JP7004960B2 - Manufacturing method of nano ribbon - Google Patents

Manufacturing method of nano ribbon Download PDF

Info

Publication number
JP7004960B2
JP7004960B2 JP2017018312A JP2017018312A JP7004960B2 JP 7004960 B2 JP7004960 B2 JP 7004960B2 JP 2017018312 A JP2017018312 A JP 2017018312A JP 2017018312 A JP2017018312 A JP 2017018312A JP 7004960 B2 JP7004960 B2 JP 7004960B2
Authority
JP
Japan
Prior art keywords
crystal
nanoribbon
substrate
transition metal
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017018312A
Other languages
Japanese (ja)
Other versions
JP2018123039A (en
Inventor
耕充 宮田
佑 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2017018312A priority Critical patent/JP7004960B2/en
Publication of JP2018123039A publication Critical patent/JP2018123039A/en
Application granted granted Critical
Publication of JP7004960B2 publication Critical patent/JP7004960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、導電性や磁性を有する新規な微細細線状の材料であるナノリボン及びその製造方法に関するものである。 The present invention relates to a nanoribbon, which is a novel fine linear material having conductivity and magnetism, and a method for producing the same.

高い電気伝導性と熱伝導性、強磁性状態を活用した新規デバイスという観点からグラフェンなどを用いたナノリボンの開発がすすめられており、多数提案がなされている。
例えば、特許文献1には、受光面となる半導体基板の表面をウィスカー群(ナノワイヤー群)で被覆されるようにして、表面反射を低減させるべく、新規なナノワイヤーが提案されている。
また、特許文献2には、金属フタロシアニンを含むナノワイヤーの簡便で工業的に優れた製造方法として、水溶性多価アルコール中において、金属フタロシアニンスルファモイル化合物の存在下、イソインドリン化合物と金属イオンとを反応させる金属フタロシアニンナノワイヤーの製造方法が提案されている。また、特許文献3には、ヘテロナノワイヤーの可能性を発展させたものとして、長手方向では同様な組成よりなり、それを横断する一側側と他側側では相互に異なる組成域となっているヘテロナノワイヤーであって、相異なる組成域の一方が硫化亜鉛で、他方が酸化亜鉛であり、さらに、前記硫化亜鉛からなる組成域は、長手方向に六方晶系硫化亜鉛と立方晶系硫化亜鉛とが交互に結晶成長しているかあるいは単結晶成長しているナノワイヤーが提案されている。また、特許文献4には、結晶構造を利用したナノワイヤーの製造方法として、複数の結晶面を有する粒子をシードとして利用し、所定範囲内の格子定数差を有する結晶成長物質を蒸着して、前記結晶面のうち少なくとも一つにナノワイヤーを成長させる製造方法が提案されている。
From the viewpoint of new devices that utilize high electrical conductivity, thermal conductivity, and ferromagnetic state, the development of nanoribbons using graphene is being promoted, and many proposals have been made.
For example, Patent Document 1 proposes a novel nanowire in order to reduce surface reflection by covering the surface of a semiconductor substrate to be a light receiving surface with a whisker group (nanowire group).
Further, Patent Document 2 describes an isoindoline compound and a metal ion in the presence of a metal phthalocyanine sulfamoyl compound in a water-soluble polyhydric alcohol as a simple and industrially excellent method for producing a nanowire containing a metal phthalocyanine. A method for producing a metal phthalocyanine nanowire that reacts with and has been proposed. Further, in Patent Document 3, as an extension of the possibility of hetero-nanowire, the composition is similar in the longitudinal direction, and the composition range on one side and the other side crossing the same are different from each other. In the hetero-nanowire, one of the different composition ranges is zinc sulfide and the other is zinc oxide, and the composition range composed of the zinc sulfide is hexagonal zinc sulfide and cubic sulfide in the longitudinal direction. Nanowires in which zinc and zinc are alternately grown in crystals or single crystals are grown have been proposed. Further, in Patent Document 4, as a method for producing a nanowire using a crystal structure, particles having a plurality of crystal planes are used as seeds, and a crystal growth substance having a lattice constant difference within a predetermined range is vapor-deposited. A manufacturing method for growing nanowires on at least one of the crystal planes has been proposed.

