JP7010709B2 - How to build prefabricated and concrete structures - Google Patents

How to build prefabricated and concrete structures Download PDF

Info

Publication number
JP7010709B2
JP7010709B2 JP2018005574A JP2018005574A JP7010709B2 JP 7010709 B2 JP7010709 B2 JP 7010709B2 JP 2018005574 A JP2018005574 A JP 2018005574A JP 2018005574 A JP2018005574 A JP 2018005574A JP 7010709 B2 JP7010709 B2 JP 7010709B2
Authority
JP
Japan
Prior art keywords
main steel
prefabricated structure
concrete
formwork
diagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018005574A
Other languages
Japanese (ja)
Other versions
JP2019124061A (en
Inventor
拓也 岩本
直樹 曽我部
陽兵 平
たかこ 菅井
文義 川崎
康祐 横関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2018005574A priority Critical patent/JP7010709B2/en
Publication of JP2019124061A publication Critical patent/JP2019124061A/en
Application granted granted Critical
Publication of JP7010709B2 publication Critical patent/JP7010709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼材を予め組み立てたプレハブ構造およびこれを用いたコンクリート構造物の構築方法に関する。 The present invention relates to a prefabricated structure in which steel materials are preassembled and a method for constructing a concrete structure using the prefabricated structure.

トンネル等に用いるボックスカルバートの頂版は、支保工を立てて型枠を設置し、その上に配筋を行いコンクリートを打設することで構築できる。 The top slab of box culvert used for tunnels and the like can be constructed by setting up a support work, installing a formwork, arranging reinforcements on it, and placing concrete on it.

支保工の設置には多大な作業が必要であり、これを省略する技術として、プレキャストコンクリートによる埋設型枠に鋼製リブ材を配置したものがある(例えば特許文献1、2等)。このような型枠構造を現場に架設してコンクリート打設時に用いることで支保工を省略することが可能である。 A large amount of work is required to install the support work, and as a technique for omitting this, there is a technique in which a steel rib material is arranged in a buried formwork made of precast concrete (for example, Patent Documents 1, 2 and the like). By constructing such a formwork structure at the site and using it when placing concrete, it is possible to omit the support work.

特開2016-3531号公報Japanese Unexamined Patent Publication No. 2016-3531 特開2017-166229号公報JP-A-2017-166229

支保工を低減しつつ大規模なコンクリート構造物を構築する場合、コンクリート打込み時の重量に対して十分な強度、剛性を確保するためには型枠構造の剛性を高める必要がある。 When constructing a large-scale concrete structure while reducing support work, it is necessary to increase the rigidity of the mold structure in order to secure sufficient strength and rigidity against the weight at the time of concrete driving.

そのため、型枠構造に多くの鋼材を使用する必要があり不経済である。また多くの鋼材が設置された状態で配筋作業を行う必要があり、施工が煩雑となる。特にボックスカルバートの隅角部にある頂版と側壁の接合部分は、外力を受けた際に損傷せず、頂版や側壁の損傷が先行するように設計されるため、大量の補強鉄筋が配置され、施工時の配筋作業が煩雑となる。 Therefore, it is uneconomical because it is necessary to use a lot of steel materials for the formwork structure. In addition, it is necessary to perform the bar arrangement work with many steel materials installed, which makes the construction complicated. In particular, the joint between the top slab and the side wall at the corner of the box culvert is designed so that it will not be damaged by external force and the top slab and side wall will be damaged first, so a large amount of reinforcing bars are placed. Therefore, the reinforcing bar arrangement work at the time of construction becomes complicated.

本発明は上記の問題に鑑みてなされたものであり、簡単な構成で且つ剛性が高いプレハブ構造等を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a prefabricated structure having a simple structure and high rigidity.

前述した課題を解決するための第1の発明は、略水平方向の主鋼材と、前記主鋼材に取付けられた略鉛直方向の圧縮材と、前記圧縮材に上部が取付けられ、前記圧縮材から離れるにつれ下に向かうように傾斜し、下部が前記主鋼材に取付けられた斜材と、を有し、前記斜材の下部を取付けた前記主鋼材の下方に型枠が接続され、前記主鋼材と前記型枠の間に隙間が設けられたことを特徴とするプレハブ構造である。 The first invention for solving the above-mentioned problems is a substantially horizontal main steel material, a substantially vertical compression material attached to the main steel material, and an upper portion attached to the compression material from the compression material. The formwork is connected to the lower part of the main steel material having the lower part attached to the main steel material, and the lower part is connected to the lower part of the main steel material to which the lower part of the diagonal material is attached. It is a prefabricated structure characterized in that a gap is provided between the mold and the mold .

本発明のプレハブ構造は型枠の支持材などとして機能させることができ、主鋼材、斜材と圧縮材が一体化され、これによりプレハブ構造に剛性が付与される。特に本発明では斜材と圧縮材によりトラス構造が形成され、斜材がプレハブ構造に生じる荷重を引張力のみで負担し、圧縮材は斜材の引張力により生じる圧縮力に抵抗し、荷重を斜材の引張力と圧縮材の圧縮力を介してプレハブ構造の支点に伝達できる。結果、簡単な構成でプレハブ構造に高い剛性が得られてそれ自体で平面保持が成立し、支保工を省略することが可能である。また圧縮材を始めとする各部材は構造物の補強材としても機能することから、前記したボックスカルバートの隅角部などの配筋作業を省略することもできる。 The prefabricated structure of the present invention can function as a support material for a formwork, and the main steel material, the diagonal material and the compression material are integrated, thereby imparting rigidity to the prefabricated structure. In particular, in the present invention, the truss structure is formed by the diagonal material and the compression material, and the diagonal material bears the load generated in the prefabricated structure only by the tensile force, and the compression material resists the compressive force generated by the tensile force of the diagonal material and applies the load. It can be transmitted to the fulcrum of the prefabricated structure through the tensile force of the diagonal member and the compressive force of the compressive material. As a result, high rigidity can be obtained in the prefabricated structure with a simple configuration, plane holding is established by itself, and it is possible to omit support work. Further, since each member including the compression material also functions as a reinforcing material of the structure, it is possible to omit the reinforcement work such as the corner portion of the box culvert described above.

