JP7125867B2 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP7125867B2
JP7125867B2 JP2018116878A JP2018116878A JP7125867B2 JP 7125867 B2 JP7125867 B2 JP 7125867B2 JP 2018116878 A JP2018116878 A JP 2018116878A JP 2018116878 A JP2018116878 A JP 2018116878A JP 7125867 B2 JP7125867 B2 JP 7125867B2
Authority
JP
Japan
Prior art keywords
layer
refractive index
resonance mode
layers
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018116878A
Other languages
English (en)
Other versions
JP2019220574A (ja
Inventor
優太 青木
和義 廣瀬
悟 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2018116878A priority Critical patent/JP7125867B2/ja
Priority to CN201980040825.7A priority patent/CN112335145B/zh
Priority to PCT/JP2019/024339 priority patent/WO2019244943A1/ja
Priority to US16/973,602 priority patent/US11990730B2/en
Priority to DE112019003083.3T priority patent/DE112019003083T5/de
Publication of JP2019220574A publication Critical patent/JP2019220574A/ja
Application granted granted Critical
Publication of JP7125867B2 publication Critical patent/JP7125867B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、発光素子に関するものである。
特許文献1には、面発光レーザに関する技術が記載されている。この面発光レーザは、第1クラッド層と、2次元フォトニック結晶層と、活性層と、第2クラッド層とが順次積層されてなる積層部を備える。活性層は、バリア層と井戸層とにより構成される。2次元フォトニック結晶層は、屈折率の異なる媒質が面内方向に周期的に配列された構成を有する。この面発光レーザは、2次元フォトニック結晶層の面内方向に共振モードを有する。更に、この面発光レーザは、光誘引層を備える。光誘引層は、バリア層、第1クラッド層、及び第2クラッド層のいずれの屈折率よりも高い屈折率を有し、かつ、井戸層のバンドギャップよりも広いバンドギャップを有する。光誘引層は、2次元フォトニック結晶層と活性層との間、または、2次元フォトニック結晶層と第1クラッド層との間に設けられる。
特開2010-109223号公報
基板の主面と交差する方向にレーザ光を出射する面発光型の発光素子においては、基板の主面に沿った方向に共振モードを形成する層(例えばフォトニック結晶層)が活性層の近傍に設けられることがある。その場合、閾値電流をできるだけ小さくするために、共振モードを形成する層における光閉じ込め係数を高めることが求められる。例えばGaAs系半導体を主に含む近赤外域(0.9~1.1μm)の発光素子の場合、共振モードを形成する層の光閉じ込め係数は20%以上であり、比較的良好な閾値電流値(閾値電流密度<1kA/cm2)が得られている。しかしながら、例えばGaNなどの窒化物半導体を主に含む紫外域~青色域の発光素子の場合、GaAs系半導体を主に含む発光素子と同じ層構造とすると、材料の特性に起因して、共振モードを形成する層の光閉じ込め係数が2~3%程度にとどまる。従って、閾値電流値が極めて大きくなってしまい、連続的に発振することが可能な実用的な発光素子を得ることが困難となっている。また、このように光閉じ込め係数が小さいとき、発振モードの安定性も低下するおそれがある。
本発明は、このような問題点に鑑みてなされたものであり、窒化物半導体を主に含み、共振モードを形成する層を備える面発光型の発光素子において、共振モードを形成する層の光閉じ込め係数を高めることを目的とする。
上述した課題を解決するために、本発明の一実施形態による発光素子は、主面を有する基板と、主面上に設けられた第1クラッド層と、第1クラッド層上に設けられた活性層と、活性層上に設けられた第2クラッド層と、第1クラッド層と活性層との間、または活性層と第2クラッド層との間に設けられた共振モード形成層と、第1クラッド層と第2クラッド層との間であって活性層との間に共振モード形成層を挟む位置、及び活性層と共振モード形成層との間のうち少なくとも一方に設けられ、第1クラッド層、第2クラッド層、及び共振モード形成層の屈折率よりも高い屈折率を有する高屈折率層と、を備える。第1クラッド層、活性層、第2クラッド層、共振モード形成層、及び高屈折率層は、窒化物半導体を主に含む。共振モード形成層は、基本層と、基本層とは屈折率が異なり共振モード形成層の厚さ方向に垂直な面内において二次元状に分布する複数の異屈折率領域とを含む。高屈折率層は、互いに異なる屈折率を有する二以上の層が繰り返し積層されてなる超格子構造を有する。
この発光素子においては、活性層から出力された光が、第1クラッド層と第2クラッド層との間に閉じ込められつつ共振モード形成層に達する。共振モード形成層では、基板の主面に沿った方向に共振モードが形成され、複数の異屈折率領域の配置に応じたモードのレーザ光が生成される。レーザ光は、基板の主面と交差する方向に進み、発光素子の第1クラッド層側または第2クラッド層側の表面から外部へ出射される。
この発光素子は、第1クラッド層、第2クラッド層、及び共振モード形成層の屈折率よりも高い屈折率を有する高屈折率層を更に備える。高屈折率層は、共振モード形成層の近傍、すなわち、第1クラッド層と第2クラッド層との間であって活性層との間に共振モード形成層を挟む位置、及び活性層と共振モード形成層との間のうち少なくとも一方に設けられている。この高屈折率層は周囲の層よりも大きな光閉じ込め係数を有するので、高屈折率層の近傍に位置する共振モード形成層の光閉じ込め係数もその影響を受けて大きくなる。従って、上記の発光素子によれば、共振モードを形成する層の光閉じ込め係数を高めることができる。
窒化物半導体の場合、組成が互いに異なる複数の層を積層する際に、格子定数や熱膨張係数の違いに起因する欠陥が、例えばGaAs系やInP系といった代表的な化合物半導体と比較して生じやすいという特徴がある。特に、高屈折率層を厚く形成しようとすると、基板材料との格子定数差により生じる歪によって品質の良い層構造を得ることが難しい。しかしながら、高屈折率層を薄くすると、共振モード形成層の光閉じ込め係数を高める効果が限定的となる。そこで、上記の発光素子では、高屈折率層が、互いに異なる屈折率を有する二以上の層が繰り返し積層されてなる超格子構造を有する。このように、屈折率が大きい層と屈折率が小さい層とを交互に成長させることにより、格子定数の違いに起因する歪みを分散させることができるので、歪みにより生じる欠陥を低減しつつ、全体として十分な厚さを有する高屈折率層を容易に実現することができる。
上記の発光素子において、共振モード形成層は、複数の異屈折率領域が周期的に配列されたフォトニック結晶層であってもよい。活性層から出力された光は、第1クラッド層と第2クラッド層との間に閉じ込められつつフォトニック結晶層に達する。フォトニック結晶層では、基板の主面に沿った方向に共振モードが形成され、複数の異屈折率領域の配列周期に応じた波長で光が発振し、レーザ光が生成される。例えば、正方格子結晶において配列周期を光の1波長分の長さとした場合、レーザ光の一部が、基板の主面に対して垂直な方向に回折され、発光素子の第1クラッド層側または第2クラッド層側の表面から外部へ出射される。
上記の発光素子は、基板の主面に垂直な方向または該方向に対して傾斜した方向、或いはその両方に光像を出力する発光素子であって、共振モード形成層の面内において仮想的な正方格子を設定した場合に、複数の異屈折率領域の重心が、仮想的な正方格子の格子点から離れて配置されるとともに、該格子点周りに光像に応じた回転角度を有してもよい。活性層から出力された光は、第1クラッド層と第2クラッド層との間に閉じ込められつつ共振モード形成層に達する。共振モード形成層では、複数の異屈折率領域の重心が、仮想的な正方格子の格子点周りに各異屈折率領域毎に設定された回転角度を有する。このような場合、複数の異屈折率領域の重心が正方格子の格子点上に位置する場合と比較して、基板の主面に垂直な方向に出射する光(0次光)の光強度が減り、該方向に対して傾斜した方向に出射する高次光(例えば1次光及び-1次光)の光強度が増す。更に、各異屈折率領域の重心が光像に応じた回転角度を有することにより、光の位相を各異屈折率領域毎に変調することができる。従って、この発光素子によれば、基板の主面と垂直な方向に対して傾斜した方向に任意形状の光像を出力することができる。
上記の発光素子は、基板の主面に垂直な方向または該方向に対して傾斜した方向、或いはその両方に光像を出力する発光素子であって、共振モード形成層の面内において仮想的な正方格子を設定した場合に、複数の異屈折率領域の重心が、仮想的な正方格子の格子点を通り正方格子に対して傾斜する直線上に配置されており、各異屈折率領域の重心と、対応する格子点との距離が光像に応じて個別に設定されてもよい。活性層から出力された光は、第1クラッド層と第2クラッド層との間に効率的に分布し、共振モード形成層にも分布する。共振モード形成層では、複数の異屈折率領域の重心が、仮想的な正方格子の格子点を通り正方格子に対して傾斜する直線上に配置されている。そして、各異屈折率領域の重心と、対応する格子点との距離が光像に応じて個別に設定されている。このような場合においても、基板の主面に垂直な方向に出射する光(0次光)の光強度が減り、該方向に対して傾斜した方向に出射する高次光(例えば1次光及び-1次光)の光強度が増す。更に、各異屈折率領域の重心と、対応する格子点との距離が光像に応じて個別に設定されることにより、光の位相を各異屈折率領域毎に変調することができる。従って、この発光素子によれば、基板の主面と垂直な方向に対して傾斜した方向に任意形状の光像を出力することができる。
