JP7078525B2 - Method for predicting stress tolerance of thin film transistors - Google Patents

Method for predicting stress tolerance of thin film transistors Download PDF

Info

Publication number
JP7078525B2
JP7078525B2 JP2018226528A JP2018226528A JP7078525B2 JP 7078525 B2 JP7078525 B2 JP 7078525B2 JP 2018226528 A JP2018226528 A JP 2018226528A JP 2018226528 A JP2018226528 A JP 2018226528A JP 7078525 B2 JP7078525 B2 JP 7078525B2
Authority
JP
Japan
Prior art keywords
thin film
δvth
oxide semiconductor
microwave
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018226528A
Other languages
Japanese (ja)
Other versions
JP2020092116A (en
Inventor
智弥 岸
和志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018226528A priority Critical patent/JP7078525B2/en
Publication of JP2020092116A publication Critical patent/JP2020092116A/en
Application granted granted Critical
Publication of JP7078525B2 publication Critical patent/JP7078525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT:Thin Film Transistor)のストレス耐性の予測方法に関する。 The present invention relates to a method for predicting stress tolerance of a thin film transistor (TFT) used in a display device such as a liquid crystal display or an organic EL display.

フラットパネルディスプレイ(flat pannel display:以下、「FPD」という)はテレビやスマートフォンなどの普及に伴い、高精細化、表示周波数の高速化、低消費電力化が要求されている。これに伴い、ディスプレイを駆動する回路に用いられるTFTには、高速応答性、すなわち半導体特性として高移動度が要求されている。 Flat panel displays (hereinafter referred to as "FPDs") are required to have higher definition, higher display frequency, and lower power consumption with the spread of televisions and smartphones. Along with this, the TFT used in the circuit for driving the display is required to have high-speed responsiveness, that is, high mobility as a semiconductor characteristic.

TFTを形成する半導体薄膜材料として、近年、アモルファス酸化物半導体薄膜(以下、「酸化物半導体薄膜」という)が注目されており、特にIn-Ga-Zn-O(以下、「IGZO」という)は有力な素材として研究されている。IGZOは従来用いられていたアモルファスシリコンよりも移動度が高く、高精細化が可能であると共に、リーク電流を抑えることができるためFPDの低消費電力化に寄与するなどの利点を有する。そのため、IGZOは大型・高解像度・高速駆動が要求される次世代ディスプレイなどへの適用が期待されている。 As a semiconductor thin film material forming a TFT, an amorphous oxide semiconductor thin film (hereinafter referred to as "oxide semiconductor thin film") has been attracting attention in recent years, and in particular, In-Ga-Zn-O 4 (hereinafter referred to as "IGZO"). Is being studied as a powerful material. IGZO has higher mobility than conventionally used amorphous silicon, can achieve high definition, and can suppress leakage current, so that it has advantages such as contributing to low power consumption of FPD. Therefore, IGZO is expected to be applied to next-generation displays that require large size, high resolution, and high-speed drive.

しかしながら、酸化物半導体薄膜はその多元性に起因する組成のずれ、あるいはアモルファスに起因する構造のゆらぎなどにより、膜中に電気的な欠陥が導入されることがある。特に酸化物半導体薄膜は、成膜工程で生じる格子欠陥や膜中の水素に起因して、TFT特性を支配するキャリア濃度が大きく変化したり、その後の熱処理に起因して電子状態が変化し、TFTの品質に影響を及ぼしたりすることが知られている。そのため、膜質に起因する移動度のばらつきや、光照射下における負バイアスストレスによってストレス印加前後のしきい値電圧(Vth:Threshold Voltage)がシフトし、スイッチング特性が変化するなどTFT特性への影響が問題となっている。例えばFPDに組み込まれたIGZOを用いたTFTは、使用中に晒される光や待機中の印加電圧によるストレスによってスイッチング特性が劣化することが問題となっている。また、OLED(Organic Light Emitting Diode)を用いたFPDにおいては、OLEDを発光させる正方向の駆動電圧の影響で、Vthがシフトすることが問題となっている。TFT特性は酸化物半導体薄膜の電子状態に起因するため、ストレスによるスイッチング特性の劣化も酸化物半導体薄膜の電子状態の変化に起因すると考えられる。 However, the oxide semiconductor thin film may have electrical defects introduced into the film due to compositional deviation due to its pluralism or structural fluctuation due to amorphous. In particular, in oxide semiconductor thin films, the carrier concentration that governs the TFT characteristics changes significantly due to lattice defects generated in the film formation process and hydrogen in the film, and the electronic state changes due to the subsequent heat treatment. It is known to affect the quality of TFTs. Therefore, the threshold voltage ( Vth : Thrashold Voltage) before and after stress application shifts due to the variation in mobility due to the film quality and the negative bias stress under light irradiation, and the switching characteristics change, which affects the TFT characteristics. Is a problem. For example, a TFT using IGZO incorporated in an FPD has a problem that its switching characteristics deteriorate due to stress caused by light exposed during use and applied voltage during standby. Further, in an FPD using an OLED (Organic Light Emitting Diode), there is a problem that Vth shifts due to the influence of a positive drive voltage that causes the OLED to emit light. Since the TFT characteristics are caused by the electronic state of the oxide semiconductor thin film, it is considered that the deterioration of the switching characteristics due to stress is also caused by the change in the electronic state of the oxide semiconductor thin film.

したがって酸化物半導体薄膜の製造工程においては、酸化物半導体薄膜中の電子状態を把握すると共に、製造プロセスが電子状態に与える影響について評価し、その結果をフィードバックして製造条件を調整してTFTの品質管理を行うことが、生産性向上の観点からは重要となる。 Therefore, in the process of manufacturing an oxide semiconductor thin film, the electronic state in the oxide semiconductor thin film is grasped, the influence of the manufacturing process on the electronic state is evaluated, and the result is fed back to adjust the manufacturing conditions of the TFT. Quality control is important from the viewpoint of improving productivity.

スイッチング特性に影響を及ぼすしきい値電圧の変化の差ΔVth(以下、「しきい値シフトΔVth」ということがある)を測定する試験方法として、待機状態のTFTに負のゲート電圧(負のバイアス)が印加されると共に、バックライトの迷光による光照射を連続的に受ける状態を模擬した加速試験であるLNBTS(Light Negative Bias Temperature Stress)試験が採用されている。また、待機状態のTFTに正のゲート電圧(正のバイアス)が印加された状態を模擬した加速試験として、PBTS(Positive Bias Temperature Stress)試験が採用されている。LNBTS試験やPBTS試験はストレス印加前後のしきい値電圧の変化量を測定するものであり、該試験結果に基づいて算出される、しきい値シフトΔVthが小さいほど、ストレス耐性に優れており、実用上優れたスイッチング特性を有すると評価できる。LNBTS試験やPBTS試験は信頼性の高い評価手法として汎用されているが、これら試験を行うためには実際に電極付けしたTFTを作製する必要があり、時間とコストを要するため、より簡便に、かつ正確にストレス耐性を評価できる手法が望まれていた。 As a test method for measuring the difference ΔV th (hereinafter, sometimes referred to as “threshold shift ΔV th ”) of the change in the threshold voltage that affects the switching characteristics, a negative gate voltage (negative) is applied to the TFT in the standby state. The LNBTS (Light Negative Bias Voltage Threshold) test, which is an acceleration test simulating a state in which light irradiation by the stray light of the backlight is continuously applied while the bias) is applied, is adopted. Further, a PBTS (Positive Bias Temperature Stress) test is adopted as an acceleration test simulating a state in which a positive gate voltage (positive bias) is applied to a TFT in a standby state. The LNBTS test and PBTS test measure the amount of change in the threshold voltage before and after stress is applied, and the smaller the threshold shift ΔV th calculated based on the test results, the better the stress tolerance. , It can be evaluated that it has excellent switching characteristics in practice. The LNBTS test and the PBTS test are widely used as highly reliable evaluation methods, but in order to perform these tests, it is necessary to actually manufacture a TFT with electrodes, which requires time and cost, so that it is easier to use. Moreover, a method capable of accurately evaluating stress tolerance has been desired.

