JP7058866B2 - 固体酸化物形燃料電池用アノード及びこのアノードを使用した固体酸化物形燃料電池 - Google Patents

固体酸化物形燃料電池用アノード及びこのアノードを使用した固体酸化物形燃料電池 Download PDF

Info

Publication number
JP7058866B2
JP7058866B2 JP2018037124A JP2018037124A JP7058866B2 JP 7058866 B2 JP7058866 B2 JP 7058866B2 JP 2018037124 A JP2018037124 A JP 2018037124A JP 2018037124 A JP2018037124 A JP 2018037124A JP 7058866 B2 JP7058866 B2 JP 7058866B2
Authority
JP
Japan
Prior art keywords
anode
fuel cell
promoter
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018037124A
Other languages
English (en)
Other versions
JP2019153441A5 (ja
JP2019153441A (ja
Inventor
利之 森
滋啓 伊藤
彰 鈴木
弘 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2018037124A priority Critical patent/JP7058866B2/ja
Publication of JP2019153441A publication Critical patent/JP2019153441A/ja
Publication of JP2019153441A5 publication Critical patent/JP2019153441A5/ja
Application granted granted Critical
Publication of JP7058866B2 publication Critical patent/JP7058866B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は低温でも高い発電性能を発揮するとともに安定動作可能な固体酸化物形燃料電池用アノード及び固体酸化物形燃料電池に関する。
固体酸化物形燃料電池(SOFC)は通常は900℃を超える高温で動作する燃料電池である。このような動作中の高温に耐えるようにするため、その主要部品の一つであるインターコネクター(円筒型はこう呼ぶ)やセパレーター(平板型の場合はこう呼ぶ)に使用する材料として非常に高価なセラミックス材料(ラ ンタンクロマイト系または酸化チタン系セラミックス材料などが例示される)を使用する必要がある。これがSOFCの装置価格、ひいては単位発電量当たりのコスト低減を阻害する大きな要因の一つになっていた。この温度を700℃から800℃付近に抑えることができれば、インターコネクター(またはセパレーター)に安価なステンレスを使用できるうえ、900℃を超える高温動作故に不可避的に発生すると考えられるインターコネクター(またはセパレーター)と燃料電池セルとの反応による性能低下(劣化)の抑制も可能となり、上記問題、すなわち装置製造価格の低減という課題と、性能寿命の改善という課題の両面でのブレークスルーを与えることが期待される。そのため、このようないわゆる中温域で十分高い発電性能を引き出すための種々の研究がおこなわれてきた。具体的には、カソードにおいて酸素還元反応を通して空気中の酸素を還元して酸化物イオン(O2-)を生み出すが、それを固体電解質内部に送る反応が遅いと考えられるので、このカソード材料の検討やカソード/固体電解質界面における抵抗の低減に関する検討が多数なされてきた。
更には、SOFCの動作温度を低減しても、なお高い発電効率を維持するという高い発電性能を引き出すためには、固体電解質の厚みを通常の300μm程度から20μm程度まで薄くした薄膜固体電解質を使用することが望ましいとされている。
しかしながら、酸化物セラミックスである固体電解質膜は自立膜として作製することができないため、通常は、多孔質なアノード(Niと固体電解質(YSZ)からなるサーメット)支持体の上に膜を成膜し、そのうえでサーメット組成の支持体とともに焼結を行う(共焼結とよぶ)プロセスをへて、燃料電池用の単セルを作製する。
この時、アノード支持体の厚みは1~2mm程度は必要になる。固体電解質の厚みが300μm程度である場合には、固体電解質にアノードやカソードを塗布して焼き付けることで固体電解質支持形のセルを作製できることから、アノード自体の厚みはわずか40μm程度またはそれ以下でよいということになる。しかし、アノード支持形薄膜セルではアノード層の厚みが大変厚いので、アノード層内に存在するNiと8YSZ(8モル%イットリア安定化ジルコニア)との界面における抵抗成分の最小化が重要な課題となる。
くわえてNiと8YSZとのサーメット組成をもつ電極のもう一つの大きな問題点は金属Niの粒成長の問題である。先ず、この種の電極中の電子及び酸化物イオンの伝導機構を説明する。Ni粒子同士、また8YSZ粒子同士がアノード層内においてつながりあい、Ni粒子同士の連結部を電子が移動し、8YSZ粒子同士の連結部を酸化物イオンが拡散するという状態をつくれれば、Niと8YSZの接点で電子、酸化物イオン、水素の3つがであうことができる(3相界面と呼ぶ)。これにより、多孔質なNi-8YSZサーメット内に数多くの活性サイトをつくることができる。