上記の発光素子において、第1クラッド層、第2クラッド層、及び基本層がGaN層若しくはAlGaN層であり、高屈折率層の二以上の層のうち少なくとも一層がInを含む窒化物半導体層であってもよい。これにより、第1クラッド層、第2クラッド層、及びフォトニック結晶層(または位相変調層)の屈折率よりも高い屈折率を有する高屈折率層を好適に実現することができる。この場合、上記少なくとも一層がAlを更に含んでもよい。Al組成が大きくなるほど高屈折率層の屈折率は低下するが、バンドギャップがより広くなり、光透過性を高めることができる。さらに、Inを含む窒化物半導体層による格子定数を小さくし、基本層のGaNの格子定数に近づけることができるので、歪み緩和の効果が期待される。
上記の各発光素子において、活性層は、量子井戸層と障壁層とが交互に積層されてなる多重量子井戸構造を有し、上記少なくとも一層のバンドギャップは、量子井戸層のバンドギャップよりも広くてもよい。これにより、活性層の量子井戸層に効率的に電気キャリアを閉じ込めることができる。この場合、量子井戸層はInを含む窒化物半導体層であり、上記少なくとも一層のIn組成は、量子井戸層のIn組成よりも小さくてもよい。例えばこのような構成により、上記少なくとも一層のバンドギャップを、量子井戸層のバンドギャップよりも広くすることができる。
上記の各発光素子において、上記少なくとも一層のIn組成は2%以上であってもよい。これにより、高屈折率層の屈折率を周囲の屈折率に対して十分に大きくし、共振モードを形成する層の光閉じ込め係数を高めることができる。
本発明によれば、窒化物半導体を主に含み、共振モードを形成する層を備える面発光型の発光素子において、共振モードを形成する層の光閉じ込め係数を高めることができる。
本発明の第1実施形態に係る発光素子として、面発光レーザ素子1Aの構成を示す斜視図である。 面発光レーザ素子1Aの断面構造を模式的に示す図である。 面発光レーザ素子1Aの断面構造を模式的に示す図である。 フォトニック結晶層15Aの平面図である。 フォトニック結晶層の特定領域内にのみ異屈折率領域15bを配置した例を示す平面図である。 異屈折率領域15bの平面形状の例を示す図である。 異屈折率領域15bの平面形状の例を示す図である。 XY平面内の異屈折率領域の形状の別の例を示す平面図である。 (a)(b)GaN層の表面写真である。 第1変形例に係る面発光レーザ素子1Bの断面構成を模式的に示す。 活性層12がフォトニック結晶層15Aとクラッド層13との間に位置する場合の変形例を示す。 第2変形例に係る面発光レーザ素子1Cの断面構成を模式的に示す。 第3変形例に係る面発光レーザ素子1Dの断面構成を模式的に示す。 S-iPMレーザが備える位相変調層15Bの平面図である。 位相変調層15Bの一部を拡大して示す図である。 面発光レーザ素子の出力ビームパターンが結像して得られる光像と、位相変調層15Bにおける回転角度分布φ(x,y)との関係を説明するための図である。 球面座標からXYZ直交座標系における座標への座標変換を説明するための図である。 位相変調層の特定領域内にのみ図14の屈折率構造を適用した例を示す平面図である。 (a)(b)各異屈折率領域15bの配置を決める際に、一般的な離散フーリエ変換(或いは高速フーリエ変換)を用いて計算する場合の留意点を説明するための図である。 (a)~(d)面発光レーザ素子から出力されるビームパターン(光像)の例を示す。 S-iPMレーザが備える位相変調層15Cの平面図である。 位相変調層15Cにおける異屈折率領域15bの位置関係を示す図である。 第4変形例による発光装置1Eの構成を示す図である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 面発光レーザ素子の具体的な層構造を示す図表である。 図24に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図25に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図26に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図27に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図28に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図29に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図30に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図31に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図32に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。 図33に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。
以下、添付図面を参照しながら本発明による発光素子の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
図1は、本発明の第1実施形態に係る発光素子として、面発光レーザ素子1Aの構成を示す斜視図である。また、図2は、面発光レーザ素子1Aの断面構造を模式的に示す図である。なお、面発光レーザ素子1Aの中心を通り面発光レーザ素子1Aの厚さ方向に延びる軸をZ軸とするXYZ直交座標系を定義する。面発光レーザ素子1Aは、XY面内方向において定在波を形成し、レーザ光L1を半導体基板10の主面に対して垂直な方向(Z方向)に出力する。
面発光レーザ素子1Aは、フォトニック結晶面発光レーザ(PhotonicCrystal Surface Emitting LASER:PCSEL)である。面発光レーザ素子1Aは、半導体基板10と、半導体基板10の主面10a上に設けられたクラッド層11(第1クラッド層)と、クラッド層11上に設けられた活性層12と、活性層12上に設けられたクラッド層13(第2クラッド層)と、クラッド層13上に設けられたコンタクト層14とを備える。更に、面発光レーザ素子1Aは、フォトニック結晶層15A、高屈折率層16,17、及びガイド層18を備える。レーザ光は、半導体基板10の裏面10bから出力される。
半導体基板10、クラッド層11及び13、活性層12、コンタクト層14、フォトニック結晶層15A、高屈折率層16,17、及びガイド層18は、窒化物半導体を主に含む。クラッド層11のエネルギーバンドギャップ、及びクラッド層13のエネルギーバンドギャップは、活性層12のエネルギーバンドギャップよりも広い。半導体基板10、クラッド層11及び13、活性層12、コンタクト層14、フォトニック結晶層15A、高屈折率層16,17、及びガイド層18の厚さ方向は、Z軸方向と一致する。
必要に応じて、クラッド層11とクラッド層13の間に光分布を調整するための光ガイド層を含んでも良い。光ガイド層は、キャリアを活性層12に効率的に閉じ込めるためのキャリア障壁層を含んでも良い。
また、図1及び図2に示された例において、フォトニック結晶層15Aは活性層12とクラッド層13との間に設けられているが、図3に示されるように、フォトニック結晶層15Aはクラッド層11と活性層12との間に設けられてもよい。さらに、光ガイド層が活性層12とクラッド層11との間に設けられる場合、フォトニック結晶層15Aは、クラッド層11と光ガイド層との間に設けられる。光ガイド層は、キャリアを活性層12に効率的に閉じ込めるためのキャリア障壁層を含んでも良い。
フォトニック結晶層(回折格子層)15Aは、本実施形態における共振モード形成層である。フォトニック結晶層15Aは、基本層15aと、複数の異屈折率領域15bとを含んで構成されている。基本層15aは、第1屈折率媒質からなる半導体層である。複数の異屈折率領域15bは、第1屈折率媒質とは屈折率の異なる第2屈折率媒質からなり、基本層15a内に存在する。ガイド層18は、基本層15a及び複数の異屈折率領域15bを覆う半導体層である。ガイド層18の屈折率は、第1屈折率媒質と同じであってもよく、第2屈折率媒質と同じであってもよく、若しくは第1屈折率媒質及び第2屈折率媒質の双方と異なってもよい。複数の異屈折率領域15bは、フォトニック結晶層15Aの厚さ方向に垂直な面内(XY面内)において二次元状且つ周期的に配列されている。等価屈折率をnとした場合、フォトニック結晶層15Aが選択する波長λ(=a×n、aは格子間隔)は、活性層12の発光波長範囲内に含まれている。フォトニック結晶層15Aは、活性層12の発光波長のうちの波長λを選択して、外部に出力することができる。本実施形態において、波長λは例えば365~550nmの範囲内であり、一例では405nmである。
図4は、フォトニック結晶層15Aの平面図である。ここで、フォトニック結晶層15Aに、XY面内における仮想的な正方格子を設定する。正方格子の一辺はX軸と平行であり、他辺はY軸と平行であるものとする。このとき、正方格子の格子点Oを中心とする正方形状の単位構成領域Rが、X軸に沿った複数列及びY軸に沿った複数行にわたって二次元状に設定され得る。複数の異屈折率領域15bは、各単位構成領域R内に1つまたは2つ以上の決まった数ずつ設けられる。異屈折率領域15bの平面形状は、例えば円形状である。各単位構成領域R内において、異屈折率領域15bの重心Gは、各格子点Oと重なって(一致して)いる。なお、複数の異屈折率領域15bの周期構造はこれに限られず、例えば正方格子に代えて三角格子を設定してもよい。
図5は、フォトニック結晶層15Aの特定領域内にのみ異屈折率領域15bを配置した例を示す平面図である。図5に示す例では、正方形の内側領域RINの内部に、異屈折率領域15bの周期構造が形成されている。一方、内側領域RINを囲む外側領域ROUTにも異屈折率領域15bの周期構造が形成されており、電極26は内側領域RINの上に形成され、したがって電流は内側領域RINを中心に流れる。この構造の場合、面内方向への光漏れを抑制することができ、閾値電流の低減が期待できる。
