JP7005847B2 - 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機 - Google Patents

半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機 Download PDF

Info

Publication number
JP7005847B2
JP7005847B2 JP2018173107A JP2018173107A JP7005847B2 JP 7005847 B2 JP7005847 B2 JP 7005847B2 JP 2018173107 A JP2018173107 A JP 2018173107A JP 2018173107 A JP2018173107 A JP 2018173107A JP 7005847 B2 JP7005847 B2 JP 7005847B2
Authority
JP
Japan
Prior art keywords
semiconductor device
carbon
region
insulating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018173107A
Other languages
English (en)
Other versions
JP2020047665A (ja
Inventor
達雄 清水
純 奈良
智昭 金子
隆浩 山崎
暢夫 田島
隆央 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
National Institute for Materials Science
Original Assignee
Toshiba Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, National Institute for Materials Science filed Critical Toshiba Corp
Priority to JP2018173107A priority Critical patent/JP7005847B2/ja
Publication of JP2020047665A publication Critical patent/JP2020047665A/ja
Application granted granted Critical
Publication of JP7005847B2 publication Critical patent/JP7005847B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機に関する。
次世代の半導体デバイス用の材料として炭化珪素(SiC)が期待されている。炭化珪素はシリコン(Si)と比較して、バンドギャップが3倍、破壊電界強度が約10倍、熱伝導率が約3倍と優れた物性を有する。この特性を活用すれば低損失かつ高温動作可能な半導体デバイスを実現することができる。
しかし、例えば、炭化珪素を用いてMOSFET(Meatl Oxide Semiconductor Field Effect Transistor)を形成する場合、キャリアの移動度が劣化するという問題がある。
特開2017-216305号公報
本発明が解決しようとする課題は、キャリアの移動度の向上が可能な半導体装置を提供することにある。
実施形態の半導体装置は、炭化珪素又はダイヤモンドの半導体層と、前記半導体層の上に位置し、第1の炭素と、前記第1の炭素に結合する第1の原子と、前記第1の炭素に結合する第2の原子と、前記第1の炭素に結合する第1の終端基と、前記第1の炭素に結合する第2の終端基と、を有し、前記第1の原子は、シリコン(Si)、炭素(C)、酸素(O)、窒素(N)、及び、アルミニウム(Al)から成る群から選ばれる一つの原子であり、前記第2の原子は、シリコン(Si)、炭素(C)、酸素(O)、窒素(N)、及び、アルミニウム(Al)から成る群から選ばれる一つの原子であり、前記第1の終端基は、水酸基(OH)、フッ素(F)、水素(H)、及び、重水素(D)から成る群から選ばれる一つの終端基であり、前記第2の終端基は、水酸基(OH)、フッ素(F)、水素(H)、及び、重水素(D)から成る群から選ばれる一つの終端基である絶縁層と、を備える。
第1の実施形態の半導体装置の模式断面図。 第1の実施形態の第1の結合構造の説明図。 第1の実施形態の第1の結合構造を例示する図。 第1の実施形態のゲート絶縁層の拡大模式図。 第1の実施形態の第2の結合構造の説明図。 第1の実施形態の半導体装置の製造方法の工程フロー図。 第1の実施形態の半導体装置の作用及び効果の説明図。 第2の実施形態の半導体装置の模式断面図。 第2の実施形態の終端元素の濃度分布を示す図。 第2の実施形態の半導体装置の製造方法の工程フロー図。 第3の実施形態の半導体装置の模式断面図。 第4の実施形態の駆動装置の模式図。 第5の実施形態の車両の模式図。 第6の実施形態の車両の模式図。 第7の実施形態の昇降機の模式図。
以下、図面を参照しつつ本発明の実施形態を説明する。なお、以下の説明では、同一又は類似の部材などには同一の符号を付し、一度説明した部材などについては適宜その説明を省略する。
また、以下の説明において、n、n、n及び、p、p、pの表記がある場合は、各導電型における不純物濃度の相対的な高低を表す。すなわちnはnよりもn型の不純物濃度が相対的に高く、nはnよりもn型の不純物濃度が相対的に低いことを示す。また、pはpよりもp型の不純物濃度が相対的に高く、pはpよりもp型の不純物濃度が相対的に低いことを示す。なお、n型、n型を単にn型、p型、p型を単にp型と記載する場合もある。
(第1の実施形態)
第1の実施形態の半導体装置は、炭化珪素又はダイヤモンドの半導体層と、半導体層の上に位置し、第1の炭素と、第1の炭素に結合する第1の原子と、第1の炭素に結合する第2の原子と、第1の炭素に結合する第1の終端基と、第1の炭素に結合する第2の終端基と、を有し、第1の原子は、シリコン(Si)、炭素(C)、酸素(O)、窒素(N)、及び、アルミニウム(Al)から成る群から選ばれる一つの原子であり、前記第2の原子は、シリコン(Si)、炭素(C)、酸素(O)、窒素(N)、及び、アルミニウム(Al)から成る群から選ばれる一つの原子であり、第1の終端基は、水酸基(OH)、フッ素(F)、水素(H)、及び、重水素(D)から成る群から選ばれる一つの終端基であり、第2の終端基は、水酸基(OH)、フッ素(F)、水素(H)、及び、重水素(D)から成る群から選ばれる一つの終端基である絶縁層と、を備える。
以下、半導体層が炭化珪素、絶縁層が酸化シリコンである場合を例に説明する。
図1は、第1の実施形態の半導体装置の模式断面図である。第1の実施形態の半導体装置は、MOSFET100である。MOSFET100は、pウェルとソース領域をイオン注入で形成する、Double Implantation MOSFET(DIMOSFET)である。また、MOSFET100は、電子をキャリアとするnチャネル型のMOSFETである。