ただし、その場合Niと8YSZの最適な組成は重量比でNi:8YSZ=3:2といわれているが、この場合には8YSZの重量比が多いこともあり、界面の抵抗成分は多めになり、その結果、燃料電池セルの内部抵抗を増加させ、発電性能の低下をもたらす。
そこでNi成分を増加させることで電子伝導性を増加させ、界面の抵抗も低下させることができる。さらにNiOからNiへの変化に伴う体積収縮の効果から多孔性も高まり、発電性能向上にプラスにはなる。しかしながら、Ni成分の増加によりNiの粒成長が容易におこるようになる。700℃という動作温度においてもNi粒成長による発電性能の安定性低下が発生するという問題があるといわれている。
なお、アノード材料に他の物質を添加することによってアノード性能の改善を図る研究がいくつか公表されている。非特許文献1~4はプロトン伝導体として知られるSr(Y,Ce)OまたはBa(Y,Ce)Oという組成のペロブスカイト化合物(ブラウンミラーライト関連化合物)を、アノードに4~5wt%添加し、800℃以上の温度で添加効果を確認している。しかしながら、これらの文献で添加効果が発現する温度はステンレスの使用可能な温度をこえた800℃になるので、インターコネクター等に使用可能な材料が非常に高価であるという問題を解決することはできない。また、非特許文献5においては、白金または白金族金属をSmドープセリア粒子に担持させて電子伝導性及び酸化物イオン伝導性をもたせることが開示されており、これらの金属をアノード層中に0.2から0.3wt%添加することで、800℃以上の動作温度においてアノード性能改善効果を見出したと報告されている。しかしながら、本文献に基づいたアノードもその動作温度が高いために、インターコネクター等にステンレスを使用することができない。
よって、700℃から800℃において、高い発電効率(理論発電効率の54%以上)、で大きな電流密度を得るという高い性能が期待できる、いわゆる中温域動作温度において、高い発電効率における発電性能の向上と、その高い性能の安定性確保という2つを同時に満たすSOFCのアノード材料が強く望まれている。
本発明の課題は、700℃等の従来の通常のSOFCよりも低い動作温度領域における高い発電性能及び動作中のNi粒成長の抑制を達成するためのアノード、またこのようなアノードを使用したSOFCを提供することにある。
本発明の一側面によれば、固体電解質と、金属ニッケル粒子と、ブラウンミラーライト構造を有するBaIn1.7(Zn0.5,Zr0.50.3、CaFe、SrFe、CaIn、SrIn、及びBaIn、並びに酸化物TiO、CeO、及びSnOからなる群から選択された少なくとも一からなるアノード反応助触媒とを含む固体酸化物形燃料電池用アノードが与えられる。
ここで、前記固体電解質はイットリア安定ジルコニア、セリア並びにSm、Y及びGdの少なくとも一の元素を10~20mol%固溶させたセリアからなる群から選択された少なくとも一であってよい。
また、前記アノード反応助触媒を0.1~1wt%含んでよい。
また、前記アノード反応助触媒はアモルファス化していなくてよい。
また、前記固体電解質と前記金属Ni粒子との粒界領域のうちの前記固体電解質側表面上に前記アノード反応触媒が存在し、前記固体電解質側表面上の前記アノード反応触媒の表面上において活性な酸素の拡散が促進されてよい。
また、この固体酸化物形燃料電池用アノードは焼成体であってよい。
本発明の他の側面によれば、上記何れかのアノードを使用した固体酸化物形燃料電池が与えられる。
本発明によれば、低温領域においても高い発電性能を発揮するとともに粒成長を抑制できるSOFCを実現することができる。従来、アノードにおいては高い性能と安定性の向上とは互いにトレードオフの関係にあると言われていた。本発明によれば、プロモーターを添加することで、これら2つの課題の解決を両立させることができるという大きな効果が発揮される。
BaIn及びBaIn1.7(Zn0.5,Zr0.50.3のXRDパターンを示す図。 Hebb-Wagner法によるBaIn1.7(Zn0.5,Zr0.50.3の酸素分圧依存性の測定結果を示す図。 電流遮断法による本発明の実施例及び比較例の電極性能試験結果を示す図。 本発明の実施例及び比較例のカソード・オーバーポテンシャル(過電圧)の測定結果を示す図。 本発明の実施例及び比較例のターフェル線を比較する図。 本発明の実施例及び比較例における焼き付け温度及びBM添加量による電流密度の変化を示す図。 本発明においてプロモーター添加により発電性能が向上するメカニズムを図式的に説明する図。 本発明の実施例の断面SEM像を示す図。 本発明の実施例及び比較例の断面SEM像及びこれら実施例及び比較例の断面の粒度分布を示す図。
