞ 5.42
30 -351.519 1.50 1.49700 81.5
31 43.426 8.80 1.72916 54.7
32 -141.620 5.35
33 -97.918 1.50 1.96300 24.1
34 212.566 53.83
Image plane ∞

Various data

Focal length 389.00
F number 2.91
Half angle of view (°) 3.18
Image height 21.64
Lens length 406.00
BF 53.83

d13 12.82
d15 2.00
d17 19.58

<変倍光学系挿入状態での光学系>
単位 mm

面データ
面番号 r d nd νd
1 443.570 8.20 1.48749 70.2
2 -1502.142 0.10
3 227.620 12.00 1.43387 95.1
4 1755.996 97.18
5 173.310 11.00 1.43387 95.1
6 -251.525 0.11
7 -260.995 2.90 1.67300 38.3
8 261.833 59.16
9 79.404 6.60 1.92286 20.9
10 737.207 0.14
11 585.117 1.70 2.00069 25.5
12 52.050 8.90 1.49700 81.5
13 325.993 (可変)
14 73.892 6.20 1.49700 81.5
15 -10892.169 (可変)
16 742.447 1.80 1.75500 52.3
17 63.613 (可変)
18(絞り) ∞ 7.09
19 250.640 1.80 1.51742 52.4
20 51.522 3.81
21 -330.459 4.07 1.75211 25.0
22 -59.091 1.80 1.49700 81.5
23 55.745 4.60
24 87.576 3.80 1.49700 81.5
25 -198.126 2.00
26 30.159 5.00 1.49700 81.5
27 -605.295 0.30
28 120.765 1.82 1.59282 68.6
29 206.372 1.15 1.83400 37.2
30 34.364 9.75
31 -446.680 0.95 1.83481 42.7
32 23.747 8.90 1.71736 29.5
33 -28.370 0.95 1.75500 52.3
34 82.953 1.03
35 63.608 5.36 1.85451 25.2
36 -40.564 1.05 1.95906 17.5
37 1592.914 2.00
38 528.989 5.50 1.51742 52.4
39 -57.284 5.00
40 ∞ 1.50 1.51633 64.1
41 ∞ 5.42
42 -351.519 1.50 1.49700 81.5
43 43.426 8.80 1.72916 54.7
44 -141.620 5.35
45 -97.918 1.50 1.96300 24.1
46 212.566 53.83
像面 ∞

各種データ

焦点距離 544.00
Fナンバー 4.19
画角(°) 2.28
像高 21.64
レンズ全長 406.01
BF 53.83

d13 11.54
d15 8.40
d17 14.46

レンズ群データ
群 始面 焦点距離
1 1 290.40
2 14 147.70
3 16 -92.26
4 18 -169.51
5 26 -199.87
6 38 135.82
<Optical system with variable magnification optical system inserted>
unit mm

Surface data surface number rd nd νd
1 443.570 8.20 1.48749 70.2
2 -1502.142 0.10
3 227.620 12.00 1.43387 95.1
4 1755.996 97.18
5 173.310 11.00 1.43387 95.1
6 -251.525 0.11
7 -260.995 2.90 1.67300 38.3
8 261.833 59.16
9 79.404 6.60 1.92286 20.9
10 737.207 0.14
11 585.117 1.70 2.00069 25.5
12 52.050 8.90 1.49700 81.5
13 325.993 (variable)
14 73.892 6.20 1.49700 81.5
15 -10892.169 (variable)
16 742.447 1.80 1.75500 52.3
17 63.613 (variable)
18 (Aperture) ∞ 7.09
19 250.640 1.80 1.51742 52.4
20 51.522 3.81
21 -330.459 4.07 1.75211 25.0
22 -59.091 1.80 1.49700 81.5
23 55.745 4.60
24 87.576 3.80 1.49700 81.5
25 -198.126 2.00
26 30.159 5.00 1.49700 81.5
27 -605.295 0.30
28 120.765 1.82 1.59282 68.6
29 206.372 1.15 1.83400 37.2
30 34.364 9.75
31 -446.680 0.95 1.83481 42.7
32 23.747 8.90 1.71736 29.5
33 -28.370 0.95 1.75500 52.3
34 82.953 1.03
35 63.608 5.36 1.85451 25.2
36 -40.564 1.05 1.95906 17.5
37 1592.914 2.00
38 528.989 5.50 1.51742 52.4
39 -57.284 5.00
40 ∞ 1.50 1.51633 64.1
41 ∞ 5.42
42 -351.519 1.50 1.49700 81.5
43 43.426 8.80 1.72916 54.7
44 -141.620 5.35
45 -97.918 1.50 1.96300 24.1
46 212.566 53.83
Image plane ∞

Various data

Focal length 544.00
F number 4.19
Angle of view (°) 2.28
Image height 21.64
Lens length 406.01
BF 53.83

d13 11.54
d15 8.40
d17 14.46

Lens group data group Starting surface Focal length
1 1 290.40
2 14 147.70
3 16 -92.26
4 18 -169.51
5 26 -199.87
6 38 135.82

