JP7066073B1 - レーザ装置およびレーザ加工装置 - Google Patents

レーザ装置およびレーザ加工装置 Download PDF

Info

Publication number
JP7066073B1
JP7066073B1 JP2021566595A JP2021566595A JP7066073B1 JP 7066073 B1 JP7066073 B1 JP 7066073B1 JP 2021566595 A JP2021566595 A JP 2021566595A JP 2021566595 A JP2021566595 A JP 2021566595A JP 7066073 B1 JP7066073 B1 JP 7066073B1
Authority
JP
Japan
Prior art keywords
acousto
laser
optic modulator
light
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021566595A
Other languages
English (en)
Other versions
JPWO2023276064A1 (ja
Inventor
幸治 船岡
達也 山本
譲 田所
政之 佐伯
寛公 三原
芳晴 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP7066073B1 publication Critical patent/JP7066073B1/ja
Publication of JPWO2023276064A1 publication Critical patent/JPWO2023276064A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ装置(100)は、レーザ発振器(101)と、第1の超音波が印加されるとレーザ発振器(101)からのレーザ光を回折させる第1の音響光学変調器(3)、および、第2の超音波が印加されると第1の音響光学変調器(3)から出力される高次光を回折させる第2の音響光学変調器(4)を有し、第1の音響光学変調器(3)が出射する高次光の回折方向(D1)に対する第1の超音波の伝搬方向(S1)は、第2の音響光学変調器(4)が出射する高次光の回折方向(D2)に対する第2の超音波の伝搬方向(S2)と異なる音響光学変調部(102)と、音響光学変調部からのレーザ光を増幅させる増幅器(103)と、を備える。