このMOSFET100は、炭化珪素基板12、ドリフト層14(半導体層)、pウェル領域16(半導体層)、ソース領域18、pウェルコンタクト領域20、ゲート絶縁層28(絶縁層)、ゲート電極30、層間絶縁膜32、ソース電極34、及び、ドレイン電極36を備える。ゲート絶縁層28は、第1の領域28aと第2の領域28bを有する。
炭化珪素基板12は、例えば、n型の4H-SiCの基板である。炭化珪素基板12は、例えば、窒素(N)をn型不純物として含む。炭化珪素基板12のn型不純物の不純物濃度は、例えば、1×1018cm-3以上1×1020cm-3以下である。
炭化珪素基板12の表面は、例えば、(0001)面に対し0度以上8度以下傾斜した面である。(0001)面は、シリコン面と称される。炭化珪素基板12の裏面は、例えば、(000-1)面に対し0度以上8度以下傾斜した面である。(000-1)面は、カーボン面と称される。
ドリフト層14は、炭化珪素基板12の表面上に設けられる。ドリフト層14は、n型の炭化珪素層である。ドリフト層14は、例えば、窒素をn型不純物として含む。
ドリフト層14のn型不純物の不純物濃度は、例えば、5×1015cm-3以上2×1016cm-3以下である。ドリフト層14は、例えば、炭化珪素基板12上にエピタキシャル成長により形成されたSiCのエピタキシャル成長層である。
ドリフト層14の表面も、シリコン面に対し0度以上8度以下傾斜した面である。ドリフト層14の厚さは、例えば、5μm以上100μm以下である。
pウェル領域16は、ドリフト層14の一部表面に設けられる。pウェル領域16は、p型の炭化珪素領域である。pウェル領域16は、例えば、アルミニウム(Al)をp型不純物として含む。pウェル領域16のp型不純物の不純物濃度は、例えば、5×1015cm-3以上1×1017cm-3以下である。
pウェル領域16の深さは、例えば、0.4μm以上0.8μm以下である。pウェル領域16は、MOSFET100のチャネル領域として機能する。
pウェル領域16の表面も、シリコン面に対し0度以上8度以下傾斜した面である。
ソース領域18は、pウェル領域16の一部表面に設けられる。ソース領域18は、n型の炭化珪素層である。ソース領域18は、例えば、リン(P)をn型不純物として含む。ソース領域18のn型不純物の不純物濃度は、例えば、1×1018cm-3以上1×1022cm-3cm以下である。
ソース領域18の深さは、pウェル領域16の深さよりも浅い。ソース領域18の深さは、例えば、0.2μm以上0.4μm以下である。
pウェルコンタクト領域20は、pウェル領域16の一部表面に設けられる。pウェルコンタクト領域20は、ソース領域18の側方に設けられる。pウェルコンタクト領域20は、p型の炭化珪素領域である。
pウェルコンタクト領域20は、例えば、アルミニウムをp型不純物として含む。pウェルコンタクト領域20のp型不純物の不純物濃度は、例えば、1×1018cm-3以上1×1022cm-3以下である。
pウェルコンタクト領域20の深さは、pウェル領域16の深さよりも浅い。pウェルコンタクト領域20の深さは、例えば、0.2μm以上0.4μm以下である。
ゲート絶縁層28は、pウェル領域16とゲート電極30との間に設けられる。ゲート絶縁層28は、ドリフト層14及びpウェル領域16の上に設けられる。ゲート絶縁層28は、ドリフト層14及びpウェル領域16の表面に、連続的に形成される。
ゲート絶縁層28は、酸化シリコンである。ゲート絶縁層28は、例えば、酸化シリコン以外の酸化物、又は、酸化窒化物であっても構わない。ゲート絶縁層28は、例えば、酸化アルミニウム、酸窒化シリコンなどであっても構わない。
ゲート絶縁層28の厚さは、例えば、30nm以上100nm以下である。ゲート絶縁層28は、MOSFET100のゲート絶縁層として機能する。
ゲート絶縁層28中には、炭素が含まれる。ゲート絶縁層28中の炭素濃度は、例えば、2×1016cm-3以上2×1022cm-3以下である。
ゲート絶縁層28中の炭素の濃度は、例えば、二次イオン質量分析法(Secondary Ion Mass Specroscopy:SIMS)により測定することが可能である。
図2は、第1の実施形態の第1の結合構造の説明図である。ゲート絶縁層28は、第1の結合構造を有する。
第1の結合構造は、第1の炭素(C)と、第1の炭素(C)に結合する第1の原子(A1)と、第1の炭素(C)に結合する第2の原子(A2)と、第1の炭素(C)に結合する第1の終端基(T1)と、第1の炭素(C)に結合する第2の終端基(T2)と、を有する。第1の原子(A1)は、シリコン(Si)、炭素(C)、酸素(O)、窒素(N)、及び、アルミニウム(Al)から成る群から選ばれる一つの原子であり、第2の原子(A2)は、シリコン(Si)、炭素(C)、酸素(O)、窒素(N)、及び、アルミニウム(Al)から成る群から選ばれる一つの原子であり、第1の終端基(T1)は、水酸基(OH)、フッ素(F)、水素(H)、及び、重水素(D)から成る群から選ばれる一つの終端基であり、第2の終端基(T2)は、水酸基(OH)、フッ素(F)、水素(H)、及び、重水素(D)から成る群から選ばれる一つの終端基である。
図3は、第1の実施形態の第1の結合構造を例示する図である。図3は、第1の終端基(T1)と第2の終端基(T2)が同一の種類の場合を示す。図3(a)、図3(b)、図3(c)、図3(d)は、第1の終端基(T1)及び第2の終端基(T2)が水酸基(OH)の場合である。図3(e)、図3(f)、図3(g)、図3(h)は、第1の終端基(T1)及び第2の終端基(T2)がフッ素(F)の場合である。
図3は、ゲート絶縁層28が酸化シリコンの場合であり、第1の原子(A1)及び第2の原子(A2)が、シリコン(Si)、炭素(C)、又は、酸素(O)となる。例えば、ゲート絶縁層28が酸化アルミニウムの場合、第1の原子(A1)及び第2の原子(A2)が、アルミニウム(Al)である場合がある。また、例えば、ゲート絶縁層28が酸窒化シリコンの場合、第1の原子(A1)及び第2の原子(A2)が、窒素(N)である場合がある。
第1の結合構造では、第1の炭素(C)の配位数は4である。第1の炭素(C)と、第1の原子(A1)、第2の原子(A2)、第1の終端基(T1)、及び、第2の終端基(T2)は、sp軌道により結合している。
図4は、第1の実施形態のゲート絶縁層の拡大模式図である。ゲート絶縁層28は、第1の領域28aと第2の領域28bを有する。第2の領域28bは、ドリフト層14との間に第1の領域28aを挟む。
第1の領域28aの第1の炭素(C)は、第2の領域28bの第1の炭素(C)よりも多い。第1の領域28aの第1の炭素(C)の密度は、第2の領域28bの第1の炭素(C)の密度よりも高い。言い換えれば、第1の領域28aの第1の結合構造は、第2の領域28bの第1の結合構造よりも多い。言い換えれば、第1の領域28aの第1の結合構造の密度は、第2の領域28bの第1の結合構造の密度よりも高い。
図5は、第1の実施形態の第2の結合構造の説明図である。ゲート絶縁層28は、第2の結合構造を有する場合がある。
第2の結合構造は、第2の炭素(C)と、第2の炭素(C)に二重結合する酸素(O)を有する。例えば、第2の炭素(C)には、図5(a)に示すように2個のシリコン(Si)が結合する。また、第2の炭素(C)には、例えば、図5(b)に示すように2個の炭素(C)が結合する。また、第2の炭素(C)には、例えば、図5(c)に示すようにシリコン(Si)と炭素(C)が1個ずつ結合する。