[数値実施例2]
<変倍光学系未挿入状態での光学系(主光学系)>
単位 mm

面データ
面番号 r d nd νd
1 471.114 6.00 1.48749 70.2
2 1760.840 0.10
3 322.972 8.00 1.49700 81.5
4 1400.852 0.10
5 245.037 11.00 1.43387 95.1
6 989.532 89.45
7 174.097 11.00 1.43387 95.1
8 -331.734 0.11
9 -356.387 2.90 1.61340 44.3
10 134.086 71.24
11 130.092 5.40 1.86966 20.0
12 317.855 0.14
13 214.727 1.70 2.00069 25.5
14 79.631 8.90 1.49700 81.5
15 631.283 (可変)
16 95.682 6.20 1.49700 81.5
17 -5591.123 (可変)
18 -1600.590 1.80 1.72916 54.7
19 96.670 (可変)
20(絞り) ∞ 7.09
21 111.583 1.80 1.75500 52.3
22 46.851 3.81
23 -213.812 4.06 1.77047 29.7
24 -49.407 1.80 1.49700 81.5
25 75.645 4.60
26 55.135 3.80 1.80810 22.8
27 108.917 40.26
28 58.249 5.50 1.51633 64.1
29 -95.700 5.00
30 ∞ 1.50 1.51633 64.1
31 ∞ 2.65
32 -2507.527 1.50 1.59522 67.7
33 29.558 8.80 1.51633 64.1
34 -57.500 1.51
35 -45.670 1.50 1.77830 23.9
36 996.155 81.91
像面 ∞

各種データ

焦点距離 582.00
Fナンバー 4.12
画角(°) 2.13
像高 21.64
レンズ全長 486.10
BF 81.91

d15 19.60
d17 2.00
d19 63.39
[Numerical Example 2]
<Optical system (main optical system) in a state where the variable magnification optical system is not inserted>
unit mm

Surface data surface number rd nd νd
1 471.114 6.00 1.48749 70.2
2 1760.840 0.10
3 322.972 8.00 1.49700 81.5
4 1400.852 0.10
5 245.037 11.00 1.43387 95.1
6 989.532 89.45
7 174.097 11.00 1.43387 95.1
8 -331.734 0.11
9 -356.387 2.90 1.61340 44.3
10 134.086 71.24
11 130.092 5.40 1.86966 20.0
12 317.855 0.14
13 214.727 1.70 2.00069 25.5
14 79.631 8.90 1.49700 81.5
15 631.283 (variable)
16 95.682 6.20 1.49700 81.5
17 -5591.123 (variable)
18 -1600.590 1.80 1.72916 54.7
19 96.670 (variable)
20 (Aperture) ∞ 7.09
21 111.583 1.80 1.75500 52.3
22 46.851 3.81
23 -213.812 4.06 1.77047 29.7
24 -49.407 1.80 1.49700 81.5
25 75.645 4.60
26 55.135 3.80 1.80810 22.8
27 108.917 40.26
28 58.249 5.50 1.51633 64.1
29 -95.700 5.00
30 ∞ 1.50 1.51633 64.1
31 ∞ 2.65
32 -2507.527 1.50 1.59522 67.7
33 29.558 8.80 1.51633 64.1
34 -57.500 1.51
35 -45.670 1.50 1.77830 23.9
36 996.155 81.91
Image plane ∞

Various data

Focal length 582.00
F number 4.12
Angle of view (°) 2.13
Image height 21.64
Lens length 486.10
BF 81.91

d15 19.60
d17 2.00
d19 63.39

<変倍光学系挿入状態での光学系>
単位 mm

面データ
面番号 r d nd νd
1 471.114 6.00 1.48749 70.2
2 1760.840 0.10
3 322.972 8.00 1.49700 81.5
4 1400.852 0.10
5 245.037 11.00 1.43387 95.1
6 989.532 89.45
7 174.097 11.00 1.43387 95.1
8 -331.734 0.11
9 -356.387 2.90 1.61340 44.3
10 134.086 71.24
11 130.092 5.40 1.86966 20.0
12 317.855 0.14
13 214.727 1.70 2.00069 25.5
14 79.631 8.90 1.49700 81.5
15 631.283 (可変)
16 95.682 6.20 1.49700 81.5
17 -5591.123 (可変)
18 -1600.590 1.80 1.72916 54.7
19 96.670 (可変)
20(絞り) ∞ 7.09
21 111.583 1.80 1.75500 52.3
22 46.851 3.81
23 -213.812 4.06 1.77047 29.7
24 -49.407 1.80 1.49700 81.5
25 75.645 4.60
26 55.135 3.80 1.80810 22.8
27 108.917 2.00
28 28.202 8.05 1.49700 81.5
29 -218.478 0.30
30 224.895 4.82 1.63930 44.9
31 -44.418 1.15 1.72916 54.7
32 28.436 7.01
33 -558.701 0.95 1.83481 42.7
34 23.736 6.71 1.63980 34.5
35 -37.643 0.95 1.59522 67.7
36 108.150 1.24
37 53.148 4.03 1.72825 28.5
38 -47.560 1.05 1.95906 17.5
39 -731.126 2.00
40 58.249 5.50 1.51633 64.1
41 -95.700 5.00
42 ∞ 1.50 1.51633 64.1
43 ∞ 2.65
44 -2507.527 1.50 1.59522 67.7
45 29.558 8.80 1.51633 64.1
46 -57.500 1.51
47 -45.670 1.50 1.77830 23.9
48 996.155 81.91
像面 ∞

