JP7030507B2 - Particle size measurement method and system for soil materials - Google Patents

Particle size measurement method and system for soil materials Download PDF

Info

Publication number
JP7030507B2
JP7030507B2 JP2017247223A JP2017247223A JP7030507B2 JP 7030507 B2 JP7030507 B2 JP 7030507B2 JP 2017247223 A JP2017247223 A JP 2017247223A JP 2017247223 A JP2017247223 A JP 2017247223A JP 7030507 B2 JP7030507 B2 JP 7030507B2
Authority
JP
Japan
Prior art keywords
soil material
belt conveyor
soil
particle size
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017247223A
Other languages
Japanese (ja)
Other versions
JP2019113429A (en
Inventor
総一郎 和辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2017247223A priority Critical patent/JP7030507B2/en
Publication of JP2019113429A publication Critical patent/JP2019113429A/en
Application granted granted Critical
Publication of JP7030507B2 publication Critical patent/JP7030507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Conveyors (AREA)

Description

本発明は、ダムその他の構造物を構築する土木建設工事において、工事現場付近の地山などで採取した土質材料を原材料とする構造材料の品質管理に使用する土質材料の粒度計測方法及びシステムに関する。 The present invention relates to a method and system for measuring the particle size of soil materials used for quality control of structural materials using soil materials collected in the ground near the construction site as raw materials in civil engineering construction work for constructing dams and other structures. ..

ダム工事で使用されるCSG(Cemented Sand and Gravel)などの構造材料は、現場付近で採取した土質材料に水及びセメントを混合してそのまま施工するものであり、大量かつ高速の施工を可能とする点で利点がある。
この種の構造材料では、土質材料の粒度分布や含水率の変動によって、構造物の品質に変動を生じさせるため、土質材料の粒度分布や含水率を確認し、土質材料と混合する水の供給量やセメントの添加量を調整して、構造材料の品質を適切に管理することが必要とされる。
Structural materials such as CSG (Cemented Sand and Gravel) used in dam construction are made by mixing water and cement with soil materials collected near the site and constructing them as they are, enabling large-scale and high-speed construction. There is an advantage in that.
In this type of structural material, changes in the particle size distribution and water content of the soil material cause fluctuations in the quality of the structure. Therefore, check the particle size distribution and water content of the soil material and supply water to be mixed with the soil material. It is necessary to properly control the quality of structural materials by adjusting the amount and the amount of cement added.

従来、土質材料の粒度分布を求めるには、篩を用いて篩い分けが行われてきたが、この篩い分けの作業では非常に手間がかかるため、近時は、デジタルカメラやラインレーザーなどを使用した画像処理技術を利用して、土質材料の粒度分布の傾向をリアルタイムで把握することが行われている。
この種の土質材料の粒度計測方法やシステムが特許文献1、2などにより提案されている。
In the past, sieving was performed using a sieve to determine the particle size distribution of soil materials, but since this sieving work is extremely time-consuming, digital cameras and line lasers have recently been used. The trend of particle size distribution of soil materials is grasped in real time by using the image processing technology.
Patent Documents 1 and 2 have proposed methods and systems for measuring the particle size of this type of soil material.

特許文献1の地盤材料の粒度監視方法では、三次元画像処理設備を利用して、規定時間内に3Dラインレーザーカメラによる撮像対象領域を通過した地盤材料群すべての三次元表面形状データを取得する一方で、あらかじめふるい分け試験に用いる目開きの異なる複数のふるい各々に対応する最適閾値を設定しておき、三次元表面形状データから端末装置にて地盤材料群の、全体積に対するコンベヤベルトの搬送面から最適閾値に相当する高さまでの体積の比を、加積通過率(画像体積比)として算定した後、ふるいごとに対応させた最適閾値にて算定した加積通過率(画像体積比)を、各ふるいの加積通過率(重量比)に見立てて、粒度分布曲線(重量比)を推定する。
このようにして簡略な方法で精度よく地盤材料の粒度を連続的かつリアルタイムに把握することができる。
In the method for monitoring the particle size of the ground material of Patent Document 1, the three-dimensional image processing equipment is used to acquire the three-dimensional surface shape data of all the ground material groups that have passed through the image pickup target area by the 3D line laser camera within a specified time. On the other hand, the optimum threshold value corresponding to each of a plurality of sieves having different openings used in the sieving test is set in advance, and the transport surface of the conveyor belt with respect to the total volume of the ground material group is set by the terminal device from the three-dimensional surface shape data. After calculating the ratio of the volume from to the height corresponding to the optimum threshold as the addition passage rate (image volume ratio), the addition passage rate (image volume ratio) calculated by the optimum threshold corresponding to each sieve is calculated. , Estimate the particle size distribution curve (weight ratio) by assuming the loading pass rate (weight ratio) of each sieve.
In this way, the particle size of the ground material can be grasped continuously and in real time with high accuracy by a simple method.

特許文献2の粒状材料の粒度分布計測方法及びシステムでは、異なる粒径dの粒状材が混合した粒状材料Sを撒き出して全体画像G0及び所定拡大倍率の部分画像G1を撮影する。全体画像G0から検出下限粒径d1以上の複数の所定粗粒径diについてその粒径di以上の検出粒状材の画像全体に対する面積割合である粒度インデクスIiを算出し、その粒度インデクスIiを加積通過率P(di)に変換して粒径d1以上の粗粒径加積曲線P(d≧d1)を作成する。部分画像G1から粒径d1以下の所定細粒径djについて粒径d1以下の粒状材を検出して所定細粒径djの粒度インデクスIjを算出し、その粒度インデクスIjを加積通過率P(dj)に変換して粒径d1以下の細粒径加積曲線P(d≦d1)を作成する。粗粒径及び細粒径の加積曲線を合成して粒径加積曲線P(d)を作成する。
このようにして篩い分けのような手間を必要とせず、広い粒径範囲の粒径加積曲線P(d)を短時間で簡単に作成できるので、例えば粒状材料Sを用いた構造物工事(フィルダム等の建設工事)に適用した場合に、粒状材料Sの透水係数・透水性・圧縮性等を含む多様な品質管理作業の容易化・高度化を図ることができる。
In the method and system for measuring the particle size distribution of the granular material of Patent Document 2, the granular material S in which the granular materials having different particle diameters d are mixed is sprinkled out, and the whole image G0 and the partial image G1 having a predetermined magnification are taken. From the entire image G0, the particle size index Ii, which is the area ratio of the detected granular material having the particle size di or more to the entire image, is calculated for a plurality of predetermined coarse particle size dis having the detection lower limit particle size d1 or more, and the particle size index Ii is added. A coarse particle size addition curve P (d ≧ d1) having a particle size d1 or more is created by converting to a passing rate P (di). A granular material having a particle size d1 or less is detected from the partial image G1 for a predetermined fine particle size dj having a particle size d1 or less, a particle size index Ij having a predetermined fine particle size dj is calculated, and the particle size index Ij is used as a loading pass rate P ( dj) is converted to create a fine particle size addition curve P (d ≦ d1) having a particle size d1 or less. The particle size addition curve P (d) is created by synthesizing the coarse particle size and fine particle size addition curves.
In this way, the particle size embankment curve P (d) having a wide particle size range can be easily created in a short time without the need for labor such as sieving. When applied to (construction work such as fill dams), it is possible to facilitate and enhance various quality control work including the water permeability coefficient, water permeability, compressibility, etc. of the granular material S.

特開2017-129408号公報Japanese Unexamined Patent Publication No. 2017-129408 特開2013-257188号公報Japanese Unexamined Patent Publication No. 2013-257188

しかしながら、この種従来の土質材料の粒度計測方法やシステムでは、土質材料をベルトコンベヤで搬送しながらこのベルトコンベヤ上の土質材料を撮像機で撮影し、この土質材料の画像を画像処理装置により画像処理して土質材料の粒度を計測すると、土粒子同士が密集している場合に、土粒子の重なりや接触により、個々の土粒子のエッジ(輪郭)が不鮮明で認識できなかったり大きな土粒子と判断されたりして、「JIS A1204土の粒度試験」の結果と大きく異なる結果となり、粒度分布の精度向上の妨げとなっている、という問題がある。
本発明は、このような従来の問題を解決するものであり、この種の土質材料の粒度計測方法及びシステムにおいて、土質材料を撮像機で撮影する前に、土粒子を多くの時間を掛けることなく確実に分散し、一つ一つの土粒子のエッジを明確にして、土質材料の撮像機による撮影及びこの土質材料の画像の画像処理装置による画像処理により計測する土質材料の粒度分布の精度を向上させること、を目的とする。
However, in this kind of conventional method and system for measuring the particle size of soil material, the soil material on the belt conveyor is photographed by an imager while the soil material is conveyed by the belt conveyor, and the image of the soil material is imaged by an image processing device. When the particle size of the soil material is measured after processing, when the soil particles are densely packed together, the edges (contours) of the individual soil particles are unclear and unrecognizable or large soil particles due to the overlap or contact of the soil particles. There is a problem that the result is significantly different from the result of "JIS A1204 soil particle size test", which hinders the improvement of the accuracy of the particle size distribution.
The present invention solves such a conventional problem, and in this kind of soil material particle size measurement method and system, it takes a lot of time for soil particles to be photographed with an imager. The accuracy of the particle size distribution of the soil material measured by taking a picture of the soil material with an imager and processing the image of this soil material with an image processing device by making sure that the soil particles are dispersed without any problems and clarifying the edges of each soil particle. The purpose is to improve.