特開2012-023349 号公報Japanese Unexamined Patent Publication No. 2012-023349 特開2010-253598号公報Japanese Unexamined Patent Publication No. 2010-253598 特開2010-120136号公報Japanese Unexamined Patent Publication No. 2010-120136 特開2006-306688号公報Japanese Unexamined Patent Publication No. 2006-306688

Nature Materials 12, 554-561 (2013) doi:10.1038/nmat3633Nature Materials 12, 554-561 (2013) doi: 10.1038 / nmat3633 Science 31 Jul 2015:Vol. 349, Issue 6247, pp. 524-528,DOI: 10.1126/science.aab4097Science 31 Jul 2015: Vol. 349, Issue 6247, pp. 524-528, DOI: 10.1126 / science.aab4097

しかしながら、従来提案されているようなグラフェン系のナノリボンでは要求されているような十分な導電性や磁性を発揮得ることができておらず、より導電性や磁性に優れたナノリボンの開発が要望されていた。
かかる観点から遷移金属化合物からなるナノリボンの開発も要望されており、各種開発もなされている(非特許文献1及び2参照)が、現状ではシート状の微細化合物は得られているものの、ナノリボンほどの形態のものは未だ得られていないのが現状である。
このため、遷移金属化合物からなるナノリボン及びその製造方法の開発が要望されているのが現状である。
However, graphene-based nanoribbons as previously proposed have not been able to exhibit sufficient conductivity and magnetism as required, and there is a demand for the development of nanoribbons with better conductivity and magnetism. Was there.
From this point of view, the development of nanoribbons made of transition metal compounds has also been requested, and various developments have been made (see Non-Patent Documents 1 and 2). At present, the form of is not yet obtained.
Therefore, the current situation is that there is a demand for the development of nanoribbons made of transition metal compounds and methods for producing them.

したがって、本発明の目的は、導電性や磁性を有する新しい微細な細線状の材料であるナノリボン及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a nanoribbon, which is a new fine linear material having conductivity and magnetism, and a method for producing the same.

本発明者らは、上記課題を解消すべく鋭意検討した結果、MoSの結晶を作製し、この結晶の端を成長の起点と利用することでナノリボンを製造できることを知見し、かかる知見に基づきさらに鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明は以下の各発明を提供するものである。
1.MX2で表される層状物質からなるナノリボン。
(式中、Mは、遷移金属原子を示し、Xはカルコゲン原子を示す)
2.上記遷移金属原子が、モリブンデン(Mo)、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、レニウム(Re)又はクロム(Cr)であり、上記カルコゲン原子が、硫黄(S)、セレン(Se)又はテルル(Te)であることを特徴とする1記載のナノリボン。
3.厚みが、0.6~ 20 nmであり、幅が1 ~ 1000nmであることを特徴とする1又は2記載のナノリボン。
4.上記層状物質がWS2で表される層状物質であることを特徴とする1~3のいずれかに記載のナノリボン。
5.基礎結晶の端部から結晶成長させることにより、MX2(式中、Mは、遷移金属原子を示し、Xはカルコゲン原子を示す)で表される層状物質からなるナノリボンを製造するナノリボンの製造方法であって、
基板上で、不活性ガスの存在下、遷移金属酸化物とカルコゲン原子とを反応させて1又は複数の層が積層されてなる層状の結晶成分である基礎結晶を得る基礎結晶製造工程と、
上記基礎結晶が形成された基板上において、不活性ガスの存在下、上記基礎結晶用いたものとは異なる遷移金属化合物と、カルコゲン原子とを反応させてナノリボンを形成するナノリボン製造工程と
を具備するナノリボンの製造方法。
As a result of diligent studies to solve the above problems, the present inventors have found that a crystal of MoS 2 can be produced, and a nanoribbon can be produced by using the end of the crystal as a starting point of growth, and based on this finding. As a result of further diligent studies, the present invention has been completed.
That is, the present invention provides the following inventions.
1. 1. Nanoribbon made of layered material represented by MX 2 .
(In the equation, M indicates a transition metal atom and X indicates a chalcogen atom)
2. 2. The transition metal atom is molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), rhenium (Re) or chromium (Cr), and the chalcogen atom is sulfur (S) or selenium (S). 1. The nanoribbon according to 1, characterized by being Se) or tellurium (Te).
3. 3. The nanoribbon according to 1 or 2, wherein the thickness is 0.6 to 20 nm and the width is 1 to 1000 nm.
4. The nanoribbon according to any one of 1 to 3, wherein the layered substance is a layered substance represented by WS 2 .
5. A method for producing a nanoribbon made of a layered substance represented by MX 2 (in the formula, M indicates a transition metal atom and X indicates a chalcogen atom) by growing a crystal from the end of the basic crystal. And
A basic crystal manufacturing step of reacting a transition metal oxide with a chalcogen atom on a substrate in the presence of an inert gas to obtain a basic crystal which is a layered crystal component in which one or more layers are laminated.
On the substrate on which the basic crystal is formed, a nanoribbon manufacturing step of reacting a transition metal compound different from that used with the basic crystal with a chalcogen atom to form a nanoribbon is provided in the presence of an inert gas. Manufacturing method of nano ribbon.