Description

本開示は、音響光学変調器を用いたレーザ装置およびレーザ加工装置に関する。
音響光学変調器は、物質を超音波で振動させると物質の屈折率が変化する性質を利用して、回折格子として利用される素子である。音響光学変調器は、印加する超音波の周波数によって回折格子の格子定数を制御することができる。音響光学変調器が出力する回折光の周波数は、ドップラー効果によって、超音波の周波数の分だけシフトする。
特許文献1には、2つの音響光学変調器を用いる光源装置が開示されている。この光源装置は、共振器内に2つの音響光学変調器を備え、音響光学変調器ごとに周波数シフトが生じる方向を異ならせ、出射光の周波数シフトを低減することで、出力変動を抑制している。
特開2011-187947号公報
しかしながら、上記従来の技術によれば、音響光学変調器が共振器内に配置されている。音響光学変調器は、ミラーなどの他の光学素子と比較して耐光強度が低いため、共振器内に音響光学変調器を配置した場合、音響光学変調器の耐光強度に合わせて共振器に入力されるレーザ光の強度を下げる必要があり、出射光の強度が低下してしまうという問題があった。
本開示は、上記に鑑みてなされたものであって、出力変動を抑制するとともに、レーザ出力を高めることが可能なレーザ装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本開示にかかるレーザ装置は、モードホップが生じるレーザ発振器と、第1の超音波が印加されるとレーザ発振器からのレーザ光を回折させる第1の音響光学変調器、および、第2の超音波が印加されると第1の音響光学変調器から出力される高次光を回折させる第2の音響光学変調器を有し、第1の音響光学変調器が出射する高次光の回折方向に対する第1の超音波の伝搬方向が、第2の音響光学変調器が出射する高次光の回折方向に対する第2の超音波の伝搬方向と異なることによって、第1の音響光学変調器で発生する周波数シフトが第2の音響光学変調器で発生する周波数シフトと打ち消し合う音響光学変調部と、音響光学変調部からのレーザ光を増幅させる増幅器と、を備えることを特徴とする。
本開示にかかるレーザ装置は、出力変動を抑制するとともに、レーザ出力を高めることが可能であるという効果を奏する。
実施の形態1にかかるレーザ装置の構成を示す図 モードホップが生じた場合の周波数変化を示す説明図 図2に示す状態遷移を模式的に表す図 モードホップとドップラーシフトとが重なった場合の周波数変化を示す説明図 図4に示す状態遷移を模式的に表す図 図4に示す状態変化に伴うレーザ出力の変化を示す図 図1に示す音響光学変調部を用いた場合のレーザ出力の変化を示す図 図1に示す第1の音響光学変調器の出射光に発生する周波数シフトの説明図 図1に示す第2の音響光学変調器の出射光に発生する周波数シフトの説明図 エキスパンダに負レンズを用いた例を示す図 エキスパンダに正レンズを用いた例を示す図 実施の形態2にかかるレーザ装置の構成を示す図 実施の形態3にかかるレーザ加工装置の構成を示す図
以下に、本開示の実施の形態にかかるレーザ装置およびレーザ加工装置を図面に基づいて詳細に説明する。なお、以下に示す実施の形態によって本開示の技術的範囲が限定されるものではない。
実施の形態1.
図1は、実施の形態1にかかるレーザ装置100の構成を示す図である。レーザ装置100は、レーザ発振器101と、音響光学変調部102と、増幅器103とを有する。レーザ装置100は、レーザ発振器101から出力される連続波であるレーザ光を、音響光学変調部102を用いてパルスレーザ光に変換したのち、増幅器103において増幅する外部変調型発振器である。レーザ発振器101は、全反射ミラー14と、部分反射ミラー15と、ブリュースターウィンドウ13とを有する。音響光学変調部102は、直列に接続される第1の音響光学変調器3および第2の音響光学変調器4を有する。増幅器103は、ウィンドウ34,35およびミラー33を有する。
レーザ発振器101および増幅器103は、筐体1に配置されており、筐体1の内部にはレーザガスGが供給される。筐体1は、レーザガスGを外気と遮断する。ここで理解容易のため、レーザ発振器101および増幅器103の光軸方向をY方向、レーザガスGを供給する方向をZ方向、Y方向およびZ方向に垂直な方向をX方向とする。
図1では、主に光学素子の構成が示されており、図示しない構成要素を含むことができる。例えば、筐体1には、熱交換器、ブロワなど(不図示)が設けられる。ブロワは、筐体1の内部空間に封入されたレーザガスGを循環させる。ブロワがレーザガスGを循環させることによって、強制対流により冷却されたレーザガスGが矢印のZ方向に沿って供給される。レーザガスGは、筐体1の内部で大気圧よりも低い圧力に維持されており、例えば、速度100m/s程度で移動する。
放電によってレーザガスG中の分子または原子がレーザ上準位に励起されると、光の増幅作用を示すようになる。例えば、レーザガスGとして、CO2分子を含む混合ガスを使用した場合、CO2分子の振動準位間の遷移によって波長10.6μmのレーザ発振光が得られる。ここでは、レーザガスGがCO2を含む混合ガスである場合について説明するが、CO2を含む混合ガスの代わりに、CO,N,He-Cd,HF,Ar,ArF,KrF,XeCl,XeF,YAG,一部のガラスなどの他のレーザ媒質を用いてもよい。
筐体1には、レーザガスGを放電励起するための放電電極(不図示)が取り付けられる。放電電極に高周波交流電圧を印加すると、例えば、3cm×3cm×100cm程度の直方体形状からなる放電空間が形成され、この放電空間内に存在するレーザガスGが光増幅作用を示すレーザ媒質である放電励起ガス2となる。
全反射ミラー14および部分反射ミラー15は、放電励起ガス2を挟んで対向するように配置され、光共振器を構成する。全反射ミラー14および部分反射ミラー15のそれぞれは、光軸調整のための角度微調機構を介して筐体1に取り付けられる。
レーザ発振器101のブリュースターウィンドウ13は、全反射ミラー14および部分反射ミラー15の間の光軸上に設けられる。ブリュースターウィンドウ13は、S偏光の反射率が高く、P偏光の反射率が、例えば1%未満など低いウィンドウである。ここでは、YZ面に対して平行な直線偏光54を有するレーザ光が選択的に発振するようになる。ブリュースターウィンドウ13を設けることで、直線偏光54であるレーザ光を音響光学変調部102に入力することができ、第1の音響光学変調器3および第2の音響光学変調器4のそれぞれに入力されるレーザ光の偏光方向と、第1の音響光学変調器3および第2の音響光学変調器4のそれぞれに印加される超音波の伝搬方向Sとを一致させることができる。レーザ発振器101は、ブリュースターウィンドウ13の代わりに、偏向ロックミラーを有してもよい。
レーザ装置100は、レーザ発振器101および音響光学変調部102の間の光路上に配置されたダウンコリメータ9と、入力される光を吸収するダンパ5,6と、音響光学変調部102が出力するパルスレーザ光のビーム径を拡大するエキスパンダ12とをさらに有する。
ダウンコリメータ9は、正レンズ7および負レンズ8を有し、レーザ発振器101が出力するレーザ光L1のビーム径を縮小して音響光学変調部102に入力する。ダウンコリメータ9が出力するレーザ光のビーム径は、第1の音響光学変調器3に入射可能なビーム径とし、例えば、φ8mm程度である。第1の音響光学変調器3および第2の音響光学変調器4は、入射角度によって回折効率が異なるため、入射される光が平行光でない場合、出射光のビームプロファイルが変化するため、ここでは入射光を平行光としている。
第1の音響光学変調器3および第2の音響光学変調器4は、超音波が印加されると、透明材料内部の粗密波により屈折率変化が生じる。このため、第1の音響光学変調器3および第2の音響光学変調器4のそれぞれは、回折格子として利用される。
第1の音響光学変調器3は、第1の超音波が印加されて、レーザ発振器101からのレーザ光L1を回折させ、0次光L2および1次光L3を出力する。第1の音響光学変調器3が出力する0次光L2は、ダンパ5によって光吸収される。第1の音響光学変調器3が出力する1次光L3は、第2の音響光学変調器4に入力される。なお、ここでは高次光の一例として1次光L3が用いられることとしたが、2次光などであってもよい。第1の音響光学変調器3は、第1の超音波の伝搬方向S1が、1次光L3の回折方向D1と逆向きとなるように配置される。
第2の音響光学変調器4は、第2の超音波が印加されて、第1の音響光学変調器3から出力される1次光L3を回折させ、0次光L5および1次光L4を出力する。第2の音響光学変調器4が出力する0次光L5は、ダンパ6によって光吸収される。第2の音響光学変調器4が出力する1次光L4は、エキスパンダ12に入力される。第2の音響光学変調器4は、第2の超音波の伝搬方向S2が、1次光L4の回折方向D2と同一となるように配置される。
なお上記では、回折方向D1と伝搬方向S1とが逆方向であり、回折方向D2と伝搬方向S2とが同一方向である例について示したが、回折方向D1に対する伝搬方向S1が、回折方向D2に対する伝搬方向S2と異なっていればよい。回折方向D1に対する伝搬方向S1が、回折方向D2に対する伝搬方向S2と異なるとは、伝搬方向S1と伝搬方向S2とが異なる方向であることを指すのではなく、回折方向D1を基準としたときの伝搬方向S1の向きと、回折方向D2を基準としたときの伝搬方向S2の向きとが異なることを指す。例えば、回折方向D1と伝搬方向S1とが同一方向であり、回折方向D2と伝搬方向S2とが逆方向であってもよい。このように、第1の音響光学変調器3で生じる周波数シフトの方向と、第2の音響光学変調器4で生じる周波数シフトの方向とが逆向きとなるようにすることで、音響光学変調部102が出力するパルスレーザ光に生じる周波数シフトを低減することが可能になる。