第2の結合構造では、第2の炭素(C)の配位数は3である。第2の炭素(C)と酸素(O)は、sp軌道により結合している。
ゲート絶縁層28の中の第1の炭素(C)は、例えば、第2の炭素(C)よりも多い。ゲート絶縁層28の中の第1の炭素(C)の密度は、第2の炭素(C)の密度よりも高い。言い換えれば、ゲート絶縁層28の中の第1の結合構造の密度は、第2の結合構造の密度よりも高い。
ゲート絶縁層28中の第1の結合構造及び第2の結合構造の存在の有無は、例えば、X線光電子分光(X-ray Photoelectron Spectroscopy:XPS)により判定することが可能である。また、第1の領域28aと第2の領域28bとの間の第1の結合構造の量や密度の違い、ゲート絶縁層28中の第1の結合構造と第2の結合構造の量や密度の違いも、XPSにより判定することが可能である。
ゲート電極30は、ゲート絶縁層28の上に設けられる。ゲート電極30は、ドリフト層14との間にゲート絶縁層28を挟む。
ゲート電極30には、例えば、n型不純物又はp型不純物を含む多結晶シリコンが適用可能である。
層間絶縁膜32は、ゲート電極30上に形成される。層間絶縁膜32は、例えば、酸化シリコン膜である。
ソース電極34は、ソース領域18とpウェルコンタクト領域20とに電気的に接続される。ソース電極34は、pウェル領域16に電位を与えるpウェル電極としても機能する。
ソース電極34は、例えば、Ni(ニッケル)のバリアメタル層と、バリアメタル層上のアルミニウムのメタル層との積層で構成される。ニッケルのバリアメタル層と炭化珪素層は、反応してニッケルシリサイド(NiSi、NiSiなど)を形成しても構わない。ニッケルのバリアメタル層とアルミニウムのメタル層とは、反応により合金を形成しても構わない。
ドレイン電極36は、炭化珪素基板12のドリフト層14と反対側、すなわち、裏面側に設けられる。ドレイン電極36は、例えば、ニッケルである。ニッケルは、炭化珪素基板12と反応して、ニッケルシリサイド(NiSi、NiSiなど)を形成しても構わない。
なお、第1の実施形態において、n型不純物は、例えば、窒素やリンである。n型不純物としてヒ素(As)又はアンチモン(Sb)を適用することも可能である。
また、第1の実施形態において、p型不純物は、例えば、アルミニウムである。p型不純物として、ボロン(B)、ガリウム(Ga)、インジウム(In)を適用することも可能である。
次に、第1の実施形態の半導体装置の製造方法について説明する。
第1の実施形態の半導体装置の製造方法は、炭化珪素の半導体層の上に絶縁膜を形成し、水を含む雰囲気中で絶縁膜にマイクロ波を照射する。
図6は、第1の実施形態の半導体装置の製造方法の工程フロー図である。
図6に示すように、半導体装置の製造方法は、ドリフト層形成(ステップS100)、p型不純物イオン注入(ステップS102)、n型不純物イオン注入(ステップS104)、p型不純物イオン注入(ステップS106)、第1の酸化シリコン膜形成(ステップS108)、マイクロ波照射(ステップS110)、第2の酸化シリコン膜形成(ステップS112)、第1のアニール(ステップS114)、ゲート電極形成(ステップS116)、層間絶縁膜形成(ステップS118)、ソース電極形成(ステップS120)、ドレイン電極形成(ステップS122)、及び、第2のアニール(ステップS124)を備える。
まず、n型の炭化珪素基板12を準備する。炭化珪素基板12は、例えば、4H-SiCである。炭化珪素基板12は、例えば、炭化珪素ウェハWである。
炭化珪素基板12は、n型不純物として窒素を含む。炭化珪素基板12のn型不純物の不純物濃度は、例えば、1×1018cm-3以上1×1020cm-3以下である。炭化珪素基板12の厚さは、例えば、350μmである。炭化珪素基板12は、裏面のドレイン電極36を形成する前に、90μm程度に薄膜化してもよい。
ステップS100では、炭化珪素基板12のシリコン面上にエピタキシャル成長法により、ドリフト層14を形成する。ドリフト層14は、4H-SiCである。
ドリフト層14は、n型不純物として、窒素を含む。ドリフト層14のn型不純物の不純物濃度は、例えば、5×1015cm-3以上2×1016cm-3以下である。ドリフト層14の厚さは、例えば、5μm以上100μm以下である。
ステップS102では、まず、フォトリソグラフィーとエッチングによるパターニングにより、第1のマスク材を形成する。そして、第1のマスク材をイオン注入マスクとして用いて、p型不純物であるアルミニウムをドリフト層14にイオン注入する。イオン注入によりpウェル領域16が形成される。
ステップS104では、まず、フォトリソグラフィーとエッチングによるパターニングにより、第2のマスク材を形成する。そして、第2のマスク材をイオン注入マスクとして用いて、n型不純物である窒素をドリフト層14にイオン注入し、ソース領域18を形成する。
ステップS106では、フォトリソグラフィーとエッチングによるパターニングにより、第3のマスク材を形成する。第3のマスク材をイオン注入マスクとして用いて、p型不純物であるアルミニウムをドリフト層14にイオン注入し、pウェルコンタクト領域20を形成する。
ステップS108では、ドリフト層14及びpウェル領域16を熱酸化し、ドリフト層14及びpウェル領域16上に第1の酸化シリコン膜を形成する。第1の酸化シリコン膜は、ゲート絶縁層28の一部となる。
熱酸化は、例えば、ドライ酸素雰囲気で行われる。熱酸化の温度は、例えば、1000℃以上1250℃以下である。第1の酸化シリコン膜の厚さは、例えば、1nm以上10nm以下である。
第1の酸化シリコン膜には、ドリフト層14及びpウェル領域16の熱酸化により生じた余剰の炭素が取り込まれる。そして、第1の酸化シリコン膜に取り込まれた炭素は、第1の酸化シリコン膜中で炭素と酸素の二重結合を形成して安定化する。言い換えれば、第1の酸化シリコン膜に取り込まれた炭素は、第1の酸化シリコン膜中で第2の結合構造を形成して安定化する。
ステップS110では、第1の酸化シリコン膜に水を含む雰囲気中で、マイクロ波を照射する。雰囲気中への水の供給は、例えば、窒素ガスによるバブリングにより行われる。
マイクロ波を照射する際の温度は、例えば、300℃以上600℃以下である。第1の酸化シリコン膜は、例えば、300℃以上600℃以下に加熱される。マイクロ波の周波数は、例えば、1GHz以上5GHz以下である。
第1の酸化シリコン膜に水を含む雰囲気中で、マイクロ波を照射することにより、炭素と酸素の二重結合が切断され、炭素が2個の水酸基(OH)と結合した構造が形成される。言い換えれば、第2の結合構造が、第1の終端基(T1)及び第2の終端基(T2)が水酸基(OH)である第1の結合構造に変換される。
ステップS112では、第1の酸化シリコン膜の上に第2の酸化シリコン膜を形成する。第2の酸化シリコン膜は、ゲート絶縁層28の一部となる。
第2の酸化シリコン膜は、例えば、CVD法(Chemical Vapor Deposition法)、又は、PVD法(Physical Vapoer Deposition)により形成される堆積膜である。第2の酸化シリコン膜の厚さは、例えば、20nm以上100nm以下である。