本発明のアノードは8YSZ等のイットリア安定ジルコニア(YSZ)及び金属Ni粒子を含む従来のアノードに、粒成長抑制とアノード過電圧低下の両方を可能にするプロモーター(アノード反応助触媒)を添加したものである。このプロモーターとして、以下の実施例ではブラウンミラーライト形化合物単一相からなるBaIn1.7(Zn0.5,Zr0.50.3(以下BMと称する)を使用する。本発明のアノードは、例えば、YSZ等の固体電解質粉末、Ni酸化物粉末及びプロモーターとなる固溶体微粉末を混合し、固体電解質焼結体の上に塗布して、その後、1200℃~1300℃程度の温度で焼き付ける処理を行うことにより作製することができる。これにより、アノードは固体電解質焼結体上に焼成体として形成される。ただし、このままではそのNi成分はNi酸化物として存在するので、これを金属Niの粒子に変化させる必要がある。これは、例えば水素雰囲気中で800℃程度に加熱することで実現できる。この水素還元処理過程でNiOは金属Niに変化し、またこの際にアノード層内に空孔が形成される。これと同時に、プロモーターが還元雰囲気中でYSZ等の固体電解質表面に拡散して行き、活性なサイトを形成すると考えられる。
このように、プロモーターがYSZとNiとの粒界付近に広がり、YSZの表面において酸化物イオン等が移動しやすい領域、すなわち新たな活性サイト領域、を形成することで、図7を参照して後述するように、Ni表面上で生成されYSZ側に移動してきた活性な水素がこの領域上で酸化物イオンと反応して水を生成する反応が促進される。これがアノード過電圧低下を引き起こすと考えられる。プロモーターのもう一つの作用であるNi粒成長抑制について説明すれば、ここでは金属分野で以前から知られているところの、第2相の共存による粒成長ピン止め効果を利用している。非特許文献6は金属についての説明であるが、p.614の式24が基本となる。簡単に言えば、母相中に第2相が共存した場合、粒成長の駆動力は空孔による粒成長抑制力と第2相による粒成長抑制力のバランスで決まり、第2相の粒子が微細なほど、第2相による粒成長抑制力は高まり、ち密化が進むということである。厳密な説明は非特許文献6を参照されたい。
これにより、本発明のアノードにおいては、YSZ等の固体電解質とNi粒子との粒界付近に広がるように形成された新たな活性サイト領域上で活性な酸素が表面拡散を起こしやすく、身軽に動きまわる。したがって、本発明のアノードでは、従来型のアノードに比べて水分子の形成も活発になり、使用開始時点から高い活性が発揮される。この高い活性による高い発電性能は、プロモーターのNi粒成長抑制により、長期間安定的に維持される。このように、プロモーターの添加により、従来はトレードオフの関係にあると認識されていたSOFCの初期性能の向上と粒成長抑制による性能低下の抑制との両者を同時に達成することができる。
ここで、YSZに代えて、セリアあるいはSm、YやGdを10から20mol%固溶させたセリア等を使用することができる。また、プロモーターについては、その粒成長抑制の面では、上述したとおり、母相(この場合、NiまたはYSZ等)とは異なる第2相の微粒子であれば効果が期待できる。よって、BM粒子のように、イオンと電子とが同じように粒子内を流れ、かつNiまたはYSZとも異なる第2相であれば、上述したプロモーターとしての過電圧低下と粒成長抑制の両面でそれなりの効果が期待できる。したがって、BM以外にプロモーターとして使用可能な材料を例示すれば、BMと同じくブラウンミラーライト構造をもつ、CaFe、SrFe、CaIn、SrIn、BaIn、またTiO、CeO、SnOなどの酸化物が挙げられる。
以下では本発明を実施例に基づいてさらに詳細に説明するが、当然ながら本発明は実施例に限定されるものではない。また、以下の説明では固体電解質として8YSZを、プロモーターとしてブラウンミラーライト形化合物単一相からなるBaIn1.7(Zn0.5,Zr0.50.3を使用しているが、これによって一般性を失うことはない。
本実施例では先ずブラウンミラーライト形化合物を作成した。具体的には、先ず出発原料としてBa(NO(99%以上,和光純薬工業製),In(NO・4.7HO(99.99%,高純度化学製),及び(NHCO(和光純薬工業製)の粉末を準備した。
そのうえで、Ba(NO粉末及びIn(NO・4.7HO粉末を、これら2つの物質に含まれているBaとInとのモル比がBaInO中のBaとInとのモル比1:1になるように秤量して、蒸留水中で混合した(更に具体的に説明すれば、5.8804gのBa(NO粉末及び5.7539gのIn(NO・4.7HO粉末をそれぞれ300mlの蒸留水中に溶解し、これらの水溶液を混合した)。43.2gの(NHCOを蒸留水300mlに溶解し45℃に加熱しておいた(NHCO水溶液中に上記混合水溶液を滴下して、均一沈殿を作製した。得られた沈殿は、おなじく45℃において24時間混合をつづけることで熟成処理を施したのち、沈殿と液体を分離し、水洗し、室温、窒素気流下において十分に乾燥した。なお、この熱熟成処理、すなわち沈殿を作成した後、同じ温度に維持しておく処理、を行うことで、ルシャトリェの法則が溶液と沈殿との間でも成り立つことから、両者の間で沈殿の溶解と再沈殿が繰り返される。この過程を適切な時間継続することによって、沈殿の粒子が微細化される。
乾燥した粉末は、酸素気流下、450℃で2時間、酸素ガス流通下において仮焼することで、BaInO固溶体を合成した。そのXRDパターンを図1(a)に示す。この固溶体粉末に、ZnO粉末(純度:99.999%,高純度化学製)及びZrO粉末(TOSOH Company, 0Y grade)を所定量秤量して添加し、これに対してエタノール溶媒を用いてボールミル湿式混合を行うことで、上記BM組成となる混合物粉末を調製した。