第1の音響光学変調器3および第2の音響光学変調器4を有する音響光学変調部102は、レーザ発振器101から出力された連続波であるレーザ光L1をパルスレーザ光に変換する。具体的には、音響光学変調部102は、第1の音響光学変調器3および第2の音響光学変調器4の少なくとも一方を間欠運転することで、レーザ発振器101からのレーザ光L1をパルスレーザ光に変換することができる。第1の音響光学変調器3が間欠運転される場合、第1の音響光学変調器3には、不図示のドライバ回路から交流電圧が間欠的に供給される。第1の音響光学変調器3に交流電圧が供給された場合、第2の音響光学変調器4に1次光L3が入力され、交流電圧が供給されない場合、レーザ光L1は直進してダンパ5に吸収される。第2の音響光学変調器4が間欠運転される場合、第2の音響光学変調器4には、ドライバ回路から交流電圧が間欠的に供給される。第2の音響光学変調器4に交流電圧が供給された場合、エキスパンダ12に1次光L4が入力され、交流電圧が供給されない場合、第1の音響光学変調器3からの1次光L3は直進してダンパ6に吸収される。なお、第1の音響光学変調器3および第2の音響光学変調器4の両方を間欠運転する場合、片方だけを間欠運転するよりも音響光学変調部102の消費電力を低減することができる。
エキスパンダ12は、レンズ10,11を有する。エキスパンダ12は、音響光学変調部102と増幅器103との間の光路上に配置され、音響光学変調部102の第2の音響光学変調器4が出力した1次光L4のビーム径を拡大する。エキスパンダ12がビーム径を拡大することで、増幅器103における増幅率を大きくすることができる。一般的に音響光学変調器の開口径は数ミリ程度であり、エキスパンダ12は例えば20mm程度にビーム径を拡大することができる。
レーザ装置100のレーザ発振器101は、全反射ミラー14および部分反射ミラー15の間が光増幅作用を有する放電励起ガス2で満たされており、全反射ミラー14および部分反射ミラー15の間の光路上にブリュースターウィンドウ13が配置されているため、直線偏光54の連続波であるレーザ光L1を出力する。レーザ発振器101の部分反射ミラー15から出力されるレーザ光L1は、ダウンコリメータ9においてビーム径が縮小されて、音響光学変調部102の第1の音響光学変調器3に入力される。
レーザ光L1は、第1の音響光学変調器3において回折されて、1次光L3が第2の音響光学変調器4に入力され、0次光L2がダンパ5に吸収される。第2の音響光学変調器4に入力された1次光L3は、回折されて1次光L4はエキスパンダ12に入力され、0次光L5がダンパ6に吸収される。エキスパンダ12に入力された1次光L4は、レンズ10,11を介してビーム径が拡大されてミラー31に向けて出力される。エキスパンダ12から出力された光は、ミラー31,32によって進行方向が変化し、増幅器103のウィンドウ34に入力される。ウィンドウ34に入力されたレーザ光は、光増幅作用を有する放電励起ガス2で満たされた空間を通過することで増幅され、ミラー33で反射され、ウィンドウ35からレーザ装置100の外部に取り出すことができる。ウィンドウ35から取り出されたレーザ光は、例えば、レーザ加工等に利用される。
上記の通り、本実施の形態において音響光学変調部102は、2つの音響光学変調器を有しており、第1の音響光学変調器3の1次光L3が第2の音響光学変調器4に入力され、第2の音響光学変調器4の1次光L4が増幅器103のウィンドウ34に入力される。ここで1次光を用いる理由としては、ビームオフのときにビームが出力されないようにするためである。0次光を用いた場合には、音響光学変調器の回折効率は90%程度であるため、10%は0次光に出力される。これが増幅されると、レーザ装置100が出力するレーザ光がレーザ加工に用いられる場合、加工に寄与しない余分な熱が加工対象物に蓄積されて、加工品質が低下する。
音響光学変調器が出力する1次光は、超音波のエネルギーによって周波数シフトが起こることが知られている。しかしながら、レーザ発振器101と増幅器103との間に音響光学変調器を配置する場合、わずかに出力が低下するだけであって、大きな問題とはならない場合が多い。本願発明者らは、音響光学変調器における周波数シフトと、レーザ発振器101におけるモードホップと呼ばれる現象とが重なった場合、急激な出力変動が発生することを発見した。
モードホップとは、構造部品の温度変化、媒質の温度変化などに起因して、共振器を構成するミラー間の光路長が変化することで、共振器の発振周波数が瞬間的に変化する現象である。以下、共振器を構成するミラー間の光路長を共振器長と称する。レーザ発振器101においては、共振器長は、全反射ミラー14および部分反射ミラー15間の光路長となる。
図2は、モードホップが生じた場合の周波数変化を示す説明図である。図2の横軸は周波数であり、縦軸はゲインである。図2中の太い破線はゲインの最も高い縦モードを表しており、レーザ発振器101はこの周波数で発振する。図2の中央図(B)は、左図(A)の状態から共振器長が4分の1波長変化した状態を示し、右図(C)は、中央図(B)の状態から共振器長がさらに4分の1波長変化した状態を示す。つまり、右図(C)は、左図(A)の状態から共振器長が半波長変化した状態を示す。
共振器長が長くなるにつれて、縦モードの周波数は小さくなり、図中の太い破線は左にシフトしていく。具体的には、(A)の状態では、発振周波数は+32.6MHzであり、(B)の状態では、発振周波数は±0MHzであり、(C)の状態では、発振周波数は-32.6MHzである。(C)からさらに縦モードの周波数が小さくなった場合、1つ周波数が高い側の縦モードのゲインの方が高くなるため、レーザ発振器101は(A)の状態に遷移する。
図3は、図2に示す状態遷移を模式的に表す図である。レーザ発振器101は、(A)の状態から(B)の状態に遷移し、(B)の状態から(C)の状態に遷移する。またレーザ発振器101は、(C)の状態から(A)の状態に遷移する。このとき、(C)の状態と(A)の状態とは周波数がゲインのピークに対して対称であるため、ゲインが等しく、レーザ発振器101は、(C)の状態から(A)の状態に遷移しても出力の変化はない。また、レーザ発振器101が高出力であり、共振器長が長いほど、縦モードの周波数間隔が狭いため、モードホップにより生じる出力変化は小さくなる。このため、モードホップだけであれば、レーザ装置100の出力変動が問題となることは少ない。
続いて、モードホップとドップラーシフトとが重なった場合について説明する。図4は、モードホップとドップラーシフトとが重なった場合の周波数変化を示す説明図である。音響光学変調部102が音響光学変調器を1つしか有さない場合、ドップラーシフトの影響を低減することができないため、モードホップとドップラーシフトとが重なる状態が生じうる。図4の横軸は周波数であり、縦軸はゲインである。図4中の太い破線はゲインの最も高い縦モードを表しており、レーザ発振器101はこの周波数で発振する。また図4中の太い実線は増幅器103への入射光を表している。増幅器103への入射光は、レーザ発振器101の出射光から音響光学変調部102の第1の音響光学変調器3および第2の音響光学変調器4におけるドップラーシフトνの分だけ周波数がシフトしている。実施の形態1では、ドップラーシフトνは-40MHzとする。
図4の中央図(E)は、左図(D)の状態から共振器長が4分の1波長変化した状態を示し、右図(F)は、中央図(E)の状態から共振器長がさらに4分の1波長変化した状態を示す。つまり、右図(F)は、左図(D)の状態から共振器長が半波長変化した状態を示す。発振周波数は、図2に示したものと同様であり、(D)の状態では、発振周波数は+32.6MHzであり、(E)の状態では、発振周波数は±0MHzであり、(F)の状態では、発振周波数は-32.6MHzである。
増幅器103への入射光の周波数は、(D)の状態では、+32.6-40=-7.4MHzであり、(E)の状態では、0-40=-40MHzであり、(F)の状態では、発振周波数は-32.6-40=-72.6MHzである。
図5は、図4に示す状態遷移を模式的に表す図である。レーザ発振器101は、(D)の状態から(E)の状態に遷移し、(E)の状態から(F)の状態に遷移する。またレーザ発振器101は、(F)の状態から(D)の状態に遷移する。この場合、(D)の状態と(F)の状態とではゲインがピークとなる周波数に対して非対称であるため、ゲインが大きく異なる。したがって、(F)の状態から(D)の状態に遷移するときに、ゲインが大きく変化する。
図6は、図4に示す状態変化に伴うレーザ出力の変化を示す図である。(F)の状態から(D)の状態に遷移するとき、増幅器103からのレーザ出力O103は、不連続で急激な出力変動が発生する。この出力変動は、レーザ発振器101からのレーザ出力O101の出力変動よりも大きい。このようにレーザ出力の強度が瞬時に変化する場合、レーザ出力をセンサで計測してフィードバック制御をおこなったとしても、レーザ出力を安定させることができない。また、周波数ずれとゲインの低下量との関係は非線形であるため、単に周波数が増加した以上に大きくゲインは低下する。レーザ出力の変動幅も大きいため、定格出力が小さくなってしまうという問題がある。