これに対して、電極付けすることなく、非接触式方法で酸化物半導体薄膜のストレス耐性を評価する方法として、例えば特許文献1及び特許文献2にマイクロ波光導電減衰法(Microwave Photoconductivity Decay Method:μ-PCD法)が視されている。このμ-PCD法は、酸化物半導体薄膜に励起光とマイクロ波とを照射した際に、励起光の照射により、マイクロ波の酸化物半導体薄膜からの反射波が変化することを利用する方法である。そして、特許文献1では励起光の照射停止後1μs程度に見られる遅いマイクロ波の反射強度の経時変化からライフタイム値を求め、ストレス耐性を評価している。また、特許文献2では、励起光の照射停止後、経過時間毎にマイクロ波の反射率を測定して経過時間と反射率との積を計算し、この積の値が最大となる時定数からストレス耐性を評価している。 On the other hand, as a method for evaluating the stress resistance of an oxide semiconductor thin film by a non-contact method without attaching an electrode, for example, Patent Document 1 and Patent Document 2 describe a microwave photoconductivity attenuation method (μ). -PCD method) is being viewed. This μ-PCD method is a method that utilizes the fact that when an oxide semiconductor thin film is irradiated with excitation light and microwaves, the reflected wave of the microwave from the oxide semiconductor thin film changes due to the irradiation of the excitation light. be. Then, in Patent Document 1, the lifetime value is obtained from the time-dependent change in the reflection intensity of the slow microwave wave observed in about 1 μs after the irradiation of the excitation light is stopped, and the stress tolerance is evaluated. Further, in Patent Document 2, after the irradiation of the excitation light is stopped, the reflectance of the microwave is measured for each elapsed time, the product of the elapsed time and the reflectance is calculated, and the time constant at which the value of this product becomes the maximum is used. Evaluating stress tolerance.

特許第6152348号公報Japanese Patent No. 6152348 特許第6250855号公報Japanese Patent No. 6250855

ところで、TFTの一般的な製造方法では、例えば図1に示すように、ゲート電極を形成した後に酸化物半導体薄膜を成膜し、その後にプレアニール、保護膜の成膜及びパターニング、ソース/ドレイン電極の成膜及びパターニング、保護膜の成膜、コンタクトホールエッチング、ポストアニール等の各工程を経る。この一連の工程中、酸化物半導体薄膜は様々な加工条件に曝され、その特性も様々に変化する。特に、熱処理を伴うプレアニール、保護膜の成膜、ポストアニール等では、酸化物半導体薄膜の特性の変化に大きく影響する。 By the way, in a general method for manufacturing a TFT, for example, as shown in FIG. 1, an oxide semiconductor thin film is formed after forming a gate electrode, followed by pre-annealing, film formation and patterning of a protective film, and a source / drain electrode. It goes through each process of film formation and patterning, film formation of protective film, contact hole etching, post-annealing, etc. During this series of steps, the oxide semiconductor thin film is exposed to various processing conditions, and its characteristics also change in various ways. In particular, pre-annealing with heat treatment, film formation of a protective film, post-annealing, etc. have a great influence on the change in the characteristics of the oxide semiconductor thin film.

しかしながら、特許文献1及び特許文献2では、μ-PCD法による耐ストレス法の評価を、酸化物半導体薄膜を成膜した後に、何れかの工程で行っている。また、μ-PCD法により幾つかのパラメータを求めているが、個別のパラメータでの評価であり、パラメータ同士を組み合わせて評価することは行われていない。そのため、ある工程での個々のパラメータによる評価が、他の工程に反映されているとは言い難く、ΔVthの予測の正確性が不十分であるおそれがある。 However, in Patent Document 1 and Patent Document 2, the stress resistance method by the μ-PCD method is evaluated by any of the steps after the oxide semiconductor thin film is formed. Further, although some parameters are obtained by the μ-PCD method, the evaluation is performed by individual parameters, and the evaluation is not performed by combining the parameters. Therefore, it cannot be said that the evaluation by individual parameters in one process is reflected in other processes, and the accuracy of the prediction of ΔVth may be insufficient.

本発明は上記の事情に鑑みてなされたものであり、μ-PCD法によるΔVthの予測を、より正確に行うことを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to more accurately predict ΔVth by the μ-PCD method.

上記課題を解決し得た本発明における薄膜トランジスタのストレス耐性の予測方法は、
マイクロ波光電減衰法により励起光とマイクロ波とを酸化物半導体薄膜に照射し、前記励起光の照射により変化する前記マイクロ波の反射強度を測定し、前記酸化物半導体薄膜を備える薄膜トランジスタのストレス耐性を予測す方法であって、
薄膜トランジスタ作製時の、前記酸化物半導体薄膜を成膜する成膜工程、及び前記成膜工程の後工程において、前記マイクロ波光電減衰法による測定を行って工程毎に各種パラメータを求める第1工程と、
作製した前記薄膜トランジスタの光照射・バイアス電圧の印加前後におけるしきい値電圧の変動ΔVthを測定する第2工程と、
前記第1工程で得た工程毎の各種パラメータ説明変数とし、前記第2工程で得た前記ΔVthを目的変数とする重回帰分析を行い、回帰式を求める第3工程と
新たな酸化物半導体薄膜を成膜した際に、前記マイクロ波光電減衰法により前記回帰式と同種のパラメータを求め、前記回帰式から前記新たな酸化物半導体被膜を備える薄膜トランジスタのΔVthを予測する予測工程とを備え、
前記第1工程で得る各種パラメータに、熱処理を伴う各工程における下記(a)(b)(c)のパラメータを少なくとも含めることを特徴とする。
(a)前記反射強度のピーク値
(b)励起光の照射停止1μs程度後におけるライフタイム値
(c)励起光の照射停止後、経過時間毎に前記マイクロ波の反射強度を測定した値を信号値としたとき、下記式で算出されるE値が最大となる時定数
E = 信号値× 信号値の経過時間
The method for predicting the stress tolerance of a thin film transistor in the present invention that has solved the above problems is
The oxide semiconductor thin film is irradiated with the excitation light and the microwave by the microwave photoelectric attenuation method, and the reflection intensity of the microwave changed by the irradiation of the excitation light is measured to measure the stress of the thin film including the oxide semiconductor thin film. It ’s a way to predict tolerance,
In the film forming step of forming the oxide semiconductor thin film at the time of manufacturing the thin film transistor and the first step of obtaining various parameters for each step by measuring by the microwave photoelectric attenuation method in the post-step of the film forming step. ,
The second step of measuring the fluctuation ΔVth of the threshold voltage before and after applying the light irradiation / bias voltage of the manufactured thin film transistor, and
The third step of performing multiple regression analysis using the various parameters obtained in the first step as explanatory variables and the ΔVth obtained in the second step as the objective variable to obtain a regression equation, and the third step.
When a new oxide semiconductor thin film is formed, the parameters of the same type as the regression equation are obtained by the microwave photoelectric attenuation method, and the ΔVth of the thin film transistor having the new oxide semiconductor coating is predicted from the regression equation. With a process,
The various parameters obtained in the first step are characterized by including at least the following parameters (a), (b) and (c) in each step accompanied by heat treatment.
(A) Peak value of the reflection intensity
(B) Lifetime value after about 1 μs of excitation light irradiation stop
(C) Time constant at which the E value calculated by the following formula becomes the maximum when the value obtained by measuring the reflection intensity of the microwave for each elapsed time after the irradiation of the excitation light is stopped is used as the signal value.
E = signal value x elapsed time of signal value

特に、In、Ga、Zn及びSnよりなる群から選ばれる少なくとも1種の元素を含む前記酸化物半導体薄膜を備える薄膜トランジスタのストレス耐性の予測に有効である。 In particular, it is effective in predicting the stress tolerance of a thin film transistor including the oxide semiconductor thin film containing at least one element selected from the group consisting of In, Ga, Zn and Sn.