各種データ

焦点距離 814.80
Fナンバー 5.88
画角(°) 1.52
像高 21.64
レンズ全長 486.10
BF 81.91

d15 17.65
d17 6.73
d19 60.60
<Optical system with variable magnification optical system inserted>
unit mm

Surface data surface number rd nd νd
1 471.114 6.00 1.48749 70.2
2 1760.840 0.10
3 322.972 8.00 1.49700 81.5
4 1400.852 0.10
5 245.037 11.00 1.43387 95.1
6 989.532 89.45
7 174.097 11.00 1.43387 95.1
8 -331.734 0.11
9 -356.387 2.90 1.61340 44.3
10 134.086 71.24
11 130.092 5.40 1.86966 20.0
12 317.855 0.14
13 214.727 1.70 2.00069 25.5
14 79.631 8.90 1.49700 81.5
15 631.283 (variable)
16 95.682 6.20 1.49700 81.5
17 -5591.123 (variable)
18 -1600.590 1.80 1.72916 54.7
19 96.670 (variable)
20 (Aperture) ∞ 7.09
21 111.583 1.80 1.75500 52.3
22 46.851 3.81
23 -213.812 4.06 1.77047 29.7
24 -49.407 1.80 1.49700 81.5
25 75.645 4.60
26 55.135 3.80 1.80810 22.8
27 108.917 2.00
28 28.202 8.05 1.49700 81.5
29 -218.478 0.30
30 224.895 4.82 1.63930 44.9
31 -44.418 1.15 1.72916 54.7
32 28.436 7.01
33 -558.701 0.95 1.83481 42.7
34 23.736 6.71 1.63980 34.5
35 -37.643 0.95 1.59522 67.7
36 108.150 1.24
37 53.148 4.03 1.72825 28.5
38 -47.560 1.05 1.95906 17.5
39 -731.126 2.00
40 58.249 5.50 1.51633 64.1
41 -95.700 5.00
42 ∞ 1.50 1.51633 64.1
43 ∞ 2.65
44 -2507.527 1.50 1.59522 67.7
45 29.558 8.80 1.51633 64.1
46 -57.500 1.51
47 -45.670 1.50 1.77830 23.9
48 996.155 81.91
Image plane ∞

Various data

Focal length 814.80
F number 5.88
Angle of view (°) 1.52
Image height 21.64
Lens length 486.10
BF 81.91

d15 17.65
d17 6.73
d19 60.60

[数値実施例3]
<変倍光学系未挿入状態での光学系(主光学系)>
単位 mm

面データ
面番号 r d nd νd
1 141.008 11.19 1.59349 67.0
2 1282.754 97.18
3 77.593 8.14 1.49700 81.5
4 -987.708 0.67
5 -476.470 1.80 1.85451 25.2
6 70.845 0.15
7 55.636 8.74 1.43387 95.1
8 -4252.064 2.00
9 59.636 5.45 1.92286 20.9
10 209.603 1.04
11 461.866 1.70 1.75500 52.3
12 33.933 8.90 1.43875 94.7
13 323.847 3.31
14(絞り) ∞ (可変)
15 -985.903 1.30 1.59349 67.0
16 58.442 (可変)
17 1420.368 1.20 1.95906 17.5
18 93.617 3.81
19 -90.465 3.00 1.51633 64.1
20 -56.920 1.20 1.51742 52.4
21 1426.553 4.60
22 233.160 3.80 1.77830 23.9
23 -79.655 49.56
24 136.777 5.50 1.53172 48.8
25 -79.822 2.00
26 ∞ 1.50 1.51633 64.1
27 ∞ 4.85
28 -113.057 1.50 1.49700 81.5
29 43.851 6.20 1.75500 52.3
30 -1059.672 3.13
31 -137.877 1.50 1.77830 23.9
32 231.852 49.68
像面 ∞

各種データ

焦点距離 300.00
Fナンバー 2.91
画角(°) 4.12
像高 21.64
レンズ全長 320.00
BF 49.68

d14 2.00
d16 23.40
d23 49.56
[Numerical Example 3]
<Optical system (main optical system) in a state where the variable magnification optical system is not inserted>
unit mm

Surface data surface number rd nd νd
1 141.008 11.19 1.59349 67.0
2 1282.754 97.18
3 77.593 8.14 1.49700 81.5
4 -987.708 0.67
5 -476.470 1.80 1.85451 25.2
6 70.845 0.15
7 55.636 8.74 1.43387 95.1
8-4252.064 2.00
9 59.636 5.45 1.92286 20.9
10 209.603 1.04
11 461.866 1.70 1.75500 52.3
12 33.933 8.90 1.43875 94.7
13 323.847 3.31
14 (aperture) ∞ (variable)
15 -985.903 1.30 1.59349 67.0
16 58.442 (variable)
17 1420.368 1.20 1.95906 17.5
18 93.617 3.81
19 -90.465 3.00 1.51633 64.1
20 -56.920 1.20 1.51742 52.4
21 1426.553 4.60
22 233.160 3.80 1.77830 23.9
23 -79.655 49.56
24 136.777 5.50 1.53172 48.8
25 -79.822 2.00
26 ∞ 1.50 1.51633 64.1
27 ∞ 4.85
28 -113.057 1.50 1.49700 81.5
29 43.851 6.20 1.75500 52.3
30 -1059.672 3.13
31 -137.877 1.50 1.77830 23.9
32 231.852 49.68
Image plane ∞