本発明のナノリボンは、導電性や磁性を有する新しい微細な細線状の材料である。
また、本発明のナノリボンの製造方法によれば、導電性や磁性を有する新しい微細な細線状の材料を簡易且つ簡便に得ることができる。
ものである。
The nanoribbon of the present invention is a new fine linear material having conductivity and magnetism.
Further, according to the method for producing a nanoribbon of the present invention, a new fine linear material having conductivity and magnetism can be easily and easily obtained.
It is a thing.

図1は、本発明のナノリボンの1形態を模式的に示す概要図である。FIG. 1 is a schematic diagram schematically showing one form of the nanoribbon of the present invention. 図2は、本発明のナノリボンの製造にもちいられる製造装置を摸式的に示す概略図である。FIG. 2 is a schematic diagram schematically showing a manufacturing apparatus used for manufacturing the nanoribbon of the present invention. 図3(a)は発光強度マップ、(b)は原子間力顕微鏡像、(c)はbの白点線に沿って取得した高さプロファイル、(d)はaの白点線に沿って測定した発光スペクトルを示す。FIG. 3 (a) is an emission intensity map, (b) is an atomic force microscope image, (c) is a height profile acquired along the white dotted line of b, and (d) is measured along the white dotted line of a. The emission spectrum is shown. 図4(a)は発光強度マップ、(b)はaの白点線に沿って測定した発光スペクトルを示す。FIG. 4A shows an emission intensity map, and FIG. 4B shows an emission spectrum measured along the white dotted line of a.

以下、本発明をさらに詳細に説明する。
本発明のナノリボンは、MX2で表される遷移金属ダイカルコゲナイド(Transition metal dichalcogenide, 以下、「TMDC」と称する場合がある)からなる層状物質からなるものである。
ここで、Mは、遷移金属原子を示し、Xはカルコゲン原子を示す。
上記遷移金属原子としては、モリブンデン(Mo)、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、レニウム(Re)又はクロム(Cr)を挙げることができる。
また、上記カルコゲン原子としては、硫黄(S)、セレン(Se)又はテルル(Te)を挙げることができる。
上記のMX2で表される遷移金属ダイカルコゲナイドとしては、特に、WS2、MoS2、WSe2、MoSe2、WTe2、MoTe2、SnS2、SnSe2 等を好ましく挙げることができる。
Hereinafter, the present invention will be described in more detail.
The nanoribbon of the present invention is made of a layered substance composed of a transition metal dichalcogenide (hereinafter, may be referred to as “TMDC”) represented by MX 2 .
Here, M represents a transition metal atom and X represents a chalcogen atom.
Examples of the transition metal atom include molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), rhenium (Re) or chromium (Cr).
Further, examples of the chalcogen atom include sulfur (S), selenium (Se) and tellurium (Te).
As the transition metal dichalcogenide represented by MX 2 above, WS 2 , MoS 2 , WSe 2 , MoSe 2 , WTe 2 , MoTe 2 , SnS 2 , SnSe 2 and the like can be particularly preferably mentioned.