第2の酸化シリコン膜は、例えば、オルトケイ酸テトラエチル(TEOS)をソースガスとしてCVD法により形成される酸化シリコン膜である。
ステップS114では、第1のアニールが行われる。第1のアニールは、例えば、非酸化性雰囲気で行われる。第1のアニールの温度は、例えば、900℃以上1300℃以下である。第1のアニールにより、第1の酸化シリコン膜、及び、第2の酸化シリコン膜が緻密な膜となる。
ステップS116では、第2の酸化シリコン膜上に、ゲート電極30を形成する。ゲート電極30は、例えば、n型不純物又はp型不純物を含む多結晶シリコンである。
ステップS118では、ゲート電極30上に、層間絶縁膜32が形成される。層間絶縁膜32は、例えば、酸化シリコン膜である。
ステップS120で、ソース電極34が形成される。ソース電極34は、ソース領域18、及び、pウェルコンタクト領域20上に形成される。ソース電極34は、例えば、ニッケル(Ni)とアルミニウム(Al)のスパッタにより形成される。
ステップS122では、ドレイン電極36が形成される。ドレイン電極36は、炭化珪素基板12の裏面側に形成される。ドレイン電極36は、例えば、ニッケルのスパッタにより形成される。
ステップS124では、第2のアニールが行われる。第2のアニールは、例えば、アルゴンガス雰囲気で、400℃以上1000℃以下で行われる。第2のアニールにより、ソース電極34とドレイン電極36のコンタクト抵抗が低減する。
以上の製造方法により、図1に示すMOSFET100が形成される。
次に、第1の実施形態の作用及び効果について説明する。
炭化珪素を用いてMOSFETを形成する場合、キャリアの移動度が劣化するという問題がある。炭化珪素層とゲート絶縁層との間の界面準位(surface state)やゲート絶縁層のバンドギャップ中に存在するエネルギー準位(energy state)がキャリアの移動度の劣化を引き起こすと考えられる。
また、炭化珪素を用いてMOSFETを形成する場合、閾値電圧の変動が生ずるという問題がある。ゲート絶縁層のバンドギャップ中に存在するエネルギー準位が、閾値電圧の変動を引き起こすことが考えられる。
また、ゲート絶縁膜のリーク電流が増大するという問題がある。ゲート絶縁層のバンドギャップ中に存在するエネルギー準位が、ゲート絶縁膜のリーク電流を引き起こすことが考えられる。
第1の実施形態のMOSFE100は、ゲート絶縁層中にエネルギー準位を形成する炭素と酸素の二重結合が低減されている。したがって、キャリアの移動度の劣化、閾値電圧の変動、及び、ゲート絶縁膜のリーク電流の増大が抑制される。よって、特性の向上したMOSFETが実現される。以下、詳述する。
発明者らの第一原理計算により、炭化珪素を熱酸化して酸化シリコン膜を形成すると、酸素と二重結合する炭素が酸化シリコン膜中に多量に生成されることが明らかになった。すなわち、図5に示す第2の結合構造が、酸化シリコン膜中に多量に生成されることが明らかになった。
炭化珪素が酸化されることで余剰の炭素が発生する。この余剰の炭素は、例えば、炭化珪素層と酸化シリコン膜の界面近傍の酸化シリコン膜中に炭素クラスタを形成する。例えば、この炭素クラスタの端部に、第2の結合構造が生成される。また、例えば、余剰の炭素が酸化シリコン膜中の酸素位置に入り込むことで、第2の結合構造が生成される。
図7は、第1の実施形態の半導体装置の作用及び効果の説明図である。図7(a)、図7(b)は、酸化シリコン膜中に第2の結合構造がある場合のバンド図である。図7(c)は、酸化シリコン膜中に第1の結合構造がある場合のバンド図である。図7は、発明者の第一原理計算に基づいている。
酸化シリコン膜中に炭素と酸素の二重結合がある場合、すなわち、第2の結合構造がある場合、例えば、図7(a)、図7(b)に示すように、酸化シリコン膜中に電子が入っていないエネルギー準位(図7中の白丸)と、電子で埋まったエネルギー準位(図7中の黒丸)が生じる。
図7(a)の場合、電子が入っていないエネルギー準位は、4H-SiCの伝導帯の下端近傍の位置にある。図7(b)の場合、電子が入っていないエネルギー準位は、酸化シリコンの伝導帯下端から少し下がった位置にある。
第2の結合構造では、二重結合する炭素と酸素の間の相互作用の程度が、周囲の構造により変化する。相互作用の程度が変化することにより、酸化シリコン膜の中のエネルギー準位のレベルが変化する。エネルギー準位のレベルの変化は、図7(a)と図7(b)とに示すレベルの間のいずれかのレベルとなる。
例えば、図7(a)の場合、電子が入っていないエネルギー準位は、4H-SiCの伝導帯の下端近傍にある。このため、第2の結合構造は、キャリアの移動度の劣化を引き起こしやすい。また、例えば、図7(b)の場合、電子が入っていないエネルギー準位は、酸化シリコンの伝導帯下端から少し下がった位置にある。このため、第2の結合構造は、閾値電圧の変動やゲート絶縁膜のリーク電流の増大を引き起こしやすい。
一方、図7(c)に示すように、酸化シリコン膜中の第1の結合構造の場合、酸化シリコン膜中には、電子で埋まった準位のみがある。電子が入っていない準位は、酸化シリコン膜の伝導帯の下端より浅くなる。言い換えれば、酸化シリコン膜のバンドギャップ中には、電子をトラップする準位がない。
したがって、第1の結合構造は、キャリアの移動度の劣化、閾値電圧の変動、及び、ゲート絶縁膜のリーク電流の増大を生じさせない。
第1の実施形態のMOSFET100は、酸化シリコン膜中の第2の結合構造が、第1の結合構造に変換されている。したがって、第2の結合構造がもたらす、酸化シリコン膜中の有害なエネルギー準位が消滅する。よって、MOSFET100のキャリアの移動度の劣化、閾値電圧の変動、及び、ゲート絶縁膜のリーク電流の増大が抑制される。
第1の実施形態のMOSFE100の製造方法では、ステップS108でドリフト層14及びpウェル領域16を熱酸化し、酸化シリコンの第1の酸化シリコン膜(絶縁膜)を形成する。この際、第1の酸化シリコン膜の中には、多量の第2の結合構造が形成されている。
ステップS110では、第1の酸化シリコン膜に水を含む雰囲気中で、マイクロ波を照射する。マイクロ波のエネルギーにより、第2の結合構造の炭素と酸素の二重結合が切断される。そして、炭素に雰囲気中の水に由来する2個のOH基が結合し、第1の結合構造が形成される。
ステップS112では、第1の酸化シリコン膜の上に第2の酸化シリコン膜が形成される。第2の酸化シリコン膜は、熱酸化膜ではなく、堆積膜で形成される。したがって、第2の酸化シリコン膜中には、余剰の炭素が少なく、第2の結合構造は形成されにくい。
ゲート絶縁層28の形成を、熱酸化膜の第1の酸化シリコン膜と、堆積膜の第2の酸化シリコン膜とで形成した場合、第1の領域28aの第1の結合構造の密度が、第2の領域28bの第1の結合構造の密度よりも高くなる。
なお、マイクロ波照射により第1の結合構造を形成した後、フッ素(F)のプラズマ処理を行うことで、第1の終端基(T1)及び第2の終端基(T2)を水酸基(OH)からフッ素(F)に置換することが可能である。また、例えば、水素(H)、又は、重水素(D)のプラズマ処理を行うことで、第1の終端基(T1)及び第2の終端基(T2)を水酸基(OH)から、水素(H)、又は、重水素(D)に置換することが可能である。