上記目的を達成するために、本発明(1)は、
土質材料をベルトコンベヤに供給し前記ベルトコンベヤで搬送しながら前記ベルトコンベヤ上の土質材料を撮像機で撮影し、土質材料の画像を画像処理装置により画像処理して土質材料の粒度を計測する土質材料の粒度計測方法において、
土質材料を前記ベルトコンベヤに供給する位置に、
上面に材料の投入口、下面に材料の排出口を有する箱に振動装置を装着され、前記箱の内部に基端から先端に向けて漸次幅狭の複数のバーが前記ベルトコンベヤの幅方向に並列に相互の間に基端が狭く基端から先端に向けて漸次幅広のスリットを介して配列され、基端を軸支されて先端側を下方向に傾動可能に先端側の傾斜を固定可能な手段を有してなる振動フィーダを
前記各バーの先端を前記ベルトコンベヤによる土質材料の搬送方向とは反対方向に向けて設置し前記箱内の前記各バーを土質材料が滑動しやすい適宜の角度に傾斜させて固定し
前記振動装置で前記箱とともに前記各バーを振動させて、土質材料を前記の前記材料の投入口から前記各バーの基端側に向けて投入し、土質材料を前記材料の投入口から前記材料の排出口へ前記各バー間のスリットを通じて落下させることにより、前記スリットよりも小径の細かい粒子の土質材料は前記基端側の狭いスリットを通じて落下させ、その他の土質材料は前記各バーの基端側の上面に一時的に載せて、前記箱と前記各バーの振動と前記各バーの下り傾斜により、前記各バー上で土質材料を分散させながら、小径の土質材料から徐々に大径の土質材料を基端から先端に向けて徐々に大きくなる前記スリットを通して落下させ、土質材料を粒径の小さい順に分散して前記ベルトコンベヤ上に供給し、土質材料をベルトコンベヤ上に分散して撮影する、
ことを要旨とする。
この場合、振動フィーダの材料の投入口にホッパーを介してベルトフィーダを接続して、前記ベルトフィーダを低速の所定の速度で回転させ又は低速の所定の速度の回転と一時停止とを繰り返し、他方、ベルトコンベヤを高速の所定の速度で駆動して、土質材料を前記低速のベルトフィーダで搬送して前記ホッパーを介して前記振動フィーダに投入し、前記振動フィーダから土質材料を前記高速のベルトコンベヤに供給することが好ましい。
また、上記目的を達成するために、本発明(2)は、
土質材料を搬送するベルトコンベヤと、前記ベルトコンベヤの上方に設置され、前記ベルトコンベヤの土質材料を撮影するための撮像機、及び土質材料の画像を画像処理する画像処理装置とを備え、土質材料を前記ベルトコンベヤに供給し前記ベルトコンベヤで搬送しながら前記ベルトコンベヤ上の土質材料を前記撮像機で撮影し、土質材料の画像を前記画像処理装置により画像処理して土質材料の粒度を計測する土質材料の粒度計測システムにおいて、
面に材料の投入口、下面に材料の排出口を有する箱に振動装置を装着され、前記箱の内部に基端から先端に向けて漸次幅狭の複数のバーが前記ベルトコンベヤの幅方向に並列に相互の間に基端が狭く基端から先端に向けて漸次幅広のスリットを介して配列され、基端を軸支されて先端側を下方向に傾動可能に先端側の傾斜を固定可能な手段を有してなる振動フィーダを備え、
前記振動フィーダは、土質材料を前記ベルトコンベヤに供給する位置に、前記各バーの先端を前記ベルトコンベヤによる土質材料の搬送方向とは反対方向に向けて設置されて、前記各バーが土質材料が滑動しやすい適宜の角度に傾斜されて固定され
前記振動装置で前記箱とともに前記各バーを振動させて、土質材料を前記箱の前記材料の投入口から前記各バーの基端側に向けて投入し、土質材料を前記材料の投入口から前記材料の排出口へ前記各バー間のスリットを通じて落下させることにより、土質材料を粒径の小さい順に分散して前記ベルトコンベヤ上に供給し、土質材料をベルトコンベヤ上に分散して撮影する、
ことを要旨とする。
この場合、振動フィーダの材料の投入口にホッパーを介してベルトフィーダが接続され、前記ベルトフィーダを低速の所定の速度で駆動し又は低速の所定の速度の駆動と一時停止とを繰り返し、他方、ベルトコンベヤを高速の所定の速度で駆動して、土質材料を前記低速のベルトフィーダで搬送して前記ホッパーを介して前記振動フィーダに投入し、前記振動フィーダから土質材料を前記高速のベルトコンベヤに供給することが好ましい。
In order to achieve the above object, the present invention (1) is
While supplying the soil material to the belt conveyor and transporting it on the belt conveyor, the soil material on the belt conveyor is photographed with an imager, and the image of the soil material is image-processed by an image processing device to measure the particle size of the soil material. In the material particle size measurement method
At the position where the soil material is supplied to the belt conveyor
A vibrating device is attached to a box having a material input port on the upper surface and a material discharge port on the lower surface, and a plurality of bars gradually narrowing from the base end to the tip inside the box are formed in the width direction of the belt conveyor. In parallel, the base ends are narrow between each other and are arranged via a gradually wide slit from the base end to the tip, and the base end is pivotally supported so that the tip side can be tilted downward and the inclination of the tip side can be fixed. A vibration feeder that has various means
The tips of the bars are installed in a direction opposite to the direction in which the soil material is conveyed by the belt conveyor, and the bars in the box are fixed by tilting them at an appropriate angle at which the soil material is likely to slide.
The vibrating device vibrates each bar together with the box to charge the soil material from the material input port of the box toward the base end side of each bar, and the soil material from the material input port. By dropping the soil material through the slit between the bars to the material discharge port, the soil material of particles having a diameter smaller than the slit is dropped through the narrow slit on the base end side, and the other soil materials are dropped from each bar. Temporarily placed on the upper surface of the base end side, the soil material is dispersed on each bar due to the vibration of the box and each bar and the downward inclination of each bar, and the soil material of small diameter is gradually increased. The soil material having a diameter is dropped from the base end to the tip through the slit that gradually increases, the soil material is dispersed in ascending order of particle size and supplied onto the belt conveyor, and the soil material is dispersed on the belt conveyor. To shoot,
The gist is that.
In this case, a belt feeder is connected to the material input port of the vibration feeder via a hopper, and the belt feeder is rotated at a low speed at a predetermined speed or is repeatedly rotated and paused at a low speed at a predetermined speed, while the other is , The belt conveyor is driven at a high speed and a predetermined speed, the soil material is conveyed by the low speed belt feeder and charged into the vibration feeder via the hopper, and the soil material is transferred from the vibration feeder to the high speed belt conveyor. It is preferable to supply to.
Further, in order to achieve the above object, the present invention (2)
It is equipped with a belt conveyor for transporting the soil material, an imager installed above the belt conveyor for photographing the soil material of the belt conveyor, and an image processing device for image processing the image of the soil material. The soil material on the belt conveyor is photographed by the imager while being conveyed to the belt conveyor, and the image of the soil material is image-processed by the image processing apparatus to measure the particle size of the soil material. In the grain size measurement system for soil materials
A vibrating device is attached to a box having a material input port on the upper surface and a material discharge port on the lower surface, and a plurality of bars gradually narrowing from the base end to the tip inside the box are formed in the width direction of the belt conveyor. In parallel with each other, the base ends are narrow and arranged through a gradually wide slit from the base end to the tip, and the base end is pivotally supported so that the tip side can be tilted downward and the tip side tilt is fixed. Equipped with a vibration feeder with possible means ,
The vibration feeder is installed at a position where the soil material is supplied to the belt conveyor, with the tip of each bar facing in a direction opposite to the transport direction of the soil material by the belt conveyor, and each bar is provided with the soil material. It is tilted and fixed at an appropriate angle that makes it easy to slide,
Each bar is vibrated together with the box by the vibrating device, the soil material is charged from the material charging port of the box toward the base end side of each bar, and the soil material is charged from the material charging port. By dropping the soil material into the material discharge port through the slit between the bars, the soil material is dispersed in ascending order of particle size and supplied onto the belt conveyor, and the soil material is dispersed on the belt conveyor for photographing. ,
The gist is that.
In this case, a belt feeder is connected to the material input port of the vibration feeder via a hopper, and the belt feeder is driven at a low speed at a predetermined speed or repeatedly driven and paused at a low speed at a predetermined speed, while the other is The belt conveyor is driven at a predetermined high speed, the soil material is conveyed by the low speed belt feeder and charged into the vibration feeder via the hopper, and the soil material is transferred from the vibration feeder to the high speed belt conveyor. It is preferable to supply.