本発明では、酸化物半導体薄膜を成膜工程、及び成膜工程後の工程においてμ-PCD法による測定を行い、2工程以上におけるパラメータを組み合わせて説明変数とし、実際に測定したTFTのΔVthとを目的変数とする重回帰分析を行って回帰式を求めておく。そして、新たな酸化物半導体薄膜を成膜した際に、回帰式に用いられている同種のパラメータを測定して、新たな酸化物半導体薄膜を備えるTFTのΔVthを予測する。そのため、従来のように、単一の工程におけるμ-PCD法により得たパラメータに基づくTFTのΔVthの予測よりも、より正確な予測が可能になる。 In the present invention, the oxide semiconductor thin film is measured by the μ-PCD method in the film forming step and the step after the film forming step, and the parameters in two or more steps are combined into an explanatory variable, and the ΔVth of the actually measured TFT is used. The regression equation is obtained by performing multiple regression analysis with. Then, when a new oxide semiconductor thin film is formed, the same type of parameters used in the regression equation are measured to predict ΔVth of the TFT provided with the new oxide semiconductor thin film. Therefore, as in the conventional case, more accurate prediction than the prediction of ΔVth of the TFT based on the parameters obtained by the μ-PCD method in a single step becomes possible.

一般的なTFTの製造工程を示す工程図である。It is a process diagram which shows the manufacturing process of a general TFT. μ-PCD法により得られた、酸化物半導体薄膜のマイクロ波の反射強度の経時変化の一例を示すグラフである。It is a graph which shows an example of the time-dependent change of the reflection intensity of the microwave of the oxide semiconductor thin film obtained by the μ-PCD method. 実施例において作製したTFTを示す概略断面構造図である。It is a schematic cross-sectional structure diagram which shows the TFT produced in an Example. ポストアニールのパラメータCのみからの予測ΔVthと、実測ΔVthとの相関を示すグラフである。It is a graph which shows the correlation between the predicted ΔVth from only the parameter C of post-annealing, and the measured ΔVth. ソース電極及びドレイン電極のパターニング、最終保護膜の成膜、コンタクトホールエッチング、ポストアニールの各工程のパラメータCを組み合わせたときの予測ΔVthと、実測ΔVthとの相関を示すグラフである。It is a graph which shows the correlation between the predicted ΔVth and the actually measured ΔVth when the parameter C of each process of the patterning of the source electrode and the drain electrode, the film formation of the final protective film, the contact hole etching, and the post-annealing is combined. ポストアニールのパラメータC、ピーク値、マイクロ波の反射強度の経時曲線における1/eでの傾き及び1/eでの傾きを組み合わせたときの予測ΔVthと、実測ΔVthとの相関を示すグラフである。A graph showing the correlation between the predicted ΔVth and the measured ΔVth when the slope at 1 / e and the slope at 1 / e2 in the time curve of the post-annealing parameter C, the peak value, and the microwave reflection intensity are combined. be. ソース電極及びドレイン電極のパターニング、最終保護膜の成膜、コンタクトホールエッチング、ポストアニールの各工程のパラメータC、ピーク値、マイクロ波の反射強度の経時曲線における1/eでの傾き及び1/eでの傾きを組み合わせたときの予測ΔVthと、実測ΔVthとの相関を示すグラフである。Parameter C of each step of patterning of source electrode and drain electrode, film formation of final protective film, contact hole etching, post-annealing, peak value, slope at 1 / e and 1 / e in the time curve of the reflection intensity of microwaves. It is a graph which shows the correlation between the predicted ΔVth and the actually measured ΔVth when the slopes in 2 are combined.

以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. The present invention is not limited to the embodiments described below.

本発明では、先ず、酸化物半導体薄膜を備えるTFTを実際に作製し、酸化物半導体薄膜の成膜工程、並びに成膜工程の後工程において、マイクロ波光電減衰法(μ-PCD法)により各種のパラメータを求める。それとともに、作製したTFTについて、光照射・バイアス電圧印加前後におけるしきい値の変動(ΔVth)を測定する。そして、2工程以上のパラメータを説明変数とし、実測ΔVthを目的変数とする重回帰分析を行って、その回帰式を算出しておく。 In the present invention, first, a TFT provided with an oxide semiconductor thin film is actually manufactured, and various types are used by the microwave photoelectric attenuation method (μ-PCD method) in the film forming step of the oxide semiconductor thin film and the post-step of the film forming step. Find the parameters of. At the same time, the fluctuation (ΔVth) of the threshold value before and after the light irradiation and the application of the bias voltage is measured for the manufactured TFT. Then, multiple regression analysis is performed with the parameters of two or more steps as explanatory variables and the measured ΔVth as the objective variable, and the regression equation is calculated.

TFTを作製する場合、例えば図1に示す工程図のように、先ず、ガラス基板の上に、ゲート電極及びゲート絶縁膜を順次形成した後、酸化物半導体薄膜を成膜し、パターニングを行って半導体層を形成する。 When manufacturing a TFT, for example, as shown in the process diagram shown in FIG. 1, first, a gate electrode and a gate insulating film are sequentially formed on a glass substrate, then an oxide semiconductor thin film is formed and patterning is performed. Form a semiconductor layer.

半導体層を形成した後、後工程として、先ず、プレアニールを行い、保護膜(ESL)を成膜してパターニングを行う。次いで、ソース電極、ドレイン電極を成膜し、パターニング(SD)を行う。そして、最終保護膜(PV)を成膜し、パターニングした後、コンタクトホールをエッチングにより形成し、ポストアニール(PA)してTFTを得る。 After forming the semiconductor layer, as a post-process, first, pre-annealing is performed, a protective film (ESL) is formed, and patterning is performed. Next, a source electrode and a drain electrode are formed into a film, and patterning (SD) is performed. Then, after forming a final protective film (PV) and patterning it, a contact hole is formed by etching and post-annealed (PA) to obtain a TFT.

本発明では、成膜工程及び後工程の工程毎にμ-PCD法による測定を行い、その測定値から各種パラメータを求める。μ-PCD法では、励起光の照射を停止した後に、酸化物半導体薄膜のマイクロ波の反射強度を測定し、反射強度の経時変化から各種パラメータを求める。図2に、μ-PCD法により得られた酸化物半導体薄膜のマイクロ波の反射強度の経時変化の代表例を示す。励起光を照射すると、酸化物半導体薄膜のマイクロ波の反射強度が急激に上昇してピーク値を示すが、励起光の照射を停止した後には、反射強度が時間の経過とともに徐々に減衰する減衰曲線を示す。 In the present invention, measurement is performed by the μ-PCD method for each step of the film forming step and the post-step, and various parameters are obtained from the measured values. In the μ-PCD method, after the irradiation of the excitation light is stopped, the reflection intensity of the microwave of the oxide semiconductor thin film is measured, and various parameters are obtained from the change with time of the reflection intensity. FIG. 2 shows a representative example of the change over time in the reflected intensity of microwaves in the oxide semiconductor thin film obtained by the μ-PCD method. When the excitation light is irradiated, the reflection intensity of the microwave of the oxide semiconductor thin film rises sharply and shows a peak value, but after the irradiation of the excitation light is stopped, the reflection intensity gradually attenuates with the passage of time. Shows a curve.

なお、μ-PCD法に基づく測定装置としては、例えば特開2012-33857号公報の図1に示す測定装置を用いることができる。装置の詳細は、同公報に記載されており、ここでは省略する。 As the measuring device based on the μ-PCD method, for example, the measuring device shown in FIG. 1 of JP2012-33857 can be used. Details of the apparatus are described in the same publication, and are omitted here.