この混合粉末を1000℃で1時間空気中において仮焼することで、ブラウンミラーライト相単一相となるBaIn1.7(Zn0.5,Zr0.50.3化合物を合成した。最終的にこの合成プロセスによって得られたBaIn1.7(Zn0.5,Zr0.50.3化合物固溶体粉末をSEMで,観察した結果、その平均粒径は約0.1μm程度であった。この化合物固溶体粉末のXRDパターンを図1(b)に示す。
本発明で求められるプロモーター、つまりアノード反応活性助触媒は、アノード層内の3相界面において電子の移動や酸化物イオンの拡散を促進する機能を持ち合わせている必要がある。
そこで、BaIn1.7(Zn0.5,Zr0.50.3化合物が、そうした性質を持っているか否かを確かめる目的で、BaIn1.7(Zn0.5,Zr0.50.3化合物をペレット状に成形したのち、1350℃,6時間の条件で空気中において焼結を行い、焼結体を作製した。得られたペレット状焼結体の両面に白金電極を焼き付け、4端子法による直流伝導度測定を、酸素分圧を1atmから10-22atmまで変化させて行った。酸素分圧の制御は純酸素ガス、空気、窒素ガス及び湿潤水素ガスを用いて行い、酸素分圧は、電気伝導度測定装置のガス出口側に直結した酸素センサを用いてチェックした。
700℃におけるBaIn1.7(Zn0.5,Zr0.50.3焼結体から記録された直流伝導度の酸素分圧依存性を図2に示す。図2から分かるように、燃料電池のアノード環境に相当する低酸素分圧領域では、測定された直流伝導度が酸素分圧の変化の-1/6乗に比例して変化(増加)する一方で、カソード環境に相当する高酸素分圧領域において測定された直流伝導度が酸素分圧の変化の+1/6乗に比例して変化(増加)することが判った。
このことは、この材料が低酸素分圧領域(アノード環境に相当)では、格子欠陥が準格子位置に発生するフレンケル欠陥由来の半導体特性を示し、電子と酸化物イオンが伝導の主たるキャリアになっていることを示す。また、一方で、高酸素分圧領域(カソード環境に相当)では、フレンケル欠陥由来の半導体特性を示し、ホールと酸化物イオンが、伝導の主たるキャリアになっていることを示していると考えられる。
燃料電池のアノード環境において電子及び酸化物イオンが主たる伝導キャリアになることは好ましいことではあるが、電子と酸化物イオンのそれぞれがどの程度の割合で伝導に寄与しているかを知っておくことも必要である。そのため、白金カソードを塗布したペレット状焼結体試料の上に白金の板を敷き、カソード側における試料表面での酸素の出入りを最小にした(ブロッキング電極法)場合の直流伝導度も、あわせて測定した。
その結果、図2において黒塗のプロットで示す、酸素分圧に対して-1/6乗に比例する直流伝導度の酸素分圧依存性が観察された。そこで、酸素分圧3×10-22atmにおける,ブロッキング電極を用いて測定した直流伝導度と、多孔質な通常の白金電極を用いた導電率測定(ノンブロッキング電極法)に得られた直流伝導度との比を計算したところ、その比の値(酸化物イオンキャリアと電子キャリアの比に相当し、いわゆるイオン輸率に相当する)は約0.5となり、酸化物イオンと電子とがほぼ半分ずつの割合で試料内を拡散または移動する混合伝導体であることが判った。
本発明では、アノード層中のNiと8YSZとの界面において電子と酸化物イオンとの両方が十分に行き来することを助ける材料が良いプロモーターになるとの考えの下、BaIn1.7(Zn0.5,Zr0.50.3粉末を、Ni-8YSZサーメット組成の電極粉末に、アノード組成全体の0.1wt%から1wt%の範囲になるように添加し、1300℃の温度において焼き付け処理を行った燃料電池単セルの発電性能を、電流遮断法(固体電解質のIR過電圧をとりのぞき、電極反応の過電圧のみを測定する方法)により、セル電圧(IR-フリー)を測定した。また比較例としてBaIn1.7(Zn0.5,Zr0.50.3粉末無添加のNi-8YSZ試料についても同じ測定を行った。図3にはBaIn1.7(Zn0.5,Zr0.50.3粉末の添加量がアノード組成全体の0.1wt%及び0.2wt%の2つの試料の測定結果、並びに比較例の無添加Ni-8YSZ試料の測定結果を示す。なお、ここでの測定条件を説明すれば、この燃料電池単セルのカソードはLa0.85Sr0.15MnO、また電解質は8YZA焼結体(厚さ0.5mm)であった。また、カソード側にはOガス流を80SCCMで、またアノード側には湿潤Hガス(+3%HO)を供給した。動作温度は700℃とした。図中、水平の破線は発電効率54%のレベルを示している。
図3に示す比較では、酸素と水素を用いた燃料電池において、発電効率が54%に相当するセル電圧であるセル電圧0.8Vにおけるセル電流の値の変化から、電池性能改善効果を比較している。図3から、高い発電効率を示すセル電圧0.8Vにおいて、プロモーター無添加の場合に比して、プロモーターを微量に添加することで性能は大きく改善していることが分かる。
ただし、この電流遮断法によりセル電圧(IR-フリー)の測定値にはカソード過電圧とアノード過電圧との両方が含まれている。そこで、白金線を参照極としてペレット状焼結体試料の側面に巻き付け、参照極も含めた3電極法を使用することにより、図3に結果を示したものと同じ試料についてカソード過電圧を分離して測定した結果を図4に示す。