図7は、図1に示す音響光学変調部102を用いた場合のレーザ出力の変化を示す図である。上記の通り、音響光学変調部102は、第1の音響光学変調器3および第2の音響光学変調器4のそれぞれが生じさせる周波数シフトの方向が逆であるため、ドップラーシフトをキャンセルすることが可能である。このため、図7に示されるように、増幅器103からのレーザ出力O103とレーザ発振器101からのレーザ出力O101との差異が図6に示す例よりも低減している。
具体的には、第1の音響光学変調器3が出射する1次光L3の回折方向D1に対する第1の超音波の伝搬方向S1が、第2の音響光学変調器4が出射する1次光L4の回折方向D2に対する第2の超音波の伝搬方向S2と異なるように、第1の音響光学変調器3および第2の音響光学変調器4が配置される。回折方向D1に対して伝搬方向S1が同一方向である場合、回折方向D2に対して伝搬方向S2を逆方向とすることで、出射光のドップラーシフトを低減することができる。回折方向D1に対して伝搬方向S1が逆方向である場合、回折方向D2に対して伝搬方向S2を同一方向とすることで、出射光のドップラーシフトを低減することができる。
図8は、図1に示す第1の音響光学変調器3の出射光に発生する周波数シフトの説明図である。第1の音響光学変調器3への入射光のベクトルをkとし、出射光のベクトルをkd1とする。このとき回折方向D1=kd1-kと第1の超音波の伝搬方向S1とは逆方向であるため、出射光の周波数νd1は、エネルギー保存則からνd1=ν-νs1に減少する。図9は、図1に示す第2の音響光学変調器4の出射光に発生する周波数シフトの説明図である。第2の音響光学変調器4において、回折方向D2=kd2-kd1は、第2の超音波の伝搬方向S2と同一方向であるため、出射光の周波数νd2は、νd2=νd1+νs2に増加する。したがって、νd2=νd1+νs2=(ν-νs1)+νs2であり、第1の音響光学変調器3で発生する周波数シフト-νs1は、第2の音響光学変調器4で発生する周波数シフト+νs2と打ち消しあい、音響光学変調部102からの出射光に生じる周波数シフトは低減する。第1の超音波の周波数νs1が第2の超音波の周波数νs2と等しい場合、νd2=νとなり、ドップラーシフトはキャンセルされる。
音響光学変調部102からの出射光に生じる周波数シフトを低減することで、増幅器103への入射光へのドップラーシフトの影響は低減されている。このため、モードホップが生じた場合であっても、不連続で瞬間的な出力変動は抑制され、レーザ出力のフィードバック制御をおこなうことが可能になる。また、出力変動幅も低減されるため、変動幅の分の出力マージンをとる必要がなくなり、定格出力を大きくすることが可能になる。したがって、安定して高出力なレーザ装置100を実現することができ、このレーザ装置100を使用してレーザ加工を行う場合、高品質で高速なレーザ加工が可能になる。
音響光学変調器への入射光は、ビーム径が小さいため、光強度が高くなり、熱レンズが発生し易い。また、CO2レーザなどの赤外光用の音響光学変調器では、吸収率が3%程度と大きいゲルマニウムが使用されている。このため、実施の形態1のように2つの音響光学変調器を用いる場合、特に熱レンズの影響が懸念される。そこで、本実施の形態では、エキスパンダ12の入力端のレンズ10を正レンズとした。ここで、エキスパンダ12の入力側から数えて1枚目のレンズ10を正レンズとした場合と、負レンズとした場合とを比較して説明する。図10は、エキスパンダ12に負レンズを用いた例を示す図である。図11は、エキスパンダ12に正レンズを用いた例を示す図である。
図10に示すように、第2の音響光学変調器4が出射する1次光L4が負レンズ21に入力される場合、第2の音響光学変調器4と負レンズ21との間の距離l1は、0次光L5が1次光L4と分離するために十分な距離であり、かつ、0次光L5を吸収するダンパ23を配置するスペースを確保可能な程度に長くする必要がある。図10の破線で示すように、熱レンズが発生すると1次光L4の光線の勾配θ1は、負方向に変化する。このため、距離l1が長いほど、エキスパンダ12に入射されるレーザ光のビーム径x2が変化して、第2の音響光学変調器4におけるビーム径x1よりも小さくなり、エキスパンダ12から射出されるビーム径x3は小さくなる。また、エキスパンダ12を負レンズ21および正レンズ22を用いて構成する場合、入射光の勾配θ1が負方向に変化すると、出射されるビーム径x3が小さくなる。このように、距離l1が長くなるにつれてビーム径x2が小さくなり、さらに、勾配θ1が負方向に変化したとき、負レンズ21から出射する光の勾配θ2および正レンズ22から出射する光の勾配θ3も負方向に変化し、エキスパンダ12からの出射光のビーム径x3は小さくなる。このため、増幅器103に入力されるビーム径が小さくなり、増幅後のレーザ出力が低下してしまう。
図11に示す例では、エキスパンダ12が正レンズ24,25を用いて構成される。この場合、第2の音響光学変調器4が出射する1次光L4および0次光L5が正レンズ24に入射した後、正レンズ24の焦点付近で、0次光L5と1次光L4とが十分に分離しているため、焦点付近にダンパ26を配置することができる。この場合、図10に示す例よりも、第2の音響光学変調器4と正レンズ24との間の距離l1を短くすることが可能である。距離l1が長くなるほどビーム径x2が小さくなるため、距離l1を短くすることで、ビーム径x2が小さくなることを抑制することができる。また、正レンズ24,25を用いてエキスパンダ12を構成する場合、入射光の勾配θ1が負方向に変化するとき、正レンズ24の焦点が手前にずれる。熱レンズが発生していない場合、正レンズ24から正レンズ24の焦点までの距離Lf2、正レンズ24の焦点から正レンズ25までの距離Lf3とする。また、熱レンズが発生した場合、正レンズ24から正レンズ24の焦点までの距離Lf2s、正レンズ24の焦点から正レンズ25までの距離Lf3sとする。この場合、Lf2>Lf2s且つLf3<Lf3sとなるため、正レンズ25におけるビーム径x3は、熱レンズが発生した場合大きくなる。つまり、図10に示す負レンズ21を用いた例と比較して、正レンズ24を用いる場合、熱レンズが発生して勾配θ1が負方向に変化したときに、距離l1の間に生じるビーム径x2の減少を抑制することが可能であるとともに、エキスパンダ12からの出射光のビーム径x3は大きくなり、レーザ装置100から出射するレーザ光における熱レンズの影響を低減することが可能である。
以下、エキスパンダ12の入力端を正レンズ24とした場合と負レンズ21とした場合とのビーム径変化の差を試算する。第1の音響光学変調器3に入射するビーム径x0、入射角度θ0とした場合、ABCD光線行列を用いてビームの伝搬を導出する。エキスパンダ12の正レンズ22,25におけるビーム径x3は、以下の数式(1)で表される。熱レンズの焦点距離f1、負レンズ21または正レンズ24の焦点距離f2、負レンズ21から正レンズ22までの距離または正レンズ24から正レンズ25までの距離l2、第1の音響光学変調器3への入射光のビーム径x0、第1の音響光学変調器3への入射光の入射角度θ0とする。
Figure 0007066073000001
エキスパンダ12から増幅器103の出口までの距離l3とした場合、増幅器103の出口におけるビーム径x4は、以下の数式(2)で表される。正レンズ22,25の焦点距離f3とする。
Figure 0007066073000002
なお、第1の音響光学変調器3への入射光は平行光であるため、θ0=0とした。表1は、上記の計算に用いられるパラメータを示している。表1の「正」は、レンズ10に正レンズ24を用いた図11の構成における各パラメータの値を示しており、表1の「負」は、レンズ10に負レンズ21を用いた図10の構成における各パラメータの値を示している。表2は、表1に示すパラメータを用いた場合の数式(1),(2)の計算結果を表している。表2の「正」は、レンズ10に正レンズ24を用いた図11の構成における計算結果を表しており、表2の「負」は、レンズ10に負レンズ21を用いた図10の構成における計算結果を表している。
Figure 0007066073000003
Figure 0007066073000004
増幅器103内を通るビーム径は、入り口におけるビーム径x3と出口におけるビーム径x4との平均値とし、熱レンズが発生していない状態でのビーム半径12mmに対する変化率を算出している。表2によれば、熱レンズによる拡大後のビーム径変化は、図10に示す構成では10.3%であるのに対して、図11に示す構成では2.9%と抑制されていることがわかる。
以上説明したように、熱レンズが発生しやすい構成の場合、正レンズ24,25を用いたエキスパンダ12は、負レンズ21を用いた場合よりも熱レンズの影響を低減することができる。熱レンズが発生すると、焦点位置が変化するため、特定の位置におけるビーム径が変化する。熱レンズの影響が大きく、加工中にビーム径変化が大きくなると、増幅器103におけるモードボリュームが変化し、ビーム出力が変化するとともに、加工点における集光径および焦点が変化するため、加工品質が低下する。レーザ装置100は、エキスパンダ12の入力端が正レンズ24で構成されているため、ビーム径変化を抑制することができ、高品質なレーザ加工を実現することができる。
実施の形態2.