本発明の土質材料の粒度計測方法及びシステムによれば、土質材料をベルトコンベヤに供給する位置に、箱、振動装置及び複数のバーからなる振動フィーダを各バーの先端をベルトコンベヤによる土質材料の搬送方向とは反対方向に向けて設置し箱内の各バーを土質材料が滑動しやすい適宜の角度に傾斜させて固定し振動装置で箱とともに各バーを振動させて、土質材料をの材料の投入口から各バーの基端側に向けて投入し、土質材料を材料の投入口から材料の排出口へ各バー間のスリットを通じて落下させることにより、スリットよりも小径の細かい粒子の土質材料は基端側の狭いスリットを通じて落下させ、その他の土質材料は各バーの基端側の上面に一時的に載せて、箱と各バーの振動と各バーの下り傾斜により、各バー上で土質材料を分散させながら、小径の土質材料から徐々に大径の土質材料を基端から先端に向けて徐々に大きくなるスリットを通して落下させ、土質材料を粒径の小さい順に分散してベルトコンベヤ上に供給し、土質材料をベルトコンベヤ上に分散して撮影するようにしたので、土質材料を撮像機で撮影する前に、土粒子を多くの時間を掛けることなく確実に分散し、一つ一つの土粒子のエッジを明確にすることができ、土質材料の撮像機による撮影及びこの土質材料の画像の画像処理装置による画像処理により計測する土質材料の粒度分布の精度を向上させることができる、という本発明独自の格別な効果を奏する。 According to the method and system for measuring the grain size of the soil material of the present invention, a box, a vibrating device and a vibration feeder consisting of a plurality of bars are placed at a position where the soil material is supplied to the belt conveyor, and the tip of each bar is used as a belt conveyor for the soil material. Install it in the direction opposite to the transport direction, fix each bar in the box by tilting it at an appropriate angle where the soil material is easy to slide, and vibrate each bar together with the box with a vibrating device to make the soil material. By loading the soil material from the material input port of the box toward the base end side of each bar and dropping the soil material from the material input port to the material discharge port through the slit between the bars, the diameter is smaller than the slit. Fine-grained soil material is dropped through a narrow slit on the base end side, and other soil material is temporarily placed on the top surface of each bar on the base end side, due to the vibration of the box and each bar and the downward inclination of each bar. While dispersing the soil material on each bar, the soil material with a small diameter is dropped from the soil material with a gradually larger diameter from the base end to the tip through a slit that gradually increases, and the soil material is dispersed in ascending order of particle size. Since the soil material was distributed on the belt conveyor and photographed on the belt conveyor, the soil particles were surely dispersed without spending a lot of time before the soil material was photographed by the imager. The edges of each soil particle can be clarified, and the accuracy of the grain size distribution of the soil material measured by taking a picture of the soil material with an imager and processing the image of this soil material with an image processing device is improved. It has a special effect unique to the present invention that it can be made to grow.

本発明の一実施の形態による方法及びシステムの構成を示す図(側方から見た図)The figure which shows the structure of the method and the system by one Embodiment of this invention (the figure seen from the side). 同方法及びシステムの構成を示す図(材料の搬送先側から見た図)Diagram showing the same method and system configuration (view from the material transfer destination side) 同方法及びシステムによる土質材料分散の流れを示す図Diagram showing the flow of soil material dispersion by the same method and system 同方法及びシステムの実機による実験を示す図The figure which shows the experiment by the same method and the system with the actual machine

次に、この発明を実施するための形態について図を用いて説明する。 Next, a mode for carrying out the present invention will be described with reference to the drawings.

図1、図2に土質材料の粒度計測方法(以下、単に粒度計測方法又は方法という場合がある。)を示している。
図1、図2に示すように、この粒度計測方法では、土質材料をベルトコンベヤ1に供給しベルトコンベヤ1で搬送しながらベルトコンベヤ1上の土質材料を撮像機4で撮影し、この土質材料の画像を画像処理装置5により画像処理して土質材料の粒度を計測する。
そして、この方法においては、特に、土質材料をベルトコンベヤ1に供給する位置に、上面に材料の投入口211、下面に材料の排出口212を有する箱21に振動装置22を装着され、箱21の内部に基端から先端に向けて漸次幅狭の複数のバー23がベルトコンベヤ1の幅方向に並列に相互の間に基端が狭く基端から先端に向けて漸次幅広のスリット(隙間)24を介して配列され、先端をベルトコンベヤ1による土質材料の搬送方向とは反対方向に向けてかつ先端側を下方向に傾動可能に基端を軸支されてなる振動フィーダ2を設置し、各バー23を土質材料が滑動しやすい適宜の角度に傾斜させて、土質材料を振動フィーダ2の材料の投入口211から投入し振動装置22で振動を加えて、材料の投入口211から材料の排出口212へ各バー23間のスリット24を通じて土質材料を粒径の小さい順に落下させることにより、土質材料を粒径の小さい順に分散してベルトコンベヤ1上に供給し、土質材料をベルトコンベヤ1上に分散して撮影する。
また、この方法では、振動フィーダ2の材料の投入口211にベルトフィーダ3を接続して、ベルトフィーダ3を低速の所定の速度で駆動し又は低速の所定の速度の駆動と一時停止とを繰り返し、他方、ベルトコンベヤ1を高速の所定の速度で駆動して、土質材料を低速のベルトフィーダ3で搬送して振動フィーダ2に投入し、振動フィーダ2から土質材料を分散して高速のベルトコンベヤ1に供給する。
1 and 2 show a particle size measuring method for soil materials (hereinafter, may be simply referred to as a particle size measuring method or method).
As shown in FIGS. 1 and 2, in this particle size measuring method, the soil material is supplied to the belt conveyor 1 and conveyed by the belt conveyor 1, and the soil material on the belt conveyor 1 is photographed by the imager 4, and the soil material is photographed. The image of the above is image-processed by the image processing apparatus 5 to measure the particle size of the soil material.
In this method, in particular, the vibration device 22 is mounted on the box 21 having the material input port 211 on the upper surface and the material discharge port 212 on the lower surface at the position where the soil material is supplied to the belt conveyor 1, and the box 21 is attached. A plurality of bars 23 gradually narrowing from the base end to the tip inside the belt conveyor 1 are parallel to each other in the width direction of the belt conveyor 1, and the base end is narrow and the base end is gradually widened from the base end to the tip (gap). A vibration feeder 2 is installed, which is arranged via 24 and whose base end is pivotally supported so that the tip can be tilted in a direction opposite to the transport direction of the soil material by the belt conveyor 1 and the tip side can be tilted downward. Each bar 23 is tilted at an appropriate angle at which the soil material is easy to slide, the soil material is charged from the material input port 211 of the vibration feeder 2, and vibration is applied by the vibration device 22, and the material is charged from the material input port 211. By dropping the soil material into the discharge port 212 through the slit 24 between the bars 23 in ascending order of particle size, the soil material is dispersed in ascending order of particle size and supplied onto the belt conveyor 1, and the soil material is supplied to the belt conveyor 1. Shoot in a distributed manner on top.
Further, in this method, the belt feeder 3 is connected to the material input port 211 of the vibration feeder 2 to drive the belt feeder 3 at a low speed at a predetermined speed, or to repeatedly drive and pause at a low speed at a predetermined speed. On the other hand, the belt conveyor 1 is driven at a high-speed predetermined speed, the soil material is conveyed by the low-speed belt feeder 3 and charged into the vibration feeder 2, and the soil material is dispersed from the vibration feeder 2 to the high-speed belt conveyor. Supply to 1.