Various data

Focal length 300.00
F number 2.91
Angle of view (°) 4.12
Image height 21.64
Lens length 320.00
BF 49.68

d14 2.00
d16 23.40
d23 49.56

<倍率変換光学系挿入状態での光学系>
単位 mm

面データ
面番号 r d nd νd
1 141.008 11.19 1.59349 67.0
2 1282.754 97.18
3 77.593 8.14 1.49700 81.5
4 -987.708 0.67
5 -476.470 1.80 1.85451 25.2
6 70.845 0.15
7 55.636 8.74 1.43387 95.1
8 -4252.064 2.00
9 59.636 5.45 1.92286 20.9
10 209.603 1.04
11 461.866 1.70 1.75500 52.3
12 33.933 8.90 1.43875 94.7
13 323.847 3.31
14(絞り) ∞ (可変)
15 -985.903 1.30 1.59349 67.0
16 58.442 (可変)
17 1420.368 1.20 1.95906 17.5
18 93.617 3.81
19 -90.465 3.00 1.51633 64.1
20 -56.920 1.20 1.51742 52.4
21 1426.553 4.60
22 233.160 3.80 1.77830 23.9
23 -79.655 2.00
24 35.477 5.01 1.49700 81.5
25 1767.349 0.30
26 100.332 2.14 1.51742 52.4
27 228.702 1.15 1.75500 52.3
28 43.892 22.29
29 -331.482 0.95 1.91082 35.3
30 25.138 7.45 1.66565 35.6
31 -24.346 0.95 1.72916 54.7
32 50.780 0.14
33 46.762 4.13 1.85478 24.8
34 -52.455 1.05 1.95906 17.5
35 -524.464 2.00
36 136.777 5.50 1.53172 48.8
37 -79.822 2.00
38 ∞ 1.50 1.51633 64.1
39 ∞ 4.85
40 -113.057 1.50 1.49700 81.5
41 43.851 6.20 1.75500 52.3
42 -1059.672 3.13
43 -137.877 1.50 1.77830 23.9
44 231.852 49.68
像面 ∞

各種データ

焦点距離 420.00
Fナンバー 4.12
画角(°) 2.95
像高 21.64
レンズ全長 320.00
BF 49.68

d14 6.00
d16 19.41
<Optical system with magnification conversion optical system inserted>
unit mm

Surface data surface number rd nd νd
1 141.008 11.19 1.59349 67.0
2 1282.754 97.18
3 77.593 8.14 1.49700 81.5
4 -987.708 0.67
5 -476.470 1.80 1.85451 25.2
6 70.845 0.15
7 55.636 8.74 1.43387 95.1
8-4252.064 2.00
9 59.636 5.45 1.92286 20.9
10 209.603 1.04
11 461.866 1.70 1.75500 52.3
12 33.933 8.90 1.43875 94.7
13 323.847 3.31
14 (aperture) ∞ (variable)
15 -985.903 1.30 1.59349 67.0
16 58.442 (variable)
17 1420.368 1.20 1.95906 17.5
18 93.617 3.81
19 -90.465 3.00 1.51633 64.1
20 -56.920 1.20 1.51742 52.4
21 1426.553 4.60
22 233.160 3.80 1.77830 23.9
23 -79.655 2.00
24 35.477 5.01 1.49700 81.5
25 1767.349 0.30
26 100.332 2.14 1.51742 52.4
27 228.702 1.15 1.75500 52.3
28 43.892 22.29
29 -331.482 0.95 1.91082 35.3
30 25.138 7.45 1.66565 35.6
31 -24.346 0.95 1.72916 54.7
32 50.780 0.14
33 46.762 4.13 1.85478 24.8
34 -52.455 1.05 1.95906 17.5
35 -524.464 2.00
36 136.777 5.50 1.53172 48.8
37 -79.822 2.00
38 ∞ 1.50 1.51633 64.1
39 ∞ 4.85
40 -113.057 1.50 1.49700 81.5
41 43.851 6.20 1.75500 52.3
42 -1059.672 3.13
43 -137.877 1.50 1.77830 23.9
44 231.852 49.68
Image plane ∞

Various data

Focal length 420.00
F number 4.12
Angle of view (°) 2.95
Image height 21.64
Lens length 320.00
BF 49.68

d14 6.00
d16 19.41

以下の表に各実施例における種々の値を示す。 The table below shows the various values for each example.

Figure 0007147099000002
Figure 0007147099000002

[レンズ装置]
次に本発明の光学系を用いたレンズ装置100の実施例について図13を用いて説明する。レンズ装置100は、レンズ交換式カメラシステムにおける交換レンズである。
[Lens device]
Next, an embodiment of a lens device 100 using the optical system of the present invention will be described with reference to FIG. The lens device 100 is an interchangeable lens in an interchangeable lens camera system.