カソード過電圧は、燃料電池測定装置内におけるアノード(湿潤水素で満たされた環境)とカソード(酸素により満たされた環境)とを仕切る固体電解質焼結体の両面に設けたガスシール部からのアノードで発生した水分子がカソード側に流入することで変化する可能があるといわれている。そのため、実験で塗布したカソード電極が同じ種類の電極であり、同じ量塗布してあるという場合でも、燃料電池性能測定に際して、どの程度のカソード過電圧の変動があるのかを確認しておくことで、図3において現れたプロモーターの微量添加効果を正確に評価することが可能になると考えられる。
図4から、本実施例における性能測定実験では、60mAcm-2のセル電流において、0.06V以内にあるセル電圧(IR-フリー)の変化からは、それがプロモーター添加による性能向上効果であるかどうかは議論できないことになる。
そこで、この点を明確にする目的で、図3において得られたセル電圧(IR-フリー)とセル電流との関係に関するデータを用いてターフェル線を描き、アノード層中への微量プロモーター添加効果をより正確に見積もることとした。
図5には、プロモーターを微量添加した試料及び無添加の試料の燃料性能評価結果から得られたターフェル線の比較結果を示す。この図から、BMプロモーターを0.1wt%以上アノード層内に添加した場合、燃料電池性能に貢献するアノード過電圧性能低下効果が現れることが明らかになった。
次に、このプロモーター添加効果が、電極焼き付け温度の違いによりどのような影響をうけるかを調べた。その結果を図6に示す。図6からは、電極焼き付け温度が1200℃の場合には、プロモーター添加効果がわずかしか現れないにもかかわらず、焼き付け温度を100℃高め1300℃とした場合に、大きなプロモーター添加効果が現れることが分かる。またこの図は、このBMプロモーター添加効果が、BMの添加量が0.1wt%から0.5wt%程度までの時、顕著になることも示している。
添加量が0.5wt%を超えた場合、BMと8YSZとの間に副生生成物(例えば、BaZrO化合物)が生成してしまい、プロモーター添加効果を抑制・阻害すると考えられる。しかし、当該添加量が0.5wt%を超えるが1wt%以下の範囲であれば、添加による効果は次第に低減するが、それでも無添加の場合に比べるとプロモーター添加効果が発現する。したがって、プロモーター添加量は、好ましくは0.1wt%~1wt%であり、更に好ましくは0.1wt%~0.5wt%であるとする。なお、プロモーター添加効果はその導電性(つまり、電子伝導性と酸化物イオン伝導性)の大小に対応して現れると考えられる。この点から見ても、x=0.3が最もこの効果が顕著かつ良好ということになる。一方、xの値が0.3からずれた場合には、このx=0.3の場合を頂点として効果が低減していくものの、広い範囲で無添加の場合に比べるとある程度の効果が発揮されると思われる。
また、このように焼成温度によるBMプロモーター添加効果に差が生じる理由は、BMを構成するカチオンの拡散が1200℃以上1300℃程度の温度で大きくなることに理由があるとも考えられる。つまり、BM粒子は1350℃の焼結でほぼち密な焼結体になることからも、BMを構成する結晶の拡散が1300℃程度で大きくなると考えることは妥当であろうと考えられる。なお、焼き付け温度を1400℃まで上げると非晶質化が起こって多くの物性が変化するため、プロモーター添加した材料の電極焼き付けは1400℃よりも低い温度で行う必要がある。
次に、BM化合物を構成する結晶がアノード層内を拡散してNiと8YSZとの粒界付近に広がることにより発電性能向上がもたらされるというプロ―モーター添加効果発現機構を、プロモーター添加と無添加について比較した。図7に、プロモーター(BM)添加なし(図7左側)及び添加あり(図7右側)の2つの場合の粒界近傍における反応の模式図を示す。
図7に示すように、YSZ内部を拡散した酸化物イオンは、YSZ表面で活性な酸素になると考えられるが、この活性な酸素がYSZ表面を拡散する間に、Ni上で乖離した活性な水素と反応して、燃料電池アノード反応生成物である水分子の生成がおきると考えられている。
アノード反応のプロセスにおいて、水分子の生成はYSZ表面における活性な酸素の遅い表面拡散によって律速されると考えられている。そこで、BMプロモーターを微量添加し、1300℃という焼結温度付近の焼き付け温度で電極の焼き付けを行うことで、BMを構成するBM結晶がYSZ表面に拡散していき、この表面を部分的に覆う。図7右側模式図(BM添加あり)中の左半分の水平面上に描かれた不規則な灰色領域で、このBM結晶によって部分的に覆われたYSZ表面上の領域を示す。この表面を覆っているBM格子の表面や内部を電子や酸化物イオンが動きやすい(混合伝導性)ことから、BM層上では活性な酸素の表面拡散はYSZ表面のみに比べ大幅に速くなると考えられる。
その結果、YSZ表面における水分子の生成も活発化し、結果として燃料電池発電性能の向上が可能になったものと考えられる。
次に、BMプロモーターをアノード層全体に対して、0.2wt%となるように添加し、1300℃において焼き付けを行い、燃料電池性能評価を実施した試料を用いたアノード層断面の走査形電子顕微鏡(SEM)観察した像及びEDXによる元素分析のための観察領域1~4を図8に示し、観察像中のこれらの領域のそれぞれにおける元素分析結果を以下の表に示す。図8及び下表により、観察領域1及び3にはBM粒子の存在を裏付けるBa元素やIn元素の存在は検出限界以下または検出限界近傍である一方、観察領域2及び4ではBMプロモーター粒子の主要構成成分であるBaとIn元素がはっきりと観察されることで、BMプロモーター粒子がそこに存在することが裏付けられた。