図1、図2に土質材料の粒度計測システム(以下、単に粒度計測システム又はシステムという場合がある。)を併せて示している。
図1、図2に示すように、この粒度計測システムは、土質材料を搬送するベルトコンベヤ1と、ベルトコンベヤ1の長さ方向中間上方に設置され、ベルトコンベヤ1上の土質材料を撮影するための撮像機4、及び土質材料の画像を画像処理する画像処理装置5とを備え、土質材料をベルトコンベヤ1に供給しベルトコンベヤ1で搬送しながらベルトコンベヤ1上の土質材料を撮像機4で撮影し、この土質材料の画像を画像処理装置5で画像処理して土質材料の粒度を計測するもので、このシステムでは、特に、土質材料をベルトコンベヤ1に供給する位置に設置され、上面に材料の投入口211、下面に材料の排出口212を有する箱21に振動装置22を装着され、箱21の内部に基端から先端に向けて漸次幅狭の複数のバー23がベルトコンベヤ1の幅方向に並列に相互の間に基端が狭く基端から先端に向けて漸次幅広のスリット(隙間)24を介して配列され、先端をベルトコンベヤ1による土質材料の搬送方向とは反対方向に向けてかつ先端側を下方向に傾動可能に基端を軸支されてなる振動フィーダ2を備え、各バー23を土質材料が滑動しやすい適宜の角度に傾斜されて、土質材料を振動フィーダ2の材料の投入口211から投入し振動装置22で振動を加え、材料の投入口211から材料の排出口212へ各バー23間のスリット24を通じて土質材料を粒径の小さい順に落下させることにより、土質材料を粒径の小さい順に分散してベルトコンベヤ1上に供給し、土質材料をベルトコンベヤ1上に分散して撮影するようになっている。
このシステムではまた、振動フィーダ2の材料の投入口211にベルトフィーダ3が接続され、ベルトフィーダ3を材料投入用に低速の所定の速度で駆動し又は低速の所定の速度の駆動と一時停止とを繰り返し、他方、ベルトコンベヤ1を粒度計測用に高速の所定の速度で駆動して、土質材料を低速のベルトフィーダ3で搬送して振動フィーダ2に投入し、振動フィーダ2から土質材料を高速のベルトコンベヤ1に供給するようにしている。
FIGS. 1 and 2 also show a particle size measurement system for soil materials (hereinafter, may be simply referred to as a particle size measurement system or system).
As shown in FIGS. 1 and 2, this particle size measuring system is installed above the middle of the belt conveyor 1 for transporting the soil material and the belt conveyor 1 in the length direction, and is used to photograph the soil material on the belt conveyor 1. The imager 4 and the image processing device 5 for image processing the image of the soil material are provided, and the soil material on the belt conveyor 1 is transferred by the imager 4 while the soil material is supplied to the belt conveyor 1 and conveyed by the belt conveyor 1. The image of the soil material is photographed and image-processed by the image processing device 5 to measure the grain size of the soil material. In this system, in particular, the soil material is installed at a position to be supplied to the belt conveyor 1 and is placed on the upper surface. A vibrating device 22 is mounted on a box 21 having a material input port 211 and a material discharge port 212 on the lower surface, and a plurality of bars 23 gradually narrowing from the base end to the tip inside the box 21 are formed on the belt conveyor 1. They are arranged in parallel in the width direction via a slit (gap) 24 in which the base ends are narrow and gradually wide from the base end to the tip, and the tips are arranged in the direction opposite to the transport direction of the soil material by the belt conveyor 1. A vibration feeder 2 is provided whose base end is pivotally supported so that the tip side can be tilted downward, and each bar 23 is tilted at an appropriate angle at which the soil material can easily slide, so that the soil material can be tilted. The soil material is dropped from the material input port 211 to the material discharge port 212 through the slits 24 between the bars 23 in ascending order of particle size. The soil materials are dispersed in ascending order of particle size and supplied onto the belt conveyor 1, and the soil materials are dispersed on the belt conveyor 1 for photographing.
In this system, the belt feeder 3 is also connected to the material input port 211 of the vibration feeder 2 to drive the belt feeder 3 at a low speed predetermined speed for material input, or to drive and pause at a low speed predetermined speed. On the other hand, the belt conveyor 1 is driven at a high-speed predetermined speed for particle size measurement, the soil material is conveyed by the low-speed belt feeder 3 and charged into the vibration feeder 2, and the soil material is transferred from the vibration feeder 2 at high speed. It is supplied to the belt conveyor 1 of the above.