第1の発明のプレハブ構造は、その主鋼材に型枠を接続することで型枠の支持に用いることができ、型枠の支保工を省略できる。型枠にはコンクリート製のプレキャスト部材を用い、コンクリート構造物の埋設型枠とできる。この場合、型枠を組立てた後コンクリートを打設し、コンクリート強度の発現を待って型枠を脱型し解体するといった作業が不要となる。 The prefabricated structure of the first invention can be used to support the formwork by connecting the formwork to the main steel material, and the support work of the formwork can be omitted. A concrete precast member is used for the formwork, and it can be used as a buried formwork for a concrete structure. In this case, it is not necessary to pour concrete after assembling the formwork, wait for the concrete strength to develop, and then demold and disassemble the formwork.

前記主鋼材は上下に略平行に配置され、前記圧縮材は上下の前記主鋼材に取付けられ、前記斜材の下部は、下側の前記主鋼材に取付けられることが望ましい。
本発明のプレハブ構造は、上下の主鋼材と主鋼材に取付けた斜材および圧縮材が一体化されることによってより高い剛性を確保することができる。
It is desirable that the main steel material is arranged substantially parallel to the upper and lower parts, the compression material is attached to the upper and lower main steel materials, and the lower portion of the diagonal material is attached to the lower main steel material.
In the prefabricated structure of the present invention, higher rigidity can be ensured by integrating the upper and lower main steel materials with the diagonal material and the compression material attached to the main steel materials.

前記斜材は、前記斜材の張力を調整するための張力調整機構を有することが望ましい。
これにより、プレハブ構造に高い初期剛性が得られ、また部材に負曲げを発生させることでコンクリート構造物のひびわれ発生リスクを低減することもできる。
It is desirable that the diagonal member has a tension adjusting mechanism for adjusting the tension of the diagonal member.
As a result, high initial rigidity can be obtained for the prefabricated structure, and the risk of cracking of the concrete structure can be reduced by causing negative bending in the member.

前記圧縮材は例えばパネル材であり、前記主鋼材の両端部に配置され、前記斜材は両パネル材の上部と前記主鋼材の中間部の間に配置される。
圧縮材としてパネル材を用いることで、圧縮力に好適に抵抗することができる。また前記圧縮材に、前記型枠上に打設されるコンクリートとの一体性を向上させるための孔または凹凸が設けられることも望ましい。
The compression material is, for example, a panel material, which is arranged at both ends of the main steel material, and the diagonal material is arranged between the upper portions of both panel materials and the intermediate portion of the main steel material .
By using a panel material as the compressive material, it is possible to suitably resist the compressive force. It is also desirable that the compression material be provided with holes or irregularities for improving the integrity with the concrete cast on the formwork.

第2の発明は、第1の発明のプレハブ構造を、前記圧縮材の位置をコンクリート構造物の側壁または柱に載置して架設し、前記斜材の下部を取付けた前記主鋼材に接続された型枠上にコンクリートを打設するコンクリート構造物の構築方法であって、上下の前記主鋼材と格点部において回転可能に接続された接続鋼材を倒すことにより折り畳まれた状態の上下の前記主鋼材を立て起こし、上下の前記主鋼材の架設を行った後、前記斜材と前記圧縮材の取付作業を行うことで、前記プレハブ構造の架設が行われることを特徴とするコンクリート構造物の構築方法である。 In the second invention, the prefabric structure of the first invention is erected by placing the position of the compression material on the side wall or the pillar of the concrete structure, and is connected to the main steel material to which the lower portion of the diagonal material is attached. It is a method of constructing a concrete structure in which concrete is placed on a formwork , and the upper and lower parts are folded by tilting the connecting steel materials that are rotatably connected to the main steel materials at the upper and lower points. The concrete structure is characterized in that the prefabricated structure is erected by erecting the main steel material, erection of the upper and lower main steel materials, and then attaching the diagonal member and the compression material. It is a method of constructing things .

本発明により、簡単な構成で且つ剛性が高いプレハブ構造等を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a prefabricated structure or the like having a simple structure and high rigidity.

プレハブ構造1を示す図。The figure which shows the prefab structure 1. プレハブ構造1を示す図。The figure which shows the prefab structure 1. プレハブ構造1による頂版の構築方法を示す図。The figure which shows the construction method of the top plate by the prefabricated structure 1. 主鋼材11a、12aの例を示す図。The figure which shows the example of the main steel materials 11a, 12a. プレハブ構造1aを示す図。The figure which shows the prefabricated structure 1a. プレハブ構造1aを示す図。The figure which shows the prefabricated structure 1a. プレハブ構造1bを示す図。The figure which shows the prefabricated structure 1b. プレハブ構造1cを示す図。The figure which shows the prefabricated structure 1c. プレハブ構造1cによる頂版の構築方法を示す図。The figure which shows the construction method of the top plate by the prefabricated structure 1c.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.プレハブ構造1)
図1は本発明の第1の実施形態に係るプレハブ構造1を示す図であり、図2は図1の線A-Aによる鉛直方向の断面を示す図である。このプレハブ構造1は、ボックスカルバートの側壁上に頂版(コンクリート構造物)を構築する際に、頂版のコンクリートを打設するための型枠構造として用いられる。
[First Embodiment]
(1. Prefabricated structure 1)
FIG. 1 is a diagram showing a prefabricated structure 1 according to the first embodiment of the present invention, and FIG. 2 is a diagram showing a vertical cross section taken along the line AA of FIG. This prefabricated structure 1 is used as a formwork structure for placing the concrete of the top slab when constructing the top slab (concrete structure) on the side wall of the box culvert.

プレハブ構造1は、鋼材と、コンクリート製のプレキャスト部材による埋設型枠14とを有する複合ハーフプレキャスト部材として構成され、その架設時およびコンクリート打設時の支保工を代替できる高い剛性を有し、支保工を省略可能なものである。またプレハブ構造1(埋設型枠14を除く)は頂版の補強材として機能し、頂版の配筋作業を省略できる。 The prefabricated structure 1 is configured as a composite half precast member having a steel material and a buried formwork 14 made of a concrete precast member, and has high rigidity that can replace the support work at the time of erection and concrete placement. The work can be omitted. Further, the prefabricated structure 1 (excluding the embedded formwork 14) functions as a reinforcing material for the top slab, and the reinforcement work of the top slab can be omitted.