また、図4にはXY平面内における異屈折率領域15bの形状が円形である例が示されているが、異屈折率領域15bは円形以外の形状を有してもよい。例えば、XY平面内における異屈折率領域15bの形状は、鏡像対称性(線対称性)を有してもよい。ここで、鏡像対称性(線対称性)とは、XY平面に沿った或る直線を挟んで、該直線の一方側に位置する異屈折率領域15bの平面形状と、該直線の他方側に位置する異屈折率領域15bの平面形状とが、互いに鏡像対称(線対称)となり得ることをいう。鏡像対称性(線対称性)を有する形状としては、例えば図6に示すように、(a)真円、(b)正方形、(c)正六角形、(d)正八角形、(e)正16角形、(f)長方形、(g)楕円、などが挙げられる。
また、XY平面内における異屈折率領域15bの形状は、180°の回転対称性を有さない形状であってもよい。このような形状としては、例えば図7に示すように、(a)正三角形、(b)直角二等辺三角形、(c)2つの円又は楕円の一部分が重なる形状、(d)楕円の長軸に沿った一方の端部近傍の短軸方向の寸法が他方の端部近傍の短軸方向の寸法よりも小さくなるように変形した形状(卵形)、(e)楕円の長軸に沿った一方の端部を長軸方向に沿って突き出る尖った端部に変形した形状(涙形)、(f)二等辺三角形、(g)矩形の一辺が三角形状に凹みその対向する一辺が三角形状に尖った形状(矢印形)、(h)台形、(i)五角形、(j)2つの矩形の一部分同士が重なる形状、(k)2つの矩形の一部分同士が重なり且つ鏡像対称性を有さない形状、等が挙げられる。このように、XY平面内における異屈折率領域15bの形状が180°の回転対称性を有さないことにより、更に高い光出力を得ることができる。
図8は、XY平面内の異屈折率領域の形状の別の例を示す平面図である。この例では、複数の異屈折率領域15bとは別の複数の異屈折率領域15cが更に設けられる。各異屈折率領域15cは、基本層15aの第1屈折率媒質とは屈折率の異なる第2屈折率媒質からなる。異屈折率領域15cは、異屈折率領域15bと同様に、空孔であってもよく、空孔に化合物半導体が埋め込まれて構成されてもよい。異屈折率領域15cは、異屈折率領域15bにそれぞれ一対一で対応して設けられる。そして、異屈折率領域15bおよび15cを合わせた重心Gは、仮想的な正方格子を構成する単位構成領域Rの格子点O上に位置している。なお、いずれの異屈折率領域15b,15cも仮想的な正方格子を構成する単位構成領域Rの範囲内に含まれる。単位構成領域Rは、仮想的な正方格子の格子点間を2等分する直線で囲まれる領域となる。
異屈折率領域15cの平面形状は例えば円形であるが、異屈折率領域15bと同様に、様々な形状を有し得る。図8(a)~図8(k)には、異屈折率領域15b,15cのXY平面内における形状および相対関係の例が示されている。図8(a)および図8(b)は、異屈折率領域15b,15cが同じ形状の図形を有する形態を示す。図8(c)および図8(d)は、異屈折率領域15b,15cが同じ形状の図形を有し、互いの一部分同士が重なる形態を示す。図8(e)は、異屈折率領域15b,15cが同じ形状の図形を有し、異屈折率領域15b,15cが互いに回転した形態を示す。図8(f)は、異屈折率領域15b,15cが互いに異なる形状の図形を有する形態を示す。図8(g)は、異屈折率領域15b,15cが互いに異なる形状の図形を有し、異屈折率領域15b,15cが互いに回転した形態を示す。
また、図8(h)~図8(k)に示されるように、異屈折率領域15bは、互いに離間した2つの領域15b1,15b2を含んで構成されてもよい。そして、領域15b1,15b2を合わせた重心(単一の異屈折率領域15bの重心に相当)と、異屈折率領域15cの重心との距離が単位構成領域R内で任意に設定されてもよい。また、この場合、図8(h)に示されるように、領域15b1,15b2および異屈折率領域15cは、互いに同じ形状の図形を有してもよい。または、図8(i)に示されたように、領域15b1,15b2および異屈折率領域15cのうち2つの図形が他と異なっていてもよい。また、図8(j)に示されるように、領域15b1,15b2を結ぶ直線のX軸に対する角度に加えて、異屈折率領域15cのX軸に対する角度が単位構成領域R内で任意に設定されてもよい。また、図8(k)に示されるように、領域15b1,15b2および異屈折率領域15cが互いに同じ相対角度を維持したまま、領域15b1,15b2を結ぶ直線のX軸に対する角度が単位構成領域R内で任意に設定されてもよい。
なお、異屈折率領域15bは、各単位構成領域R毎に複数個ずつ設けられてもよい。ここで、単位構成領域Rとは、ある単位構成領域Rの格子点Oに対して、周期的に配列した他の単位構成領域の格子点O’との垂直二等分線で囲まれる領域の中で、最小面積の領域を指し、固体物理学におけるウィグナーザイツセルに対応する。その場合、一つの単位構成領域Rに含まれる複数個の異屈折率領域15bが互いに同じ形状の図形を有し、互いの重心が離間してもよい。また、異屈折率領域15bのXY平面内の形状は、各単位構成領域R間で同一であり、並進操作、又は並進操作及び回転操作により、各単位構成領域R間で互いに重ね合わせることが可能であってもよい。その場合、フォトニックバンド構造の揺らぎが少なくなり、線幅の狭いスペクトルを得ることができる。或いは、異屈折率領域のXY平面内の形状は各単位構成領域R間で必ずしも同一でなくともよく、隣り合う単位構成領域R間で形状が互いに異なっていてもよい。
再び図1及び図2を参照する。高屈折率層16は、活性層12とフォトニック結晶層15Aとの間に設けられている。高屈折率層16は、フォトニック結晶層15Aの光閉じ込め係数を高めるために設けられ、クラッド層11,13及びフォトニック結晶層15Aの各屈折率よりも高い屈折率を有する。高屈折率層16は、超格子構造を有する。この超格子構造は、図2の拡大図に示されるように、互いに異なる屈折率を有する2つの極めて薄い層16a,16bが交互に積層されてなる。なお、超格子構造は、互いに異なる屈折率を有する3つ以上の層が繰り返し積層されてもよい。
また、高屈折率層17は、クラッド層11とクラッド層13との間であって活性層12との間にフォトニック結晶層15Aを挟む位置に設けられている。すなわち、図2の例においては、高屈折率層17はフォトニック結晶層15Aとクラッド層13との間に設けられる。また、図3の例においては、高屈折率層17はフォトニック結晶層15Aとクラッド層11との間に設けられる。高屈折率層17は、高屈折率層16とともにフォトニック結晶層15Aの光閉じ込め係数を高めるために設けられ、クラッド層11,13及びフォトニック結晶層15Aの各屈折率よりも高い屈折率を有する。高屈折率層17もまた、高屈折率層16と同様に超格子構造を有する。この超格子構造は、図2の拡大図に示されるように、互いに異なる屈折率を有する2つの層17a,17bが交互に積層されてなる。なお、超格子構造は、互いに異なる屈折率を有する3つ以上の層が繰り返し積層されてもよい。
なお、高屈折率層16,17がクラッド層11,13及びフォトニック結晶層15Aの各屈折率よりも高い屈折率を有するとは、超格子構造を構成する複数の層の屈折率を厚さに応じて加重平均した値が、クラッド層11,13及びフォトニック結晶層15Aの各屈折率よりも高いことを意味する。
面発光レーザ素子1Aは、コンタクト層14上に設けられた電極26と、半導体基板10の裏面10b上に設けられた電極27とを更に備える。電極26はコンタクト層14とオーミック接触を成しており、電極27は半導体基板10とオーミック接触を成している。電極26は、コンタクト層14の中央領域に設けられている。コンタクト層14上における電極26以外の部分は、保護膜28によって覆われている。なお、電極26と接触していないコンタクト層14は、取り除かれても良い。電極27は、レーザ光L1の出力領域を囲む枠状(環状)といった平面形状を呈しており、開口27aを有する。なお、電極27の平面形状は、矩形枠状、円環状といった様々な形状であることができる。半導体基板10の裏面10bのうち電極27以外の部分(開口27a内を含む)は、反射防止膜29によって覆われている。開口27a以外の領域にある反射防止膜29は取り除かれてもよい。
電極26と電極27との間に駆動電流が供給されると、活性層12内において電子と正孔の再結合が生じ、活性層12が発光する。この発光に寄与する電子及び正孔、並びに発生した光は、クラッド層11及びクラッド層13の間に効率的に分布する。活性層12から出力された光は、クラッド層11とクラッド層13との間に分布するのでフォトニック結晶層15Aの内部に入り、フォトニック結晶層15Aの内部の格子構造に応じて、半導体基板10の主面10aに沿った方向に共振モードを形成する。そして、複数の異屈折率領域15bの配列周期に応じた波長で光が発振し、レーザ光L1が生成される。フォトニック結晶層15Aから出射したレーザ光L1は、半導体基板10の主面10aに対して垂直な方向に進み、直接に、裏面10bから開口27aを通って面発光レーザ素子1Aの外部へ出力されるか、または、電極26において反射したのち、裏面10bから開口27aを通って面発光レーザ素子1Aの外部へ出力される。
或る例では、半導体基板10はGaN基板であり、クラッド層11、活性層12、フォトニック結晶層15A、クラッド層13、及びコンタクト層14は、窒化物半導体からなる。一実施例では、クラッド層11はGaN層若しくはAlGaN層であり、活性層12は多重量子井戸構造(障壁層:InGaN/量子井戸層:InGaN)を有し、フォトニック結晶層15Aの基本層15a及びガイド層18はGaN層若しくはAlGaN層であり、異屈折率領域15bは空孔であり、クラッド層13はGaN層若しくはAlGaN層であり、コンタクト層14はGaN層である。
このようにクラッド層11,13及び基本層15aがGaN層若しくはAlGaN層である場合、高屈折率層16,17の超格子構造を構成する二以上の層のうち少なくとも一層(例えば層16a,17a)は、Inを含む窒化物半導体層(例えばInGaN層)である。また、高屈折率層16,17の当該層は、Alを更に含むInAlGaN層であってもよい。また、高屈折率層16,17の当該層のバンドギャップは、活性層12の量子井戸層のバンドギャップよりも広い。例えば、量子井戸層がInを含む窒化物半導体層(例えばInGaN層)である場合、高屈折率層16,17の当該層のIn組成は、量子井戸層のIn組成よりも小さい。また、クラッド層11,13及び基本層15aがGaN層若しくはAlGaN層である場合、高屈折率層16,17の当該層のIn組成は例えば2%以上である。