ゲート絶縁層28の中の第1の炭素(C)は、第2の炭素(C)よりも多いことが好ましい。言い換えれば、ゲート絶縁層28の中の第1の結合構造は、第2の結合構造よりも多いことが好ましい。ゲート絶縁層28の中の第2の結合構造の量が低減されることで、MOSFETの特性が向上する。
マイクロ波を照射する際の温度は、300℃以上600℃以下であることが好ましい。上記範囲を下回ると、第1の酸化シリコン膜中に十分に水が拡散しないおそれがある。上記範囲を上回ると、炭化珪素層の酸化が進行するおそれがある。
第1の酸化シリコン膜の厚さは、10nm以下であることが好ましい。上記範囲を上回ると、第2の結合構造の量が多くなりするすぎるおそれがある。
以上、第1の実施形態によれば、MOSFETのキャリアの移動度の劣化が抑制される。また、MOSFETの閾値変動が抑制される。また、MOSFETのリーク電流の増大が抑制される。よって、特性の向上したMOSFETが実現される。
(第2の実施形態)
第2の実施形態の半導体装置は、半導体層と絶縁層との間に位置し、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スカンジウム(Sc)、イットリウム(Y)、及び、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)から成る群から選ばれる少なくとも一つの元素を含む領域を、更に備える点で、第1の実施形態と異なっている。以下、第1の実施形態と重複する内容については、一部記述を省略する。
図8は、第2の実施形態の半導体装置の模式断面図である。第2の実施形態の半導体装置は、MOSFET200である。MOSFET200は、DIMOSFETである。また、MOSFET200は、電子をキャリアとするnチャネル型のMOSFETである。
MOSFET200は、炭化珪素基板12、ドリフト層14(半導体層)、pウェル領域16(半導体層)、ソース領域18、pウェルコンタクト領域20、ゲート絶縁層28(絶縁層)、ゲート電極30、層間絶縁膜32、ソース電極34、ドレイン電極36、及び、界面領域40(領域)を備える。ゲート絶縁層28は、第1の領域28aと第2の領域28bを有する。
界面領域40は、ドリフト層14及びpウェル領域16と、ゲート絶縁層28との間に位置する。界面領域40は、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スカンジウム(Sc)、イットリウム(Y)、及び、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)の群の少なくとも一つの元素(終端元素)を含む。
図9は、第2の実施形態の終端元素の濃度分布を示す図である。
終端元素は、ドリフト層14及びpウェル領域16と、ゲート絶縁層28との間の界面に偏析している。終端元素の濃度分布のピークが、界面領域40内にある。
終端元素の濃度分布のピークに対する半値全幅は、例えば、1nm以下である。また、濃度分布のピークに対する半値全幅は、例えば、0.25nm以下であることが望ましく、0.2nm未満であることがより望ましい。
終端元素は、ドリフト層14及びpウェル領域16の最上層のシリコン原子又は炭素原子を置換している。最上層の原子を置換しているため、終端元素は炭化珪素層と3配位していることになる。言い換えれば、終端元素は、炭化珪素の結晶格子のシリコン原子又は炭素原子の位置にある。つまり、終端元素は、炭化珪素層の炭素原子と3配位、又は、炭化珪素層のシリコン原子と3配位していることになる。
界面領域40における終端元素の濃度分布のピーク値は、例えば、4×1016cm-3以上4×1020cm-3以下である。
界面領域40中の終端元素の濃度及び分布は、例えば、二次イオン質量分析法(Secondary Ion Mass Specroscopy:SIMS)により測定することが可能である。また、終端元素の濃度及び分布は、例えば、XPS、TEM-EDX、Atom Probe、HR-RBSなどにより電子状態とその空間分布の特定が可能となる。また、赤外分光法(Infrared Spectroscopy)、ラマン分光法によっても、炭化珪素層に3配位する構造に基づく振動モードが観測される。
ゲート絶縁層28及び炭化珪素層における終端元素の濃度は、例えば、2×1016cm-3以下である。
次に、第2の実施形態の半導体装置の製造方法について説明する。
第2の実施形態の半導体装置の製造方法は、マイクロ波を照射する前に、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スカンジウム(Sc)、イットリウム(Y)、及び、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)から成る群から選ばれる少なくとも一つの元素を含む雰囲気中で熱処理を行う点で、第1の実施形態の製造方法と異なる。
図10は、第2の実施形態の半導体装置の製造方法の工程フロー図である。
図10に示すように、半導体装置の製造方法は、ドリフト層形成(ステップS100)、p型不純物イオン注入(ステップS102)、n型不純物イオン注入(ステップS104)、p型不純物イオン注入(ステップS106)、第1の酸化シリコン膜形成(ステップS108)、界面終端熱処理(ステップS109)、マイクロ波照射(ステップS110)、第2の酸化シリコン膜形成(ステップS112)、第1のアニール(ステップS114)、ゲート電極形成(ステップS116)、層間絶縁膜形成(ステップS118)、ソース電極形成(ステップS120)、ドレイン電極形成(ステップS122)、及び、第2のアニール(ステップS124)を備える。
ステップS109では、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スカンジウム(Sc)、イットリウム(Y)、及び、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)の群の少なくとも一つの元素(終端元素)を含む雰囲気中で熱処理を行う。熱処理の温度は、例えば、300℃以上900℃以下である。
ステップS109により、界面領域40が形成される。
界面領域40が形成された後、ステップS110で、第1の酸化シリコン膜に水を含む雰囲気中で、マイクロ波を照射する。第1の酸化シリコン膜に水を含む雰囲気中で、マイクロ波を照射することにより、炭素と酸素の二重結合が切断され、炭素が2個の水酸基(OH)と結合した構造が形成される。言い換えれば、第2の結合構造が、第1の終端基(T1)及び第2の終端基(T2)が水酸基(OH)である第1の結合構造に変換される。
なお、第1の酸化シリコン膜形成直後、界面終端熱処理前に、第1のアニールと同等の第3のアニールを行ってもかまわない。第3のアニールによって、界面終端処理時の終端元素が絶縁膜中に分布し難くなり、終端元素が基板界面にパイルアップし易くなる。
次に、第2の実施形態の作用及び効果について説明する。