プレハブ構造1は、鋼材として上下の主鋼材11、12、接続鋼材13、斜材16、およびパネル材18(圧縮材)等を有し、これらの部材を一体化することで高い剛性が得られる。図2に示すように、上下の主鋼材11、12および接続鋼材13は平面において主鋼材11、12と直交する方向に複数配置される。 The prefabricated structure 1 has upper and lower main steel materials 11 and 12, connecting steel materials 13, diagonal materials 16, panel materials 18 (compression materials) and the like as steel materials, and high rigidity can be obtained by integrating these members. .. As shown in FIG. 2, a plurality of upper and lower main steel materials 11 and 12 and connecting steel materials 13 are arranged in a direction orthogonal to the main steel materials 11 and 12 in a plane.

埋設型枠14は下側の主鋼材12に接続されており、埋設型枠14上にコンクリートを打設することで頂版が構築され、そのコンクリート内に主鋼材11、12、接続鋼材13、斜材16、およびパネル材18等が埋設される。 The buried formwork 14 is connected to the lower main steel material 12, and a top slab is constructed by placing concrete on the buried formwork 14, and the main steel materials 11, 12, connecting steel materials 13 and 13 are constructed in the concrete. The diagonal member 16, the panel member 18, and the like are buried.

主鋼材11、12は略水平方向の部材であり、上下に略平行に配置される。主鋼材11、12にはCT形鋼等の形鋼が用いられる。 The main steel materials 11 and 12 are members in a substantially horizontal direction, and are arranged substantially parallel to each other in the vertical direction. Shaped steel such as CT shaped steel is used for the main steel materials 11 and 12.

上下の主鋼材11、12は接続鋼材13により接続される。接続鋼材13にはL形鋼等の形鋼が用いられる。接続鋼材13は、格点部131において主鋼材11、12と回転可能に接続される。 The upper and lower main steel materials 11 and 12 are connected by the connecting steel material 13. Shaped steel such as L-shaped steel is used for the connecting steel material 13. The connecting steel material 13 is rotatably connected to the main steel materials 11 and 12 at the grid portion 131.

埋設型枠14は、チャンネル材15を介して下側の主鋼材12に接続される。埋設型枠14にはコンクリート製のプレキャスト部材が用いられ、チャンネル材15の上部を主鋼材12にボルト等を用いて接続し、チャンネル材15の下部を埋設型枠14に埋設することで、埋設型枠14が主鋼材12に接続される。これにより埋設型枠14と主鋼材12を強固に接続でき、埋設型枠14がプレハブ構造1の構造部材として機能し剛性を高めることができる。ただし、チャンネル材15の下部を埋設型枠14に埋設させず、ボルト等によってチャンネル材15と埋設型枠14を連結してもよい。 The embedded formwork 14 is connected to the lower main steel material 12 via the channel material 15. A concrete precast member is used for the buried formwork 14, and the upper part of the channel material 15 is connected to the main steel material 12 with bolts or the like, and the lower part of the channel material 15 is buried in the buried formwork 14. The formwork 14 is connected to the main steel material 12. As a result, the buried formwork 14 and the main steel material 12 can be firmly connected, and the buried formwork 14 functions as a structural member of the prefabricated structure 1 to increase the rigidity. However, the lower part of the channel material 15 may not be embedded in the embedded formwork 14, and the channel material 15 and the embedded formwork 14 may be connected by bolts or the like.

チャンネル材15の上に下側の主鋼材12を設置することで、下側の主鋼材12の周囲に埋設型枠14上に打設するコンクリートが充填されることになり、両者の一体性の確保において有利である。しかしながら、主鋼材12と埋設型枠14をボルト等によって直接接続したり、主鋼材12を埋設型枠14に埋設することも可能である。 By installing the lower main steel material 12 on the channel material 15, the concrete to be placed on the buried formwork 14 is filled around the lower main steel material 12, and the two are integrated. It is advantageous in securing. However, it is also possible to directly connect the main steel material 12 and the buried formwork 14 with bolts or the like, or to bury the main steel material 12 in the buried formwork 14.

斜材16とパネル材18は上下の主鋼材11、12の間に設けられる。パネル材18は上下の主鋼材11、12の両端部に配置され、斜材16は両パネル材18の上部と下側の主鋼材12の中間部の間に配置される。 The slanted lumber 16 and the panel lumber 18 are provided between the upper and lower main lumbers 11 and 12. The panel material 18 is arranged at both ends of the upper and lower main steel materials 11 and 12, and the diagonal material 16 is arranged between the upper portion of both panel materials 18 and the intermediate portion of the lower main steel material 12.

斜材16は、その上部をパネル材18の上部に取付け、パネル材18から離れるにつれて下側に向かうように傾斜して配置され、下部が主鋼材12の中間部に取付けられる。斜材16には例えば平鋼等の鋼材が用いられる。 The upper portion of the diagonal member 16 is attached to the upper portion of the panel member 18, and the inclined member 16 is arranged so as to be inclined downward as the distance from the panel member 18 increases, and the lower portion is attached to the intermediate portion of the main steel member 12. For the diagonal member 16, for example, a steel material such as flat steel is used.

パネル材18には鋼板が用いられ、図2に示すように上下の主鋼材11、12を両側から挟むように略鉛直方向に配置される。パネル材18は溶接あるいはボルト等によって上下の主鋼材11、12に取付けられる。なお、パネル材18として高い引張強度を有する繊維補強コンクリート板を用いることも可能である。また、パネル材18は、主鋼材11、12の片側のみで、上下の主鋼材11、12を連結するように略鉛直方向に配置されてもよい。 A steel plate is used for the panel material 18, and as shown in FIG. 2, the upper and lower main steel materials 11 and 12 are arranged in a substantially vertical direction so as to sandwich them from both sides. The panel material 18 is attached to the upper and lower main steel materials 11 and 12 by welding or bolts or the like. It is also possible to use a fiber reinforced concrete plate having high tensile strength as the panel material 18. Further, the panel material 18 may be arranged in a substantially vertical direction so as to connect the upper and lower main steel materials 11 and 12 only on one side of the main steel materials 11 and 12.

プレハブ構造1では、斜材16の上部、パネル材18、および上側の主鋼材11を貫通する孔(不図示)が形成され、当該孔にボルト191の軸部が通され、その先端にナット192を締め込むことで斜材16の上部、パネル材18、および上側の主鋼材11が一体化される。 In the prefabricated structure 1, a hole (not shown) is formed through the upper part of the diagonal member 16, the panel material 18, and the upper main steel material 11, and the shaft portion of the bolt 191 is passed through the hole, and the nut 192 is at the tip thereof. The upper part of the diagonal member 16, the panel material 18, and the upper main steel material 11 are integrated by tightening.