図12は、実施の形態2にかかるレーザ装置200の構成を示す図である。以下、実施の形態1にかかるレーザ装置100との差異について主に説明する。レーザ装置200は、レーザ装置100のダンパ5,6の代わりにダンパ41を有し、第2の音響光学変調器4の代わりに第2の音響光学変調器40を有する。第1の音響光学変調器3の1次光の回折方向D1に対する第1の超音波の伝搬方向S1が反対方向であり、第2の音響光学変調器40の1次光の回折方向D2に対する第2の超音波の伝搬方向S2が同一方向である点は、レーザ装置100と同様である。レーザ装置200においては、第2の音響光学変調器40は、1次光の回折方向D2が、第1の音響光学変調器3の1次光の回折方向D1と同一方向となるように配置されている。このため、第1の音響光学変調器3の0次光L5と、第2の音響光学変調器40の1次光L7とが異なる方向に出射される。この場合、レンズ10の後段であって焦点付近に、ダンパ41を配置し、第1の音響光学変調器3の0次光L5と第2の音響光学変調器40の0次光L6とを吸収させ、第1の音響光学変調器3および第2の音響光学変調器40を接近させた状態で配置することができる。
仮に、図1に示すレーザ装置100の構成においてダンパ5を省略した場合、第1の音響光学変調器3の0次光L2は、第2の音響光学変調器4を透過した後、第2の音響光学変調器4の1次光L4と同一方向に進む。この場合、第1の音響光学変調器3と第2の音響光学変調器4とを近づけると、0次光L2が1次光L4と重なっているため、第1の音響光学変調器3の0次光L2を除去することができない。これに対して、レーザ装置200は、第1の音響光学変調器3の回折方向D1と第2の音響光学変調器40の回折方向D2とを同一方向としたことで、第1の音響光学変調器3の0次光L5と第2の音響光学変調器40の1次光L7とが異なる方向に進む。したがって、ダンパ41をレンズ10の焦点付近に配置し、第1の音響光学変調器3と第2の音響光学変調器40とを接近させた状態で配置することができる。この場合、第1の音響光学変調器3からエキスパンダ12までのレーザ光の伝搬距離が短くなるため、第1の音響光学変調器3に熱レンズが発生した場合の勾配θ1の変化によって生じるエキスパンダ12に入射するビーム径x2の変化を抑制することが可能になる。したがって、レーザ装置200のビーム径はさらに安定し、レーザ出力が安定するため、加工品質を良好な状態に維持することができる。
実施の形態3.
図13は、実施の形態3にかかるレーザ加工装置300の構成を示す図である。レーザ加工装置300は、レーザ装置100と、光路61と、加工ヘッド62と、駆動部63と、検知部64と、制御部65とを有する。
レーザ加工装置300は、加工対象物Wにパルスレーザ光を照射して、加工対象物Wの切断加工を行う機能を有する。レーザ装置100は、実施の形態1に示したレーザ装置100であり、ウィンドウ35から取り出したレーザ光が光路61を介して加工ヘッド62に供給される。光路61は、レーザ装置100が出力したレーザ光を加工ヘッド62まで伝送する経路であり、レーザ光を空中で伝搬させる経路であってもよいし、光ファイバを通じてレーザ光を伝送させる経路であってもよい。光路61は、レーザ装置100が出力するレーザ光の特性に応じて設計される。
加工ヘッド62は、レーザ光を加工対象物Wに集光する光学系を有している。加工ヘッド62は、加工対象物Wの表面付近に焦点を結ぶような光学系を備えていることが望ましい。駆動部63は、加工ヘッド62と加工対象物Wとの相対位置関係を制御して変化させることができる。なお、レーザ加工装置300において、駆動部63は、加工ヘッド62の位置を変化させることで、加工ヘッド62と加工対象物Wとの相対位置関係を変化させることとしたが、駆動部63は、加工対象物Wを載置するテーブルの位置を変化させてもよいし、加工ヘッド62とテーブルとの両方の位置を変化させてもよい。つまり、駆動部63は、加工ヘッド62および加工対象物Wの少なくとも1つの位置を変化させる機能を有していればよい。
検知部64は、加工対象物Wの状態またはレーザ加工装置300の状態を検知するセンサである。検知部64は、加工中の加工対象物Wの位置、加工中に発生する光の強度および波長、音波、超音波といった物理量の計測値を時系列信号として計測する。検知部64は、例えば、静電容量センサ、フォトダイオード、CCD(Charge Coupled Device)センサ、CMOS(Complementary Metal Oxide Semiconductor)センサ、スペクトル分光器、音響センサ、加速度センサ、ジャイロセンサ、距離センサ、位置検出器、温度センサ、湿度センサなどである。検知部64は、計測値を示す時系列信号を制御部65に入力する。
制御部65は、設定された加工条件および検知部64から送信される計測値に従って、パルスレーザ光が加工対象物Wの上の加工経路を走査するようにレーザ装置100、駆動部63などを制御する。加工条件は、例えば、加工対象物Wの材質、厚み、および表面の状態を含む。加工条件は、さらに、レーザ装置100のレーザ出力強度、レーザ出力周波数、レーザ出力のデューティ比、モード、波形、および波長などを含む。加工条件は、パルスレーザ光の焦点位置、パルスレーザ光の集光径、加工対象物Wと加工ヘッド62との間の距離、温度、湿度など検知部64から入力される計測値を含むこともできる。
制御部65からの制御に従って、駆動部63が加工ヘッド62と加工対象物Wとの相対位置関係を変化させながら、加工ヘッド62が加工対象物Wにパルスレーザ光を照射することで、加工対象物Wの切断加工を行うことができる。
なお、上記の実施の形態3では、レーザ加工装置300は、レーザ装置100を有することとしたが、レーザ装置100の代わりに、実施の形態2にかかるレーザ装置200を有してもよい。
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
例えば、図1,12においては、ダウンコリメータ9を用いてレーザ発振器101からの出力光のビーム径を調整しているが、本実施の形態はかかる例に限定されない。例えば、ダウンコリメータ9を省略して、レーザ発振器101からの出射光のビーム径が、音響光学変調器に入射可能となるように、全反射ミラー14および部分反射ミラー15を設計してもよい。
また、上記の実施の形態では、レーザ発振器101および増幅器103がレーザ媒質を共用しており、1つの筐体1内に配置されているが、本実施の形態はかかる例に限定されない。レーザ発振器101と増幅器103とは、別々の筐体に配置されてもよい。
また、図示した超音波の伝搬方向S1,S2は一例であり、伝搬方向S1,S2は、図示した方向と逆方向であってもよい。
また、上記では音響光学変調部102は、2つの音響光学変調器を備えることとしたが、本実施の形態はかかる例に限定されない。例えば、音響光学変調部102は、3つ以上の音響光学変調器を備えてもよい。この場合、複数の音響光学変調器のうちの少なくとも2つが1次光を出力し、1次光を出力する2つの音響光学変調器において、回折方向に対する超音波の伝搬方向が互いに異なっていればよい。
なお、第1の音響光学変調器3は、第1の超音波が印加されるとレーザ発振器101からのレーザ光L1を回折させる。ここで、レーザ発振器101からのレーザ光L1は、レーザ発振器101から直接入力されるレーザ光L1に限らない。例えば、レーザ発振器101からのレーザ光L1は、図1に示すようにダウンコリメータ9を介して入力されるレーザ光L1であってもよいし、音響光学変調部102が音響光学変調器を3つ以上含む場合には、他の音響光学変調器を介して入力されるレーザ光L1であってもよい。同様に、第2の音響光学変調器4は、第2の超音波が印加されると、第1の音響光学変調器3から出力される1次光L3を回折させる。ここで第1の音響光学変調器3から出力される1次光L3は、図1に示すように、第1の音響光学変調器3から直接第2の音響光学変調器4に入力される1次光L3であってもよいし、例えば、音響光学変調部102が音響光学変調器を3つ以上含む場合には、他の音響光学変調器を介して入力される1次光L3であってもよい。
なお、上記ではレーザ発振器101が出力するレーザ光L1は、連続波であることとしたが、パルスの間隔が広く、ビームオフの時間が長い場合には、放電をオフしてレーザ発振器101のビームを間欠運転し、消費エネルギーを低減する場合がある。この場合、レーザ発振器101が出力するレーザ光L1は、連続波ではなくなる。このようなレーザ光L1であっても、音響光学変調部102は、パルスレーザ光に変換することができる。
1 筐体、2 放電励起ガス、3 第1の音響光学変調器、4,40 第2の音響光学変調器、5,6,41 ダンパ、7 正レンズ、8 負レンズ、9 ダウンコリメータ、10,11 レンズ、12 エキスパンダ、13 ブリュースターウィンドウ、14 全反射ミラー、15 部分反射ミラー、31,32,33 ミラー、34,35 ウィンドウ、54 直線偏光、61 光路、62 加工ヘッド、63 駆動部、64 検知部、65 制御部、100,200 レーザ装置、101 レーザ発振器、102 音響光学変調部、103 増幅器、300 レーザ加工装置、D1,D2 回折方向、f1,f2,f3 焦点距離、G レーザガス、L1 レーザ光、L2,L5,L6 0次光、L3,L4,L7 1次光、l1,l2,l3,Lf2,Lf2s 距離、O101,O103 レーザ出力、S1,S2 伝搬方向、W 加工対象物、x0,x1,x2,x3,x4 ビーム径、θ0 入射角度、θ1,θ2,θ3 勾配。