レンズ装置100は、主光学系102と、変倍光学系103と、主光学系102および変倍光学系103を保持するレンズ鏡筒101と、カメラ本体と結合するためのマウント部105を有する。主光学系102と変倍光学系103は実施例1乃至3で説明した特徴を有し、少なくとも条件式(1)を満足する。 The lens device 100 has a main optical system 102, a variable magnification optical system 103, a lens barrel 101 holding the main optical system 102 and the variable magnification optical system 103, and a mount section 105 for coupling with a camera body. The main optical system 102 and the variable magnification optical system 103 have the features described in the first to third embodiments, and satisfy at least conditional expression (1).

本実施例のレンズ装置100に含まれる主光学系102および変倍光学系103は、上述した実施例1乃至3のいずれかと同様な特徴を有するため、全系の軽量化を図りつつ良好な光学性能を得ることが可能である。 The main optical system 102 and the variable-magnification optical system 103 included in the lens apparatus 100 of this embodiment have the same characteristics as those of the first to third embodiments described above. performance can be obtained.

レンズ鏡筒101は、変倍光学系103を主光学系102の光路から退避させるための退避スペースを構成する退避部104を有する。なお、レンズ鏡筒101は不図示の複数のレンズ保持部材や、フォーカスレズの移動機構や、種々の操作ボタンや、操作リング等を含み得る。退避部104は周囲の部分よりも盛り上がって構成されていても良い。この場合、レンズ装置100を小型化に構成することができる。 The lens barrel 101 has a retraction portion 104 forming a retraction space for retracting the variable-magnification optical system 103 from the optical path of the main optical system 102 . Note that the lens barrel 101 may include a plurality of lens holding members (not shown), a focus lens movement mechanism, various operation buttons, an operation ring, and the like. The retraction portion 104 may be configured to swell more than the surrounding portion. In this case, the lens device 100 can be made compact.

また、レンズ鏡筒101は変倍光学系103を主光学系102の光路に挿抜するための操作部106を有する。ユーザーは操作部106を操作することで変倍光学系103を主光学系102の光路に挿入したり、抜去したりすることができる。操作部106は例えばレバー状の部材によって構成される。操作部106は退避部104よりも光軸方向にマウント部105に近い位置に配置されることが好ましい。これにより、ユーザーによるレンズ装置100の操作性を向上させることができる。 Further, the lens barrel 101 has an operation section 106 for inserting and extracting the variable magnification optical system 103 into and out of the optical path of the main optical system 102 . By operating the operation unit 106, the user can insert or remove the variable magnification optical system 103 into or from the optical path of the main optical system 102. FIG. The operation unit 106 is configured by, for example, a lever-shaped member. It is preferable that the operation unit 106 be arranged at a position closer to the mount unit 105 in the optical axis direction than the retraction unit 104 is. Thereby, the operability of the lens device 100 by the user can be improved.

[撮像装置]
次に、本発明の光学系を用いたデジタルスチルカメラ(撮像装置)の実施例について図14を用いて説明する。図14において、10はカメラ本体、11は実施例1乃至3で説明したいずれかの光学系L0を含むレンズ装置である。レンズ11には、光学系L0の変倍光学系EXTを主光学系LMの光路から退避させるためのスペースや、変倍光学系EXTを主光学系LMに挿抜するための操作部材(レバーなど)が設けられる。
[Imaging device]
Next, an embodiment of a digital still camera (imaging device) using the optical system of the present invention will be described with reference to FIG. In FIG. 14, 10 is a camera body, and 11 is a lens device including any one of the optical systems L0 described in the first to third embodiments. The lens 11 includes a space for retracting the variable-magnification optical system EXT of the optical system L0 from the optical path of the main optical system LM, and an operation member (such as a lever) for inserting and removing the variable-magnification optical system EXT from the main optical system LM. is provided.

12はカメラ本体に内蔵され、レンズ装置11によって形成された光学像を受光して光電変換するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。カメラ本体10はクイックターンミラーを有する所謂一眼レフカメラでもよいし、クイックターンミラーを有さない所謂ミラーレスカメラでも良い。 Reference numeral 12 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or CMOS sensor, which is built in the camera body and receives and photoelectrically converts an optical image formed by the lens device 11 . The camera body 10 may be a so-called single-lens reflex camera having a quick turn mirror, or a so-called mirrorless camera without a quick turn mirror.

このように、本発明の光学系L0をデジタルスチルカメラなどの撮像装置に適用することにより、変倍光学系を挿抜可能な構成において、全系の軽量化を図りつつ良好な光学性能を得ることができる。 As described above, by applying the optical system L0 of the present invention to an imaging apparatus such as a digital still camera, it is possible to achieve good optical performance while reducing the weight of the entire system in a configuration in which a variable-magnification optical system can be inserted and removed. can be done.

以上、本発明に好ましい実施形態及び実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。 Preferred embodiments and examples of the present invention have been described above, but the present invention is not limited to these embodiments and examples, and various combinations, modifications, and changes are possible within the scope of the gist.