そして、特許文献1では、励起光の照射停止1μs程度後の反射強度を経時的に測定し、測定結果を基に下記に示す各ライフタイム値を算出している。
(A)マイクロ波の反射強度が最大値の1/eから最大値の1/eになるまでの反射強度を対数変換した傾きの逆数
(B)マイクロ波の反射強度(y)を下記式(1)で表し、パラメータフィッティングしたときのライフタイム値τ
y=nexp(-t/τ)+nexp(-t/τ) ・・・(1)
(式中、tは経過時間(秒)、n及びnは定数、τは短い時定数をもつキャリアのライフタイム、τは長い時定数をもつキャリアのライフタイム値である。)
(C)マイクロ波の反射強度(y)を下記式(2)で表し、パラメータフィッティングしたときのライフタイム値τ
y=nexp(-t/τ)+nexp(-t/τβ ・・・(2)
(式中、tは経過時間(秒)、n及びnは定数、τは短い時定数をもつキャリアのライフタイム値、τは長い時定数をもつキャリアのライフタイム値、βはリラクゼーションファクターである。)
(D)マイクロ波の反射強度(y)を下記式(3)で表し、パラメータフィッティングしたときのライフタイム値(パラメータB)
y=A×exp(-x/B) ・・・(3)
(式中、xは経過時間である。)
(E)マイクロ波の反射強度(y)を下記式(4)で表し、パラメータフィッティングしたときのライフタイム値(パラメータC)
y=A×x ・・・(4)
(式中、xは経過時間である。)
Then, in Patent Document 1, the reflection intensity after about 1 μs of irradiation stop of the excitation light is measured over time, and each lifetime value shown below is calculated based on the measurement result.
(A) The reciprocal of the slope obtained by logarithmically converting the reflection intensity from the maximum value 1 / e to the maximum value 1 / e2 (B) The reflection intensity (y) of the microwave is expressed by the following equation. Represented by (1), lifetime value τ 2 when parameter fitting
y = n 1 exp (-t / τ 1 ) + n 2 exp (-t / τ 2 ) ... (1)
(In the equation, t is the elapsed time (seconds), n 1 and n 2 are constants, τ 1 is the lifetime of the carrier with a short time constant, and τ 2 is the lifetime value of the carrier with a long time constant.)
(C) The reflection intensity (y) of the microwave is expressed by the following equation (2), and the lifetime value τ 2 when parameter fitting is performed.
y = n 1 exp (-t / τ 1 ) + n 2 exp (-t / τ 2 ) β ... (2)
(In the equation, t is the elapsed time (seconds), n 1 and n 2 are constants, τ 1 is the lifetime value of the carrier with a short time constant, τ 2 is the lifetime value of the carrier with a long time constant, β is It is a relaxation factor.)
(D) The reflection intensity (y) of the microwave is represented by the following equation (3), and the lifetime value (parameter B) when parameter fitting is performed.
y = A × exp (-x / B) ... (3)
(In the formula, x is the elapsed time.)
(E) The reflection intensity (y) of the microwave is represented by the following equation (4), and the lifetime value (parameter C) when parameter fitting is performed.
y = A × x c ... (4)
(In the formula, x is the elapsed time.)

また、特許文献2では、励起光の照射停止後、経過時間毎にマイクロ波の反射強度を測定し、下記式で算出される値(E値)が最大となる時定数を採用している。なお、式中の信号値は各経過時間での反射強度である。
E=信号値×信号値の経過時間
Further, in Patent Document 2, after the irradiation of the excitation light is stopped, the reflection intensity of the microwave is measured every elapsed time, and a time constant that maximizes the value (E value) calculated by the following formula is adopted. The signal value in the equation is the reflection intensity at each elapsed time.
E = signal value x elapsed time of signal value

本発明でも、特許文献1の各ライフタイム値、特許文献2の時定数をパラメータとして採用することができる。 Also in the present invention, each lifetime value of Patent Document 1 and the time constant of Patent Document 2 can be adopted as parameters.

また、上記(E)の(4)式において、べき指数C(以下「パラメータC」)をパラメータに採用することもできる。 Further, in the above equation (4) of (E), the exponent C (hereinafter referred to as “parameter C”) can be adopted as a parameter.

ところで、特許文献1や特許文献2では、μ-PCD法による測定を、酸化物半導体薄膜の成膜後の何れかの工程で行い、得られるTFTのΔVthを予測している。しかしながら、後述する実施例に示すように、最終工程であるポストアニール後にμ-PCD法によりパラメータCを求め、実際に作製したTFTのΔVth(実測ΔVth)との回帰分析を行い、回帰式に基づき予測したTFTのΔVth(予測ΔVth)と、実測ΔVthとの相関を求めたところ、相関が十分ではないことが判明した。 By the way, in Patent Document 1 and Patent Document 2, the measurement by the μ-PCD method is performed in any step after the film formation of the oxide semiconductor thin film, and the ΔVth of the obtained TFT is predicted. However, as shown in Examples described later, after post-annealing, which is the final step, parameter C is obtained by the μ-PCD method, regression analysis is performed with ΔVth (actual measurement ΔVth) of the actually manufactured TFT, and based on the regression equation. When the correlation between the predicted ΔVth (predicted ΔVth) of the TFT and the actually measured ΔVth was obtained, it was found that the correlation was not sufficient.

そこで、同じくポストアニール後のマイクロ波の反射強度から、ピーク値と、励起光の照射停止1μs程度後の領域においてピーク値の1/eとなるときの曲線の傾きを求め、実測ΔVthとの重回帰分析を行って回帰式を求め、回帰式に基づく予測ΔVthと実測ΔVthとの相関を求めたところ、パラメータCのみからの予測ΔVthよりも相関が高まることが判明した。 Therefore, similarly, from the reflection intensity of the microwave after post-annealing, the peak value and the slope of the curve when it becomes 1 / e of the peak value in the region about 1 μs after the irradiation stop of the excitation light are obtained, and the weight with the measured ΔVth. When the regression equation was obtained by performing regression analysis and the correlation between the predicted ΔVth based on the regression equation and the actually measured ΔVth was obtained, it was found that the correlation was higher than the predicted ΔVth from the parameter C alone.

更に、ポストアニールだけでなく、他の工程(例えば、ソース電極及びドレイン電極のパターニング、最終保護膜の成膜、コンタクトホールエッチング)においてもμ-PCD法によるパラメータC、ピーク値、1/eでの傾き及び1/eでの傾きを求め、実測ΔVthとの重回帰分析を行って回帰式を求め、その回帰式に基づく予測ΔVthと実測捏Vthとの相関を求めたところ、ポストアニールのみからの予測ΔVthよりも相関が高まることが判明した。 Furthermore, not only in post-annealing, but also in other steps (for example, patterning of source and drain electrodes, film formation of final protective film, contact hole etching) with parameter C, peak value, 1 / e by the μ-PCD method. The slope of and the slope at 1 / e 2 were obtained, and the regression equation was obtained by performing multiple regression analysis with the measured ΔVth. It was found that the correlation was higher than the prediction ΔVth from.

このように、複数の工程でのμ-PCD法による各種パラメータを組み合わせることにより、TFTのΔVthについて、より正確な予測が可能になる。 In this way, by combining various parameters by the μ-PCD method in a plurality of steps, more accurate prediction of ΔVth of the TFT becomes possible.

したがって、複数の工程で得られたパラメータを説明変数とし、TFTの実測ΔVthを目的変数とする重回帰分析を行って得た回帰式に基づき、新たな酸化物半導体薄膜を成膜した際に回帰式と同種のパラメータを用いてΔVthを予測することにより、より正確な予測が可能になる。 Therefore, regression is performed when a new oxide semiconductor thin film is formed based on the regression equation obtained by performing multiple regression analysis using the parameters obtained in a plurality of steps as explanatory variables and the measured ΔVth of the TFT as the objective variable. By predicting ΔVth using the same parameters as the equation, more accurate prediction becomes possible.