Figure 0007058866000001
また、本発明の課題に示すように、アノード活性向上(ひいては発電性能向上)だけではなく、その性能長期安定性も達成されることを明らかにするためには、BMプロモーター粒子の存在が裏付けられる領域ではアノード層を構成する粒子の粒成長も抑制されていることを示す必要がある。
そこで、1300℃の温度で焼き付け処理を行い、更に水素還元処理を行いアノード層中のNiOをNiに還元した試料を使い、BMプロモーター粒子の存在が元素分析により示された領域を中心とした範囲内でアノード層を構成する粒子の粒度分布を測定し、これをBMプロモーター粒子無添加の試料と比較した結果を図9に示す。粒径分布の測定は、400個の粒子を対象に、切片長さの分布から3次元的な粒径の分布をはかるインターセプト法により行った。
図9から分かるように、BMプロモーター粒子の存在が裏付けられた領域から観察された粒径分布は、BMプロモーター粒子の添加がない試料に比して、粒径の小さい側に平均粒径のピークがあることが見て取れる。ここで、粒度分布を測定した試料は何れも1300℃で電極焼き付け処理を行ったものである。この温度は本発明のアノードが想定している主要な動作温度である700℃から800℃といったいわゆる中温域よりも高い温度であることに注意する必要がある。すなわち、このような実際の想定動作温度よりも非常に高い温度に曝されたにもかかわらず本発明を適用したBM添加試料における粒成長がBMを添加していない試料に比べて粒成長が明確に抑制されていることは、それよりもはるかに低温である本発明のSOFCの想定動作温度においては粒成長速度が図9に示すものよりもはるかに遅くなることを示している。したがって、本発明のアノード層内粒成長抑制効果が明らかになった。
このBMプロモーター粒子のアノード層内粒成長抑制効果とYSZ粒子表面における活性な酸素の表面拡散促進効果とがあいまって、BMの微量添加により発電性能の向上が可能になったものと考えられる。また、一般にSOFCの動作中のNiの粒成長によって発電性能が低下していくが、上で説明したように、本発明のアノードを700℃程度で長時間動作させた場合には、そこに含まれているBMプロモーターによる粒成長抑制効果により、このような動作中の発電性能の低下も抑制され、従ってSOFCの長期安定性を阻害する主要な要因の一つが大きく軽減される。
以上詳細に説明したように、本発明によれば、図7を参照して説明したように、YSZ等の固体電解質とNi粒子との間の界面にプロモーターにより形成された新たな活性サイト領域上での活性な酸素の表面拡散の促進により、水分子の形成も活発になり、低温においても当初から高い発電性能を発揮するとともに、粒成長の抑制によって、使用開始時点からのこのような高い発電性能を長期間安定的に維持するSOFC用のアノード、及びこのアノードを使用したSOFCを提供することができるので、産業上大いに利用されることが期待される。
Shimada, H.; Ohba, F.; Li, X.; Hagiwara, A.; Ihara, M. Electrochemical behaviors of Nickel/Yttria-stabilized Zirconia anodes with distribution controlled Yttrium-doped barium zirconate by Ink-jet technique. J. Electrochem. Soc. 2012, 159, F360-F367. Jin, Y.; Saito, H.; Yamahara, K.; Ihara, M. Improvement in durability and performance of Nickel cermet anode with SrZr0.95Y0.05O3-α in dry methane fuel. Electrochem. Solid-State Lett. 2009, 12, B8-B10. Yano, S.; Nakamura, S.; Hasegawa, S.; Ihara, M.; Hanamura, K. Solid oxide fuel cell with anode using proton conductor (Barium-Cerium/Yttrium oxide). J. Therm. Sci. Technol. 2009, 4, 431-436. Islam, S.; Hill, M. J. Barium oxide promoted Ni/YSZ solid-oxide fuel cells for direct utilization of methane. J. Mater. Chem. A. 2014, 2, 1922 -1929. Watanabe, M.; Uchida, H.; Shibata, M.; Mochizuki, N.; Amikura, K. High performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells. J. Electrochem. Soc. 1994, 141, 342-346. 宇高政道; 川嵜一博; 山崎隆雄; 梅本実 「Cu/AlN混合超微粒子の焼結における緻密化と粒成長」, 日本金属学会誌 第60巻 第6号(1996)607-615