また、斜材16の下部と下側の主鋼材12を貫通する孔(不図示)も形成され、上記と同じく当該孔にボルト191の軸部が通され、その先端にナット192を締め込むことで斜材16の下端部と下側の主鋼材12が一体化される。 Further, a hole (not shown) penetrating the lower part of the diagonal member 16 and the lower main steel member 12 is also formed, and the shaft portion of the bolt 191 is passed through the hole as described above, and the nut 192 is tightened at the tip thereof. The lower end of the diagonal member 16 and the lower main steel member 12 are integrated.

図2に示すように、斜材16とパネル材18は、主鋼材11、12と平面において直交する方向の両端部の主鋼材11、12に取付けられ、その間の主鋼材11、12では省略される。 As shown in FIG. 2, the diagonal members 16 and the panel members 18 are attached to the main steel materials 11 and 12 at both ends in a direction orthogonal to the main steel materials 11 and 12 in a plane, and are omitted in the main steel materials 11 and 12 in between. Orthogonal.

プレハブ構造1を用いて頂版を構築する際は、まず図3(a)に示すように、プレハブ構造1を、パネル材18の位置をボックスカルバートの側壁20(支点)の上端部の鋼材に載置して側壁20の間に架設する。必要に応じて、主鋼材11、12と平面において略直交する方向の配力用鋼材として鉄筋等(不図示)を配置することも可能である。 When constructing the top plate using the prefabricated structure 1, first, as shown in FIG. 3A, the prefabricated structure 1 is set to the steel material at the upper end of the side wall 20 (fulcrum) of the box culvert at the position of the panel material 18. It is placed and erected between the side walls 20. If necessary, it is also possible to arrange reinforcing bars or the like (not shown) as a force distribution steel material in a direction substantially orthogonal to the main steel materials 11 and 12 in a plane.

そして、図3(b)に示すように埋設型枠14の上にコンクリート30を打設する。特に図示しないが、コンクリート30の打設時は埋設型枠14以外の必要な箇所に型枠が配置される。 Then, as shown in FIG. 3B, the concrete 30 is placed on the buried formwork 14. Although not particularly shown, when the concrete 30 is placed, the formwork is arranged at a necessary place other than the buried formwork 14.

この際、斜材16は埋設型枠14上に打設されるコンクリート30の荷重aを引張力bにより負担する。斜材16の引張力bによりパネル材18には鉛直方向の圧縮力cが生じ、パネル材18がこの圧縮力cに抵抗することで、荷重aが斜材16の引張力とパネル材18の圧縮力を介して側壁20に伝達される。これら斜材16とパネル材18の組合せによって埋設型枠14上に打設されるコンクリートの荷重aに効果的に抵抗することができる。 At this time, the diagonal member 16 bears the load a of the concrete 30 placed on the buried formwork 14 by the tensile force b. A compressive force c in the vertical direction is generated in the panel material 18 by the tensile force b of the diagonal member 16, and the panel material 18 resists the compressive force c, so that the load a is the tensile force of the diagonal member 16 and the panel material 18. It is transmitted to the side wall 20 via the compressive force. The combination of the diagonal members 16 and the panel members 18 can effectively resist the load a of the concrete placed on the buried formwork 14.

これはプレハブ構造1の架設時のプレハブ構造1の自重に関しても同様であり、プレハブ構造1は架設時とコンクリート打設時の双方において高い平面保持を成立させ、支保工を省略することが可能である。またプレハブ構造1の埋設型枠14を除く各部材は頂版の補強材としても機能することから頂版の配筋作業を省略することができる。例えばパネル材18はボックスカルバートの隅角部の補強筋として機能し、隅角部における配筋作業を省略することができる。 This also applies to the self-weight of the prefabricated structure 1 when the prefabricated structure 1 is erected. be. Further, since each member other than the buried formwork 14 of the prefabricated structure 1 also functions as a reinforcing material for the top slab, the work of arranging the reinforcement of the top slab can be omitted. For example, the panel material 18 functions as a reinforcing bar at the corner of the box culvert, and the bar arrangement work at the corner can be omitted.

なお、前記した斜材16やパネル材18は、プレハブ構造1の斜材16やパネル材18を除く部材を側壁20間に架設した後でプレハブ構造1に取付けることも可能である。この場合は、接続鋼材13を格点部131で回転させて倒し、上下の主鋼材11、12を折り畳んだ状態で地上に配置しておき、これを立て起こして側壁20間に架設した後、斜材16やパネル材18の取付作業を行えばよい。 The slanted lumber 16 and the panel lumber 18 described above can be attached to the prefabricated structure 1 after the members other than the slanted lumber 16 and the panel lumber 18 of the prefabricated structure 1 are erected between the side walls 20. In this case, the connecting steel material 13 is rotated by the grid portion 131 to be tilted down, and the upper and lower main steel materials 11 and 12 are placed on the ground in a folded state. The work of attaching the diagonal member 16 and the panel member 18 may be performed.

以上説明したように、本実施形態のプレハブ構造1は埋設型枠14の支持材として機能させることができ、上下の主鋼材11、12、接続鋼材13、斜材16、パネル材18等が一体化され、これによりプレハブ構造1に剛性が付与される。 As described above, the prefabricated structure 1 of the present embodiment can function as a support material for the embedded formwork 14, and the upper and lower main steel materials 11 and 12, connecting steel materials 13, diagonal materials 16, panel materials 18 and the like are integrated. This gives rigidity to the prefabricated structure 1.

特に本実施形態では斜材16とパネル材18によりトラス構造が形成され、斜材16がプレハブ構造1に生じる荷重を引張力のみで負担し、パネル材18は斜材16の引張力により生じる圧縮力に抵抗し、荷重が斜材16の引張力とパネル材18の圧縮力を介して側壁に伝達される。結果、簡単な構成でプレハブ構造1に高い剛性が得られてそれ自体で平面保持が成立し、支保工を省略することが可能である。 In particular, in the present embodiment, the truss structure is formed by the diagonal member 16 and the panel member 18, the diagonal member 16 bears the load generated in the prefabricated structure 1 only by the tensile force, and the panel member 18 bears the compression generated by the tensile force of the diagonal member 16. It resists the force and the load is transmitted to the side wall via the tensile force of the diagonal member 16 and the compressive force of the panel member 18. As a result, high rigidity can be obtained in the prefabricated structure 1 with a simple configuration, plane holding is established by itself, and it is possible to omit the support work.