なお、パラメータの選択に当たり、工程の全てでμ-PCD法による測定を行うことが好ましいが、熱処理を伴う工程であるプレアニール、保護膜の成膜や最終保護膜の成膜、ポストアニールの各工程でμ-PCD法により測定することが好ましい。酸化物半導体薄膜の特性は、特に熱処理により大きく変化するため、熱処理を伴う工程でのパラメータを採用することが好ましい。 In selecting the parameters, it is preferable to perform measurement by the μ-PCD method in all the steps, but each step of pre-annealing, which is a step involving heat treatment, film formation of a protective film, film formation of a final protective film, and post-annealing. It is preferable to measure by the μ-PCD method. Since the characteristics of the oxide semiconductor thin film change significantly due to the heat treatment, it is preferable to adopt the parameters in the process involving the heat treatment.

本発明は、このような知見に基づくものであり、以下の実施例で更に説明する。 The present invention is based on such findings and will be further described in the following examples.

(TFTの作製)
図3は、作製したエッチストッパー(ESL)型TFTを示す概略断面構造図である。先ず、6インチ×厚さ0.7mmのガラス基板20aの上に、ゲート電極42としてMo薄膜を100nm、SiOゲート絶縁膜43を膜厚200nmで順次成膜した。ゲート電極42は、純Moのスパッタリングターゲットを用いてDCスパッタ法により形成した。スパッタリング条件は、基板温度:室温、ガス圧:2mTorrとした。また、ゲート絶縁膜43は、プラズマCVD法を用い、キャリアガス:SiHとNOの混合ガスをNO=100sccm、SiH=4sccm、N=36sccm、成膜パワー:200Wまたは300W、成膜温度:320℃とした。
(Manufacturing of TFT)
FIG. 3 is a schematic cross-sectional structural view showing the manufactured etch stopper (ESL) type TFT. First, a Mo thin film was sequentially formed as a gate electrode 42 on a glass substrate 20a having a thickness of 6 inches and a thickness of 0.7 mm, and a SiO 2 gate insulating film 43 was sequentially formed with a film thickness of 200 nm. The gate electrode 42 was formed by a DC sputtering method using a pure Mo sputtering target. The sputtering conditions were substrate temperature: room temperature and gas pressure: 2 mTorr. Further, the gate insulating film 43 uses a plasma CVD method, and a carrier gas: a mixed gas of SiH 4 and N 2 O is mixed with N 2 O = 100 sccm, SiH 4 = 4 sccm, N 2 = 36 sccm, and a film forming power: 200 W or 300 W. The film forming temperature was 320 ° C.

次に、酸化物半導体薄膜20bとしてIGZOをスパッタリング法で成膜した。成膜条件は下記の通りである。
・スパッタリング装置:アルバック社製「CS-200」
・スパッタリングターゲットの組成:InGaZnO[In:Ga:Zn=1:1:1(原子比)]
・基板温度:室温
・酸化物半導体薄膜の膜厚:40nm
・ガス圧:1mTorr
・酸素添加量(体積比):O/(Ar+O)=0%~60%
Next, IGZO was formed as an oxide semiconductor thin film 20b by a sputtering method. The film forming conditions are as follows.
-Sputtering device: "CS-200" manufactured by ULVAC, Inc.
-Sputtering target composition: InGaZnO 4 [In: Ga: Zn = 1: 1: 1 (atomic ratio)]
・ Substrate temperature: Room temperature ・ Film thickness of oxide semiconductor thin film: 40 nm
・ Gas pressure: 1mTorr
-Oxygen addition amount (volume ratio): O 2 / (Ar + O 2 ) = 0% to 60%

その後、フォトリソグラフィ及びウェットエッチングによりパターニングを行った。ウェットエッチャント液としては、関東化学製「ITO-07N」を使用した。 Then, patterning was performed by photolithography and wet etching. As the wet etchant liquid, "ITO-07N" manufactured by Kanto Chemical Co., Inc. was used.

成膜後、先ず、大気雰囲気、大気圧下で350℃~600℃、1時間の条件でプレアニール処理を行った。 After the film formation, first, a pre-annealing treatment was performed under the conditions of an atmospheric atmosphere and an atmospheric pressure of 350 ° C. to 600 ° C. for 1 hour.

次に、酸化物半導体薄膜20b上に保護膜45としてエッチストップ層を、下記条件で形成した。
・ガス圧:75Pa~250Pa
・成膜パワー:50W~250W
・成膜温度:160℃~230℃
・膜厚:100nm
・原料ガス: NO=25sccm~250sccm、SiH/N=1/9sccm~10/90sccm、SiH/NO比=0.024~0.12
Next, an etch stop layer was formed as a protective film 45 on the oxide semiconductor thin film 20b under the following conditions.
・ Gas pressure: 75Pa-250Pa
-Film film power: 50W to 250W
-Film film temperature: 160 ° C to 230 ° C
-Film thickness: 100 nm
-Raw material gas: N 2 O = 25 sccm to 250 sccm, SiH 4 / N 2 = 1/9 sccm to 10/90 sccm, SiH 4 / N 2 O ratio = 0.024 to 0.12

保護膜45を形成した後、フォトリソグラフィ及びウェットエッチングによりパターニングを行った。ウェットエッチャント液としては、関東化学製「ITO-07N」を使用した。 After forming the protective film 45, patterning was performed by photolithography and wet etching. As the wet etchant liquid, "ITO-07N" manufactured by Kanto Chemical Co., Inc. was used.

次に、純Moを使用し、DCスパッタリング法により膜厚100nmとなるように成膜した後、パターニングを行い、ソース電極46a、ドレイン電極46bを形成した。純Mo膜の成膜方法及びパターニング方法は、前述したゲート電極の場合と同じであり、TFTのチャネル長を10μm、チャネル幅を200μmとした。 Next, using pure Mo, a film was formed so as to have a film thickness of 100 nm by a DC sputtering method, and then patterning was performed to form a source electrode 46a and a drain electrode 46b. The film forming method and the patterning method of the pure Mo film were the same as those of the above-mentioned gate electrode, and the channel length of the TFT was 10 μm and the channel width was 200 μm.

その後、最終保護膜47として膜厚200nmのSiOと膜厚200nmのSiNの積層膜を形成した。最終保護膜47は、サムコ製「PD-220NL」を用い、プラズマCVD法を用いて形成した。その際、NOガスによってプラズマ処理を行った後、SiO及びSiNを下記条件で順次形成した。SiOの形成には、SiH、N、NOの混合ガスを用い、SiNの形成にはSiH、N、NHの混合ガスを用いた。何れの場合も成膜パワーを100W、成膜温度を150℃とした。
(第1層):SiO
・キャリアガス:SiH/N=4/36sccm、NO=100sccm
・ガス圧:133Pa
・成膜パワー:100W
・成膜温度:150℃
(第2層):SiN
・キャリアガス:SiH=12.5sccm、N=297.5sccm、NH=6sccm
・ガス圧:133Pa
・成膜パワー:100W 成膜温度:150℃
Then, as the final protective film 47, a laminated film of SiO 2 having a film thickness of 200 nm and SiN having a film thickness of 200 nm was formed. The final protective film 47 was formed by using "PD-220NL" manufactured by SAMCO and using a plasma CVD method. At that time, after plasma treatment with N 2 O gas, SiO 2 and SiN were sequentially formed under the following conditions. A mixed gas of SiH 4 , N 2 , and N 2 O was used for forming SiO 2 , and a mixed gas of SiH 4 , N 2 , and NH 3 was used for forming SiN. In each case, the film forming power was 100 W and the film forming temperature was 150 ° C.
(First layer): SiO 2
-Carrier gas: SiH 4 / N 2 = 4/36 sccm, N 2 O = 100 sccm
・ Gas pressure: 133Pa
・ Film formation power: 100W
-Film film temperature: 150 ° C
(Second layer): SiN
-Carrier gas: SiH 4 = 12.5 sccm, N 2 = 297.5 sccm, NH 3 = 6 sccm
・ Gas pressure: 133Pa
・ Film formation power: 100W Film formation temperature: 150 ° C

次に、フォトリソグラフィ及びドライエッチングにより、最終保護膜47にトランジスタ特性評価用プローブのためのコンタクトホール48を形成し、ESL型TFTを得た。 Next, a contact hole 48 for a probe for evaluating transistor characteristics was formed in the final protective film 47 by photolithography and dry etching to obtain an ESL type TFT.