炭化珪素を用いてMOSFETを形成する場合、キャリアの移動度が劣化するという問題がある。炭化珪素層とゲート絶縁層との間の界面準位(surface state)やゲート絶縁層中のエネルギー準位(energy state)がキャリアの移動度の劣化を引き起こすと考えられる。
炭化珪素層とゲート絶縁層との間の界面準位は、炭化珪素層の最上層のシリコン原子又は炭素原子のダングリングボンドにより生じると考えられる。
第2の実施形態のMOSFET200では、炭化珪素層とゲート絶縁層28との間の界面準位の量が、界面領域40を形成することで低減される。MOSFET200では、ドリフト層14及びpウェル領域16の最上層の、ダングリングボンドを有するシリコン原子、又は、ダングリングボンドを有する炭素原子が、終端元素により置換される。したがって、ダングリングボンドが減少する。よって、MOSFET200では、キャリアの移動度の劣化が更に抑制される。
第2の実施形態のMOSFET200の製造方法では、第1の酸化シリコン膜にマイクロ波の照射を行う前に、界面領域40を形成する。界面領域40が存在することで、第1の酸化シリコン膜にマイクロ波の照射を行う際に、炭化珪素層の酸化が抑制される。したがって、熱酸化によりあらたに第2の結合構造が形成されることが抑制される。
以上、第2の実施形態によれば、MOSFETのキャリアの移動度の劣化が抑制される。また、MOSFETの閾値変動が抑制される。また、MOSFETのリーク電流の増大が抑制される。よって、特性の向上したMOSFETが実現される。
(第3の実施形態)
第3の実施形態の半導体装置は、MOSFETの終端領域のゲート絶縁層に第1の結合構造が存在する点で第1の実施形態と異なっている。第1の実施形態と重複する内容については一部記述を省略する。
図11は、第3の実施形態の半導体装置の模式断面図である。第3の実施形態の半導体装置は、MOSFET250である。MOSFET250は、素子領域と、素子領域の周囲に設けられる終端領域を備えている。終端領域は、MOSFET250の耐圧を向上させる機能を備える。
素子領域には、例えば、第1の実施形態のMOSFET100がユニットセルとして配置される。
終端領域は、p型のリサーフ領域60(半導体層)、p型のコンタクト領域62、p型のガードリング領域64(半導体層)、ゲート絶縁層28(絶縁層)、フィールド酸化膜33を備える。
ゲート絶縁層28の構成は、第1の実施形態の半導体装置と同様である。
フィールド酸化膜33は、例えば、酸化シリコン膜である。
MOSFET250のオフ時に、リサーフ領域60、ガードリング領域64、及び、ガードリング領域64の間のドリフト層14に空乏層が形成されることで、MOSFET250の耐圧が向上する。
しかし、ゲート絶縁層28中にエネルギー準位が存在すると、電荷がエネルギー準位にトラップされる。トラップされた電荷の電界により、所望の空乏層が形成されなくなる恐れがある。この場合、MOSFET250の耐圧が劣化する。
第3の実施形態によれば、ゲート絶縁層28の第2の結合構造が、第1の結合構造に変換されている。したがって、ゲート絶縁層28中のエネルギー準位が低減されている。よって、所望の空乏層が形成され耐圧の安定したMOSFETが実現される。
(第4の実施形態)
第4の実施形態のインバータ回路及び駆動装置は、第1の実施形態の半導体装置を備える駆動装置である。
図12は第4の実施形態の駆動装置の模式図である。駆動装置300は、モーター140と、インバータ回路150を備える。
インバータ回路150は、第1の実施形態のMOSFET100をスイッチング素子とする3個の半導体モジュール150a、150b、150cで構成される。3個の半導体モジュール150a、150b、150cを並列に接続することで、3個の交流電圧の出力端子U、V、Wを備える三相のインバータ回路150が実現される。インバータ回路150から出力される交流電圧により、モーター140が駆動する。
第4の実施形態によれば、特性の向上したMOSFET100を備えることで、インバータ回路150及び駆動装置300の特性が向上する。
(第5の実施形態)
第5の実施形態の車両は、第1の実施形態の半導体装置を備える車両である。
図13は、第5の実施形態の車両の模式図である。第5の実施形態の車両400は、鉄道車両である。車両400は、モーター140と、インバータ回路150を備える。
インバータ回路150は、第1の実施形態のMOSFET100をスイッチング素子とする3個の半導体モジュールで構成される。3個の半導体モジュールを並列に接続することで、3個の交流電圧の出力端子U、V、Wを備える三相のインバータ回路150が実現される。インバータ回路150から出力される交流電圧により、モーター140が駆動する。モーター140により車両400の車輪90が回転する。
第5の実施形態によれば、特性の向上したMOSFET100を備えることで、車両400の特性が向上する。
(第6の実施形態)
第6の実施形態の車両は、第1の実施形態の半導体装置を備える車両である。
図14は、第6の実施形態の車両の模式図である。第6の実施形態の車両500は、自動車である。車両500は、モーター140と、インバータ回路150を備える。
インバータ回路150は、第1の実施形態のMOSFET100をスイッチング素子とする3個の半導体モジュールで構成される。3個の半導体モジュールを並列に接続することで、3個の交流電圧の出力端子U、V、Wを備える三相のインバータ回路150が実現される。
インバータ回路150から出力される交流電圧により、モーター140が駆動する。モーター140により車両500の車輪90が回転する。
第6の実施形態によれば、特性の向上したMOSFET100を備えることで、車両500の特性が向上する。
(第7の実施形態)
第7の実施形態の昇降機は、第1の実施形態の半導体装置を備える昇降機である。
図15は、第7の実施形態の昇降機(エレベータ)の模式図である。第7の実施形態の昇降機600は、かご610、カウンターウエイト612、ワイヤロープ614、巻上機616、モーター140と、インバータ回路150を備える。
インバータ回路150は、第1の実施形態のMOSFET100をスイッチング素子とする3個の半導体モジュールで構成される。3個の半導体モジュールを並列に接続することで、3個の交流電圧の出力端子U、V、Wを備える三相のインバータ回路150が実現される。
インバータ回路150から出力される交流電圧により、モーター140が駆動する。モーター140により巻上機616が回転し、かご610が昇降する。
第7の実施形態によれば、特性の向上したMOSFET100を備えることで、昇降機600の特性が向上する。
以上、第1ないし第3の実施形態では、炭化珪素の結晶構造として4H-SiCの場合を例に説明したが、本発明は6H-SiC、3C-SiCなど、その他の結晶構造の炭化珪素に適用することも可能である。
また、第1ないし第3の実施形態では、炭化珪素のシリコン面にゲート絶縁層28を設ける場合を例に説明したが、炭化珪素のその他の面、例えば、カーボン面、a面、m面、(0-33-8)面などにゲート絶縁層28を設ける場合にも本発明を適用することは可能である。
また、第1ないし第3の実施形態では、半導体層が炭化珪素である場合を例に説明したが、半導体層はダイヤモンドであっても構わない。