窒化物半導体がInを含む場合、Inの組成比を変更することで、容易にエネルギーバンドギャップと屈折率を変えることができる。すなわち、InxGa1-xNもしくはInxAlyGa1-x-yNにおいて、Inの組成比xが大きくなるほど、エネルギーバンドギャップは狭くなり、屈折率は大きくなる。また、窒化物半導体がAlを含む場合、Alの組成比を変更することで、容易にエネルギーバンドギャップと屈折率を変えることができる。すなわち、AlyGa1-yNもしくはInxAlyGa1-x-yNにおいて、Alの組成比yが大きくなるほど、エネルギーバンドギャップは広くなり、屈折率は小さくなる。クラッド層11,13がAlGaN層である場合、そのAl組成比は例えば0~0.15であり、一実施例では0.06である。活性層12の障壁層がInGaN層である場合、そのIn組成比は例えば0~0.2であり、一実施例では0.01である。活性層12の量子井戸層がInGaN層である場合、そのIn組成比は例えば0~0.2であり、一実施例では0.10である。
高屈折率層16,17の層16aがInxGa1-xN層である場合、そのIn組成比xは、活性層12の量子井戸層のIn組成比をx1とすると、例えば0.02以上x1未満の範囲内であり、より好適にはx1の半分以上である。活性層12へのキャリア集中を或る程度阻害してもよい場合には、高屈折率層16,17のIn組成比xはx1を超えてもよい。また、高屈折率層16,17の層16aがInxAlyGa1-x-yN層である場合、そのAl組成比yは例えば0以上0.15以下の範囲内である。高屈折率層16,17の層16bは、例えばGaN層、InGaN層またはInAlGaN層である。層16bがInGaN層である場合、そのIn組成は層16aよりも小さい。
クラッド層11には半導体基板10と同じ導電型が付与され、クラッド層13及びコンタクト層14には半導体基板10とは逆の導電型が付与される。一例では、半導体基板10及びクラッド層11はn型であり、クラッド層13及びコンタクト層14はp型である。フォトニック結晶層15Aは、活性層12とクラッド層11との間に設けられる場合には半導体基板10と同じ導電型を有し、活性層12とクラッド層13との間に設けられる場合には半導体基板10とは逆の導電型を有する。なお、不純物濃度は例えば1×1016~1×1021/cm3である。いずれの不純物も意図的に添加されていない真性(i型)では、その不純物濃度は1×1016/cm3以下である。活性層12は真性(i型)に限らず、ドーピングされても良い。なお、フォトニック結晶層15Aの不純物濃度については、不純物準位を介した光吸収による損失の影響を抑制する必要がある場合等には、真性(i型)としてもよい。
高屈折率層16,17は、活性層12に対してクラッド層11側に位置する場合には半導体基板10と同じ導電型を有し、活性層12に対してクラッド層13側に位置する場合には半導体基板10とは逆の導電型を有する。この場合、超格子構造を構成する二以上の層の全てが当該導電型を有する必要はなく、いずれか一層(例えば屈折率が小さい層16b,17b)のみが当該導電型を有してもよい。または、高屈折率層16,17はアンドープ(i型)であってもよい。
半導体基板10の厚さは例えば150μmである。クラッド層11の厚さは例えば1200nmである。活性層12の厚さは例えば49nm(厚さ10nmの4層の障壁層と、厚さ3nmの3層の量子井戸層とを交互に積層した場合)である。フォトニック結晶層15Aの厚さは例えば70nmである。クラッド層13の厚さは例えば500nmである。コンタクト層14の厚さは例えば100nmである。高屈折率層16の厚さは例えば5~200nmであり、層16a,16bの個々の厚さは例えば0.1~20nmである。一実施例では、高屈折率層16は厚さ5nmの層16aと厚さ5nmの層16bとがそれぞれ7層(計14層)積層されて成る。また、高屈折率層17の厚さは例えば5~200nmであり、層17a,17bの個々の厚さは例えば0.1~20nmである。一実施例では、高屈折率層17は厚さ5nmの層17aと厚さ5nmの層17bとがそれぞれ3層(計6層)積層されて成る。
なお、上述の構造では、異屈折率領域15bが空孔となっているが、異屈折率領域15bは、基本層15aとは屈折率が異なる半導体が空孔内に埋め込まれて形成されてもよい。その場合、例えば基本層15aの空孔をエッチングにより形成し、有機金属気相成長法、分子線エピタキシー法、スパッタ法又はエピタキシャル法を用いて半導体を空孔内に埋め込んでもよい。例えば、基本層15aがGaNからなる場合、異屈折率領域15bはAlGaNからなってもよい。また、基本層15aの空孔内に半導体を埋め込んで異屈折率領域15bを形成した後、更に、その上に異屈折率領域15bと同一の半導体をガイド層18として堆積してもよい。なお、異屈折率領域15bが空孔である場合、該空孔にアルゴン、窒素といった不活性ガス、又は水素や空気等の気体が封入されてもよい。
反射防止膜29は、例えば、シリコン窒化物(例えばSiN)、シリコン酸化物(例えばSiO2)などの誘電体単層膜、或いは誘電体多層膜からなる。誘電体多層膜としては、例えば、酸化チタン(TiO2)、二酸化シリコン(SiO2)、一酸化シリコン(SiO)、酸化ニオブ(Nb25)、五酸化タンタル(Ta25)、フッ化マグネシウム(MgF2)、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化セリウム(CeO2)、酸化インジウム(In23)、酸化ジルコニウム(ZrO2)などの誘電体層群から選択される2種類以上の誘電体層を積層した膜を用いることができる。例えば、単層誘電体膜の場合、波長λの光に対する光学膜厚で、λ/4の厚さの膜を積層する。また、保護膜28は、例えばシリコン窒化物(例えばSiN)、シリコン酸化物(例えばSiO2)などの絶縁膜である。電極26は、例えばTi及びAlの積層構造を有する。電極27は、例えばNi及びAuの積層構造を有する。なお、電極26,27の材料は、オーミック接合が実現できればよく、これらの範囲に限定されない。
以上の構成を備える本実施形態の面発光レーザ素子1Aによって得られる効果について説明する。この面発光レーザ素子1Aは、クラッド層11、クラッド層13、及びフォトニック結晶層15Aの屈折率よりも高い屈折率を有する高屈折率層16,17を備える。高屈折率層16,17は、フォトニック結晶層15Aの近傍、すなわち、クラッド層11とクラッド層13との間であって活性層12との間にフォトニック結晶層15Aを挟む位置、及び活性層12とフォトニック結晶層15Aとの間のそれぞれに配置される。高屈折率層16,17は周囲の層(クラッド層11、クラッド層13、及びフォトニック結晶層15A)よりも大きな光閉じ込め係数を有するので、高屈折率層16,17の近傍に位置するフォトニック結晶層15Aの光閉じ込め係数もその影響を受けて大きくなる。従って、本実施形態の面発光レーザ素子1Aによれば、フォトニック結晶層15Aの光閉じ込め係数を高めることができる。
また、窒化物半導体の場合、組成が互いに異なる複数の層を積層する際に、格子定数や熱膨張係数の違いに起因する欠陥が、例えばGaAs系やInP系といった代表的な化合物半導体と比較して生じやすいという特徴がある。特に、単一の層からなる高屈折率層を厚く形成しようとすると、基板材料との格子定数差により生じる歪によって品質の良い層構造を得ることが難しい。しかしながら、高屈折率層を薄くすると、フォトニック結晶層15Aの光閉じ込め係数を高める効果が限定的となる。そこで、本実施形態の面発光レーザ素子1Aでは、高屈折率層16(17)が、互いに異なる屈折率を有する二以上の層16a,16b(17a,17b)が繰り返し積層されてなる超格子構造を有する。このように、屈折率が大きい層と屈折率が小さい層とを交互に成長させることにより、格子定数の違いに起因する歪みを分散させることができるので、歪みにより生じる欠陥を低減しつつ、全体として十分な厚さを有する高屈折率層16,17を容易に実現することができる。
図9(a)は、サファイア基板上にGaN層を成長し、その上に厚さ25nmのIn0.1GaNバルク層及び厚さ40nmのGaN層(キャップ層)を成長し、1000℃以上に昇温したのち厚さ450nmのGaN層を成長したときの、GaN層の表面写真である。また、図9(b)は、サファイア基板上にGaN層を成長し、その上に厚さ2.5nmのIn0.1GaN層と厚さ2.5nmのGaN層とを10周期にわたって交互に積層して超格子構造を形成し、厚さ40nmのGaN層(キャップ層)を成長し、1000℃以上に昇温したのち厚さ450nmのGaN層を成長したときの、GaN層の表面写真である。なお、In0.1GaNバルク層及びIn0.1GaN/GaN超格子の結晶成長温度は、例えば750~850℃である。いずれの場合もInGaN層の全膜厚は25nmとなるが、超格子構造とすることにより、InGaN層の劣化が低減し、高品質な結晶が形成されていることがわかる。
また、本実施形態のように、クラッド層11、クラッド層13、及び基本層15aがGaN層若しくはAlGaN層であり、高屈折率層16,17の二以上の層のうち少なくとも一つの層16a,17aがInを含む窒化物半導体層であってもよい。これにより、クラッド層11、クラッド層13、及びフォトニック結晶層15Aの屈折率よりも高い屈折率を有する高屈折率層16,17を好適に実現することができる。この場合、層16a,17aはAlを更に含んでもよい。Al組成が大きくなるほど高屈折率層16,17の屈折率は低下するが、バンドギャップがより広くなり、光透過性を高めることができる。さらに、Inを含む窒化物半導体層による格子定数を小さくし、基本層15aのGaNの格子定数に近づけることができるので、歪み緩和の効果が期待される。
また、本実施形態のように、活性層12は、量子井戸層と障壁層とが交互に積層されてなる多重量子井戸構造を有し、層16a,17aのバンドギャップは、量子井戸層のバンドギャップよりも広くてもよい。これにより、活性層12の発光作用に対する影響を抑えつつ、高屈折率層16,17を有効に機能させることができる。この場合、量子井戸層はInを含む窒化物半導体層であり、層16a,17aのIn組成は、量子井戸層のIn組成よりも小さくてもよい。例えばこのような構成により、層16a,17aのバンドギャップを、量子井戸層のバンドギャップよりも広くすることができる。