ここで、ベルトコンベヤ1は一般に使用されるもので、一端の駆動プーリ11と、他端のテールプーリ12、及びこれら駆動プーリ11、テールプーリ12間に配置される複数のキャリアローラ13と、駆動プーリ11に作動連結され、駆動プーリ11を駆動する駆動装置(モータ)14と、駆動プーリ11、テールプーリ12間に複数のキャリアローラ13を介して環状に架け渡される無端ベルト15とを備えて構成される。このベルトコンベヤ1は工事現場において土質材料の搬送元と搬送先との間に、複数の支柱16を介して、搬送先側の一端を所定の高さの高位置に搬送元側の他端を所定の高さの低位置に配置して設置面上に斜めに、又は設置面から所定の高さに全体を水平にして設置される。このベルトコンベヤ1は、既述のとおり、粒度計測用に高速の所定の速度で駆動される。
ベルトフィーダ3は一般に使用されるもので、ベルトコンベヤ1と同様に、一端の駆動プーリ31と、他端の従動プーリ32、及びこれら駆動プーリ31、従動プーリ32間に配置される複数のキャリアローラ33と、駆動プーリ31に作動連結され、駆動プーリ31を駆動する駆動装置(モータ)34と、駆動プーリ31、従動プーリ32間に複数のキャリアローラ33を介して環状に架け渡される無端ベルト35とからなり、ベルトコンベヤ1と異なり、全長(搬送距離)は短い。このベルトフィーダ3は工事現場において一端をベルトコンベヤ1の搬送元側他端の上方所定の高さに重ねて複数の支柱36を介して設置される。この場合、ベルトフィーダ3は、必要に応じて、一端をベルトコンベヤ1の他端側上方で所定の高さの高位置に他端を所定の高さの低位置に配置して設置面上に斜めに設置され、又は一端をベルトコンベヤ1の他端側上方で所定の高さに全体を設置面上に水平にして設置される。このベルトフィーダ3は、既述のとおり、材料投入用に低速の所定の速度で駆動され、また、任意の(時間的)間隔で、走行と(一時)停止が可能になっている。
振動フィーダ2は、既述のとおり、箱21と、振動装置22と、複数の手動可変式(手動で傾斜角を任意に変えることが可能)のバー23とからなる。この場合、箱21は全体が両側面間を漸次幅狭とするホッパー形に形成され、上面の材料の投入口211が箱21の両端方向に長い矩形状に開口され、下面の材料の排出口212が箱21の両端方向に長い矩形状に開口される。また、この箱21の両側面で一端の上部にそれぞれ、後述する複数のバー23の基端を軸支するための支軸25の軸挿通部213が設けられ、他端の上部で一端の軸挿通部213と同じ高さから下方の一端の軸挿通部213を中心とする円周上にそれぞれ等間隔に複数のバー23の先端を軸支するための支軸26の複数の軸挿通部214が設けられる。振動装置22はバイブレータ(振動モータ)が用いられ(以下、バイブレータ22という。)、この場合、バイブレータ22が箱21の一端部の外面に取り付けられる。このようにして箱21全体がバイブレータ22により後述する複数のバー23と共に振動するようにしてある。複数のバー23はそれぞれ、基端から先端に向けて漸次幅狭の細長い金属板からなり、基端と先端側のそれぞれ両側面間に、支軸25を通すための通し孔231、232が穿たれる。これらのバー23は箱21上面の材料の投入口211内に箱21の両側面間に並列に配置され、各バー23基端の通し孔231に箱21の一方の側面一端上部の軸挿通部213から他方の側面一端上部の軸挿通部213に支軸25を通されて、各バー23は箱21の内部でベルトコンベヤ1の幅方向に並列に相互の間に基端が狭く基端から先端に向けて漸次幅広のスリット24を介して配列され、先端をベルトコンベヤ1による土質材料の搬送方向とは反対方向に向けてかつ先端側を下方向に傾動可能に基端を軸支される。そして、各バー23先端の通し孔232に箱21の両側面他端の適宜の軸挿通部214間に挿通される支軸26を通されて、各バー23が箱21の内部に適宜の角度に傾斜されて固定される。また、この場合、ベルトフィーダ3の一端下部に当該一端から(ホッパー6の)一部がベルトフィーダ3の先方に突出するようにホッパー6が取り付けられて、ホッパー6がベルトフィーダ3の一端とベルトコンベヤ1の他端との間に配置され、振動フィーダ2の箱21がホッパー6の下部排出口に取り付けられてホッパー6に一体的に連結される。このようにしてベルトフィーダ3で搬送される土質材料がホッパー6に投入され、土質材料がホッパー6を通じて振動フィーダ2上面の材料の投入口211の各バー23の基端側に落下するように案内される。
撮像機4はデジタルカメラ、ビデオカメラ、ラインレーザーカメラなど(以下、デジタルカメラ4という。)、画像処理装置5は画像処理プログラムを搭載のパソコンなど(以下、パソコン5という。)、この種の土質材料の粒度分布の計測に一般に用いられる機器(特許文献1、2参照)が採用され、この場合、デジタルカメラ4で撮影した土質材料の画像データをパソコン5に取り込み、パソコン5で画像データの各粒子の形状、粒径、個数などを演算して、この演算結果から粒度分布を算出し、この算出された粒度分布をパソコン5のディスプレイに表示し、また、パソコン5に接続されたプリンタからプリントアウトする構成としてある。なお、この場合、ベルトコンベヤ1の走行方向中間部上に撮影室40が設置され、この撮影室40内にデジタルカメラ4がベルトコンベヤ1(の上面)に向けて設置される。
Here, the belt conveyor 1 is generally used, and has a drive pulley 11 at one end, a tail pulley 12 at the other end, a plurality of carrier rollers 13 arranged between the drive pulley 11 and the tail pulley 12, and a drive pulley 11. A drive device (motor) 14 that is operably connected to and drives the drive pulley 11 and an endless belt 15 that is annularly bridged between the drive pulley 11 and the tail pulley 12 via a plurality of carrier rollers 13 are provided. .. In this belt conveyor 1, one end on the transport destination side is placed at a high position on the transport destination side at a high position on the transport destination side via a plurality of columns 16 between the transport source and the transport destination of the soil material at the construction site, and the other end on the transport source side is placed. It is placed at a low position at a predetermined height and installed diagonally on the installation surface or horizontally at a predetermined height from the installation surface. As described above, the belt conveyor 1 is driven at a high speed and a predetermined speed for particle size measurement.
The belt feeder 3 is generally used, and like the belt conveyor 1, the drive pulley 31 at one end, the driven pulley 32 at the other end, and a plurality of carrier rollers arranged between the drive pulley 31 and the driven pulley 32. An endless belt 35 that is operably connected to the drive pulley 31 and is bridged in an annular shape between the drive device (motor) 34 that drives the drive pulley 31 and the drive pulley 31 and the driven pulley 32 via a plurality of carrier rollers 33. Unlike the belt conveyor 1, the total length (transport distance) is short. The belt feeder 3 is installed at a construction site via a plurality of columns 36 so that one end thereof is overlapped at a predetermined height above the other end on the transport source side of the belt conveyor 1. In this case, the belt feeder 3 has one end arranged at a high position of a predetermined height above the other end side of the belt conveyor 1 and the other end at a low position of a predetermined height on the installation surface, if necessary. It is installed diagonally, or one end is installed horizontally above the other end side of the belt conveyor 1 at a predetermined height on the installation surface. As described above, the belt feeder 3 is driven at a low speed for feeding materials, and can run and stop (temporarily) at arbitrary (temporal) intervals.
As described above, the vibration feeder 2 includes a box 21, a vibration device 22, and a plurality of manually variable (manually, the tilt angle can be arbitrarily changed) bar 23. In this case, the box 21 is formed in a hopper shape in which the width between both side surfaces is gradually narrowed, and the material input port 211 on the upper surface is opened in a long rectangular shape in the direction of both ends of the box 21, and the material discharge port on the lower surface is opened. The 212 is opened in a long rectangular shape in the direction of both ends of the box 21. Further, a shaft insertion portion 213 of a support shaft 25 for axially supporting the base ends of a plurality of bars 23, which will be described later, is provided on both side surfaces of the box 21 at the upper end of each end, and the shaft at one end is provided at the upper end. A plurality of shaft insertion portions 214 of a support shaft 26 for axially supporting the tips of a plurality of bars 23 at equal intervals on the circumference centered on the shaft insertion portion 213 at one lower end from the same height as the insertion portion 213. Is provided. A vibrator (vibration motor) is used as the vibration device 22 (hereinafter referred to as a vibrator 22), and in this case, the vibrator 22 is attached to the outer surface of one end of the box 21. In this way, the entire box 21 is vibrated by the vibrator 22 together with the plurality of bars 23 described later. Each of the plurality of bars 23 is composed of an elongated metal plate gradually narrowing from the proximal end to the distal end, and through holes 231 and 232 for passing the support shaft 25 are formed between both side surfaces of the proximal end and the distal end side, respectively. Dripping. These bars 23 are arranged in parallel between both side surfaces of the box 21 in the material input port 211 on the upper surface of the box 21, and the shaft insertion portion on the upper end of one side surface of the box 21 is inserted into the through hole 231 at the base end of each bar 23. A support shaft 25 is passed from 213 to a shaft insertion portion 213 at the upper end of one end of the other side surface, and each bar 23 is parallel to each other in the width direction of the belt conveyor 1 inside the box 21 and has a narrow base end between the base ends. The tips are arranged via gradually wide slits 24 toward the tip, and the tips are pivotally supported so that the tips are oriented in the direction opposite to the transport direction of the soil material by the belt conveyor 1 and the tip side can be tilted downward. .. Then, the support shaft 26 inserted between the appropriate shaft insertion portions 214 at the other ends of both side surfaces of the box 21 is passed through the through hole 232 at the tip of each bar 23, and each bar 23 is placed at an appropriate angle inside the box 21. It is tilted and fixed to. Further, in this case, the hopper 6 is attached to the lower end of one end of the belt feeder 3 so that a part (of the hopper 6) protrudes toward the other end of the belt feeder 3, and the hopper 6 is attached to one end of the belt feeder 3 and the belt. Arranged between the other end of the conveyor 1 and the box 21 of the vibration feeder 2, the box 21 of the vibration feeder 2 is attached to the lower discharge port of the hopper 6 and is integrally connected to the hopper 6. In this way, the soil material conveyed by the belt feeder 3 is charged into the hopper 6, and the soil material is guided to fall through the hopper 6 to the base end side of each bar 23 of the material input port 211 on the upper surface of the vibration feeder 2. Will be done.
The imager 4 is a digital camera, a video camera, a line laser camera or the like (hereinafter referred to as a digital camera 4), and the image processing device 5 is a personal computer or the like equipped with an image processing program (hereinafter referred to as a personal computer 5). A device generally used for measuring the particle size distribution of the material (see Patent Documents 1 and 2) is adopted. In this case, the image data of the soil material taken by the digital camera 4 is taken into the personal computer 5, and each of the image data is taken by the personal computer 5. The shape, particle size, number, etc. of the particles are calculated, the particle size distribution is calculated from this calculation result, the calculated particle size distribution is displayed on the display of the personal computer 5, and the printer connected to the personal computer 5 prints. It is configured to be out. In this case, the photographing chamber 40 is installed on the intermediate portion of the belt conveyor 1 in the traveling direction, and the digital camera 4 is installed in the photographing chamber 40 toward the belt conveyor 1 (upper surface).