また、第1ないし第3の実施形態では、nチャネル型のプレーナ型のMOSFETを例に説明したが、nチャネル型のトレンチ型のMOSFETにも本発明を適用することは可能である。トレンチ側面はa面、m面、(0-33-8)面などが代表的な方位である。a面,m面はSi面やC面に対し、垂直な面である。(0-33-8)面は(0001)面に対して、<1-100> 方向に54.7°傾けた面である。この結晶面方位はSiの結晶におけるSi(001)に対応した結晶面である。
また、nチャネル型のIGBT(Insulated Gate Bipolar Transistor)にも本発明を適用することは可能である。
また、nチャネル型に限らず、pチャネル型のMOSFET又はIGBTにも本発明を適用することは可能である。
また、第4ないし第7の実施形態において、本発明の半導体装置を車両やエレベータに適用する場合を例に説明したが、本発明の半導体装置を例えば、太陽光発電システムのパワーコンディショナーなどに適用することも可能である。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。例えば、一実施形態の構成要素を他の実施形態の構成要素と置き換え又は変更してもよい。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
14 ドリフト層(半導体層)
16 pウェル領域(半導体層)
28 ゲート絶縁層(絶縁層)
28a 第1の領域
28b 第2の領域
30 ゲート電極
40 界面領域(領域)
60 リサーフ領域(半導体層)
64 ガードリング領域(半導体層)
100 MOSFET(半導体装置)
150 インバータ回路
200 MOSFET(半導体装置)
250 MOSFET(半導体装置)
300 駆動装置
400 車両
500 車両
600 昇降機

Claims (19)

  1. 炭化珪素又はダイヤモンドの半導体層と、
    前記半導体層の上に位置し、第1の炭素と、前記第1の炭素に結合する第1の原子と、前記第1の炭素に結合する第2の原子と、前記第1の炭素に結合する第1の終端基と、前記第1の炭素に結合する第2の終端基と、を有し、前記第1の原子は、シリコン(Si)、炭素(C)、酸素(O)、窒素(N)、及び、アルミニウム(Al)から成る群から選ばれる一つの原子であり、前記第2の原子は、シリコン(Si)、炭素(C)、酸素(O)、窒素(N)、及び、アルミニウム(Al)から成る群から選ばれる一つの原子であり、前記第1の終端基は、水酸基(OH)、フッ素(F)、水素(H)、及び、重水素(D)から成る群から選ばれる一つの終端基であり、前記第2の終端基は、水酸基(OH)、フッ素(F)、水素(H)、及び、重水素(D)から成る群から選ばれる一つの終端基である絶縁層と、
    を備える半導体装置。
  2. 前記絶縁層は、酸化物、又は、酸窒化物である請求項1記載の半導体装置。
  3. 前記絶縁層は、酸化シリコンである請求項1又は請求項2記載の半導体装置。
  4. 前記絶縁層は、酸素と二重結合する第2の炭素を有し、前記第1の炭素は前記第2の炭素よりも多い請求項1ないし請求項3いずれか一項記載の半導体装置。
  5. 前記半導体層と前記絶縁層との間に位置し、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スカンジウム(Sc)、イットリウム(Y)、及び、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)から成る群から選ばれる少なくとも一つの元素を含む領域を、更に備える請求項1ないし請求項4いずれか一項記載の半導体装置。
  6. 前記第1の終端基と前記第2の終端基は、同一の種類である請求項1ないし請求項5いずれか一項記載の半導体装置。
  7. 前記絶縁層は第1の領域と、前記半導体層との間に前記第1の領域を挟む第2の領域とを有し、前記第1の領域の前記第1の炭素は、前記第2の領域の前記第1の炭素よりも多い請求項1ないし請求項6いずれか一項記載の半導体装置。
  8. 前記半導体層との間に前記絶縁層を挟むゲート電極を、更に備える請求項1ないし請求項7いずれか一項記載の半導体装置。
  9. 前記絶縁層の厚さは30nm以上100nm以下である請求項1ないし請求項8いずれか一項記載の半導体装置。
  10. 請求項1乃至請求項9いずれか一項記載の半導体装置を備えるインバータ回路。
  11. 請求項1乃至請求項9いずれか一項記載の半導体装置を備える駆動装置。
  12. 請求項1乃至請求項9いずれか一項記載の半導体装置を備える車両。
  13. 請求項1乃至請求項9いずれか一項記載の半導体装置を備える昇降機。
  14. 炭化珪素又はダイヤモンドの半導体層の上に絶縁膜を形成し、
    水を含む雰囲気中で前記絶縁膜にマイクロ波を照射する半導体装置の製造方法。
  15. 前記絶縁膜は、熱酸化により形成する請求項14記載の半導体装置の製造方法。
  16. 前記マイクロ波を照射する際の温度は300℃以上600℃以下である請求項14又は請求項15記載の半導体装置の製造方法。
  17. 前記絶縁膜の厚さは10nm以下である請求項14ないし請求項16いずれか一項記載の半導体装置の製造方法。
  18. 前記マイクロ波を照射した後、フッ素(F)、水素(H)、又は、重水素(D)のプラズマ処理を行う請求項14ないし請求項17いずれか一項記載の半導体装置の製造方法。
  19. 前記マイクロ波を照射する前に、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スカンジウム(Sc)、イットリウム(Y)、及び、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)から成る群から選ばれる少なくとも一つの元素を含む雰囲気中で熱処理を行う請求項14ないし請求項18いずれか一項記載の半導体装置の製造方法。
JP2018173107A 2018-09-14 2018-09-14 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機 Active JP7005847B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018173107A JP7005847B2 (ja) 2018-09-14 2018-09-14 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173107A JP7005847B2 (ja) 2018-09-14 2018-09-14 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Publications (2)

Publication Number Publication Date
JP2020047665A JP2020047665A (ja) 2020-03-26
JP7005847B2 true JP7005847B2 (ja) 2022-01-24

Family