また、本実施形態のように、層16a,17aのIn組成は2%以上であってもよい。これにより、高屈折率層16,17の屈折率を周囲の屈折率に対して十分に大きくし、フォトニック結晶層15Aの光閉じ込め係数を高めることができる。
(第1変形例)
図10は、上記実施形態の第1変形例に係る面発光レーザ素子1Bの断面構成を模式的に示す。本変形例と上記実施形態との相違点は、高屈折率層の層数である。すなわち、第1変形例に係る面発光レーザ素子1Bは、高屈折率層17を備えているが、高屈折率層16を備えていない。言い換えると、高屈折率層はクラッド層13とフォトニック結晶層15Aとの間のみに設けられ、活性層12とフォトニック結晶層15Aとの間に高屈折率層は介在していない。この場合、活性層12が高屈折率層の役割を兼ねることとなる。活性層12(特に量子井戸層)は高いIn組成を有しているので、その屈折率は周囲の層(クラッド層11及びフォトニック結晶層15A)の屈折率よりも十分に大きい。従って、活性層12の光閉じ込め係数は大きく、その影響によりフォトニック結晶層15Aの光閉じ込め係数も大きくなる。故に、本変形例のように活性層12とフォトニック結晶層15Aとの間の高屈折率層を省略しても、上記実施形態と同様の効果を得ることができる。
図11は、活性層12がフォトニック結晶層15Aとクラッド層13との間に位置する場合(図3を参照)の変形例を示す。この場合、活性層12とフォトニック結晶層15Aとの間の高屈折率層16が省略され、高屈折率層はクラッド層11とフォトニック結晶層15Aとの間のみに設けられる。このような構成であっても、上記実施形態と同様の効果を得ることができる。
なお、高屈折率層の配置は、上記実施形態及び本変形例に限られない。例えば、高屈折率層は、活性層12とフォトニック結晶層15Aとの間にのみ設けられてもよい。
(第2変形例)
図12は、上記実施形態の第2変形例に係る面発光レーザ素子1Cの断面構成を模式的に示す。本変形例と上記実施形態との相違点は、活性層の層数である。すなわち、第2変形例に係る面発光レーザ素子1Cは、図2に示された活性層12に加えて、更に活性層12Aを備える。活性層12Aは、例えば高屈折率層17とクラッド層13との間に設けられる。活性層12Aの内部構造は、活性層12と同様である。このような構成によれば、十分に大きな光閉じ込め係数を有する活性層12Aが高屈折率層17の近傍に設けられるので、上記実施形態の効果をより顕著に奏することができる。
(第3変形例)
図13は、上記実施形態の第3変形例に係る面発光レーザ素子1Dの断面構成を模式的に示す。本変形例では、第2変形例から更に高屈折率層16,17が省略されている。すなわち、面発光レーザ素子1Dは高屈折率層16,17のいずれも備えておらず、クラッド層11とフォトニック結晶層15Aとの間、及びクラッド層13とフォトニック結晶層15Aとの間のいずれにも活性層12,12A以外の高屈折率層は設けられていない。この場合、高屈折率層16,17の役割を活性層12,12Aが果たすこととなる。すなわち、十分に大きな光閉じ込め係数を有する活性層12,12Aによってフォトニック結晶層15Aが挟まれるので、上記実施形態と同様の効果を得ることができる。
(第2実施形態)
前述した第1実施形態においては、PCSELである面発光レーザ素子1Aについて説明したが、本発明の発光素子は、PCSELに限らず様々な面発光レーザ素子であることができる。例えば、二次元状に配列された複数の発光点から出射される光の位相スペクトル及び強度スペクトルを制御することにより任意の光像を出力する面発光レーザ素子が研究されている。このような面発光レーザ素子はS-iPM(Static-integrablePhase Modulating)レーザと呼ばれ、半導体基板の主面に垂直な方向およびこれに対して傾斜した方向をも含む2次元的な任意形状の光像を出力する。
図14は、S-iPMレーザが備える位相変調層15Bの平面図である。上記各実施形態の面発光レーザ素子1Aは、フォトニック結晶層15A(図4を参照)に代えて、図14に示される位相変調層15Bを有してもよい。これにより、面発光レーザ素子1AをS-iPMレーザとすることができる。位相変調層15Bは、本実施形態における共振モード形成層である。なお、面発光レーザ素子1Aにおいて、位相変調層15Bを除く他の構成は第1実施形態と同様であるため、詳細な説明を省略する。
位相変調層15Bは、第1屈折率媒質からなる基本層15aと、第1屈折率媒質とは屈折率の異なる第2屈折率媒質からなる異屈折率領域15bとを含む。ここで、位相変調層15Bに、XY面内における仮想的な正方格子を設定する。正方格子の一辺はX軸と平行であり、他辺はY軸と平行であるものとする。このとき、正方格子の格子点Oを中心とする正方形状の単位構成領域Rが、X軸に沿った複数列及びY軸に沿った複数行にわたって二次元状に設定され得る。複数の異屈折率領域15bは、各単位構成領域R内に1つずつ設けられる。異屈折率領域15bの平面形状は、例えば円形状である。各単位構成領域R内において、異屈折率領域15bの重心Gは、これに最も近い格子点Oから離れて配置される。
図15に示されるように、格子点Oから重心Gに向かう方向とX軸との成す角度をφ(x,y)とする。xはX軸におけるx番目の格子点の位置、yはY軸におけるy番目の格子点の位置を示す。回転角度φが0°である場合、格子点Oと重心Gとを結ぶベクトルの方向はX軸の正方向と一致する。また、格子点Oと重心Gとを結ぶベクトルの長さをr(x,y)とする。一例では、r(x,y)はx、yによらず(位相変調層15B全体にわたって)一定である。
図14に示されるように、位相変調層15Bにおいては、異屈折率領域15bの重心Gの格子点O周りの回転角度φが、所望の光像に応じて各単位構成領域R毎に独立して設定される。回転角度分布φ(x,y)は、x,yの値で決まる位置毎に特定の値を有するが、必ずしも特定の関数で表わされるとは限らない。すなわち、回転角度分布φ(x,y)は、所望の光像を逆フーリエ変換して得られる複素振幅分布のうち位相分布を抽出したものから決定される。なお、所望の光像から複素振幅分布を求める際には、ホログラム生成の計算時に一般的に用いられるGerchberg-Saxton(GS)法のような繰り返しアルゴリズムを適用することによって、ビームパターンの再現性が向上する。
本実施形態において、活性層12から出力されたレーザ光は、クラッド層11とクラッド層13との間に閉じ込められつつ位相変調層15Bの内部に入り、位相変調層15Bの内部の格子構造に応じた所定のモードを形成する。位相変調層15B内で散乱されて出射されるレーザ光L1は、半導体基板10の裏面10bから外部へ出力される。このとき、0次光は、主面10aに垂直な方向へ出射する。これに対し、+1次光および-1次光は、主面10aに垂直な方向及びこれに対して傾斜した方向を含む2次元的な任意方向へ出射する。
図16は、本実施形態に係る面発光レーザ素子の出力ビームパターンが結像して得られる光像と、位相変調層15Bにおける回転角度分布φ(x,y)との関係を説明するための図である。なお、出力ビームパターンの中心Qは半導体基板10の主面10aに対して垂直な軸線上に位置しており、図16には、中心Qを原点とする4つの象限が示されている。図16では例として第1象限および第3象限に光像が得られる場合を示したが、第2象限および第4象限或いは全ての象限に像を得ることも可能である。本実施形態では、図16に示されるように、原点に関して点対称な光像が得られる。図16は、例として、第3象限に文字「A」が+1次回折光として、第1象限に文字「A」を180度回転したパターンが-1次回折光として、それぞれ得られる場合について示している。なお、回転対称な光像(例えば、十字、丸、二重丸など)である場合には、重なって一つの光像として観察される。
本実施形態に係る面発光レーザ素子の出力ビームパターンが結像して得られる光像は、スポット、直線、十字架、線画、格子パターン、写真、縞状パターン、CG(コンピュータグラフィクス)、及び文字のうち少なくとも1つを含んでいる。ここで、所望の光像を得るためには、以下の手順によって位相変調層15Bの異屈折率領域15bの回転角度分布φ(x、y)を決定する。
まず、第1の前提条件として、法線方向に一致するZ軸と、複数の異屈折率領域15bを含む位相変調層15Bの一方の面に一致した、互いに直交するX軸およびY軸を含むX-Y平面と、により規定されるXYZ直交座標系において、該X-Y平面上に、それぞれが正方形状を有するM1(1以上の整数)×N1(1以上の整数)個の単位構成領域Rにより構成される仮想的な正方格子が設定される。
第2の前提条件として、XYZ直交座標系における座標(ξ,η,ζ)は、図17に示されたように、動径の長さrと、Z軸からの傾き角θtiltと、X-Y平面上で特定されるX軸からの回転角θrotと、で規定される球面座標(r,θrottilt)に対して、以下の式(1)~式(3)で示された関係を満たしているものとする。なお、図17は、球面座標(r,θrottilt)からXYZ直交座標系における座標(ξ,η,ζ)への座標変換を説明するための図であり、座標(ξ,η,ζ)により、実空間であるXYZ直交座標系において設定される所定平面上の設計上の光像が表現される。面発光レーザ素子から出力される光像に相当するビームパターンを角度θtiltおよびθrotで規定される方向に向かう輝点の集合とするとき、角度θtiltおよびθrotは、以下の式(4)で規定される規格化波数であってX軸に対応したKx軸上の座標値kと、以下の式(5)で規定される規格化波数であってY軸に対応するとともにKx軸に直交するKy軸上の座標値kに換算されるものとする。規格化波数は、仮想的な正方格子の格子間隔に相当する波数を1.0として規格化された波数を意味する。このとき、Kx軸およびKy軸により規定される波数空間において、光像に相当するビームパターンを含む特定の波数範囲が、それぞれが正方形状のM2(1以上の整数)×N2(1以上の整数)個の画像領域FRで構成される。なお、整数M2は、整数M1と一致する必要はない。同様に、整数N2は、整数N1と一致する必要もない。また、式(4)および式(5)は、例えば、Y. Kurosaka et al.," Effects of non-lasing band intwo-dimensional photonic-crystal lasers clarified using omnidirectional bandstructure," Opt. Express 20, 21773-21783 (2012)に開示されている。
Figure 0007125867000001