Claims (6)

  1. モードホップが生じるレーザ発振器と、
    第1の超音波が印加されると前記レーザ発振器からのレーザ光を回折させる第1の音響光学変調器、および、第2の超音波が印加されると前記第1の音響光学変調器から出力される高次光を回折させる第2の音響光学変調器を有し、前記第1の音響光学変調器が出射する高次光の回折方向に対する前記第1の超音波の伝搬方向が、前記第2の音響光学変調器が出射する高次光の回折方向に対する前記第2の超音波の伝搬方向と異なることによって、前記第1の音響光学変調器で発生する周波数シフトが前記第2の音響光学変調器で発生する周波数シフトと打ち消し合う音響光学変調部と、
    前記音響光学変調部からのレーザ光を増幅させる増幅器と、
    を備えることを特徴とするレーザ装置。
  2. 前記音響光学変調部および前記増幅器の間の光路上に配置され、前記レーザ光のビーム径を拡大するエキスパンダ、
    をさらに備え、
    前記エキスパンダの入力端は正レンズであることを特徴とする請求項1に記載のレーザ装置。
  3. 前記音響光学変調部は、前記レーザ発振器から出力されるレーザ光をパルスレーザ光に変換することを特徴とする請求項1または2に記載のレーザ装置。
  4. 前記エキスパンダの前記正レンズの後段に配置され、前記第1の音響光学変調器が出射する0次光および前記第2の音響光学変調器が出射する0次光を吸収するダンパ、
    をさらに備え、
    前記第1の音響光学変調器が出射する高次光の回折方向は、前記第2の音響光学変調器が出射する高次光の回折方向と同一方向であることを特徴とする請求項2に記載のレーザ装置。
  5. 前記高次光は、1次光であることを特徴とする請求項1から4のいずれか1項に記載のレーザ装置。
  6. 請求項1から5のいずれか1項に記載のレーザ装置を備えることを特徴とするレーザ加工装置。
JP2021566595A 2021-06-30 2021-06-30 レーザ装置およびレーザ加工装置 Active JP7066073B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024817 WO2023276064A1 (ja) 2021-06-30 2021-06-30 レーザ装置およびレーザ加工装置