本発明のナノリボンは、厚みが、0.6~ 20nmであり、幅が 1~ 1000 nmであるのが好ましく、厚みが、 0.6~ 5 nmであり、幅が 1 ~ 500 nmであるのがさらに好ましい。
図1に、幅1.3nm、厚み0.6nmのサイズのWS2ナノリボンの構造モデルを摸式的に示す。図1に示すように、本発明のナノリボンは各分子が上面側から見たときには正6角形の頂点となるように位置して、ハニカム状の構造を形成していると共に、側面視した場合には3層の構造体と理解できる構造を有する。具体的には、(a)に示すように平面図において1番上の列の分子群10、2番目の列の分子群20、3番目の列の分子群30は、(b)の側面図における一番上に位置する分子群10、真ん中に位置する分子群20及び一番下に位置する分子群30にそれぞれ対応している。このため平面図において分子群10、分子群20、分子群30分子群20、分子群10・・・・のように分子群20を挟んで分子群10及び分子群20が並ぶように配置される。このようにハニカム状の構造は上述の特定の化学式に該当する化合物でのみ示される特徴的な構造であり、このような構造を有することで種々の特性を発揮することが可能となっている。
The nanoribbons of the present invention preferably have a thickness of 0.6 to 20 nm and a width of 1 to 1000 nm, a thickness of 0.6 to 5 nm and a width of 1 to 500 nm. Is even more preferable.
FIG. 1 schematically shows a structural model of a WS 2 nanoribbon having a width of 1.3 nm and a thickness of 0.6 nm. As shown in FIG. 1, the nanoribbons of the present invention are positioned so that each molecule becomes the apex of a regular hexagon when viewed from the upper surface side to form a honeycomb-like structure, and when viewed from the side. Has a structure that can be understood as a three-layer structure. Specifically, as shown in (a), the molecular group 10 in the first row, the molecular group 20 in the second row, and the molecular group 30 in the third row in the plan view are side views of (b). It corresponds to the molecular group 10 located at the top, the molecular group 20 located in the middle, and the molecular group 30 located at the bottom, respectively. Therefore, in the plan view, the molecular group 10 and the molecular group 20 are arranged so as to sandwich the molecular group 20, such as the molecular group 10, the molecular group 20, the molecular group 30, the molecular group 20, and so on. .. As described above, the honeycomb-like structure is a characteristic structure shown only in the compound corresponding to the above-mentioned specific chemical formula, and having such a structure makes it possible to exhibit various properties.