図3にこのシステムを用いた上記の土質材料の粒度計測方法の具体的手順を示している。なお、ベルトコンベヤ1他端部上の振動フィーダ2においては各バー23を土質材料が滑動しやすい適宜の角度(この場合、30°)に傾斜させてある。
図1、図3を併せて参照する。まず、ベルトフィーダ3、振動フィーダ2、ベルトコンベヤ1をそれぞれ駆動する。続いて、ベルトフィーダ3に土質材料を投入し、ベルトフィーダ3の低速走行で土質材料をベルトフィーダ3の一端に向けて運搬する。ベルトフィーダ3の一端から土質材料を投下し、ホッパー6を介して、振動フィーダ2へ土質材料を投入する。このとき、振動フィーダ2の各バー23は各バー23間の基端側のスリット24が小さく、先端側のスリット24が大きく、スリット24の大きい側が下になるように傾斜されており、ベルトフィーダ3から投下された土質材料はホッパー6を通じて各バー23の基端側に落下される。この土質材料の投入後、ベルトフィーダ3を一時停止する。
一方、振動フィーダ2では、ベルトフィーダ3から土質材料が投入され、各バー23の基端側に落下されて、この土質材料のうち、各バー23の基端側のスリット24よりも小径の細かい粒子の材料が最初に基端側の狭いスリット24を通じて落下し、高速走行中のベルトコンベヤ1上に投下され、その他の材料は各バー23の基端側の上面上に一時的に載せられる。この各バー23の基端側の上面上に載せられた材料は、バイブレータ22による箱21、各バー23の振動と各バー23のベルトコンベヤ1の走行方向とは逆方向に向けた下り傾斜により、土質材料が濡れていても、各バー23の基端側から先端に向けて滑り移動しながら、小さい粒子(径)から徐々に大きな粒子(径)の材料が各バー23間の基端から先端に向けて徐々に大きくなるスリット24から落下し、最後に大きな粒子(径)の材料が先端の広いスリット24から落下して、それぞれ、振動フィーダ2の下部で高速走行中のベルトコンベヤ1上に投下される。このように低速走行のベルトフィーダ3で搬送された土質材料は振動フィーダ2を通過して粒径の小さい順に高速走行中のベルトコンベヤ1上に落下され、ベルトコンベヤ1上に土質材料が粒径の小さい順に分散されてベルトコンベヤ1により搬送される。そして、これら粒径の小さい順に分散された土質材料を搬送途中にある撮影室40を通過するときにデジタルカメラ4で撮影する。
そして、振動フィーダ2に土質材料がなくなったときに、一時停止中のベルトフィーダ3の駆動を再開して低速走行し、ベルトフィーダ3に土質材料を投入するところから同様の動作を繰り返す。このようにしてベルトフィーダ3を等間隔で低速走行と一時停止を繰り返し、ベルトコンベヤ1を高速走行させることで、このベルトフィーダ3とベルトコンベヤ1の走行速度差により、先に振動フィーダ2を通過してベルトコンベヤ1上で分散後の土質材料(粒径の大きい材料)の上に後の土質材料(大きさの異なる材料)を重ねて落とすことを防止して、ベルトコンベヤ1上に粒径の小さい順に分散された土質材料をデジタルカメラ4で撮影する。
FIG. 3 shows a specific procedure of the above-mentioned particle size measurement method for soil materials using this system. In the vibration feeder 2 on the other end of the belt conveyor 1, each bar 23 is tilted at an appropriate angle (in this case, 30 °) at which the soil material easily slides.
1 and 3 are also referred to. First, the belt feeder 3, the vibration feeder 2, and the belt conveyor 1 are driven, respectively. Subsequently, the soil material is charged into the belt feeder 3, and the soil material is transported toward one end of the belt feeder 3 at a low speed of the belt feeder 3. The soil material is dropped from one end of the belt feeder 3, and the soil material is charged into the vibration feeder 2 via the hopper 6. At this time, each bar 23 of the vibration feeder 2 is inclined so that the slit 24 on the base end side between the bars 23 is small, the slit 24 on the tip side is large, and the large side of the slit 24 is on the bottom. The soil material dropped from 3 is dropped to the base end side of each bar 23 through the hopper 6. After adding this soil material, the belt feeder 3 is temporarily stopped.
On the other hand, in the vibration feeder 2, the soil material is charged from the belt feeder 3 and dropped to the base end side of each bar 23, and the diameter of the soil material is smaller than that of the slit 24 on the base end side of each bar 23. The material of the particles first falls through the narrow slit 24 on the proximal end side and is dropped onto the belt conveyor 1 running at high speed, and the other materials are temporarily placed on the upper surface of the proximal end side of each bar 23. The material placed on the upper surface of the base end side of each bar 23 is due to the vibration of the box 21 and each bar 23 by the vibrator 22 and the downward inclination of the belt conveyor 1 of each bar 23 in the direction opposite to the traveling direction. Even if the soil material is wet, the material of small particles (diameter) gradually increases from the base end between the bars 23 while sliding and moving from the base end side of each bar 23 toward the tip. It falls from the slit 24 that gradually increases toward the tip, and finally the material with large particles (diameter) falls from the slit 24 with a wide tip, and each of them is on the belt conveyor 1 running at high speed at the lower part of the vibration feeder 2. Dropped on. The soil material conveyed by the low-speed traveling belt feeder 3 passes through the vibration feeder 2 and is dropped onto the high-speed traveling belt conveyor 1 in ascending order of particle size, and the soil material has a particle size on the belt conveyor 1. It is dispersed in ascending order and conveyed by the belt conveyor 1. Then, the soil materials dispersed in ascending order of particle size are photographed by the digital camera 4 when passing through the photographing chamber 40 in the middle of transportation.
Then, when the soil material is exhausted in the vibration feeder 2, the driving of the temporarily stopped belt feeder 3 is restarted to run at a low speed, and the same operation is repeated from the point where the soil material is charged into the belt feeder 3. In this way, the belt feeder 3 is repeatedly run at low speed and paused at equal intervals, and the belt conveyor 1 is run at high speed. As a result, the belt feeder 3 and the belt conveyor 1 pass through the vibration feeder 2 first due to the difference in running speed. This prevents the later soil material (materials of different sizes) from being dropped on the dispersed soil material (material with a large particle size) on the belt conveyor 1, and the particle size on the belt conveyor 1. The soil materials dispersed in ascending order are photographed by the digital camera 4.

このようにこの方法及びシステムでは、ベルトフィーダ3の一端とベルトコンベヤ1の他端との間にホッパー6を介在し、このホッパー6の下部に箱21内に複数のバー23が相互の間のスリット24間隔を基端側から先端側へ徐々に大きくし下方に向けて傾動可能に配置されてなる振動フィーダ2を備え付けて、土質材料をベルトフィーダ3によりホッパー6へ投入し振動フィーダ2を通過させて、高速走行中のベルトコンベヤ1上に最初に小さい粒子の材料を落下させ、その後に順次大きい粒子の材料が落下するようにしたので、ベルトコンベヤ1上に大きさの異なる土粒子が重なることを防止して、土質材料を粒子の小さい順に粒子の大きさごとに分類することができる。そして、ベルトフィーダ3を低速走行と一時停止を任意の間隔で繰り返し、ベルトコンベヤ1を高速走行させることで、このベルトフィーダ3とベルトコンベヤ1の走行速度差により、ベルトコンベヤ1に先に落下し搬送中の大きい土粒子の上に、後の小さい土粒子を被せることがなく、異なる大きさの土粒子の重なりを防止することができる。したがって、土質材料をベルトコンベヤ1上に効果的に分散して、この分散された土質材料をデジタルカメラ4で確実に撮影することができる。 As described above, in this method and system, a hopper 6 is interposed between one end of the belt feeder 3 and the other end of the belt conveyor 1, and a plurality of bars 23 are interposed in the box 21 at the lower portion of the hopper 6. A vibration feeder 2 is provided in which the distance between the slits 24 is gradually increased from the base end side to the tip end side and is arranged so as to be tilted downward. Then, the small particle material was first dropped onto the belt conveyor 1 running at high speed, and then the large particle material was sequentially dropped, so that soil particles of different sizes overlap on the belt conveyor 1. This can be prevented and the soil materials can be classified by particle size in ascending order of particles. Then, the belt feeder 3 is repeatedly run at a low speed and paused at an arbitrary interval, and the belt conveyor 1 is run at a high speed, so that the belt feeder 3 and the belt conveyor 1 fall first due to the difference in running speed between the belt feeder 3 and the belt conveyor 1. It is possible to prevent the overlapping of soil particles of different sizes without covering the large soil particles during transportation with the small soil particles afterwards. Therefore, the soil material can be effectively dispersed on the belt conveyor 1, and the dispersed soil material can be reliably photographed by the digital camera 4.

本願発明者は、既述のような土質材料の粒度計測システムの実機を作り、この実機で既述の土質材料の粒度計測方法の実験を行った。
この実験では、材料として頁岩を破砕し、図4(a)に示すように、約40kgずつの材料に分けて、含水比を10%(表乾状態)と13%(湿潤状態)に調整した。なお、材料の最大粒径は80mmである。これらの材料をそれぞれ、長さ100cm、幅50cm、高さ5cmの塊としてベルトフィーダ上に配置した。ベルトフィーダの速度は1.2m/minとし、ベルトコンベヤの速度を75m/minとした。振動フィーダは各バーの先端のスリットを80mm又はそれより僅かに大きくし、各バーの傾斜角度は30°に設定した。
その結果を、図4(b)に示す。図4(b)に示すように、塊であった材料はベルトコンベヤ上で分散していることが分かる。ベルトフィーダとベルトコンベヤの走行速度差により、土質材料を50倍以上の間隔に分散することができる。
The inventor of the present application made an actual machine of the particle size measurement system of the soil material as described above, and conducted an experiment of the particle size measurement method of the soil material described above with this actual machine.
In this experiment, shale was crushed as a material, divided into about 40 kg each, and the water content was adjusted to 10% (surface dry state) and 13% (wet state) as shown in FIG. 4 (a). .. The maximum particle size of the material is 80 mm. Each of these materials was placed on the belt feeder as a mass having a length of 100 cm, a width of 50 cm, and a height of 5 cm. The speed of the belt feeder was 1.2 m / min and the speed of the belt conveyor was 75 m / min. The vibration feeder made the slit at the tip of each bar slightly larger than 80 mm, and the tilt angle of each bar was set to 30 °.
The results are shown in FIG. 4 (b). As shown in FIG. 4 (b), it can be seen that the lumpy material is dispersed on the belt conveyor. Due to the difference in running speed between the belt feeder and the belt conveyor, the soil material can be dispersed at intervals of 50 times or more.