また、以下の手順でBCE型のTFTを得た。酸化物半導体層形成後、エッチストップ層を設けず、ソース電極、ドレイン電極を形成した。最終保護膜形成の内、第1層SiO層形成前後に大気雰囲気、窒素雰囲気又は水蒸気雰囲気で200℃~600℃1時間の条件で熱処理を行った。最後にESL型TFTと同様に第2層SiNを形成、コンタクトホールを形成した。 In addition, a BCE type TFT was obtained by the following procedure. After forming the oxide semiconductor layer, the source electrode and the drain electrode were formed without providing the etch stop layer. Of the final protective film formation, heat treatment was performed at 200 ° C. to 600 ° C. for 1 hour in an air atmosphere, a nitrogen atmosphere, or a water vapor atmosphere before and after the formation of the first layer SiO 2 layer. Finally, a second layer SiN was formed and a contact hole was formed in the same manner as the ESL type TFT.

コンタクトホールを形成した後、ポストアニールとして大気雰囲気又は窒素雰囲気中、大気圧下、200℃~300℃で30分の熱処理を行ってストレス耐性測定用TFT試料を作製した。 After forming the contact hole, a TFT sample for stress tolerance measurement was prepared by performing a heat treatment for 30 minutes at 200 ° C. to 300 ° C. under atmospheric pressure in an atmospheric atmosphere or a nitrogen atmosphere as post-annealing.

(ストレス耐性の測定)
実際のパネル駆動時のストレス環境を模擬して、ゲート電極に負バイアスをかけながら光を照射するストレス印加試験を行った。ストレス印加条件は、以下の通りである。なお、光の波長は、酸化物半導体のバンドギャップに近く、トランジスタ特性が変動し易い400nm程度とした。
・ゲート電圧:-20V
・基板温度:60℃
・光源:白色光源
・照度としてTFTに照射される光の強度:25,000NIT
・光照射装置:Yang電子製YSM-1410
・ストレス印加時間:2時間
(Measurement of stress tolerance)
A stress application test was conducted in which light was applied while applying a negative bias to the gate electrodes, simulating the stress environment during actual panel drive. The stress application conditions are as follows. The wavelength of the light was set to about 400 nm, which is close to the band gap of the oxide semiconductor and the transistor characteristics are liable to fluctuate.
・ Gate voltage: -20V
-Substrate temperature: 60 ° C
-Light source: White light source-Intensity of light applied to the TFT as illuminance: 25,000 NIT
-Light irradiation device: YSM-1410 manufactured by Yang Electronics
・ Stress application time: 2 hours

(予測ΔVthと実測ΔVthとの相関)
上記TFTの製造工程において、ソース電極及びドレイン電極のパターニング(SD)、最終保護膜の成膜(PV)、コンタクトホールエッチング(CO)及びポストアニール(PA)の各工程の後に、μ-PCD法によりマイクロ波の反射強度を測定し、各工程でのパラメータC、ピーク値、ピーク値の1/eとなる曲線の傾き、ピーク値の1/eとなる曲線の傾きを算出した。
(Correlation between predicted ΔVth and measured ΔVth)
In the above TFT manufacturing process, after each step of patterning the source electrode and drain electrode (SD), forming a final protective film (PV), contact hole etching (CO) and post-annealing (PA), the μ-PCD method is performed. The reflected intensity of the microwave was measured by the above method, and the slope of the curve that became 1 / e of the parameter C, the peak value, and the peak value in each step, and the slope of the curve that became 1 / e 2 of the peak value were calculated.

μ-PCD法は、下記条件で行った。
・レーザ波長:349nm(紫外光)
・レーザエネルギー:10μJ
・パルス幅:5ns
・ビーム径:1.5mmφ
・1測定におけるパルス数:256ショット
・装置:LTA-1610SP(K)(株式会社コベルコ科研製)
The μ-PCD method was performed under the following conditions.
-Laser wavelength: 349 nm (ultraviolet light)
・ Laser energy: 10μJ
・ Pulse width: 5ns
・ Beam diameter: 1.5 mmφ
・ Number of pulses in one measurement: 256 shots ・ Device: LTA-1610SP (K) (manufactured by Kobelco Kaken Co., Ltd.)

(1)PAのパラメータCのみからの予測ΔVthと、実測ΔVthとの相関
PAのパラメータCと、実測ΔVthとの重回帰分析を行い、その回帰式を求めた。回帰式は、下記の通りである。そして、この回帰式に基づく予測ΔVthを算出し、実測ΔVthとの関係を調べた。図4に、予測ΔVthと実測ΔVthとをプロットしたグラフを示す。
回帰式:C(PA)×-0.8984+(C(PA)-1.3)×2.631+4.859
(式中、C(PA)はPAのパラメータCである。)
(1) Correlation between the predicted ΔVth from the PA parameter C only and the measured ΔVth Multiple regression analysis was performed between the PA parameter C and the measured ΔVth, and the regression equation was obtained. The regression equation is as follows. Then, the prediction ΔVth based on this regression equation was calculated, and the relationship with the actually measured ΔVth was investigated. FIG. 4 shows a graph in which the predicted ΔVth and the measured ΔVth are plotted.
Regression equation: C (PA) × -0.8984 + (C (PA) -1.3) 2 × 2.631 + 4.859
(In the equation, C (PA) is the parameter C of PA.)

そして、予測ΔVthと実測ΔVthとの相関の程度を示すR値を求めると、0.028であった。 Then, the R2 value indicating the degree of correlation between the predicted ΔVth and the measured ΔVth was 0.028.

(2)SD、PV、CO、PAの各工程のパラメータCからの予測ΔVthと、実測ΔVthとの相関
PAの他に、SD、PV及びCOの各工程のパラメータCと、実測ΔVthとの重回帰分析を行い、その回帰式を求めた。回帰式は、下記の通りである。そして、この回帰式に基づく予測ΔVthを算出し、実測ΔVthとの関係を調べた。図5に、予測ΔVthと実測ΔVthとをプロットしたグラフを示す。
回帰式:C(PA)×-2.938+C(CO)×2.428+C(PV)×-0.6623+C(SD)×0.7456+5
(式中、C(PA)はPAのパラメータC、C(CO)はCOのパラメータC、C(PV)はPVのパラメータC、C(SD)はSDのパラメータCである。)
(2) Correlation between the predicted ΔVth from the parameter C of each process of SD, PV, CO, and PA and the measured ΔVth In addition to the PA, the weight of the parameter C of each process of SD, PV, and CO and the measured ΔVth. Regression analysis was performed and the regression equation was obtained. The regression equation is as follows. Then, the prediction ΔVth based on this regression equation was calculated, and the relationship with the actually measured ΔVth was investigated. FIG. 5 shows a graph in which the predicted ΔVth and the measured ΔVth are plotted.
Regression equation: C (PA) × -2.938 + C (CO) × 2.428 + C (PV) × -0.6623 + C (SD) × 0.7456 + 5
(In the equation, C (PA) is the parameter C of PA, C (CO) is the parameter C of CO, C (PV) is the parameter C of PV, and C (SD) is the parameter C of SD.)

そして、予測ΔVthと実測ΔVthとの相関の程度を示すR値を求めると、0.032であり、PAの他に、他工程のパラメータCを組み合わせることにより、相関が高まっている。 Then, the R2 value indicating the degree of correlation between the predicted ΔVth and the actually measured ΔVth is 0.032, and the correlation is enhanced by combining the parameter C of another process in addition to the PA.