<製造方法>
ついで、本発明のナノリボンの製造方法について説明する。
本発明のナノリボンの製造方法は、
基礎結晶の端部から結晶成長させることにより、上記のMX2で表される層状物質からなるナノリボンを製造するナノリボンの製造方法であって、
基板上で、不活性ガスの存在下、遷移金属酸化物とカルコゲン原子とを反応させて1又は複数の層が積層されてなる層状の結晶成分である基礎結晶を得る基礎結晶製造工程と、
上記基礎結晶が形成された基板上において、不活性ガスの存在下、上記基礎結晶とは異なる遷移金属化合物とカルコゲン原子とを反応させてナノリボンを形成するナノリボン製造工程とを行うことにより実施できる。
非特許文献1には、単層二硫化モリブンデン(MoS2)の合成法が、非特許文献2には、単層のWSe2の端からMoS2をシート状の結晶として成長させることが開示されているが、これらの報告ではいずれにもナノリボンを形成できることは開示されていない。本発明においては、TMDCナノリボンを成長させるために、別のTMDCの端を成長起点として活用することを特徴とし、また後述するように結晶成長を非常に初期の段階で止めることが好ましい。
すなわち、本発明の製造方法は、MoS2の結晶を作製し、この結晶の端を成長の起点と利用することでナノリボンを製造するが、特に、WS2の成長速度を抑えるために、合成条件を以下のように制御することで好ましくナノリボンを製造することが可能となる。
以下、各工程について詳述する。
<Manufacturing method>
Next, a method for manufacturing the nanoribbon of the present invention will be described.
The method for producing a nanoribbon of the present invention is
It is a manufacturing method of a nanoribbon for manufacturing a nanoribbon made of a layered substance represented by MX 2 described above by growing a crystal from an end of a basic crystal.
A basic crystal manufacturing step of reacting a transition metal oxide with a chalcogen atom on a substrate in the presence of an inert gas to obtain a basic crystal which is a layered crystal component in which one or more layers are laminated.
This can be carried out by performing a nanoribbon manufacturing step of reacting a transition metal compound different from the basic crystal with a chalcogen atom to form a nanoribbon in the presence of an inert gas on the substrate on which the basic crystal is formed.
Non-Patent Document 1 discloses a method for synthesizing monolayer molybdenum disulfide (MoS 2 ), and Non-Patent Document 2 discloses that MoS 2 is grown as a sheet-like crystal from the end of WSe 2 of a single layer. However, none of these reports disclose that nanoribbons can be formed. The present invention is characterized in that the end of another TMDC is used as a growth starting point in order to grow the TMDC nanoribbon, and it is preferable to stop the crystal growth at a very early stage as described later.
That is, in the production method of the present invention, a crystal of MoS 2 is produced, and a nanoribbon is produced by using the end of the crystal as a starting point of growth. In particular, in order to suppress the growth rate of WS 2 , synthesis conditions are used. It is possible to preferably manufacture nanoribbons by controlling the above.
Hereinafter, each step will be described in detail.