Claims (7)

  1. 固体電解質と、
    金属ニッケル粒子と、
    ブラウンミラーライト構造を有するBaIn1.7(Zn0.5,Zr0.50.3、CaFe、SrFe、CaIn、SrIn、及びBaIn らなる群から選択された少なくとも一からなるアノード反応助触媒と
    を含む
    固体酸化物形燃料電池用アノード。
  2. 前記固体電解質はイットリア安定ジルコニア、セリア並びにSm、Y及びGdの少なくとも一の元素を10~20mol%固溶させたセリアからなる群から選択された少なくとも一である、請求項1に記載の固体酸化物形燃料電池用アノード。
  3. 前記アノード反応助触媒を0.1~1wt%含む、請求項1または2に記載の固体酸化物形燃料電池用アノード。
  4. 前記アノード反応助触媒はアモルファス化していない、請求項1から3の何れかに記載の固体酸化物形燃料電池用アノード。
  5. 前記固体電解質と前記金属ニッケル粒子との粒界領域のうちの前記固体電解質側表面上に前記アノード反応触媒が存在し、
    前記固体電解質側表面上の前記アノード反応触媒の表面上において活性な酸素の拡散が促進される
    請求項1から4の何れかに記載の固体酸化物形燃料電池用アノード。
  6. 焼成体である、請求項1から5の何れかに記載の固体酸化物形燃料電池用アノード。
  7. 請求項1から6の何れかに記載のアノードを使用した固体酸化物形燃料電池。
JP2018037124A 2018-03-02 2018-03-02 固体酸化物形燃料電池用アノード及びこのアノードを使用した固体酸化物形燃料電池 Active JP7058866B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037124A JP7058866B2 (ja) 2018-03-02 2018-03-02 固体酸化物形燃料電池用アノード及びこのアノードを使用した固体酸化物形燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037124A JP7058866B2 (ja) 2018-03-02 2018-03-02 固体酸化物形燃料電池用アノード及びこのアノードを使用した固体酸化物形燃料電池