(3)PAの(パラメータC、ピーク値、1/eでの傾き)からの予測ΔVthと実測ΔVthとの相関
PAのパラメータCの他に、マイクロ波の反射強度のピーク値と、励起光の停止1μs後の領域においてピーク値の1/eになるときの曲線の傾きを求め、これらの値と、実測ΔVthとの重回帰分析を行い、その回帰式を求めた。回帰式は、下記の通りである。そして、この回帰式に基づく予測ΔVthを算出し、実測ΔVthとの関係を調べた。図6に、予測ΔVthと実測ΔVthとをプロットしたグラフを示す。
回帰式: C(PA)×Peak(PA)×-0.002032+C(PA)/Log1/e(PA)×0.05898+C(PA)/Peak(PA)×-1240.9+(C(PA)-1.3)/Peak(PA)×1781.0+5.489
(式中、C(PA)はPAのパラメータC、Peak(PA)はPAのピーク値、Log1/e(PA)はPAの1/eとなる傾きの対数換算値である。)
(3) Correlation between the predicted ΔVth from the PA (parameter C, peak value, slope at 1 / e) and the measured ΔVth In addition to the PA parameter C, the peak value of the reflected intensity of the microwave and the excitation light The slope of the curve when it became 1 / e of the peak value in the region 1 μs after the stop was obtained, and a multiple regression analysis was performed between these values and the actually measured ΔVth to obtain the regression equation. The regression equation is as follows. Then, the prediction ΔVth based on this regression equation was calculated, and the relationship with the actually measured ΔVth was investigated. FIG. 6 shows a graph in which the predicted ΔVth and the measured ΔVth are plotted.
Regression equation: C (PA) x Paak (PA) x -0.002032 + C (PA) / Log1 / e (PA) x 0.05898 + C (PA) / Peak (PA) x-1240.9 + (C (PA)- 1.3) 2 / Peak (PA) x 1781.0 + 5.489
(In the equation, C (PA) is the parameter C of PA, Peak (PA) is the peak value of PA, and Log1 / e (PA) is the logarithmic conversion value of the slope which is 1 / e of PA.)

そして、予測ΔVthと実測ΔVthとの相関の程度を示すR値を求めると、0.048であり、パラメータCのみよりも相関が高まっている。 Then, when the R2 value indicating the degree of correlation between the predicted ΔVth and the actually measured ΔVth is obtained, it is 0.048, which is higher than that of the parameter C alone.

(4)SD、PV、CO、PAの各工程の(パラメータC、ピーク値、1/eでの傾き、1/eでの傾き)からの予測ΔVthと実測ΔVthとの相関
SD、PV、CO、PAの各工程のパラメータC、マイクロ波の反射強度のピーク値、励起光の停止1μs後の領域においてピーク値の1/eになるときの曲線の傾きを求め、これらの値と実測ΔVthとの重回帰分析を行い、その回帰式を求めた。回帰式は、下記の通りである。そして、この回帰式に基づく予測ΔVthを算出し、実測ΔVthとの関係を調べた。図7に、予測ΔVthと実測ΔVthとをプロットしたグラフを示す。
回帰式:1/e(PA)×-494.9+Log1/e(PA)× -447.5 +C(PA)×Log1/e(PA)×183.0+C(PA)×Peak(PA)×-0.01413+C(PA)/Peak(PA)×-2029.4+C(CO)×Log1/e(CO)×232.8+C(CO)×Peak(CO)×0.01382+C(CO)/Peak(CO)×-1701.5+C(CO)×-12.14+C(PV)×-33.27+Log1/e(PV)×-145.6+C(PV)×Log1/e(PV)×232.2+C(PV)/Log1/e(PV)×0.6791+1/e(SD)×-118.0+Peak(PV)×-0.008818+Peak(CO)×-0.01036+Peak(PA)×0.01254+(C(PA)-1.3)/Peak(PA)×3723.0+51.72
(式中、I/e(PA)はPAの1/eとなる傾き、Log1/e(PA)はPAのI/eとなる傾きの対数換算値、C(PA)はPAのパラメータC、Log1/e(PA)はPAのI/eとなる傾きの対数換算値、Peak(PA)はPAのピーク値、C(CO)はCOのパラメータC、Log1/e(CO)はCOの1/eとなる傾き、Peak(CO)はCOのピーク値、C(PV)はPAのパラメータC、Log1/e(PV)はPVのI/eとなる傾きの対数換算値、1/e(SD)はSDの1/eとなる傾き、Peal(PV)はPVのピーク値である。)
(4) Correlation between predicted ΔVth and measured ΔVth from each step of SD, PV, CO, PA (parameter C, peak value, slope at 1 / e, slope at 1 / e2) SD, PV, The parameters C of each step of CO and PA, the peak value of the reflected intensity of the microwave, and the slope of the curve when it becomes 1 / e of the peak value in the region 1 μs after the stop of the excitation light are obtained, and these values and the measured ΔVth Multiple regression analysis was performed with and the regression equation was obtained. The regression equation is as follows. Then, the prediction ΔVth based on this regression equation was calculated, and the relationship with the actually measured ΔVth was investigated. FIG. 7 shows a graph in which the predicted ΔVth and the measured ΔVth are plotted.
Regression formula: 1 / e (PA) x-494.9 + Log1 / e (PA) x-447.5 + C (PA) x Log1 / e 2 (PA) x 183.0 + C (PA) x Peak (PA) x- 0.01413 + C (PA) / Peak (PA) × -2029.4 + C (CO) × Log1 / e (CO) × 232.8 + C (CO) × Peak (CO) × 0.01382 + C (CO) / Peak (CO) X-1701.5 + C (CO) x-12.14 + C (PV) x-33.27 + Log1 / e 2 (PV) x-145.6 + C (PV) x Log1 / e 2 (PV) x 232.2 + C (PV) / Log1 / e 2 (PV) x 0.6791 + 1 / e (SD) x -118.0 + Peak (PV) x -0.008818 + Peak (CO) x -0.01036 + Peak (PA) x 0.01254 + (C (PA) -1.3) 2 / Peak (PA) x 3723.0 + 51.72
(In the equation, I / e (PA) is the slope of PA 1 / e, Log1 / e (PA) is the logarithmic conversion value of the slope of PA I / e, and C (PA) is the parameter C of PA. Log1 / e 2 (PA) is the logarithmic conversion value of the slope that becomes I / e 2 of PA, Peak (PA) is the peak value of PA, C (CO) is the parameter C of CO, and Log1 / e (CO) is CO. 1 / e of the slope, Peak (CO) is the peak value of CO, C (PV) is the parameter C of PA, Log1 / e 2 (PV) is the logarithmic conversion value of the slope of I / e 2 of PV. 1 / e (SD) is the slope that becomes 1 / e of SD, and Pear (PV) is the peak value of PV.)

そして、予測ΔVthと実測ΔVthとの相関の程度を示すR値を求めると、0.330であり、より相関が高まっている。 Then, when the R2 value indicating the degree of correlation between the predicted ΔVth and the actually measured ΔVth is obtained, it is 0.330, and the correlation is higher.

このように、酸化物半導体薄膜を成膜し、複数の工程でμ-PCD法により得られるパラメータを用いることにより、実測ΔVthとの相関が高まることがわかる。そこで、各工程でのパラメータを説明変数とし、実測ΔVthを目的変数とする重回帰分析で回帰式を求めておき、新たな酸化物半導体薄膜について、各工程を模した条件でμ-PCD法による測定を行い、回帰式と同種のパラメータを用いることにより、新たな酸化物半導体薄膜でTFTを作製したときのTFTのΔVthを精度良く予測することができる。 As described above, it can be seen that the correlation with the actually measured ΔVth is enhanced by forming the oxide semiconductor thin film and using the parameters obtained by the μ-PCD method in a plurality of steps. Therefore, the regression equation is obtained by multiple regression analysis with the parameters in each step as the explanatory variables and the measured ΔVth as the objective variable, and the μ-PCD method is used for the new oxide semiconductor thin film under the conditions that imitate each step. By performing the measurement and using the same kind of parameters as the regression equation, it is possible to accurately predict the ΔVth of the TFT when the TFT is made of a new oxide semiconductor thin film.