L0 光学系
LM 主光学系
SP 開口絞り
EXT 変倍光学系
L0 optical system LM main optical system SP aperture diaphragm EXT variable magnification optical system

Claims (25)

開口絞りを有する主光学系と、前記開口絞りと像面との間に挿脱される変倍光学系を有し、
前記変倍光学系の挿脱の前後で前記主光学系の最も物体側のレンズ面から像面までの距離は一定であり、
前記主光学系は複数の正レンズと複数の負レンズを有し、
前記主光学系の最も物体側のレンズ面から前記複数の負レンズのうち最も物体側に位置する負レンズG1Nの物体側のレンズ面までの距離をD1N、前記主光学系の最も物体側のレンズ面から像面までの距離をLD、前記主光学系の前記変倍光学系が挿入される位置よりも像側に配置された部分光学系の焦点距離をfb、前記変倍光学系の焦点距離をfeとするとき、
0.20<D1N/LD<0.50
-3.5<fb/fe<-0.30
なる条件式を満足することを特徴とする光学系。
a main optical system having an aperture stop, and a variable power optical system inserted between the aperture stop and the image plane,
a distance from a lens surface closest to the object side of the main optical system to an image plane is constant before and after insertion and removal of the variable power optical system;
The main optical system has a plurality of positive lenses and a plurality of negative lenses,
D1N is the distance from the most object-side lens surface of the main optical system to the object-side lens surface of the negative lens G1N positioned closest to the object side among the plurality of negative lenses, and the lens closest to the object side of the main optical system LD is the distance from the surface to the image plane, fb is the focal length of the partial optical system arranged on the image side of the position where the variable magnification optical system is inserted in the main optical system, and fb is the focal length of the variable magnification optical system. is fe,
0.20<D1N/LD<0.50
−3.5<fb/fe<−0.30
An optical system characterized by satisfying the following conditional expression:
前記主光学系の焦点距離をfとするとき、
0.40<LD/f<1.20
なる条件式を満足することを特徴とする請求項1に記載の光学系。
When the focal length of the main optical system is f,
0.40<LD/f<1.20
2. The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記変倍光学系の最も物体側のレンズ面から像面までの距離をLe、前記開口絞りから像面までの距離をLpとするとき、
0.40<Le/Lp<0.97
なる条件式を満足することを特徴とする請求項1または2に記載の光学系。
Let Le be the distance from the most object-side lens surface of the variable magnification optical system to the image plane, and Lp be the distance from the aperture stop to the image plane,
0.40<Le/Lp<0.97
3. The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記主光学系の焦点距離をfとするとき、
-0.80<fe/f<-0.20
なる条件式を満足することを特徴とする請求項1乃至3のいずれか一項に記載の光学系。
When the focal length of the main optical system is f,
-0.80<fe/f<-0.20
4. The optical system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
前記主光学系の前記変倍光学系が挿入される位置よりも物体側に配置された部分光学系の焦点距離をfaとするとき、
-18<fa/fe<-2.0
なる条件式を満足することを特徴とする請求項1乃至4のいずれか一項に記載の光学系。
When the focal length of the partial optical system arranged on the object side of the position where the variable power optical system of the main optical system is inserted is fa,
-18<fa/fe<-2.0
5. The optical system according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
前記負レンズG1Nの屈折率をndG1Nとするとき、
1.58<ndG1N<1.89
なる条件式を満足することを特徴とする請求項1乃至5のいずれか一項に記載の光学系。
When the refractive index of the negative lens G1N is ndG1N,
1.58<ndG1N<1.89
6. The optical system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
前記負レンズG1Nのアッベ数をνdG1Nとするとき、
22<νdG1N<55
なる条件式を満足することを特徴とする請求項1乃至6のいずれか一項に記載の光学系。
When the Abbe number of the negative lens G1N is νdG1N,
22<νdG1N<55
7. The optical system according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
前記負レンズG1NのシェープファクタをSFG1Nとするとき、
-1.3<SFG1N<0.50
なる条件式を満足することを特徴とする請求項1乃至7のいずれか一項に記載の光学系。
When the shape factor of the negative lens G1N is SFG1N,
-1.3 < SFG1N < 0.50
8. The optical system according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
前記主光学系の最も物体側に配置された正レンズG1Pの屈折率をndG1Pとするとき、
1.41<ndG1P<1.69
なる条件式を満足することを特徴とする請求項1乃至8のいずれか一項に記載の光学系。
When the refractive index of the positive lens G1P disposed closest to the object side of the main optical system is ndG1P,
1.41<ndG1P<1.69
9. The optical system according to any one of claims 1 to 8, wherein the following conditional expression is satisfied.
前記主光学系の最も物体側に配置された正レンズG1Pのアッベ数をνdG1Pとするとき、
55<νdG1P<95
なる条件式を満足することを特徴とする請求項1乃至9のいずれか一項に記載の光学系。
When the Abbe number of the positive lens G1P disposed closest to the object side of the main optical system is νdG1P,
55<νdG1P<95
10. The optical system according to any one of claims 1 to 9, wherein the following conditional expression is satisfied.
前記主光学系の最も物体側に配置された正レンズG1Pの像側に配置された正レンズの中で最も物体側に配置された正レンズG2Pの屈折率をndG2Pとするとき、
1.40<ndG2P<1.67
なる条件式を満足することを特徴とする請求項1乃至10のいずれか一項に記載の光学系。
Let ndG2P be the refractive index of the positive lens G2P closest to the object side among the positive lenses closest to the image side of the positive lens G1P closest to the object side in the main optical system,
1.40<ndG2P<1.67
11. The optical system according to any one of claims 1 to 10, wherein the following conditional expression is satisfied.
前記主光学系の最も物体側に配置された正レンズG1Pの像側に配置された正レンズの中で最も物体側に配置された正レンズG2Pのアッベ数をνdG2Pとするとき、
55<νdG2P<99
なる条件式を満足することを特徴とする請求項1乃至11のいずれか一項に記載の光学系。
Let νdG2P be the Abbe number of the positive lens G2P closest to the object side among the positive lenses closest to the image side of the positive lens G1P closest to the object side in the main optical system,