Figure 0007125867000002

Figure 0007125867000003

Figure 0007125867000004

Figure 0007125867000005

a:仮想的な正方格子の格子定数
λ:面発光レーザ素子1Aの発振波長
第3の前提条件として、波数空間において、Kx軸方向の座標成分k(0以上M2-1以下の整数)とKy軸方向の座標成分k(0以上N2-1以下の整数)とで特定される画像領域FR(k,k)それぞれを、X軸方向の座標成分x(0以上M1-1以下の整数)とY軸方向の座標成分y(0以上N1-1以下の整数)とで特定されるX-Y平面上の単位構成領域R(x,y)に二次元逆離散フーリエ変換することで得られる複素振幅F(x,y)が、jを虚数単位として、以下の式(6)で与えられる。また、この複素振幅F(x,y)は、振幅項をA(x,y)とするとともに位相項をP(x,y)とするとき、以下の式(7)により規定される。更に、第4の前提条件として、単位構成領域R(x,y)が、X軸およびY軸にそれぞれ平行であって単位構成領域R(x,y)の中心となる格子点O(x,y)において直交するs軸およびt軸で規定される。
Figure 0007125867000006

Figure 0007125867000007
上記第1~第4の前提条件の下、位相変調層15Bは、以下の第1および第2条件を満たすよう構成される。すなわち、第1条件は、単位構成領域R(x,y)内において、重心Gが、格子点O(x,y)から離れた状態で配置されていることである。また、第2条件は、格子点O(x,y)から対応する重心Gまでの線分長r(x,y)がM1個×N1個の単位構成領域Rそれぞれにおいて共通の値に設定された状態で、格子点O(x,y)と対応する重心Gとを結ぶ線分と、s軸と、の成す角度φ(x,y)が、
φ(x,y)=C×P(x,y)+B
C:比例定数であって例えば180°/π
B:任意の定数であって例えば0
なる関係を満たすように、対応する異屈折率領域15bが単位構成領域R(x,y)内に配置されることである。
図18は、位相変調層の特定領域内にのみ図14の屈折率構造を適用した例を示す平面図である。図18に示す例では、正方形の内側領域RINの内部に、目的となるビームパターンを出射するための屈折率構造(例:図14の構造)が形成されている。一方、内側領域RINを囲む外側領域ROUTには、正方格子の格子点位置に、重心位置が一致する真円形の異屈折率領域が配置されている。例えば、外側領域ROUTにおけるフィリングファクターFFは、12%に設定される。また、内側領域RINの内部も、外側領域ROUT内においても、仮想的に設定される正方格子の格子間隔は同一(=a)である。この構造の場合、外側領域ROUT内にも光が分布することにより、内側領域RINの周辺部において光強度が急激に変化することで生じる高周波ノイズ(いわゆる窓関数ノイズ)の発生を抑制することが出来るという利点がある。また、面内方向への光漏れを抑制することができ、閾値電流の低減が期待できる。
フーリエ変換で得られた複素振幅分布から強度分布と位相分布を得る方法として、例えば強度分布I(x,y)については、MathWorks社の数値解析ソフトウェア「MATLAB」のabs関数を用いることにより計算することができ、位相分布P(x,y)については、MATLABのangle関数を用いることにより計算することができる。
ここで、光像のフーリエ変換結果から回転角度分布φ(x,y)を求め、各異屈折率領域15bの配置を決める際に、一般的な離散フーリエ変換(或いは高速フーリエ変換)を用いて計算する場合の留意点を述べる。所望の光像である図19(a)の逆フーリエ変換で得られた複素振幅分布より計算される出力ビームパターンは図19(b)のようになる。図19(a)と図19(b)のようにそれぞれA1,A2,A3,及びA4といった4つの象限に分割すると、図19(b)の出力ビームパターンの第1象限には、図19(a)の第1象限を180度回転したものと図19(a)の第3象限が重畳したパターンが現れ、ビームパターンの第2象限には図19(a)の第2象限を180度回転したものと図19(a)の第4象限が重畳したパターンが現れ、ビームパターンの第3象限には図19(a)の第3象限を180度回転したものと図19(a)の第1象限が重畳したパターンが現れ、ビームパターンの第4象限には図19(a)の第4象限を180度回転したものと図19(a)の第2象限が重畳したパターンが現れる。このとき、180度回転したパターンは-1次光成分によるものである。
従って、フーリエ変換前の光像(元の光像)として第一象限のみに値を有するものを用いた場合には、得られるビームパターンの第三象限に元の光像の第一象限が現れ、得られるビームパターンの第一象限に元の光像の第一象限を180度回転したパターンが現れる。
図20(a)~図20(d)は、本実施形態と同じ原理を利用した近赤外波長帯のGaAs系S-iPMレーザから出力されるビームパターン(光像)の例を示す。各図の中心は、半導体基板10の主面10aに垂直な軸線(Z軸)に対応する。これらの図に示されるように、面発光レーザ素子は、該軸線に対して傾斜した第1方向に出力される第1光像部分B1を含む1次光と、該軸線に関して第1方向と対称である第2方向に出力され、該軸線に関して第1光像部分B1と回転対称である第2光像部分B2を含む-1次光と、該軸線上を進む0次光B3とを出力する。
前述したように、位相変調層15Bでは、複数の異屈折率領域15bの重心Gが、仮想的な正方格子の格子点O周りに各異屈折率領域15b毎に設定された回転角度を有する。このような場合、複数の異屈折率領域15bの重心Gが正方格子の格子点O上に位置する場合(第1実施形態)と比較して、半導体基板10の主面10aに垂直な方向に出射する光(0次光B3)の光強度が減り、該方向に対して傾斜した方向に出射する高次光(例えば1次光及び-1次光)の光強度が増す。更に、各異屈折率領域15bの重心Gが光像に応じた回転角度を有することにより、光の位相を各異屈折率領域15b毎に変調することができる。従って、この面発光レーザ素子によれば、半導体基板10の主面10aと垂直な方向に対して傾斜した方向に任意形状の光像を出力することができる。
また、本実施形態の面発光レーザ素子は、第1実施形態、第1変形例または第2変形例と同様に、クラッド層11,13及び位相変調層15Bの屈折率よりも高い屈折率を有する高屈折率層16,17(図2,図3参照)の双方若しくは一方を備える。高屈折率層16,17は、位相変調層15Bの近傍、すなわち、クラッド層11とクラッド層13との間であって活性層12との間に位相変調層15Bを挟む位置、及び活性層12と位相変調層15Bとの間にそれぞれ設けられる。高屈折率層16,17は周囲の層よりも大きな光閉じ込め係数を有するので、高屈折率層16,17の近傍に位置する位相変調層15Bの光閉じ込め係数もその影響を受けて大きくなる。従って、本実施形態の面発光レーザ素子によれば、位相変調層15B(すなわち共振モードを形成する層)の光閉じ込め係数を高めることができる。また、この面発光レーザ素子においても、高屈折率層16(17)が、互いに異なる屈折率を有する二以上の層16a,16b(17a,17b)が繰り返し積層されてなる超格子構造を有する。これにより、格子定数の違いに起因する歪みを分散させることができるので、歪みにより生じる欠陥を低減しつつ、全体として十分な厚さを有する高屈折率層16,17を容易に実現することができる。
(第3実施形態)
S-iPMレーザは、前述した第2実施形態の構成に限られない。例えば、本実施形態の位相変調層の構成であっても、S-iPMレーザを好適に実現することができる。図21は、S-iPMレーザが備える位相変調層15Cの平面図である。また、図22は、位相変調層15Cにおける異屈折率領域15bの位置関係を示す図である。位相変調層15Cは、本実施形態における共振モード形成層である。図21及び図22に示されるように、位相変調層15Cにおいて、各異屈折率領域15bの重心Gは、直線D上に配置されている。直線Dは、各単位構成領域Rの対応する格子点Oを通り、正方格子の各辺に対して傾斜する直線である。言い換えると、直線Dは、X軸及びY軸の双方に対して傾斜する直線である。正方格子の一辺(X軸)に対する直線Dの傾斜角はθである。傾斜角θは、位相変調層15C内において一定である。傾斜角θは、0°<θ<90°を満たし、一例ではθ=45°である。または、傾斜角θは、180°<θ<270°を満たし、一例ではθ=225°である。傾斜角θが0°<θ<90°または180°<θ<270°を満たす場合、直線Dは、X軸及びY軸によって規定される座標平面の第1象限から第3象限にわたって延びる。或いは、傾斜角θは、90°<θ<180°を満たし、一例ではθ=135°である。或いは、傾斜角θは、270°<θ<360°を満たし、一例ではθ=315°である。傾斜角θが90°<θ<180°または270°<θ<360°を満たす場合、直線Dは、X軸及びY軸によって規定される座標平面の第2象限から第4象限にわたって延びる。このように、傾斜角θは、0°、90°、180°及び270°を除く角度である。このような傾斜角θとすることで、光出力ビームにおいて、X軸方向に進む光波とY軸方向に進む光波との両方を寄与させることができる。ここで、格子点Oと重心Gとの距離をr(x,y)とする。xはX軸におけるx番目の格子点の位置、yはY軸におけるy番目の格子点の位置を示す。距離r(x,y)が正の値である場合、重心Gは第1象限(または第2象限)に位置する。距離r(x,y)が負の値である場合、重心Gは第3象限(または第4象限)に位置する。距離r(x,y)が0である場合、格子点Oと重心Gとは互いに一致する。
図21に示される、各異屈折率領域の重心Gと、各単位構成領域Rの対応する格子点Oとの距離r(x,y)は、所望の光像に応じて各異屈折率領域15b毎に個別に設定される。距離r(x,y)の分布は、x,yの値で決まる位置毎に特定の値を有するが、必ずしも特定の関数で表わされるとは限らない。距離r(x,y)の分布は、所望の光像を逆フーリエ変換して得られる複素振幅分布のうち位相分布を抽出したものから決定される。すなわち、図22に示される、或る座標(x,y)における位相P(x,y)がP0である場合には距離r(x,y)を0と設定し、位相P(x,y)がπ+P0である場合には距離r(x,y)を最大値R0に設定し、位相P(x,y)が-π+P0である場合には距離r(x,y)を最小値-R0に設定する。そして、その中間の位相P(x,y)に対しては、r(x,y)={P(x,y)-P0}×R0/πとなるように距離r(x,y)をとる。ここで、初期位相P0は任意に設定することができる。正方格子の格子間隔をaとすると、r(x,y)の最大値R0は例えば
Figure 0007125867000008