20a ガラス基板
20b 酸化物半導体薄膜
42 ゲート電極
43 ゲート絶縁膜
45 エッチストップ層、又は保護膜
46a ソース電極
46b ドレイン電極
47 最終保護膜
48 コンタクトホール
20a Glass substrate 20b Oxide semiconductor thin film 42 Gate electrode 43 Gate insulating film 45 Etch stop layer or protective film 46a Source electrode 46b Drain electrode 47 Final protective film 48 Contact hole

Claims (2)

マイクロ波光電減衰法により励起光とマイクロ波とを酸化物半導体薄膜に照射し、前記励起光の照射により変化する前記マイクロ波の反射強度を測定し、前記酸化物半導体薄膜を備える薄膜トランジスタのストレス耐性を予測す方法であって、
薄膜トランジスタ作製時の、前記酸化物半導体薄膜を成膜する成膜工程、及び前記成膜工程の後工程において、前記マイクロ波光電減衰法による測定を行って工程毎に各種パラメータを求める第1工程と、
作製した前記薄膜トランジスタの光照射・バイアス電圧の印加前後におけるしきい値電圧の変動ΔVthを測定する第2工程と、
前記第1工程で得た工程毎の各種パラメータ説明変数とし、前記第2工程で得た前記ΔVthを目的変数とする重回帰分析を行い、回帰式を求める第3工程と
新たな酸化物半導体薄膜を成膜した際に、前記マイクロ波光電減衰法により前記回帰式と同種のパラメータを求め、前記回帰式から前記新たな酸化物半導体被膜を備える薄膜トランジスタのΔVthを予測する予測工程とを備え、
前記第1工程で得る各種パラメータに、熱処理を伴う各工程における下記(a)(b)(c)のパラメータを少なくとも含めることを特徴とする薄膜トランジスタのストレス耐性の予測方法。
(a)前記反射強度のピーク値
(b)励起光の照射停止1μs程度後におけるライフタイム値
(c)励起光の照射停止後、経過時間毎に前記マイクロ波の反射強度を測定した値を信号値としたとき、下記式で算出されるE値が最大となる時定数
E = 信号値× 信号値の経過時間
The oxide semiconductor thin film is irradiated with the excitation light and the microwave by the microwave photoelectric attenuation method, and the reflection intensity of the microwave changed by the irradiation of the excitation light is measured to measure the stress of the thin film including the oxide semiconductor thin film. It ’s a way to predict tolerance,
In the film forming step of forming the oxide semiconductor thin film at the time of manufacturing the thin film transistor and the first step of obtaining various parameters for each step by measuring by the microwave photoelectric attenuation method in the post-step of the film forming step. ,
The second step of measuring the fluctuation ΔVth of the threshold voltage before and after applying the light irradiation / bias voltage of the manufactured thin film transistor, and
The third step of performing multiple regression analysis using the various parameters obtained in the first step as explanatory variables and the ΔVth obtained in the second step as the objective variable to obtain a regression equation, and the third step.
When a new oxide semiconductor thin film is formed, the parameters of the same type as the regression equation are obtained by the microwave photoelectric attenuation method, and the ΔVth of the thin film transistor having the new oxide semiconductor coating is predicted from the regression equation. With a process,
A method for predicting stress tolerance of a thin film transistor, characterized in that at least the following parameters (a), (b) and (c) in each step accompanied by heat treatment are included in the various parameters obtained in the first step .
(A) Peak value of the reflection intensity
(B) Lifetime value after about 1 μs of excitation light irradiation stop
(C) Time constant at which the E value calculated by the following formula becomes the maximum when the value obtained by measuring the reflection intensity of the microwave for each elapsed time after the irradiation of the excitation light is stopped is used as the signal value.
E = signal value x elapsed time of signal value
前記酸化物半導体薄膜が、In、Ga、Zn及びSnよりなる群から選ばれる少なくとも1種の元素を含むことを特徴とする請求項に記載の薄膜トランジスタのストレス耐性の予測方法。 The method for predicting the stress resistance of a thin film transistor according to claim 1 , wherein the oxide semiconductor thin film contains at least one element selected from the group consisting of In, Ga, Zn and Sn.
JP2018226528A 2018-12-03 2018-12-03 Method for predicting stress tolerance of thin film transistors Active JP7078525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018226528A JP7078525B2 (en) 2018-12-03 2018-12-03 Method for predicting stress tolerance of thin film transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018226528A JP7078525B2 (en) 2018-12-03 2018-12-03 Method for predicting stress tolerance of thin film transistors

Publications (2)

Publication Number Publication Date
JP2020092116A JP2020092116A (en) 2020-06-11
JP7078525B2 true JP7078525B2 (en) 2022-05-31

Family

ID=71013086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018226528A Active JP7078525B2 (en) 2018-12-03 2018-12-03 Method for predicting stress tolerance of thin film transistors

Country Status (1)

Country Link
JP (1) JP7078525B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257803A (en) 2010-06-04 2011-12-22 Sharp Corp Production management system and production management method
JP2017212318A (en) 2016-05-25 2017-11-30 株式会社神戸製鋼所 Quality evaluation method for laminate with protection film on surface of oxide semiconductor thin film, and quality management method for oxide semiconductor thin film
JP2018074086A (en) 2016-11-02 2018-05-10 株式会社Sumco Semiconductor wafer both-sided polishing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257803A (en) 2010-06-04 2011-12-22 Sharp Corp Production management system and production management method
JP2017212318A (en) 2016-05-25 2017-11-30 株式会社神戸製鋼所 Quality evaluation method for laminate with protection film on surface of oxide semiconductor thin film, and quality management method for oxide semiconductor thin film
JP2018074086A (en) 2016-11-02 2018-05-10 株式会社Sumco Semiconductor wafer both-sided polishing method

Also Published As

Publication number Publication date
JP2020092116A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP6152348B2 (en) Evaluation method of oxide semiconductor thin film and quality control method of oxide semiconductor thin film
US9316589B2 (en) Method for evaluating oxide semiconductor thin film, and method for quality control of oxide semiconductor thin film
TWI387119B (en) Method of treating semiconductor element
US9178073B2 (en) Oxide for semiconductor layer of thin-film transistor, sputtering target, and thin-film transistor
US8080434B2 (en) Nondestructive testing method for oxide semiconductor layer and method for making oxide semiconductor layer
TWI552233B (en) An oxide semiconductor thin film, and a thin film of the oxide semiconductor the quality evaluation method of the laminated body having the protective film on the surface of the film, and the quality management method of the oxide semiconductor thin film
TWI649819B (en) Quality evaluation method of oxide semiconductor thin film, quality management method of the oxide semiconductor thin film, and semiconductor manufacturing device using the quality evaluation method
TWI652749B (en) A method for evaluating the quality of a laminate for evaluation of a thin film transistor, And quality management method of oxide semiconductor film
JP7078525B2 (en) Method for predicting stress tolerance of thin film transistors
JP6653217B2 (en) Quality evaluation method of laminate having protective film on surface of oxide semiconductor thin film, and quality control method of oxide semiconductor thin film
JP6250855B1 (en) Quality evaluation method for oxide semiconductor thin film, quality control method for oxide semiconductor thin film, and semiconductor manufacturing apparatus using the quality evaluation method
WO2016088491A1 (en) Method for managing film quality of oxide semiconductor thin-film
JP2015179828A (en) Evaluation method of oxide semiconductor thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7078525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150