Publications (3)

Publication Number Publication Date
JP2019153441A JP2019153441A (ja) 2019-09-12
JP2019153441A5 JP2019153441A5 (ja) 2021-02-12
JP7058866B2 true JP7058866B2 (ja) 2022-04-25

Family

ID=67946745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037124A Active JP7058866B2 (ja) 2018-03-02 2018-03-02 固体酸化物形燃料電池用アノード及びこのアノードを使用した固体酸化物形燃料電池

Country Status (1)

Country Link
JP (1) JP7058866B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166563A (ja) 2003-12-05 2005-06-23 Nippon Telegr & Teleph Corp <Ntt> 活性微粒子を添加したsofc用燃料極およびその作製法
JP2008541336A (ja) 2005-01-31 2008-11-20 テクニカル ユニバーシティ オブ デンマーク 酸化還元の安定なアノード
JP2014508372A (ja) 2010-11-29 2014-04-03 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン イットリア安定化ジルコニアの溶融された粉末

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166563A (ja) 2003-12-05 2005-06-23 Nippon Telegr & Teleph Corp <Ntt> 活性微粒子を添加したsofc用燃料極およびその作製法
JP2008541336A (ja) 2005-01-31 2008-11-20 テクニカル ユニバーシティ オブ デンマーク 酸化還元の安定なアノード
JP2014508372A (ja) 2010-11-29 2014-04-03 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン イットリア安定化ジルコニアの溶融された粉末

Also Published As

Publication number Publication date
JP2019153441A (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
Cho et al. Fe-substituted SrTiO 3− δ–Ce 0.9 Gd 0.1 O 2 composite anodes for solid oxide fuel cells
Fabbri et al. High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes
EP3021393B1 (en) Solid oxide fuel cell, manufacturing method therefor, fuel-cell stack, and solid oxide fuel-cell device
Lee et al. Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid
Park et al. A collaborative study of sintering and composite effects for a PrBa 0.5 Sr 0.5 Co 1.5 Fe 0.5 O 5+ δ IT-SOFC cathode
Li et al. Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells
JP5465240B2 (ja) センサー、酸素分離装置、および固体酸化物燃料電池のためのゾルゲル由来の高性能触媒薄膜
KR102256575B1 (ko) 고체 산화물 연료 전지용 신규한 세라믹 애노드 재료
Lalanne et al. Neodymium-deficient nickelate oxide Nd1. 95NiO4+ δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells
JP2015501515A (ja) 固体酸化物電気化学セル用の高性能燃料電極
US8778560B2 (en) Mixed ionic and electronic conductor based on Sr2Fe2-xM0XO6 perovskite
KR20130099704A (ko) 고체산화물 연료전지용 기능층 소재, 및 상기 소재를 이용하여 제조된 기능층과 상기 기능층을 포함하는 고체산화물 연료전지
Lenka et al. Comparative investigation on the functional properties of alkaline earth metal (Ca, Ba, Sr) doped Nd2NiO4+ δ oxygen electrode material for SOFC applications
Park et al. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0. 2Sr0. 8Ti0. 9Ni0. 1O3− δ) anode of solid oxide fuel cell
Ju et al. Phase transition of doped LaFeO3 anode in reducing atmosphere and their power generation property in intermediate temperature solid oxide fuel cell
Cao et al. Novel reduction-resistant Ba (Ce, Zr) 1− xGdxO3− δ electron-blocking layer for Gd0. 1Ce0. 9O2− δ electrolyte in IT-SOFCs
Tao et al. Optimisation and evaluation of La0. 6Sr0. 4CoO3–δ cathode for intermediate temperature solid oxide fuel cells
Zhang et al. Characterization of doped La0. 7A0. 3Cr0. 5Mn0. 5O3− δ (A= Ca, Sr, Ba) electrodes for solid oxide fuel cells
KR20160123191A (ko) 팔라듐/세리아 나노입자를 포함하는 고체산화물 전해 셀용 음극 및 그 제조방법
Price et al. Development and testing of impregnated La0. 20Sr0. 25Ca0. 45TiO3 anode microstructures for solid oxide fuel cells
Zhang et al. Layered GdBa0. 5Sr0. 5Co2O5+ δ as a cathode for proton-conducting solid oxide fuel cells with stable BaCe0. 5Zr0. 3Y0. 16Zn0. 04O3− δ electrolyte
JP7058866B2 (ja) 固体酸化物形燃料電池用アノード及びこのアノードを使用した固体酸化物形燃料電池
JP4988072B1 (ja) 固体酸化物形燃料電池
JP7194936B2 (ja) 混合伝導体層を有する固体酸化物燃料電池
Zhang et al. Solid oxide fuel cell composite cathodes prepared by infiltration of copper manganese spinel into porous yttria stabilized zirconia

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7058866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150