の範囲内である。なお、所望の光像から複素振幅分布を求める際には、ホログラム生成の計算時に一般的に用いられるGerchberg-Saxton(GS)法のような繰り返しアルゴリズムを適用することによって、ビームパターンの再現性が向上する。
本実施形態においては、以下の手順によって位相変調層15Cの異屈折率領域15bの距離r(x,y)の分布を決定することにより、所望の光像を得ることができる。すなわち、第2実施形態において説明した第1~第4の前提条件の下、位相変調層15Cは、以下の条件を満たすよう構成される。すなわち、格子点O(x,y)から対応する異屈折率領域15bの重心Gまでの距離r(x,y)が、
r(x,y)=C×(P(x,y)-P0
C:比例定数で例えばR0/π
0:任意の定数であって例えば0
なる関係を満たすように、該対応する異屈折率領域15bが単位構成領域R(x,y)内に配置される。すなわち、距離r(x,y)は、或る座標(x,y)における位相P(x,y)がP0である場合には0に設定され、位相P(x,y)がπ+P0である場合には最大値R0に設定され、位相P(x,y)が-π+P0である場合には最小値-R0に設定される。所望の光像を得たい場合、該光像を逆離散フーリエ変換して、その複素振幅の位相P(x,y)に応じた距離r(x,y)の分布を、複数の異屈折率領域15bに与えるとよい。位相P(x,y)と距離r(x,y)とは、互いに比例してもよい。
なお、本実施形態においても、位相変調層の特定領域内にのみ図21の屈折率構造を適用してもよい。例えば、図18に示された例のように、正方形の内側領域RINの内部に、目的となるビームパターンを出射するための屈折率構造(例:図21の構造)が形成されてもよい。この場合、内側領域RINを囲む外側領域ROUTには、正方格子の格子点位置に、重心位置が一致する真円形の異屈折率領域が配置される。例えば、外側領域ROUTにおけるフィリングファクターFFは、12%に設定される。また、内側領域RINの内部も、外側領域ROUT内においても、仮想的に設定される正方格子の格子間隔は同一(=a)である。この構造の場合、外側領域ROUT内にも光が分布することにより、内側領域RINの周辺部において光強度が急激に変化することで生じる高周波ノイズ(いわゆる窓関数ノイズ)の発生を抑制することができる。また、面内方向への光漏れを抑制することができ、閾値電流の低減が期待できる。
逆フーリエ変換で得られた複素振幅分布から強度分布と位相分布を得る方法として、例えば強度分布I(x,y)については、MathWorks社の数値解析ソフトウェア「MATLAB」のabs関数を用いることにより計算することができ、位相分布P(x,y)については、MATLABのangle関数を用いることにより計算することができる。なお、光像の逆フーリエ変換結果から位相分布P(x,y)を求め、各異屈折率領域15bの距離r(x,y)を決める際に、一般的な離散フーリエ変換(或いは高速フーリエ変換)を用いて計算する場合の留意点は、前述した第2実施形態と同様である。
前述したように、位相変調層15Cでは、複数の異屈折率領域15bの重心Gが、仮想的な正方格子の格子点Oを通り正方格子に対して傾斜する直線D上に配置されている。そして、各異屈折率領域15bの重心Gと、対応する格子点Oとの距離r(x,y)が光像に応じて個別に設定されている。このような場合においても、複数の異屈折率領域15bの重心が正方格子の格子点O上に位置する場合(第1実施形態)と比較して、半導体基板10の主面10aに垂直な方向に出射する光(図20に示される0次光B3)の光強度が減り、該方向に対して傾斜した方向に出射する高次光(例えば1次光及び-1次光)の光強度が増す。更に、各異屈折率領域15bの重心Gと、対応する格子点Oとの距離r(x,y)が光像に応じて個別に設定されることにより、光の位相を各異屈折率領域15b毎に変調することができる。従って、この面発光レーザ素子によれば、半導体基板10の主面10aと垂直な方向に対して傾斜した方向に任意形状の光像を出力することができる。
また、本実施形態の面発光レーザ素子もまた、第1実施形態、第1変形例または第2変形例と同様に、クラッド層11,13及び位相変調層15Cの屈折率よりも高い屈折率を有する高屈折率層16,17(図2,図3参照)の双方若しくは一方を備える。高屈折率層16,17は、位相変調層15Cの近傍、すなわち、クラッド層11とクラッド層13との間であって活性層12との間に位相変調層15Cを挟む位置、及び活性層12と位相変調層15Cとの間にそれぞれ設けられる。高屈折率層16,17は周囲の層よりも大きな光閉じ込め係数を有するので、高屈折率層16,17の近傍に位置する位相変調層15Cの光閉じ込め係数もその影響を受けて大きくなる。従って、本実施形態の面発光レーザ素子においても、位相変調層15C(すなわち共振モードを形成する層)の光閉じ込め係数を高めることができる。また、この面発光レーザ素子においても、高屈折率層16(17)は、互いに異なる屈折率を有する二以上の層16a,16b(17a,17b)が繰り返し積層されてなる超格子構造を有する。これにより、格子定数の違いに起因する歪みを分散させることができるので、歪みにより生じる欠陥を低減しつつ、全体として十分な厚さを有する高屈折率層16,17を容易に実現することができる。
(第4変形例)
図23は、第4変形例による発光装置1Eの構成を示す図である。この発光装置1Eは、支持基板73と、支持基板73上に一次元又は二次元状に配列された複数の面発光レーザ素子1Aと、複数の面発光レーザ素子1Aを個別に駆動する駆動回路72とを備えている。各面発光レーザ素子1Aの構成は、第1実施形態と同様である。駆動回路72は、支持基板73の裏面又は内部に設けられ、各面発光レーザ素子1Aを個別に駆動する。駆動回路72は、制御回路71からの指示により、個々の面発光レーザ素子1Aに駆動電流を供給する。
本変形例のように、個別に駆動される複数の面発光レーザ素子1Aを設けることによって、ヘッドアップディスプレイなどを好適に実現することができる。なお、本変形例において、面発光レーザ素子1Aに代えて他の実施形態若しくは変形例の面発光レーザ素子を用いてもよい。その場合にも同様の効果を得ることができる。
(実施例)
発明者らは、上記各実施形態において、高屈折率層16,17の屈折率と共振モード形成層の光閉じ込め係数との関係を調べた。その結果を以下に説明する。図24~図33は、面発光レーザ素子の具体的な層構造を示す図表である。これらの図表には、各層の導電型(pはp型、nはn型、uはアンドープを表す)、組成、膜厚、屈折率、及び光閉じ込め係数Γが示されている。なお、層番号1はコンタクト層14、層番号2はクラッド層13、層番号3はキャリア障壁層、層番号4はガイド層、層番号5~11は多重量子井戸構造の活性層12、層番号12はキャリア障壁層、層番号13は高屈折率層16、層番号14はガイド層18、層番号15は共振モード形成層(フォトニック結晶層15A、位相変調層15Bまたは15C)、層番号16はガイド層、層番号17は高屈折率層17、層番号18はガイド層、層番号19はクラッド層11を示す。なお、共振モード形成層の屈折率nAir-holeは、下記の平均誘電率の数式(9)を用いて算出した。
Figure 0007125867000009

Airは空気の屈折率(=1)であり、nGaNはGaNの屈折率(=2.5549)であり、FFはフィリングファクタ(=0.15)である。
これらの構造例では、高屈折率層16,17のInGaN層(層16a,17a)のIn組成をそれぞれ0%(図24)、1%(図25)、2%(図26)、3%(図27)、4%(図28)、5%(図29)、6%(図30)、7%(図31)、8%(図32)、及び9%(図33)とすることにより、波長405nmにおける高屈折率層16,17のInGaN層の屈折率を2.5549から2.7425まで変化させた。図34~図43は、それぞれ図24~図33に示された層構造を備える面発光レーザ素子の屈折率分布およびモード分布を示すグラフである。各図において、グラフG21a~G30aは屈折率分布を表し、グラフG21b~G30bはモード分布を表す。なお、ここでモード分布はTEモードにおける電界振幅の大きさを表す。横軸は積層方向位置(範囲は2.0μm)を表す。図24~図33に示された層構造の等価屈折率Neffはそれぞれ2.5296、2.5302、2.5311、2.5321、2.5334、2.5350、2.5369、2.5393、2.5422、及び2.5457である。図34~図43中の範囲T1はクラッド層11であり、範囲T2は高屈折率層16であり、範囲T3は共振モード形成層であり、範囲T4は高屈折率層17であり、範囲T5は活性層12であり、範囲T6はクラッド層13であり、範囲T7はコンタクト層14である。
ここで、等価屈折率とは、層構造に対して、層厚方向に分布する共振モードの光が感じる屈折率を指す。この等価屈折率Neffに基づいて、格子点または仮想的な格子点の格子間隔aを定めることができる。例えば、格子点または仮想的な格子点が正方格子状に配置されている場合、格子間隔aを、共振モード形成層が選択する波長λに対応するバンド端に応じて次のように定めることができる。すなわち、バンド端にΓ点を用いる場合には、λ=Neff×aを満たすように格子間隔aを決定する。一方、バンド端にM点を用いる場合には、λ=(√2)Neff×aを満たすように格子間隔aを決定する。ただし、M点を用いる場合には、そのままでは基本波が層厚方向には出力されないので、位相分布Ψ(x,y)に対して、dΨ(x,y)=(±πx/a、±πy/a)の位相シフトを加える。このとき、活性層12の波長範囲のうち、波長λを選択して外部に出力することができる。
図24及び図34に示されるように、高屈折率層16,17のInGaN層のIn組成が0%(すなわちGaN)の場合、高屈折率層16,17の屈折率がクラッド層11,13の屈折率と同じとなり、その場合、共振モード形成層の光閉じ込め係数Γは3.8%にとどまる。これに対し、図25~図33及び図35~図43に示されるように、高屈折率層16,17のInGaN層のIn組成が大きくなるほど(すなわち高屈折率層16,17の屈折率が大きくなるほど)、共振モード形成層の光閉じ込め係数Γが次第に大きくなる。具体的には、In組成が1%の場合にΓ=4.4%となり、In組成が2%の場合にΓ=5.0%となり、In組成が3%の場合にΓ=5.6%となり、In組成が4%の場合にΓ=6.2%となり、In組成が5%の場合にΓ=6.8%となり、In組成が6%の場合にΓ=7.5%となり、In組成が7%の場合にΓ=8.1%となり、In組成が8%の場合にΓ=8.8%となり、In組成が9%の場合にΓ=9.4%となる。
このように、面発光レーザ素子が高屈折率層16,17を備えることによって、共振モード形成層の光閉じ込め係数を高めることができる。従って、閾値電流値を低減することができ、連続的に発振することが可能な実用的な発光素子を得ることができる。特に、高屈折率層16,17のInGaN層のIn組成が2%以上であることにより、共振モード形成層の光閉じ込め係数Γを5.0%以上といった効果的な値にまで高めることができる。
本発明による発光素子は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した各実施形態及び変形例を、必要な目的及び効果に応じて互いに組み合わせてもよい。また、上記各実施形態において、高屈折率層は活性層12と共振モード形成層との間にのみ設けられてもよい。そのような場合であっても、共振モード形成層の光閉じ込め係数を高めることができる。また、上述した各実施形態及び変形例では、半導体基板10の裏面10bから出射する形態(裏面出射型)を例示したが、本発明は、コンタクト層14の表面(もしくはコンタクト層14の一部が除去されて露出したクラッド層13の表面)から出射する面発光レーザ素子にも適用可能である。
1A,1B,1C,1D…面発光レーザ素子、1E…発光装置、10…半導体基板、10a…主面、10b…裏面、11…クラッド層、11,13…クラッド層、12,12A…活性層、13…クラッド層、14…コンタクト層、15A…フォトニック結晶層、15B,15C…位相変調層、15a…基本層、15b,15c…異屈折率領域、16,17…高屈折率層、18…ガイド層、26,27…電極、27a…開口、28…保護膜、29…反射防止膜、71…制御回路、72…駆動回路、73…支持基板、B1,B2…光像部分、B3…0次光、D…直線、FR…画像領域、G…重心、L1…レーザ光、O…格子点、Q…中心、R…単位構成領域、RIN…内側領域、ROUT…外側領域。

Claims (10)