55<νdG2P<99
12. The optical system according to any one of claims 1 to 11, wherein the following conditional expression is satisfied.
前記負レンズG1Nの焦点距離をfG1N、前記主光学系の焦点距離をfとするとき、
-0.95<fG1N/f<-0.08
なる条件式を満足することを特徴とする請求項1乃至12のいずれか一項に記載の光学系。
When the focal length of the negative lens G1N is fG1N and the focal length of the main optical system is f,
-0.95<fG1N/f<-0.08
13. The optical system according to any one of claims 1 to 12, wherein the following conditional expression is satisfied.
前記主光学系の最も物体側に配置された正レンズG1Pの焦点距離をfG1P、前記主光学系の焦点距離をfとするとき、
0.50<fG1P/f<3.0
なる条件式を満足することを特徴とする請求項1乃至13のいずれか一項に記載の光学系。
When the focal length of the positive lens G1P disposed closest to the object side of the main optical system is fG1P, and the focal length of the main optical system is f,
0.50<fG1P/f<3.0
14. The optical system according to any one of claims 1 to 13, wherein the following conditional expression is satisfied.
前記主光学系の最も物体側に配置された正レンズG1Pの焦点距離をfG1P、前記負レンズG1Nの焦点距離をfG1Nとするとき、
-9.9<fG1P/fG1N<-1.5
なる条件式を満足することを特徴とする請求項1乃至14のいずれか一項に記載の光学系。
When the focal length of the positive lens G1P disposed closest to the object side of the main optical system is fG1P, and the focal length of the negative lens G1N is fG1N,
-9.9<fG1P/fG1N<-1.5
15. The optical system according to any one of claims 1 to 14, wherein the following conditional expression is satisfied.
前記主光学系の最も物体側に配置された正レンズG1Pの焦点距離をfG1P、前記正レンズG1Pの像側に配置された正レンズの中で最も物体側に配置された正レンズG2Pの焦点距離をfG2Pとするとき、
0.90<fG1P/fG2P<3.0
なる条件式を満足することを特徴とする請求項1乃至15のいずれか一項に記載の光学系。
The focal length of the positive lens G1P arranged closest to the object side of the main optical system is fG1P, and the focal length of the positive lens G2P arranged closest to the object side among the positive lenses arranged on the image side of the positive lens G1P is fG2P,
0.90<fG1P/fG2P<3.0
16. The optical system according to any one of claims 1 to 15, wherein the following conditional expression is satisfied.
前記変倍光学系に2つ以上の負レンズと1つ以上の正レンズを含むことを特徴とする請求項1乃至16のいずれか一項に記載の光学系。 17. The optical system according to any one of claims 1 to 16, wherein the variable magnification optical system includes two or more negative lenses and one or more positive lenses. 前記変倍光学系の挿脱に応じて、前記主光学系に含まれるフォーカシングに際して移動するレンズ群は移動することを特徴とする請求項1乃至17のいずれか一項に記載の光学系。 18. The optical system according to any one of claims 1 to 17, wherein a lens group that is included in said main optical system and moves during focusing moves according to insertion or removal of said variable power optical system. 前記主光学系は、前記開口絞りより像側に配置された、光軸に対して垂直方向に移動する像振れ補正レンズ群を有することを特徴とする請求項1乃至18のいずれか一項に記載の光学系。 19. The main optical system according to any one of claims 1 to 18, wherein the main optical system has an image blur correction lens group arranged on the image side of the aperture stop and moving in a direction perpendicular to the optical axis. Optical system as described. 前記変倍光学系は最も物体側に配置された正の単レンズを有することを特徴とする請求項1乃至19のいずれか一項に記載の光学系。 20. The optical system according to any one of claims 1 to 19, wherein said variable magnification optical system has a positive single lens disposed closest to the object side. 前記変倍光学系は少なくとも1つの接合レンズを有することを特徴とする請求項1乃至20のいずれか一項に記載の光学系。 21. The optical system according to any one of claims 1 to 20, wherein said variable power optical system has at least one cemented lens. 前記変倍光学系は正レンズと該正レンズの像側に配置された負レンズとを接合した接合レンズを有することを特徴とする請求項21に記載の光学系。 22. The optical system according to claim 21, wherein said variable power optical system has a cemented lens in which a positive lens and a negative lens arranged on the image side of said positive lens are cemented. 前記変倍光学系は負レンズと該負レンズの像側に配置された正レンズと該正レンズの像側に配置された負レンズとを接合した接合レンズを有することを特徴とする請求項21または22に記載の光学系。 21. The variable power optical system has a cemented lens in which a negative lens, a positive lens arranged on the image side of the negative lens, and a negative lens arranged on the image side of the positive lens are cemented together. 23. Or the optical system according to 22. 請求項1乃至23のいずれか一項に記載の光学系と、該光学系を保持するレンズ鏡筒とを有することを特徴とするレンズ装置。 A lens device comprising: the optical system according to any one of claims 1 to 23; and a lens barrel holding the optical system. 請求項1乃至23のいずれか一項に記載の光学系と、該光学系によって形成された像を受光する撮像素子とを有することを特徴とする撮像装置。 An imaging apparatus comprising: the optical system according to any one of claims 1 to 23; and an imaging device for receiving an image formed by the optical system.
JP2022118909A 2021-03-17 2022-07-26 Optical system, lens device, imaging device Active JP7147099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022118909A JP7147099B1 (en) 2021-03-17 2022-07-26 Optical system, lens device, imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043282A JP7146987B1 (en) 2021-03-17 2021-03-17 Optical system, lens device, imaging device
JP2022118909A JP7147099B1 (en) 2021-03-17 2022-07-26 Optical system, lens device, imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021043282A Division JP7146987B1 (en) 2021-03-17 2021-03-17 Optical system, lens device, imaging device