以上説明したように、この方法及びシステムによれば、土質材料をベルトコンベヤ1に供給する位置に、振動フィーダ2を設置し、振動フィーダ2の各バー23を土質材料が滑動しやすい適宜の角度に傾斜させて、土質材料を振動フィーダ2の材料の投入口211から投入しバイブレータ22で振動を加えて、材料の投入口211から材料の排出口212へ各バー23間のスリット24を通じて土質材料を粒径の小さい順に落下させることにより、土質材料を粒径の小さい順に分散してベルトコンベヤ1上に供給し、このベルトコンベヤ1上に分散した土質材料をデジタルカメラ4で撮影するようにしたので、土質材料をデジタルカメラ4で撮影する前に、土粒子を多くの時間を掛けることなく確実に分散し、一つ一つの土粒子のエッジを明確にして、土質材料のデジタルカメラ4による撮影及び土質材料の画像のパソコン5による画像処理により計測する土質材料の粒度分布の精度を向上させることができる。 As described above, according to this method and system, the vibration feeder 2 is installed at a position where the soil material is supplied to the belt conveyor 1, and each bar 23 of the vibration feeder 2 has an appropriate angle at which the soil material easily slides. The soil material is charged from the material input port 211 of the vibration feeder 2 and vibrated by the vibrator 22, and the soil material is applied from the material input port 211 to the material discharge port 212 through the slits 24 between the bars 23. By dropping the soil materials in ascending order of particle size, the soil materials were dispersed in ascending order of particle size and supplied onto the belt conveyor 1, and the soil materials dispersed on the belt conveyor 1 were photographed by the digital camera 4. Therefore, before shooting the soil material with the digital camera 4, the soil particles are surely dispersed without spending a lot of time, the edges of each soil particle are clarified, and the soil material is shot with the digital camera 4. Further, it is possible to improve the accuracy of the particle size distribution of the soil material measured by image processing of the image of the soil material by the personal computer 5.

なお、この実施の形態では、振動フィーダ2は、複数のバー23が箱21上面の材料の投入口211内に箱21の両側面間に並列に配置され、各バー23基端の通し孔231に箱21の一方の側面一端上部の軸挿通部213から他方の側面一端上部の軸挿通部213に支軸25を通されて、各バー23が箱21の内部にスリット24を介して配列され、そして、各バー23先端の通し孔232に箱21の両側面他端の適宜の軸挿通部214間に支軸26を通されて、各バー23が箱21の内部に適宜の角度に傾斜されて固定される、手動可変式に構成されているが、箱の両側面一端上部の軸挿通部に挿通される支軸に駆動モータなどの駆動装置が作動連結され、この支軸に各バーが固定されて、駆動装置により各バーが任意の角度に傾動される自動可変式に構成されてもよい。
このようにしても上記実施の形態と同様の作用効果を奏することができる。
また、この実施の形態では、振動フィーダ2への材料投入用にベルトフィーダ3が用いられているが、このベルトフィーダ3は、低速走行のベルトコンベヤに代えてもよい。また、振動フィーダ2への材料の投入は、建設機械を使って行ってもよく、人力で行ってもよい。
このようにしても上記実施の形態と同様の作用効果を奏することができる。
In this embodiment, in the vibration feeder 2, a plurality of bars 23 are arranged in parallel between both side surfaces of the box 21 in the material input port 211 on the upper surface of the box 21, and the through holes 231 at the base ends of the bars 23 are arranged in parallel. The support shaft 25 is passed from the shaft insertion portion 213 at the upper end of one side surface of the box 21 to the shaft insertion portion 213 at the upper end of the other side surface, and each bar 23 is arranged inside the box 21 via a slit 24. Then, the support shaft 26 is passed through the through hole 232 at the tip of each bar 23 between the appropriate shaft insertion portions 214 at the other ends of both side surfaces of the box 21, and each bar 23 is inclined inside the box 21 at an appropriate angle. Although it is configured to be manually variable and fixed, a drive device such as a drive motor is actuated and connected to a support shaft inserted into the shaft insertion part at one end of both sides of the box, and each bar is connected to this support shaft. May be fixed and each bar may be tilted to an arbitrary angle by a drive device in an automatically variable manner.
Even in this way, the same effects as those of the above embodiment can be obtained.
Further, in this embodiment, the belt feeder 3 is used for feeding the material into the vibration feeder 2, but the belt feeder 3 may be replaced with a belt conveyor running at a low speed. Further, the material may be input to the vibration feeder 2 by using a construction machine or by human power.
Even in this way, the same effects as those of the above embodiment can be obtained.

1 ベルトコンベヤ
11 駆動プーリ
12 テールプーリ
13 キャリアローラ
14 駆動装置(モータ)
15 無端ベルト
16 支柱
2 振動フィーダ
21 箱
211 材料の投入口
212 材料の排出口
213 軸挿通部
214 軸挿通部
22 振動装置(バイブレータ)
23 バー
231 通し孔
232 通し孔
24 スリット(隙間)
25 支軸
26 支軸
3 ベルトフィーダ
31 駆動プーリ
32 従動プーリ
33 キャリアローラ
34 駆動装置(モータ)
35 無端ベルト
36 支柱
4 撮像機(デジタルカメラ)
40 撮影室
5 画像処理装置(パソコン)
6 ホッパー
1 Belt conveyor 11 Drive pulley 12 Tail pulley 13 Carrier roller 14 Drive device (motor)
15 Endless belt 16 Strut 2 Vibration feeder 21 Box 211 Material input port 212 Material discharge port 213 Shaft insertion part 214 Shaft insertion part 22 Vibration device (vibrator)
23 Bar 231 Through hole 232 Through hole 24 Slit (gap)
25 Support shaft 26 Support shaft 3 Belt feeder 31 Drive pulley 32 Driven pulley 33 Carrier roller 34 Drive device (motor)
35 Endless belt 36 Strut 4 Imager (digital camera)
40 Shooting room 5 Image processing device (personal computer)
6 Hopper

Claims (4)