また斜材16には引張力のみが作用し、座屈が生じないため、剛性の確保のために必要な斜材16の諸元を最小化させることが可能である。また、斜材16には引張力のみが作用するため、部材の変形に伴い斜材16の上部と下部を取付けるためのボルト191とこれを通す孔の間に隙間が無くなり、斜材16に確実に荷重を負担させることが出来る。 Further, since only the tensile force acts on the diagonal member 16 and buckling does not occur, it is possible to minimize the specifications of the diagonal member 16 required for ensuring the rigidity. Further, since only the tensile force acts on the diagonal member 16, there is no gap between the bolt 191 for attaching the upper portion and the lower portion of the diagonal member 16 and the hole through which the diagonal member 16 is passed, and the diagonal member 16 is reliably used. Can bear the load.

プレハブ構造1の主鋼材12にはコンクリート製のプレキャスト部材による埋設型枠14が接続され、プレハブ構造1により埋設型枠14を支持することで型枠の支保工を省略できる。また、型枠を組立てた後コンクリートを打設し、コンクリート強度の発現を待って型枠を脱型し解体するといった作業が不要となる。 A buried formwork 14 made of a concrete precast member is connected to the main steel material 12 of the prefabricated structure 1, and the buried formwork 14 is supported by the prefabricated structure 1 so that the support work of the formwork can be omitted. In addition, it is not necessary to place concrete after assembling the formwork, wait for the concrete strength to develop, and then demold and disassemble the formwork.

またプレハブ構造1の埋設型枠14を除く各部材は頂版の補強材としても機能することから頂版の配筋作業を省略することができる。特にパネル材18はボックスカルバートの隅角部の補強材として機能し、隅角部における配筋作業を大幅に軽減できる。 Further, since each member other than the buried formwork 14 of the prefabricated structure 1 also functions as a reinforcing material for the top slab, the work of arranging the reinforcement of the top slab can be omitted. In particular, the panel material 18 functions as a reinforcing material for the corner portion of the box culvert, and the reinforcement work at the corner portion can be significantly reduced.

結果、本実施形態では支保工の設置や撤去作業、型枠の組立・解体作業、頂版の配筋作業の負担が軽減され、頂版の施工が省力化される。 As a result, in this embodiment, the burden of installation and removal work of support work, formwork assembly / disassembly work, and reinforcement arrangement work of the top slab is reduced, and the construction of the top slab is labor-saving.

しかしながら、本発明はこれに限らない。例えば本実施形態ではボックスカルバートの頂版を構築する際にプレハブ構造1を用いているが、その他のコンクリート構造物を構築する際にも適用可能である。また本実施形態ではプレハブ構造1を側壁20上に載置しているが、柱等の上に載置してもよい。 However, the present invention is not limited to this. For example, in the present embodiment, the prefabricated structure 1 is used when constructing the top plate of the box culvert, but it can also be applied when constructing other concrete structures. Further, although the prefabricated structure 1 is placed on the side wall 20 in this embodiment, it may be placed on a pillar or the like.

またプレハブ構造1には埋設型枠14の代わりにコンクリート打設後に取り外す仮設の型枠を設けてもよく、この場合はコンクリート製のプレキャスト部材でなく鋼板等を型枠に用いてもよい。またプレハブ構造1において型枠を省略し、型枠をコンクリート打設時に別途配置することも可能である。この場合も、プレハブ構造1は頂版の補強材として機能する。 Further, the prefabricated structure 1 may be provided with a temporary formwork to be removed after concrete is placed instead of the buried formwork 14. In this case, a steel plate or the like may be used for the formwork instead of the concrete precast member. It is also possible to omit the formwork in the prefabricated structure 1 and arrange the formwork separately at the time of placing concrete. In this case as well, the prefabricated structure 1 functions as a reinforcing material for the top plate.

また本実施形態では、前記の圧縮力を負担する圧縮材としてパネル材18を用いることで圧縮力に好適に抵抗することができるが、パネル材18に代えて略鉛直方向の柱材等を用いることも可能である。いずれにせよ前記の圧縮力に抵抗できるものであればよい。 Further, in the present embodiment, the panel material 18 can be suitably resisted by using the panel material 18 as the compression material that bears the compression force, but instead of the panel material 18, a pillar material or the like in a substantially vertical direction is used. It is also possible. In any case, any material may be used as long as it can withstand the above-mentioned compressive force.

また、場合によっては上側の主鋼材11を省略することも可能である。ただし、本実施形態では上下の主鋼材11、12と主鋼材11、12に取付けた斜材16およびパネル材18が一体化されることによってプレハブ構造1により高い剛性を確保できる利点がある。 Further, in some cases, it is possible to omit the upper main steel material 11. However, in the present embodiment, there is an advantage that high rigidity can be ensured by the prefabricated structure 1 by integrating the upper and lower main steel materials 11 and 12 with the diagonal members 16 and the panel materials 18 attached to the main steel materials 11 and 12.

さらに、図4に示すように、上下の主鋼材11a、12aのそれぞれを、鉛直面同士を背中合わせに配置した2本のL字状の鋼材(アングル材)111、121で構成してもよい。図4の例では、パネル材18がアングル材111、111の間、およびアングル材121、121の間に挟まれて1枚配置される。 Further, as shown in FIG. 4, each of the upper and lower main steel materials 11a and 12a may be composed of two L-shaped steel materials (angle materials) 111 and 121 in which the vertical faces are arranged back to back. In the example of FIG. 4, one panel member 18 is arranged between the angle members 111 and 111 and between the angle members 121 and 121.

以下、本発明の別の例について第2~第4の実施形態として説明する。各実施形態はそれまでに説明した実施形態と異なる点について主に説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また第1の実施形態も含め、各実施形態で説明する構成は必要に応じて組み合わせて用いることが可能である。 Hereinafter, another example of the present invention will be described as the second to fourth embodiments. The differences between the embodiments and the embodiments described so far will be mainly described, and the same configurations will be omitted by adding the same reference numerals in the drawings and the like. Further, the configurations described in each embodiment including the first embodiment can be used in combination as necessary.

[第2の実施形態]
図5は本発明の第2の実施形態に係るプレハブ構造1aを示す図であり、図6は図5の線B-Bによる鉛直方向の断面を示す図である。このプレハブ構造1aは、斜材16aの構成において第1の実施形態と異なる。
[Second Embodiment]
FIG. 5 is a diagram showing a prefabricated structure 1a according to a second embodiment of the present invention, and FIG. 6 is a diagram showing a vertical cross section taken along the line BB of FIG. This prefabricated structure 1a is different from the first embodiment in the configuration of the slanted lumber 16a.