Publications (2)

Publication Number Publication Date
JP7147099B1 true JP7147099B1 (en) 2022-10-04
JP2022145730A JP2022145730A (en) 2022-10-04

Family

ID=87767378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022118909A Active JP7147099B1 (en) 2021-03-17 2022-07-26 Optical system, lens device, imaging device

Country Status (1)

Country Link
JP (1) JP7147099B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084925A (en) 2004-09-17 2006-03-30 Fujinon Corp Imaging lens
JP2013164454A (en) 2012-02-09 2013-08-22 Canon Inc Tele-side converter lens and imaging device having the same
JP2013238827A (en) 2012-05-17 2013-11-28 Canon Inc Optical system and imaging apparatus including the same
JP2015141257A (en) 2014-01-27 2015-08-03 株式会社リコー Zoom lens and imaging device using the zoom lens
JP2017125927A (en) 2016-01-13 2017-07-20 オリンパス株式会社 Telephoto lens and imaging device having the telephoto lens
JP2020012889A (en) 2018-07-13 2020-01-23 富士フイルム株式会社 Rear converter lens and image capturing device
JP2021012244A (en) 2019-07-04 2021-02-04 キヤノン株式会社 Teleconverter lens, lens device, and image capturing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784417A (en) * 1980-11-13 1982-05-26 Canon Inc Optical system for focal length conversion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084925A (en) 2004-09-17 2006-03-30 Fujinon Corp Imaging lens
JP2013164454A (en) 2012-02-09 2013-08-22 Canon Inc Tele-side converter lens and imaging device having the same
JP2013238827A (en) 2012-05-17 2013-11-28 Canon Inc Optical system and imaging apparatus including the same
JP2015141257A (en) 2014-01-27 2015-08-03 株式会社リコー Zoom lens and imaging device using the zoom lens
JP2017125927A (en) 2016-01-13 2017-07-20 オリンパス株式会社 Telephoto lens and imaging device having the telephoto lens
JP2020012889A (en) 2018-07-13 2020-01-23 富士フイルム株式会社 Rear converter lens and image capturing device
JP2021012244A (en) 2019-07-04 2021-02-04 キヤノン株式会社 Teleconverter lens, lens device, and image capturing device

Also Published As

Publication number Publication date
JP2022145730A (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP4882263B2 (en) Zoom lens
US7940478B2 (en) Imaging lens, optical apparatus and method for forming image using this imaging lens
JP6667297B2 (en) Optical system and imaging apparatus having the same
US10670834B2 (en) Zoom lens and image pickup apparatus
JP6965039B2 (en) Converter lens and camera device with it
JP2020071438A (en) Optical system and imaging apparatus having the same
JP2005215385A (en) Zoom lens and imaging device having same
CN114706204B (en) Optical system and image pickup apparatus
CN111830692B (en) Photographic lens and photographic device
US12072478B2 (en) Optical system and imaging apparatus including the same
JP5433958B2 (en) Zoom lens and optical apparatus provided with the same
JP7353876B2 (en) Optical system and imaging device having the same
JP5858761B2 (en) Zoom lens and imaging apparatus having the same
JP2015114625A (en) Zoom lens and imaging device
CN112578542B (en) Zoom lens and image pickup apparatus including the same
JP2015114553A (en) Zoom lens and imaging device
JP2020181169A (en) Optical system and imaging apparatus
WO2014069077A1 (en) Inner focus type lens
JP6816370B2 (en) Optical system and optical equipment
JP7147099B1 (en) Optical system, lens device, imaging device
JP7147097B1 (en) Optical system, lens device, imaging device
JP7147098B1 (en) Optical system, lens device, imaging device
JP7146987B1 (en) Optical system, lens device, imaging device
JP6517563B2 (en) Inner focus type lens
JP2021140106A (en) Zoom lens and image capturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220726

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220921

R151 Written notification of patent or utility model registration

Ref document number: 7147099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151