(基礎結晶製造工程)
まず、本発明において用いる装置について図2を参照して説明する。図2に示す装置1は、結晶生成部10と、結晶生成部10の周囲を囲んで設置された炉22(本実施形態においては電気炉)と炉22に並んで設置された炉24とからなる。結晶生成部10は円筒状であり、一端からは不活性ガス(Ar等)を導入できるようにガス導入口(図示せず)が設けられている。また、他端にも内部のガスを外部に排出するためのガス排出口(図示せず)が設けられている。また、結晶生成部10の内部には元老や基板を設置するための設置部32、34、36がそれぞれ結晶生成部10の一端側から順に所定間隔を空けて配置されている。なお、結晶生成部10の大きさは特に制限なく、また形成材料もとくに制限ないが、本実施形態では、長さ1000~1200mm、内径26mmの石英管を用いることができる。
そして、一端側から、設置部32にカルコゲン原子の物質を、設置部34に遷移金属化合物を、設置部36に基板を設置する。この際遷移金属化合物としては、酸化モリブデン (IV) (MoO2)粉末、酸化モリブデン(VI)(MoO3)粉末、塩化モリブデン(V)(MoCl5)、 酸化タングステン(VI)(WO3)、塩化タングステン(VI)(WCl6)等の遷移金属酸化物を挙げることができる。またカルコゲン原子の物質としては、硫黄フレーク、セレン、テルルなどを挙げることができる。また、基板としては、グラファイト、窒化ホウ素、石英、サファイアなどからなる、厚さ 0.01~2 mmの板状体を用いることができる。
そして、一端側から不活性ガスを矢印方向に流しつつ、まず、炉24を500~1500℃に上昇させ、次いで炉22を100~300℃に上昇させることにより、基板上にて遷移金属カルコゲナイトの結晶を成長させる。
この際、設置部34は、後述する実施例に記載の量の結晶を成長させる場合には、設置部32の50~500mm下流に設けるのが好ましく、設置部36は、設置部34の1~200mm下流に設け、これらの距離を変えることで原料の供給速度を変えることができる。この設置部の間隔は製造する結晶のスケールにより任意であり、この距離に制限されるものではない。
原料を設置した後、不活性ガスを100~1000sccmで5~30分ほど流し、内部の大気を排除し、内部の気体を不活性ガスに置換した。その後に、炉24の温度を室温から上述の温度に10~120分程度かけて昇温し、その後、任意のタイミングで炉22の温度を室温から上述の温度に上昇させる。この際、炉22の温度を適宜調整することでカルコゲナイト原子の供給量を制御することができる。この後、20~60分間温度を一定にし、その後常温まで温度を低下させて、所望の基礎結晶を得ることができる。
なお、MoO2粉末が硫黄で硫化することを防ぐために、別の細い石英管(外径8mm~内径6mm程度)を、外側の石英管の内部に設置することも可能である。この場合、MoO2粉末の細い石英管に入れた場合、硫黄とMoO2は互いに別の流路を流れて基板に供給されることになる。
また、別の基礎結晶の作成手法としては、基板上にTMDCの結晶を剥離して積層させてもよい。
(Basic crystal manufacturing process)
First, the apparatus used in the present invention will be described with reference to FIG. The device 1 shown in FIG. 2 is composed of a crystal generation unit 10, a furnace 22 installed surrounding the crystal generation unit 10 (an electric furnace in this embodiment), and a furnace 24 installed side by side with the furnace 22. Become. The crystal generation unit 10 has a cylindrical shape, and is provided with a gas introduction port (not shown) so that an inert gas (Ar or the like) can be introduced from one end. Further, a gas discharge port (not shown) for discharging the internal gas to the outside is also provided at the other end. Further, inside the crystal generation unit 10, installation units 32, 34, and 36 for installing the elders and the substrate are arranged in order from one end side of the crystal generation unit 10 at predetermined intervals. The size of the crystal forming unit 10 is not particularly limited, and the forming material is not particularly limited. However, in the present embodiment, a quartz tube having a length of 1000 to 1200 mm and an inner diameter of 26 mm can be used.
Then, from one end side, the chalcogen atom substance is installed in the installation unit 32, the transition metal compound is installed in the installation unit 34, and the substrate is installed in the installation unit 36. At this time, the transition metal compounds include molybdenum oxide (IV) (MoO 2 ) powder, molybdenum oxide (VI) (MoO 3 ) powder, molybdenum chloride (V) (MoCl 5 ), tungsten oxide (VI) (WO 3 ), and the like. Transition metal oxides such as tungsten chloride (VI) (WCl 6 ) can be mentioned. Examples of the chalcogen atom substance include sulfur flakes, selenium, and tellurium. Further, as the substrate, a plate-like body having a thickness of 0.01 to 2 mm, which is made of graphite, boron nitride, quartz, sapphire or the like, can be used.
Then, while flowing the inert gas from one end side in the direction of the arrow, the transition metal chalcogenite is first raised to 500 to 1500 ° C. and then the furnace 22 to 100 to 300 ° C. on the substrate. Grow crystals.
At this time, when growing the amount of crystals described in Examples described later, the installation unit 34 is preferably provided 50 to 500 mm downstream of the installation unit 32, and the installation unit 36 is 1 to 1 of the installation unit 34. The supply speed of the raw material can be changed by providing it 200 mm downstream and changing these distances. The distance between the installation portions is arbitrary depending on the scale of the crystal to be manufactured, and is not limited to this distance.
After the raw material was installed, the inert gas was allowed to flow at 100 to 1000 sccm for about 5 to 30 minutes to eliminate the internal atmosphere and replace the internal gas with the inert gas. After that, the temperature of the furnace 24 is raised from room temperature to the above-mentioned temperature over about 10 to 120 minutes, and then the temperature of the furnace 22 is raised from room temperature to the above-mentioned temperature at an arbitrary timing. At this time, the supply amount of chalcogenite atoms can be controlled by appropriately adjusting the temperature of the furnace 22. After that, the temperature is kept constant for 20 to 60 minutes, and then the temperature is lowered to room temperature to obtain a desired basic crystal.
In order to prevent the MoO 2 powder from being sulfurized by sulfur, another thin quartz tube (outer diameter 8 mm to inner diameter 6 mm) can be installed inside the outer quartz tube. In this case, when placed in a thin quartz tube of MoO 2 powder, sulfur and MoO 2 flow through different channels and are supplied to the substrate.
Further, as another method for producing basic crystals, TMDC crystals may be peeled off and laminated on a substrate.