  1. 主面を有する基板と、
    前記主面上に設けられた第1クラッド層と、
    前記第1クラッド層上に設けられた活性層と、
    前記活性層上に設けられた第2クラッド層と、
    前記第1クラッド層と前記活性層との間、または前記活性層と前記第2クラッド層との間に設けられた共振モード形成層と、
    前記第1クラッド層と前記第2クラッド層との間であって前記活性層との間に前記共振モード形成層を挟む位置に設けられるか、又は、前記活性層と前記共振モード形成層との間及び前記位置の双方に設けられ、前記第1クラッド層、前記第2クラッド層、及び前記共振モード形成層の屈折率よりも高い屈折率を有する高屈折率層と、
    を備え、
    前記第1クラッド層、前記活性層、前記第2クラッド層、前記共振モード形成層、及び前記高屈折率層は、窒化物半導体を主に含み、
    前記共振モード形成層は、基本層と、前記基本層とは屈折率が異なり前記共振モード形成層の厚さ方向に垂直な面内において二次元状に分布する複数の異屈折率領域とを含み、
    前記高屈折率層は、互いに異なる屈折率を有する二以上の層が繰り返し積層されてなる超格子構造を有する、発光素子。
  2. 主面を有する基板と、
    前記主面上に設けられた第1クラッド層と、
    前記第1クラッド層上に設けられた活性層と、
    前記活性層上に設けられた第2クラッド層と、
    前記第1クラッド層と前記活性層との間、または前記活性層と前記第2クラッド層との間に設けられた共振モード形成層と、
    前記第1クラッド層と前記第2クラッド層との間であって前記活性層との間に前記共振モード形成層を挟む位置と、前記活性層と前記共振モード形成層との間との双方に設けられ、そのうち前記活性層と前記共振モード形成層との間に設けられている方が前記共振モード形成層に接しており、前記第1クラッド層、前記第2クラッド層、及び前記共振モード形成層の屈折率よりも高い屈折率を有する高屈折率層と、
    を備え、
    前記第1クラッド層、前記活性層、前記第2クラッド層、前記共振モード形成層、及び前記高屈折率層は、窒化物半導体を主に含み、
    前記共振モード形成層は、基本層と、前記基本層とは屈折率が異なり前記共振モード形成層の厚さ方向に垂直な面内において二次元状に分布する複数の異屈折率領域とを含み、
    前記高屈折率層は、互いに異なる屈折率を有する二以上の層が繰り返し積層されてなる超格子構造を有する、発光素子。
  3. 前記第1クラッド層、前記第2クラッド層、及び前記基本層がGaN層若しくはAlGaN層であり、
    前記高屈折率層の前記二以上の層のうち少なくとも一層がInを含む窒化物半導体層である、請求項1または2に記載の発光素子。
  4. 主面を有する基板と、
    前記主面上に設けられた第1クラッド層と、
    前記第1クラッド層上に設けられた活性層と、
    前記活性層上に設けられた第2クラッド層と、
    前記第1クラッド層と前記活性層との間、または前記活性層と前記第2クラッド層との間に設けられた共振モード形成層と、
    前記第1クラッド層と前記第2クラッド層との間であって前記活性層との間に前記共振モード形成層を挟む位置に設けられるか、又は、前記活性層と前記共振モード形成層との間及び前記位置の双方に設けられ、前記第1クラッド層、前記第2クラッド層、及び前記共振モード形成層の屈折率よりも高い屈折率を有する高屈折率層と、
    を備え、
    前記第1クラッド層、前記活性層、前記第2クラッド層、前記共振モード形成層、及び前記高屈折率層は、窒化物半導体を主に含み、
    前記共振モード形成層は、基本層と、前記基本層とは屈折率が異なり前記共振モード形成層の厚さ方向に垂直な面内において二次元状に分布する複数の異屈折率領域とを含み、
    前記高屈折率層は、互いに異なる屈折率を有する二以上の層が繰り返し積層されてなる超格子構造を有し、
    前記第1クラッド層、前記第2クラッド層、及び前記基本層がGaN層若しくはAlGaN層であり、
    前記高屈折率層の前記二以上の層のうち少なくとも一層がIn及びAlを含む窒化物半導体層である、発光素子。
  5. 前記活性層は、量子井戸層と障壁層とが交互に積層されてなる多重量子井戸構造を有し、
    前記高屈折率層の前記少なくとも一層のバンドギャップは、前記量子井戸層のバンドギャップよりも広い、請求項3または4に記載の発光素子。
  6. 前記量子井戸層はInを含む窒化物半導体層であり、
    前記高屈折率層の前記少なくとも一層のIn組成は、前記量子井戸層のIn組成よりも小さい、請求項5に記載の発光素子。
  7. 前記高屈折率層の前記少なくとも一層のIn組成は2%以上である、請求項3~6のいずれか1項に記載の発光素子。
  8. 前記共振モード形成層は、前記複数の異屈折率領域が周期的に配列されたフォトニック結晶層である、請求項1~7のいずれか1項に記載の発光素子。
  9. 前記基板の前記主面に垂直な方向または該方向に対して傾斜した方向、或いはその両方に光像を出力する発光素子であって、
    前記共振モード形成層の前記面内において仮想的な正方格子を設定した場合に、前記複数の異屈折率領域の重心が、前記仮想的な正方格子の格子点から離れて配置されるとともに、該格子点周りに前記光像に応じた個別の回転角度を有する、請求項1~7のいずれか1項に記載の発光素子。
  10. 前記基板の前記主面に垂直な方向または該方向に対して傾斜した方向、或いはその両方に光像を出力する発光素子であって、
    前記共振モード形成層の前記面内において仮想的な正方格子を設定した場合に、前記複数の異屈折率領域の重心が、前記仮想的な正方格子の格子点を通り前記正方格子に対して傾斜する直線上に配置されており、各異屈折率領域の重心と、対応する格子点との距離が前記光像に応じて個別に設定されている、請求項1~7のいずれか1項に記載の発光素子。
JP2018116878A 2018-06-20 2018-06-20 発光素子 Active JP7125867B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018116878A JP7125867B2 (ja) 2018-06-20 2018-06-20 発光素子
CN201980040825.7A CN112335145B (zh) 2018-06-20 2019-06-19 发光元件
PCT/JP2019/024339 WO2019244943A1 (ja) 2018-06-20 2019-06-19 発光素子
US16/973,602 US11990730B2 (en) 2018-06-20 2019-06-19 Light-emitting device
DE112019003083.3T DE112019003083T5 (de) 2018-06-20 2019-06-19 Lichtemittierende vorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018116878A JP7125867B2 (ja) 2018-06-20 2018-06-20 発光素子

Publications (2)

Publication Number Publication Date
JP2019220574A JP2019220574A (ja) 2019-12-26
JP7125867B2 true JP7125867B2 (ja) 2022-08-25

Family

ID=68982631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018116878A Active JP7125867B2 (ja) 2018-06-20 2018-06-20 発光素子

Country Status (5)

Country Link
US (1) US11990730B2 (ja)
JP (1) JP7125867B2 (ja)
CN (1) CN112335145B (ja)
DE (1) DE112019003083T5 (ja)
WO (1) WO2019244943A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637409B2 (en) 2017-03-27 2023-04-25 Hamamatsu Photonics K.K. Semiconductor light-emitting module and control method therefor
US11646546B2 (en) * 2017-03-27 2023-05-09 Hamamatsu Photonics K.K. Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
JP6959042B2 (ja) 2017-06-15 2021-11-02 浜松ホトニクス株式会社 発光装置
CN111448725B (zh) 2017-12-08 2023-03-31 浜松光子学株式会社 发光装置及其制造方法
JP7445437B2 (ja) 2020-01-20 2024-03-07 浜松ホトニクス株式会社 光源モジュール及び光変調モジュール
US20210262787A1 (en) * 2020-02-21 2021-08-26 Hamamatsu Photonics K.K. Three-dimensional measurement device
CN113745961A (zh) * 2021-08-31 2021-12-03 江苏华兴激光科技有限公司 一种GaAs基光子晶体激光器及其制作方法
JP2023059111A (ja) * 2021-10-14 2023-04-26 国立研究開発法人物質・材料研究機構 面発光量子カスケードレーザ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019277A (ja) 2005-07-07 2007-01-25 Rohm Co Ltd 半導体発光素子
JP2014027264A (ja) 2012-06-22 2014-02-06 Canon Inc 面発光レーザ
WO2017191320A1 (en) 2016-05-06 2017-11-09 The University Court Of The University Of Glasgow Laser device and method for its operation
WO2018030523A1 (ja) 2016-08-10 2018-02-15 浜松ホトニクス株式会社 発光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704343B2 (en) * 2002-07-18 2004-03-09 Finisar Corporation High power single mode vertical cavity surface emitting laser
JP5138898B2 (ja) * 2006-03-31 2013-02-06 国立大学法人京都大学 2次元フォトニック結晶面発光レーザ光源
JP4110181B2 (ja) * 2006-09-01 2008-07-02 キヤノン株式会社 半導体レーザ装置
GB0904948D0 (en) 2009-03-23 2009-05-06 Monitor Coatings Ltd Compact HVOF system
JP5333133B2 (ja) 2009-06-19 2013-11-06 住友電気工業株式会社 Iii族窒化物半導体レーザダイオード
JP5047258B2 (ja) * 2009-12-09 2012-10-10 キヤノン株式会社 二次元フォトニック結晶面発光レーザ
CN104380546B (zh) * 2012-07-06 2017-02-22 松下知识产权经营株式会社 半导体发光元件
US9614352B2 (en) * 2013-03-07 2017-04-04 Hamamatsu Photonics K.K. Laser element and laser device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019277A (ja) 2005-07-07 2007-01-25 Rohm Co Ltd 半導体発光素子
JP2014027264A (ja) 2012-06-22 2014-02-06 Canon Inc 面発光レーザ
WO2017191320A1 (en) 2016-05-06 2017-11-09 The University Court Of The University Of Glasgow Laser device and method for its operation
WO2018030523A1 (ja) 2016-08-10 2018-02-15 浜松ホトニクス株式会社 発光装置

Also Published As

Publication number Publication date
WO2019244943A1 (ja) 2019-12-26
CN112335145A (zh) 2021-02-05
JP2019220574A (ja) 2019-12-26
DE112019003083T5 (de) 2021-04-29
US20210249841A1 (en) 2021-08-12
US11990730B2 (en) 2024-05-21
CN112335145B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
JP7125867B2 (ja) 発光素子
JP7219552B2 (ja) 発光デバイス
JP6978868B2 (ja) 半導体発光素子およびその製造方法
JP7245169B2 (ja) 発光装置およびその製造方法
US10734786B2 (en) Semiconductor light emitting element and light emitting device including same
WO2018030523A1 (ja) 発光装置
JP6747922B2 (ja) 半導体発光素子及び発光装置
JP7316285B2 (ja) 発光装置
CN112272906B (zh) 发光元件
JP7227060B2 (ja) 半導体発光素子
JP7109179B2 (ja) 発光装置
JP7125865B2 (ja) 発光装置
JP7241694B2 (ja) 発光装置およびその製造方法
JP6925249B2 (ja) 発光装置
WO2022224591A1 (ja) 面発光レーザ素子
WO2023021803A1 (ja) 位相変調層の設計方法、及び、発光素子の製造方法
WO2022071330A1 (ja) 半導体レーザ素子
JP7015684B2 (ja) 位相変調層設計方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7125867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150