斜材16aは、取付部161、ネジ鋼162、および張力調整機構163等を有し、上下の取付部161に設けたネジ鋼162の先端を張力調整機構163に接続した構成となっている。 The diagonal member 16a has a mounting portion 161, a screw steel 162, a tension adjusting mechanism 163, and the like, and has a configuration in which the tips of the screw steel 162 provided on the upper and lower mounting portions 161 are connected to the tension adjusting mechanism 163.

取付部161は斜材16aを上下の主鋼材11、12に取付けるものである。 The attachment portion 161 attaches the diagonal member 16a to the upper and lower main steel members 11 and 12.

張力調整機構163は斜材16aの張力の調整を行うためのものである。張力調整機構163には例えばネジ鋼162の先端と螺合するターンバックルが用いられ、ターンバックルを回転させてネジ鋼162をターンバックル側に締め込むことで斜材16aの張力を上昇させることができる。 The tension adjusting mechanism 163 is for adjusting the tension of the diagonal member 16a. For example, a turnbuckle screwed with the tip of the screw steel 162 is used for the tension adjusting mechanism 163, and the tension of the diagonal member 16a can be increased by rotating the turnbuckle and tightening the screw steel 162 toward the turnbuckle. can.

プレハブ構造1aでは、斜材16aの上部の取付部161、パネル材18、および上側の主鋼材11を貫通する孔(不図示)が形成され、当該孔にボルト191の軸部が通され、その先端にナット192を締め込むことで、斜材16の上部の取付部161、パネル材18、および上側の主鋼材11が一体化される。 In the prefabricated structure 1a, a hole (not shown) penetrating the upper mounting portion 161 of the slanted lumber 16a, the panel material 18, and the upper main steel material 11 is formed, and the shaft portion of the bolt 191 is passed through the hole. By tightening the nut 192 to the tip, the upper mounting portion 161 of the diagonal member 16, the panel material 18, and the upper main steel material 11 are integrated.

また、斜材16aの下部の取付部161と下側の主鋼材12を貫通する孔(不図示)も形成され、上記と同じく当該孔にボルト191の軸部が通され、その先端にナット192を締め込むことで斜材16aの下部の取付部161と下側の主鋼材12が一体化される。 Further, a hole (not shown) penetrating the lower mounting portion 161 of the diagonal member 16a and the lower main steel member 12 is also formed, and the shaft portion of the bolt 191 is passed through the hole as described above, and the nut 192 is at the tip thereof. By tightening the bolt, the lower mounting portion 161 of the diagonal member 16a and the lower main steel member 12 are integrated.

図6に示すように、第2の実施形態でも、斜材16aとパネル材18が、主鋼材11、12と平面において直交する方向の両端部の主鋼材11、12に取付けられ、その間の主鋼材11、12ではこれらが省略される。なお、本実施形態では斜材16aが上下の主鋼材11、12の両側で傾斜方向を変えて設けられ、剛性の確保に有利となるが、いずれかの側のみに配置してもよい。 As shown in FIG. 6, also in the second embodiment, the diagonal members 16a and the panel members 18 are attached to the main steel materials 11 and 12 at both ends in the direction orthogonal to the main steel materials 11 and 12 in a plane, and the main members in between are attached to the main steel materials 11 and 12. These are omitted in the steel materials 11 and 12. In the present embodiment, the diagonal members 16a are provided on both sides of the upper and lower main steel members 11 and 12 in different inclination directions, which is advantageous for ensuring rigidity, but may be arranged only on either side.

第2の実施形態のプレハブ構造1aは、斜材16aの張力を調整可能することで、取付部161のボルト191とボルト191を通す孔の隙間を初めから解消できるため、部材の変形が微小な段階であっても斜材16aに荷重が伝達され、高い初期剛性を確保できる。また、張力の調整によりプレハブ構造1aの各部材に負曲げを作用させることができ、コンクリート30及び埋設型枠14のひび割れ発生リスクの低減効果がある。 In the prefabricated structure 1a of the second embodiment, since the tension of the diagonal member 16a can be adjusted, the gap between the bolt 191 of the mounting portion 161 and the hole through which the bolt 191 passes can be eliminated from the beginning, so that the deformation of the member is small. Even in the stage, the load is transmitted to the diagonal member 16a, and high initial rigidity can be ensured. Further, by adjusting the tension, negative bending can be applied to each member of the prefabricated structure 1a, which has the effect of reducing the risk of cracking of the concrete 30 and the buried formwork 14.

[第3の実施形態]
図7は本発明の第3の実施形態に係るプレハブ構造1bを示す図である。このプレハブ構造1bは、パネル材18aの構成において第2の実施形態と異なる。
[Third Embodiment]
FIG. 7 is a diagram showing a prefabricated structure 1b according to a third embodiment of the present invention. This prefabricated structure 1b is different from the second embodiment in the configuration of the panel material 18a.

すなわち、本実施形態ではパネル材18aに鋼板が用いられ、パネル材18aには複数の孔181が設けられる。このように、パネル材18aに孔181を設けることでコンクリート30との一体性を向上させることが可能である。 That is, in the present embodiment, a steel plate is used for the panel material 18a, and the panel material 18a is provided with a plurality of holes 181. In this way, by providing the hole 181 in the panel material 18a, it is possible to improve the integrity with the concrete 30.

その他、パネル材18aに繊維補強コンクリート等を用いる場合などでは、表面に凹凸を設けることでコンクリート30との一体性を向上させることも可能である。 In addition, when fiber reinforced concrete or the like is used for the panel material 18a, it is possible to improve the integrity with the concrete 30 by providing unevenness on the surface.

[第4の実施形態]
図8は本発明の第4の実施形態に係るプレハブ構造1cを示す図である。このプレハブ構造1cは橋梁などのボックスカルバートにおける大スパンの頂版の構築に用いられ、これに合わせて、主鋼材11、12、斜材16a、パネル材18a等による構成を連結して大スパンとしたものである。
[Fourth Embodiment]
FIG. 8 is a diagram showing a prefabricated structure 1c according to a fourth embodiment of the present invention. This prefabricated structure 1c is used for constructing a large span top slab in a box culvert such as a bridge, and in accordance with this, a configuration consisting of main steel materials 11, 12, diagonal materials 16a, panel material 18a, etc. is connected to form a large span. It was done.