(ナノリボン製造工程)
本工程においても、上述の図2に示す装置を用いて行うことができる。結晶生成部10の中に、設置部32にカルコゲナイト原子の物質(上述のカルコゲナイト原子の物質と同じである)を、設置部34に遷移金属化合物(上述の遷移金属化合物と同じである)を設置する。
設置部32,34、36それぞれの位置関係も上述の基礎結晶製造工程と同じである。
そして、不活性ガスを100~1000sccmで5~30分ほど流し、内部の大気を排除して不活性ガスに置換する。その後に、炉24の温度を500~1500℃に上昇させ、次いで炉22を100~300℃に上昇させることにより、先に存在する他の遷移金属カルコゲナイト結晶の端を、成長起点として、ナノリボンとしての遷移金属カルコゲナイト結晶の結晶成長が始まる。
この際の結晶成長時間は、10~40分とするのが好ましく。20~30分とするのがさらに好ましい。この程度の短時間で成長を終了させることにより、ナノリボンを得ることができ、これ以上の時間結晶成長させると、層が積層させてしまうか、結晶が平面的に広がり過ぎてシート状となってしまう。また、上記の範囲未満では十分に結晶成長せずナノリボンが得られない。このため、上述の範囲内とするのが好ましい。
また、遷移金属化合物とカルコゲナイト原子の物質との使用量比は、カルコゲナイト原子の物質の使用量を100重量部とした場合、遷移金属化合物の使用量を5~20重量部とするのが好ましく、5~15とするのがさらに好ましい。遷移金属化合物の使用量がこの範囲であれば、ナノリボンとして結晶成長するがこの範囲を超えると図1に示す構造のものが多数積層された積層構造となるかリボン状とは言えない程度に幅広のシート状となり、この範囲未満であると十分に結晶成長しない場合がある。そのためこの範囲内とするのが好ましい。
(Nano ribbon manufacturing process)
This step can also be performed using the apparatus shown in FIG. 2 described above. In the crystal generation unit 10, a substance of a chalcogenite atom (same as the substance of the chalcogenite atom described above) is installed in the installation unit 32, and a transition metal compound (same as the above-mentioned transition metal compound) is installed in the installation unit 34. do.
The positional relationship between the installation portions 32, 34, and 36 is the same as that in the basic crystal manufacturing process described above.
Then, the inert gas is allowed to flow at 100 to 1000 sccm for about 5 to 30 minutes to eliminate the internal atmosphere and replace it with the inert gas. After that, by raising the temperature of the furnace 24 to 500 to 1500 ° C. and then raising the furnace 22 to 100 to 300 ° C., the end of the other transition metal chalcogenite crystals existing earlier is used as a growth starting point as a nanoribbon. The crystal growth of the transition metal chalcogenite crystal begins.
The crystal growth time at this time is preferably 10 to 40 minutes. It is more preferably 20 to 30 minutes. Nanoribbons can be obtained by terminating the growth in such a short time, and if the crystals are grown for a longer time, the layers will be laminated or the crystals will spread too much in a plane and become a sheet. It ends up. Further, if it is less than the above range, the crystal growth is not sufficient and the nanoribbon cannot be obtained. Therefore, it is preferably within the above range.
The ratio of the amount of the transition metal compound to the substance of the chalcogenite atom is preferably 5 to 20 parts by weight when the amount of the substance of the chalcogenite atom is 100 parts by weight. It is more preferably 5 to 15. If the amount of the transition metal compound used is within this range, crystals will grow as nanoribbons, but if it exceeds this range, the structure will be a laminated structure in which many of the structures shown in Fig. 1 are laminated, or it will be wide enough to not be said to be ribbon-shaped. If it is less than this range, the crystal may not grow sufficiently. Therefore, it is preferably within this range.

本発明においては、上述の各工程の他に必要に応じて適宜他の工程を用いて製造を行ってもよい。 In the present invention, in addition to the above-mentioned steps, the production may be carried out by appropriately using other steps as needed.