Publications (2)

Publication Number Publication Date
JP7066073B1 true JP7066073B1 (ja) 2022-05-12
JPWO2023276064A1 JPWO2023276064A1 (ja) 2023-01-05

Family

ID=81584937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021566595A Active JP7066073B1 (ja) 2021-06-30 2021-06-30 レーザ装置およびレーザ加工装置

Country Status (5)

Country Link
US (1) US11958128B2 (ja)
JP (1) JP7066073B1 (ja)
CN (1) CN116194239B (ja)
DE (1) DE112021005438B4 (ja)
WO (1) WO2023276064A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117518537A (zh) * 2023-11-21 2024-02-06 爱司凯科技股份有限公司 一种基于双声光调制器的直接制版机打印方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199374A (ja) * 1992-01-21 1993-08-06 Dainippon Screen Mfg Co Ltd 光ビーム走査方法
JPH09275236A (ja) * 1996-04-04 1997-10-21 Hitachi Metals Ltd レーザ装置およびレーザ応用装置
US20020136524A1 (en) * 2001-03-14 2002-09-26 Nabeel Agha Riza High speed fiber-optic attenuation modules
JP2006080512A (ja) * 2004-09-08 2006-03-23 Agilent Technol Inc 周波数可変光を生成する周波数可変光源および方法
JP2006229229A (ja) * 2005-02-15 2006-08-31 Agilent Technol Inc レーザの同調
US20070041081A1 (en) * 2003-05-03 2007-02-22 Chu Raymond R High performance compact external cavity laser( ecl) for telecomm applications
JP2009527775A (ja) * 2006-02-17 2009-07-30 ザ ユーエービー リサーチ ファウンデーション 気体試料を分析するための中間irレーザ機器およびその使用方法
JP2011187947A (ja) * 2010-02-12 2011-09-22 Canon Inc 波長掃引光源装置及びこれを用いた撮像装置
JP2012182397A (ja) * 2011-03-03 2012-09-20 Mitsubishi Electric Corp レーザ装置およびレーザ加工装置
JP2012522374A (ja) * 2009-03-27 2012-09-20 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 短レーザパルスのテイラードバーストによるレーザマイクロマシニング
JP2012523734A (ja) * 2009-04-10 2012-10-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 装置とユーザ認証
JP2013541201A (ja) * 2010-09-13 2013-11-07 カルマー オプトコム、インコーポレイティッド ディービーエー カルマー レーザー チャープ・パルス増幅に基づくレーザー・パルスの発生
JP2015161398A (ja) * 2014-02-28 2015-09-07 ダイハツ工業株式会社 車両用変速装置
US20170023843A1 (en) * 2015-07-20 2017-01-26 Coherent Kaiserslautern GmbH Apparatus for beam-dividing using acousto-optic modulators
US20180180655A1 (en) * 2016-09-01 2018-06-28 Imra America, Inc. Ultra-low noise photonic phase noise measurement system for microwave signals
US10408925B1 (en) * 2017-07-19 2019-09-10 The United States Of America As Represented By The Secretary Of The Navy Low probability of intercept laser range finder
JP2021030249A (ja) * 2019-08-19 2021-03-01 武井電機工業株式会社 レーザー加工装置、及びレーザー加工方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825793A (en) * 1995-06-05 1998-10-20 Hitachi Metals, Ltd. Laser and laser applied units
JP4066379B2 (ja) * 2003-05-29 2008-03-26 三菱電機株式会社 光制御型フェーズドアレーアンテナ装置
US7521651B2 (en) 2003-09-12 2009-04-21 Orbotech Ltd Multiple beam micro-machining system and method
JPWO2007007389A1 (ja) * 2005-07-11 2009-01-29 三菱電機株式会社 スペックル除去光源および照明装置
CN103746285B (zh) * 2013-12-27 2016-09-21 中国科学院国家授时中心 一种基于声光调制器的高稳定性激光频率扫描装置
CN103920993B (zh) * 2014-04-18 2015-12-09 苏州东山精密制造股份有限公司 多平台激光加工系统
DE102014013567B3 (de) 2014-09-18 2015-10-08 Iai Industrial Systems B.V. Gütegeschaltetes CO2-Laser-Materialbearbeitungssystem mit akustooptischen Modulatoren
US11179802B2 (en) * 2016-07-14 2021-11-23 Mitsubishi Electric Corporation Laser machining head and laser machining apparatus
CN111958108A (zh) * 2020-07-20 2020-11-20 华中科技大学 一种用于激光加工的声光双焦点镜头及激光加工系统