すなわち、このプレハブ構造1cでは、パネル材18aが主鋼材11、12に沿った方向に間隔を空けて3か所に配置され、隣り合うパネル材18aの間に主鋼材11、12、斜材16aが配置される。なお、この例では斜材16aが主鋼材11、12の一方の側にのみ設けられる。 That is, in this prefabricated structure 1c, the panel materials 18a are arranged at three places at intervals in the direction along the main steel materials 11 and 12, and the main steel materials 11, 12 and the diagonal members 16a are arranged between the adjacent panel materials 18a. Is placed. In this example, the diagonal member 16a is provided only on one side of the main steel members 11 and 12.

中央のパネル材18aはその両側の主鋼材11、12同士を連結する添接板としても用いられ、これにより中央のパネル材18aの両側の主鋼材11、12が連結される。中央のパネル材18aはせん断補強鋼材としても機能する。 The central panel material 18a is also used as a splicing plate for connecting the main steel materials 11 and 12 on both sides thereof, whereby the main steel materials 11 and 12 on both sides of the central panel material 18a are connected. The central panel material 18a also functions as a shear reinforcing steel material.

プレハブ構造1cを架設してコンクリート構造物を構築する際は、図9(a)に示すように、プレハブ構造1cを、各パネル材18aの位置で側壁40(支点)の上端部の鋼材と中間壁50(支点)の上に載置して側壁40間に架設し、図9(b)に示すように埋設型枠14の上にコンクリート30を打設する。コンクリート30の打設時は埋設型枠14以外の必要な箇所に型枠(不図示)が配置される。なお、場合によってはプレハブ構造1cの両端部のパネル材18aと斜材16aを省略することも可能である。 When constructing a concrete structure by erection of the prefabricated structure 1c, as shown in FIG. 9A, the prefabricated structure 1c is intermediate with the steel material at the upper end of the side wall 40 (fulcrum) at the position of each panel material 18a. It is placed on the wall 50 (fulcrum) and erected between the side walls 40, and concrete 30 is placed on the buried form 14 as shown in FIG. 9 (b). At the time of placing the concrete 30, the formwork (not shown) is arranged at a necessary place other than the buried formwork 14. In some cases, the panel members 18a and the diagonal members 16a at both ends of the prefabricated structure 1c can be omitted.

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or modified examples within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

1、1a、1b、1c:プレハブ構造
11、11a、12、12a:主鋼材
13:接続鋼材
14:埋設型枠
15:チャンネル材
16、16a:斜材
18、18a:パネル材
20、40:側壁
30:コンクリート
50:中間壁
111、121:アングル材
131:格点部
161:取付部
162:ネジ鋼
163:張力調整機構
181:孔
191:ボルト
192:ナット
1, 1a, 1b, 1c: Prefabricated structure 11, 11a, 12, 12a: Main steel material 13: Connecting steel material 14: Embedded formwork 15: Channel material 16, 16a: Oblique material 18, 18a: Panel material 20, 40: Side wall 30: Concrete 50: Intermediate wall 111, 121: Angle material 131: Formwork 161: Mounting part 162: Screw steel 163: Tension adjustment mechanism 181: Hole 1911: Bolt 192: Nut

Claims (7)

略水平方向の主鋼材と、
前記主鋼材に取付けられた略鉛直方向の圧縮材と、
前記圧縮材に上部が取付けられ、前記圧縮材から離れるにつれ下に向かうように傾斜し、下部が前記主鋼材に取付けられた斜材と、
を有し、
前記斜材の下部を取付けた前記主鋼材の下方に型枠が接続され、前記主鋼材と前記型枠の間に隙間が設けられたことを特徴とするプレハブ構造。
Approximately horizontal main steel material and
The compression material in the substantially vertical direction attached to the main steel material and
An upper part is attached to the compression material, and the lower part is inclined downward as the distance from the compression material is increased.
Have,
A prefabricated structure characterized in that a mold is connected below the main steel material to which a lower portion of the diagonal material is attached, and a gap is provided between the main steel material and the mold .
前記主鋼材は上下に略平行に配置され、
前記圧縮材は上下の前記主鋼材に取付けられ、
前記斜材の下部は、下側の前記主鋼材に取付けられることを特徴とする請求項1記載のプレハブ構造。
The main steel materials are arranged substantially parallel to each other in the vertical direction.
The compression material is attached to the upper and lower main steel materials,
The prefabricated structure according to claim 1 , wherein the lower portion of the diagonal member is attached to the lower main steel member.
前記型枠はコンクリート製のプレキャスト部材であることを特徴とする請求項1または請求項2記載のプレハブ構造。 The prefabricated structure according to claim 1 or 2, wherein the formwork is a precast member made of concrete. 前記斜材は、前記斜材の張力を調整するための張力調整機構を有することを特徴とする請求項1から請求項のいずれかに記載のプレハブ構造。 The prefabricated structure according to any one of claims 1 to 3 , wherein the diagonal member has a tension adjusting mechanism for adjusting the tension of the diagonal member. 前記圧縮材はパネル材であり、前記主鋼材の両端部に配置され、
前記斜材は両パネル材の上部と前記主鋼材の中間部の間に配置されることを特徴とする請求項1から請求項のいずれかに記載のプレハブ構造。
The compression material is a panel material, which is arranged at both ends of the main steel material.
The prefabricated structure according to any one of claims 1 to 4 , wherein the diagonal member is arranged between an upper portion of both panel members and an intermediate portion of the main steel member .
前記圧縮材に、前記型枠上に打設されるコンクリートとの一体性を向上させるための孔または凹凸が設けられることを特徴とする請求項1から請求項5のいずれかに記載のプレハブ構造。The prefabricated structure according to any one of claims 1 to 5, wherein the compression material is provided with holes or irregularities for improving the integrity with the concrete cast on the formwork. .. 請求項2に記載のプレハブ構造を、前記圧縮材の位置をコンクリート構造物の側壁または柱に載置して架設し、
前記斜材の下部を取付けた前記主鋼材に接続された型枠上にコンクリートを打設するコンクリート構造物の構築方法であって、
上下の前記主鋼材と格点部において回転可能に接続された接続鋼材を倒すことにより折り畳まれた状態の上下の前記主鋼材を立て起こし、上下の前記主鋼材の架設を行った後、前記斜材と前記圧縮材の取付作業を行うことで、前記プレハブ構造の架設が行われることを特徴とするコンクリート構造物の構築方法
The prefabricated structure according to claim 2 is erected by placing the position of the compression material on a side wall or a pillar of a concrete structure .
It is a method of constructing a concrete structure in which concrete is placed on a formwork connected to the main steel material to which the lower portion of the diagonal material is attached.
The upper and lower main steel materials in a folded state are erected by tilting the connecting steel materials rotatably connected to the upper and lower main steel materials at the grid portion, and the upper and lower main steel materials are erected and then slanted. A method for constructing a concrete structure, characterized in that the prefabricated structure is erected by attaching the material and the compression material .
JP2018005574A 2018-01-17 2018-01-17 How to build prefabricated and concrete structures Active JP7010709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018005574A JP7010709B2 (en) 2018-01-17 2018-01-17 How to build prefabricated and concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018005574A JP7010709B2 (en) 2018-01-17 2018-01-17 How to build prefabricated and concrete structures