土質材料をベルトコンベヤに供給し前記ベルトコンベヤで搬送しながら前記ベルトコンベヤ上の土質材料を撮像機で撮影し、土質材料の画像を画像処理装置により画像処理して土質材料の粒度を計測する土質材料の粒度計測方法において、
土質材料を前記ベルトコンベヤに供給する位置に、
上面に材料の投入口、下面に材料の排出口を有する箱に振動装置を装着され、前記箱の内部に基端から先端に向けて漸次幅狭の複数のバーが前記ベルトコンベヤの幅方向に並列に相互の間に基端が狭く基端から先端に向けて漸次幅広のスリットを介して配列され、基端を軸支されて先端側を下方向に傾動可能に先端側の傾斜を固定可能な手段を有してなる振動フィーダを
前記各バーの先端を前記ベルトコンベヤによる土質材料の搬送方向とは反対方向に向けて設置し前記箱内の前記各バーを土質材料が滑動しやすい適宜の角度に傾斜させて固定し
前記振動装置で前記箱とともに前記各バーを振動させて、土質材料を前記の前記材料の投入口から前記各バーの基端側に向けて投入し、土質材料を前記材料の投入口から前記材料の排出口へ前記各バー間のスリットを通じて落下させることにより、前記スリットよりも小径の細かい粒子の土質材料は前記基端側の狭いスリットを通じて落下させ、その他の土質材料は前記各バーの基端側の上面に一時的に載せて、前記箱と前記各バーの振動と前記各バーの下り傾斜により、前記各バー上で土質材料を分散させながら、小径の土質材料から徐々に大径の土質材料を基端から先端に向けて徐々に大きくなる前記スリットを通して落下させ、土質材料を粒径の小さい順に分散して前記ベルトコンベヤ上に供給し、土質材料をベルトコンベヤ上に分散して撮影する、
ことを特徴とする土質材料の粒度計測方法。
While supplying the soil material to the belt conveyor and transporting it on the belt conveyor, the soil material on the belt conveyor is photographed with an imager, and the image of the soil material is image-processed by an image processing device to measure the particle size of the soil material. In the material particle size measurement method
At the position where the soil material is supplied to the belt conveyor
A vibrating device is attached to a box having a material input port on the upper surface and a material discharge port on the lower surface, and a plurality of bars gradually narrowing from the base end to the tip inside the box are formed in the width direction of the belt conveyor. In parallel, the base ends are narrow between each other and are arranged via a gradually wide slit from the base end to the tip, and the base end is pivotally supported so that the tip side can be tilted downward and the inclination of the tip side can be fixed. A vibration feeder that has various means
The tips of the bars are installed in a direction opposite to the direction in which the soil material is conveyed by the belt conveyor, and the bars in the box are fixed by tilting them at an appropriate angle at which the soil material is likely to slide.
The vibrating device vibrates each bar together with the box to charge the soil material from the material input port of the box toward the base end side of each bar, and the soil material from the material input port. By dropping the soil material through the slit between the bars to the material discharge port, the soil material of particles having a diameter smaller than the slit is dropped through the narrow slit on the base end side, and the other soil materials are dropped from each bar. Temporarily placed on the upper surface of the base end side, the soil material is dispersed on each bar due to the vibration of the box and each bar and the downward inclination of each bar, and the soil material of small diameter is gradually increased. The soil material having a diameter is dropped from the base end to the tip through the slit that gradually increases, the soil material is dispersed in ascending order of particle size and supplied onto the belt conveyor, and the soil material is dispersed on the belt conveyor. To shoot,
A method for measuring the particle size of soil materials.
振動フィーダの材料の投入口にホッパーを介してベルトフィーダを接続して、前記ベルトフィーダを低速の所定の速度で回転させ又は低速の所定の速度の回転と一時停止とを繰り返し、他方、ベルトコンベヤを高速の所定の速度で駆動して、土質材料を前記低速のベルトフィーダで搬送して前記ホッパーを介して前記振動フィーダに投入し、前記振動フィーダから土質材料を前記高速のベルトコンベヤに供給する請求項1に記載の土質材料の粒度計測方法。 A belt feeder is connected to the material input port of the vibration feeder via a hopper to rotate the belt feeder at a low speed at a predetermined speed or repeatedly rotate and pause at a low speed at a predetermined speed, while the belt conveyor. Is driven at a high speed at a predetermined speed, the soil material is conveyed by the low speed belt feeder, charged into the vibration feeder via the hopper, and the soil material is supplied from the vibration feeder to the high speed belt conveyor. The method for measuring the particle size of a soil material according to claim 1. 土質材料を搬送するベルトコンベヤと、前記ベルトコンベヤの上方に設置され、前記ベルトコンベヤの土質材料を撮影するための撮像機、及び土質材料の画像を画像処理する画像処理装置とを備え、土質材料を前記ベルトコンベヤに供給し前記ベルトコンベヤで搬送しながら前記ベルトコンベヤ上の土質材料を前記撮像機で撮影し、土質材料の画像を前記画像処理装置により画像処理して土質材料の粒度を計測する土質材料の粒度計測システムにおいて、
面に材料の投入口、下面に材料の排出口を有する箱に振動装置を装着され、前記箱の内部に基端から先端に向けて漸次幅狭の複数のバーが前記ベルトコンベヤの幅方向に並列に相互の間に基端が狭く基端から先端に向けて漸次幅広のスリットを介して配列され、基端を軸支されて先端側を下方向に傾動可能に先端側の傾斜を固定可能な手段を有してなる振動フィーダを備え、
前記振動フィーダは、土質材料を前記ベルトコンベヤに供給する位置に、前記各バーの先端を前記ベルトコンベヤによる土質材料の搬送方向とは反対方向に向けて設置されて、前記各バーが土質材料が滑動しやすい適宜の角度に傾斜されて固定され
前記振動装置で前記箱とともに前記各バーを振動させて、土質材料を前記箱の前記材料の投入口から前記各バーの基端側に向けて投入し、土質材料を前記材料の投入口から前記材料の排出口へ前記各バー間のスリットを通じて落下させることにより、土質材料を粒径の小さい順に分散して前記ベルトコンベヤ上に供給し、土質材料をベルトコンベヤ上に分散して撮影する、
ことを特徴とする土質材料の粒度計測システム。
It is equipped with a belt conveyor for transporting the soil material, an imager installed above the belt conveyor for photographing the soil material of the belt conveyor, and an image processing device for image processing the image of the soil material. The soil material on the belt conveyor is photographed by the imager while being conveyed to the belt conveyor, and the image of the soil material is image-processed by the image processing apparatus to measure the particle size of the soil material. In the grain size measurement system for soil materials
A vibrating device is attached to a box having a material input port on the upper surface and a material discharge port on the lower surface, and a plurality of bars gradually narrowing from the base end to the tip inside the box are formed in the width direction of the belt conveyor. In parallel with each other, the base ends are narrow and arranged through a gradually wide slit from the base end to the tip, and the base end is pivotally supported so that the tip side can be tilted downward and the tip side tilt is fixed. Equipped with a vibration feeder with possible means ,
The vibration feeder is installed at a position where the soil material is supplied to the belt conveyor, with the tip of each bar facing in a direction opposite to the transport direction of the soil material by the belt conveyor, and each bar is provided with the soil material. It is tilted and fixed at an appropriate angle that makes it easy to slide,
Each bar is vibrated together with the box by the vibrating device, the soil material is charged from the material charging port of the box toward the base end side of each bar, and the soil material is charged from the material charging port. By dropping the soil material into the material discharge port through the slit between the bars, the soil material is dispersed in ascending order of particle size and supplied onto the belt conveyor, and the soil material is dispersed on the belt conveyor for photographing. ,
A particle size measurement system for soil materials.
振動フィーダの材料の投入口にホッパーを介してベルトフィーダが接続され、前記ベルトフィーダを低速の所定の速度で駆動し又は低速の所定の速度の駆動と一時停止とを繰り返し、他方、ベルトコンベヤを高速の所定の速度で駆動して、土質材料を前記低速のベルトフィーダで搬送して前記ホッパーを介して前記振動フィーダに投入し、前記振動フィーダから土質材料を前記高速のベルトコンベヤに供給する請求項3に記載の土質材料の粒度計測システム。 A belt feeder is connected to the material input port of the vibration feeder via a hopper, and the belt feeder is driven at a low speed at a predetermined speed or repeatedly driven and paused at a low speed at a predetermined speed, while the belt conveyor is operated. A request for driving the soil material at a high speed at a predetermined speed, transporting the soil material by the low speed belt feeder, feeding the soil material into the vibration feeder via the hopper, and supplying the soil material from the vibration feeder to the high speed belt conveyor. Item 3. The particle size measurement system for soil materials according to Item 3.
JP2017247223A 2017-12-25 2017-12-25 Particle size measurement method and system for soil materials Active JP7030507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017247223A JP7030507B2 (en) 2017-12-25 2017-12-25 Particle size measurement method and system for soil materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247223A JP7030507B2 (en) 2017-12-25 2017-12-25 Particle size measurement method and system for soil materials

Publications (2)

Publication Number Publication Date
JP2019113429A JP2019113429A (en) 2019-07-11
JP7030507B2 true JP7030507B2 (en) 2022-03-07

Family

ID=67221491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247223A Active JP7030507B2 (en) 2017-12-25 2017-12-25 Particle size measurement method and system for soil materials

Country Status (1)

Country Link
JP (1) JP7030507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292176B2 (en) * 2019-10-17 2023-06-16 五洋建設株式会社 SOIL PROPERTIES ESTIMATION METHOD, DEVICE, PROGRAM AND SYSTEM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129408A (en) 2016-01-19 2017-07-27 株式会社大林組 Grain size monitoring method of ground material and three-dimensional image processing facility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2290434A (en) * 1939-05-09 1942-07-21 Traylor Vibrator Co Vibratory conveyer and screen
JPH11343634A (en) * 1998-06-01 1999-12-14 Ihi Amutec:Kk Method and device for solidifying and force-feeding dredged earth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129408A (en) 2016-01-19 2017-07-27 株式会社大林組 Grain size monitoring method of ground material and three-dimensional image processing facility

Also Published As

Publication number Publication date
JP2019113429A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP5253059B2 (en) Measuring system and measuring method of particle size distribution of granular material
CN105327848B (en) Building material production line
CN107036929A (en) Particle is lost in during a kind of real-time measurement gushing water pilot system and method
CN115283124B (en) Method for controlling fineness modulus of machine-made sand
JP2016200518A (en) Method and system for particle size distribution measurement of ground material
JP6243640B2 (en) Particle size distribution measurement system and weight conversion coefficient calculation system
JP7030507B2 (en) Particle size measurement method and system for soil materials
JP2011050959A (en) Waste sorting system
CN111103218A (en) Concrete aggregate particle diameter on-line monitoring device
JPH06127663A (en) Measuring method for loaded condition of granular massive body on belt conveyor, and control method for meandering of conveyor
RU2301005C2 (en) Belt conveyor for transportation of tobacco materials
JP5519441B2 (en) Particle size distribution measuring system and diffusion device
JP2008212778A (en) Aggregate sorting apparatus
JP6672823B2 (en) Ground material particle size monitoring method and three-dimensional image processing equipment
CN109556989A (en) A kind of on-line automatic monitoring system for gathering materials
JP6696290B2 (en) Quality control method of rock zone in rock fill dam
CN107144504A (en) A kind of pair of CCD sand material video imaging granularity particle shape analytical equipment
JP2002221481A (en) Particle size measuring apparatus
JP7207842B2 (en) Grain size determination method and system for ground material
CN206945488U (en) Double CCD sand materials video imaging granularity particle shape analytical equipments
SU531480A3 (en) Apparatus for applying powder on both sides of a sheet of film
CN211877692U (en) Concrete aggregate particle diameter on-line monitoring device
CN102632043A (en) Novel color sorter
JP2007225396A (en) Granularity measuring device of powder and grain
WO2008032363A1 (en) Method of measuring grain size and apparatus for measuring grain size

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350