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199374A (ja) * 1992-01-21 1993-08-06 Dainippon Screen Mfg Co Ltd 光ビーム走査方法
JPH09275236A (ja) * 1996-04-04 1997-10-21 Hitachi Metals Ltd レーザ装置およびレーザ応用装置
US20020136524A1 (en) * 2001-03-14 2002-09-26 Nabeel Agha Riza High speed fiber-optic attenuation modules
US20070041081A1 (en) * 2003-05-03 2007-02-22 Chu Raymond R High performance compact external cavity laser( ecl) for telecomm applications
JP2006080512A (ja) * 2004-09-08 2006-03-23 Agilent Technol Inc 周波数可変光を生成する周波数可変光源および方法
JP2006229229A (ja) * 2005-02-15 2006-08-31 Agilent Technol Inc レーザの同調
JP2009527775A (ja) * 2006-02-17 2009-07-30 ザ ユーエービー リサーチ ファウンデーション 気体試料を分析するための中間irレーザ機器およびその使用方法
JP2012522374A (ja) * 2009-03-27 2012-09-20 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 短レーザパルスのテイラードバーストによるレーザマイクロマシニング
JP2012523734A (ja) * 2009-04-10 2012-10-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 装置とユーザ認証
JP2011187947A (ja) * 2010-02-12 2011-09-22 Canon Inc 波長掃引光源装置及びこれを用いた撮像装置
JP2013541201A (ja) * 2010-09-13 2013-11-07 カルマー オプトコム、インコーポレイティッド ディービーエー カルマー レーザー チャープ・パルス増幅に基づくレーザー・パルスの発生
JP2012182397A (ja) * 2011-03-03 2012-09-20 Mitsubishi Electric Corp レーザ装置およびレーザ加工装置
JP2015161398A (ja) * 2014-02-28 2015-09-07 ダイハツ工業株式会社 車両用変速装置
US20170023843A1 (en) * 2015-07-20 2017-01-26 Coherent Kaiserslautern GmbH Apparatus for beam-dividing using acousto-optic modulators
US20180180655A1 (en) * 2016-09-01 2018-06-28 Imra America, Inc. Ultra-low noise photonic phase noise measurement system for microwave signals
US10408925B1 (en) * 2017-07-19 2019-09-10 The United States Of America As Represented By The Secretary Of The Navy Low probability of intercept laser range finder
JP2021030249A (ja) * 2019-08-19 2021-03-01 武井電機工業株式会社 レーザー加工装置、及びレーザー加工方法

Also Published As

Publication number Publication date
US11958128B2 (en) 2024-04-16
CN116194239B (zh) 2023-10-03
DE112021005438T5 (de) 2023-08-03
JPWO2023276064A1 (ja) 2023-01-05
DE112021005438B4 (de) 2024-06-06
WO2023276064A1 (ja) 2023-01-05
US20230271273A1 (en) 2023-08-31
CN116194239A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US7649188B2 (en) LPP type extreme ultra violet light source apparatus and driver laser for the same
JP3987554B2 (ja) 高反復率のフェムト秒再生増幅装置
US6477188B1 (en) Light source
US20150014286A1 (en) Co2 laser with rapid power control
TWI553978B (zh) 再生環型共振器
JP5517434B2 (ja) ガスレーザ装置及びレーザ生成方法
EP2475055A1 (en) Pulse-width converting apparatus and optical amplifying system
TW202135966A (zh) 波長變換雷射裝置及波長變換雷射加工機
JP7066073B1 (ja) レーザ装置およびレーザ加工装置
TWI499147B (zh) Co2雷射裝置及co2雷射加工裝置
JPWO2020075246A1 (ja) レーザ装置
KR100809271B1 (ko) 파장가변 레이저 장치
CN104348073A (zh) 可调谐窄线宽深紫外激光器
JP3621623B2 (ja) レーザ共振器
KR102210160B1 (ko) 펄스 레이저 장치
JP5213368B2 (ja) レーザ光第2高調波発生装置
JP3197820B2 (ja) 固体レーザ装置
RU2622243C1 (ru) Акустооптическая электронно-управляемая мягкая лазерная диафрагма (варианты)
JP5831896B2 (ja) 光渦レーザービーム発振装置及び発振方法
US9407052B2 (en) Amplifier, laser apparatus, and extreme ultraviolet light generation system
JP5999994B2 (ja) ガスレーザ装置およびガスレーザ装置に適用されるレーザ光発生方法
JP2903817B2 (ja) 固体レーザ装置
JP3845687B2 (ja) ラマン・レーザー発振装置
JPH05167146A (ja) 固体レーザ装置
JPH0472686A (ja) レーザ装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7066073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150