Publications (2)

Publication Number Publication Date
JP2019124061A JP2019124061A (en) 2019-07-25
JP7010709B2 true JP7010709B2 (en) 2022-02-10

Family

ID=67398265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018005574A Active JP7010709B2 (en) 2018-01-17 2018-01-17 How to build prefabricated and concrete structures

Country Status (1)

Country Link
JP (1) JP7010709B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204643A (en) 1999-01-13 2000-07-25 Maruei Concrete Industries Co Ltd Method for constructing box culvert and concrete block therefor
JP2001081855A (en) 1999-09-10 2001-03-27 Sekisui Chem Co Ltd Cover and method for manufacture thereof
JP2003148094A (en) 2001-11-16 2003-05-21 Ohbayashi Corp Timbering construction method
JP2007284918A (en) 2006-04-13 2007-11-01 Shinohara Shoten:Kk Horizontally laid body and wooden structure
JP2015200158A (en) 2014-04-10 2015-11-12 株式会社横河住金ブリッジ Steel concrete composite structure of using sandwich type composite pile cap
JP2016003531A (en) 2014-06-19 2016-01-12 ジオスター株式会社 Box culvert
JP2017014788A (en) 2015-06-30 2017-01-19 前田製管株式会社 Precast concrete box culvert
JP2017089205A (en) 2015-11-09 2017-05-25 日之出水道機器株式会社 Building member, building fitted with building member and building member fitting method
JP2017166229A (en) 2016-03-16 2017-09-21 ジオスター株式会社 Box culvert
JP2018204386A (en) 2017-06-08 2018-12-27 鹿島建設株式会社 Reinforcing material and reinforcing structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0102340B1 (en) * 1982-07-30 1988-09-28 Dynamique du Bâtiment en abrégé "DYNABAT" Société Anonyme Method of making reinforced concrete constructions such as subways, road tunnels and the like; prefabricated concrete elements for making such constructions
JPS62253844A (en) * 1986-03-26 1987-11-05 Katsuhiro Miyazawa Attic structure of wood snow resistant house

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204643A (en) 1999-01-13 2000-07-25 Maruei Concrete Industries Co Ltd Method for constructing box culvert and concrete block therefor
JP2001081855A (en) 1999-09-10 2001-03-27 Sekisui Chem Co Ltd Cover and method for manufacture thereof
JP2003148094A (en) 2001-11-16 2003-05-21 Ohbayashi Corp Timbering construction method
JP2007284918A (en) 2006-04-13 2007-11-01 Shinohara Shoten:Kk Horizontally laid body and wooden structure
JP2015200158A (en) 2014-04-10 2015-11-12 株式会社横河住金ブリッジ Steel concrete composite structure of using sandwich type composite pile cap
JP2016003531A (en) 2014-06-19 2016-01-12 ジオスター株式会社 Box culvert
JP2017014788A (en) 2015-06-30 2017-01-19 前田製管株式会社 Precast concrete box culvert
JP2017089205A (en) 2015-11-09 2017-05-25 日之出水道機器株式会社 Building member, building fitted with building member and building member fitting method
JP2017166229A (en) 2016-03-16 2017-09-21 ジオスター株式会社 Box culvert
JP2018204386A (en) 2017-06-08 2018-12-27 鹿島建設株式会社 Reinforcing material and reinforcing structure

Also Published As

Publication number Publication date
JP2019124061A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
KR100797194B1 (en) Composite concrete column and construction method using the same
JP2006517628A (en) Prestressed temporary structure
JP2007077630A (en) Continuous girder using precast main-girder segment, and its erection method
KR101937680B1 (en) Prefabricated Precast Structure and Construction Method Thereof
KR100969586B1 (en) Rhamen bridge and construction method there of
JP6871728B2 (en) Prefabricated structure
JP7010709B2 (en) How to build prefabricated and concrete structures
KR101868677B1 (en) Connection unit for coupling main steel girder and ancillary steel girder and, connection methods using the same
KR101309004B1 (en) Rahmen bridge and constructing method thereof
KR101309005B1 (en) Rahmen bridge and constructing method thereof
KR101557388B1 (en) Rebar assembly unit for strengthening shearing force
KR101482523B1 (en) Nodular Box Girder, and Nodular Box Girder Bridge and Constructing Method thereof
JP2017179997A (en) Column-beam joint structure and construction method therefor
KR100465350B1 (en) Bridge construction method using prestressed concrete composite beam with extended distance of eccentricity
JP6346847B2 (en) Anchor cable fixing structure
JP4437064B2 (en) Construction method and formwork structure of concrete floor slab for composite floor slab bridge
KR20180070097A (en) Prestressed Hybrid Wide Flange Girder System Suitable For Resisting Negative Moments At Construction Stage
KR102372473B1 (en) Constuction Structure for Joint of PC-Colunm and PC-Girder Using Temporay Bracket
JP7010736B2 (en) How to build an underground structure
KR101083062B1 (en) Hybrid reinforced concrete system
JP6381096B2 (en) Construction structure, gantry and turbine generator facility, and method for manufacturing construction structure
JP6655746B2 (en) Bridge structure and floor slab replacement method
JP3909488B2 (en) Seismic reinforcement structure of existing building and its construction method
KR102029301B1 (en) Prefabricated column assembly with foundation reinforcement part
JP7093714B2 (en) Pit structure and how to build it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113

R150 Certificate of patent or registration of utility model

Ref document number: 7010709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150