ID=69901793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173107A Active JP7005847B2 (ja) 2018-09-14 2018-09-14 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Country Status (1)

Country Link
JP (1) JP7005847B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224797A (ja) 2002-06-28 2009-10-01 National Institute Of Advanced Industrial & Technology 半導体装置
JP2012182312A (ja) 2011-03-01 2012-09-20 Toshiba Corp 半導体装置の製造方法
WO2015005397A1 (ja) 2013-07-11 2015-01-15 富士電機株式会社 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法
JP2017216306A (ja) 2016-05-30 2017-12-07 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425543A (en) * 1987-07-22 1989-01-27 Hitachi Ltd Manufacture of film including silicon oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224797A (ja) 2002-06-28 2009-10-01 National Institute Of Advanced Industrial & Technology 半導体装置
JP2012182312A (ja) 2011-03-01 2012-09-20 Toshiba Corp 半導体装置の製造方法
WO2015005397A1 (ja) 2013-07-11 2015-01-15 富士電機株式会社 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法
JP2017216306A (ja) 2016-05-30 2017-12-07 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Also Published As

Publication number Publication date
JP2020047665A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6602263B2 (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
CN106024849B (zh) 半导体装置、倒相电路、驱动装置、车辆以及升降机
US10026813B2 (en) SiC semiconductor device having a high mobility and a high threshold voltage, inverter circuit, and vehicle
US9685551B2 (en) Semiconductor device and inverter circuit
US10714610B2 (en) Semiconductor device, method for manufacturing semiconductor device, inverter circuit, driving device, vehicle, and elevator
US10186596B2 (en) Silicon carbide (SiC) MOSFET with a silicon oxide layer capable of suppressing deterioration of carrier mobility and variation in threshold voltage
JP6692265B2 (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2016181671A (ja) 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
US11239079B2 (en) Semiconductor device, method for manufacturing semiconductor device, inverter circuit, drive device, vehicle, and elevator
JP6552950B2 (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2021153167A (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP6776204B2 (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP7005847B2 (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
US10580874B2 (en) Semiconductor device with silicon oxide layer having element double bonded to oxygen, semiconductor device manufacturing method, inverter circuit, driving device, vehicle, and elevator
JP2022048927A (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2022030298A (ja) 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP6957536B2 (ja) 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP7072148B2 (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
US11201223B2 (en) Semiconductor device, inverter circuit, drive device, vehicle, and elevator each having a threshold-voltage-increasing portion in silicon carbide layer
JP6989537B2 (ja) 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP2022012282A (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7005847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150