<用途・効果>
本発明のナノリボンは、従来のグラフェン性のナノリボンに比して導電性と磁性とに優れ、各種電子デバイス材料として有用である。
また、本発明のナノリボンの製造方法によれば、従来得られなかった遷移金属カルコゲナイト化合物からなるナノリボンを得ることができる。
<Use / effect>
The nanoribbon of the present invention is superior in conductivity and magnetism as compared with the conventional graphene nanoribbon, and is useful as a material for various electronic devices.
Further, according to the method for producing a nanoribbon of the present invention, it is possible to obtain a nanoribbon made of a transition metal chalcogenite compound which has not been obtained conventionally.

本発明は上述した実施形態に何ら制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形可能である。 The present invention is not limited to the above-described embodiment, and can be variously modified without departing from the spirit of the present invention.

以下、本発明について実施例及び比較例を示してさらに具体的に説明するが本発明はこれらに何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

〔実施例1〕
1.テンプレートとなるTMDC原子層、単層の二硫化タングステン(WS2)結晶の作成
基板(グラファイト製)、酸化タングステン(VI) WO3粉末、硫黄フレークを、図2に示す装置における設置部36、34、32それぞれに設置した。また、結晶生成部10としては、長さ1000~1200mm、内径26mmの石英管を用いた。そして、図2に示す装置1は、硫黄を加熱する電気炉22と、遷移金属酸化物及び成長基板を加熱する電気炉24の二つの電気炉を利用して、結晶生成部10の上流からは不活性ガス(アルゴン(Ar)等)を流すことで、原料を基板上に効率よく輸送し、また原料や生成物の酸化を防ぐように構成されている。
本実施例においては、Arを流す上流側の設置部32に硫黄を設置し、その50~500mm下流に設置部34を設けてWO3粉末を設置し、設置部34の1~200mm下流に設置部36を設け基板を設置した。距離を変えることで原料の供給速度を変えることができる。
原料を設置した後、Arを500sccmで10分ほど流し、内部の大気を排除し、Arに置換した。その後に、炉24の温度を室温から1100℃まで75分程度かけて昇温した。炉24の温度が1000~1100℃の間に到達したら、任意のタイミングで炉22の温度を室温から160~200℃まで上昇させ、炉22の温度を適宜調整して硫黄の供給量を制御した。
この後、硫黄と酸化モリブデンの蒸気が基板上に供給され、基板上の様々な点においてWS2の結晶成長が始まり、通常は、単層から20層までの様々な厚さ、サイズの結晶が得られる。特に、物質の構造を反映し、三角形や六角形のシート状の結晶が得られる。
この時、シートの端はある特定の結晶面が出やすいため、直線的になる。
30分温度を一定にした後に、電気炉は扇風機等で冷やし、室温に戻して基板を回収した。得られた基板上に形成されたWS2結晶は、1層の結晶体であった。
[Example 1]
1. 1. A template TMDC atomic layer, a single-layer tungsten disulfide (WS 2 ) crystal preparation substrate (made of graphite), tungsten oxide (VI) WO 3 powder, and sulfur flakes are installed in the installation units 36 and 34 in the device shown in FIG. , 32 were installed in each. Further, as the crystal forming unit 10, a quartz tube having a length of 1000 to 1200 mm and an inner diameter of 26 mm was used. The apparatus 1 shown in FIG. 2 utilizes two electric furnaces, an electric furnace 22 for heating sulfur and an electric furnace 24 for heating the transition metal oxide and the growth substrate, from the upstream of the crystal forming unit 10. By flowing an inert gas (argon (Ar) or the like), the raw material is efficiently transported onto the substrate, and the raw material and the product are prevented from being oxidized.
In this embodiment, sulfur is installed in the installation portion 32 on the upstream side where Ar flows, the installation portion 34 is provided 50 to 500 mm downstream thereof, WO 3 powder is installed, and the WO 3 powder is installed 1 to 200 mm downstream of the installation portion 34. The portion 36 was provided and the substrate was installed. The supply speed of raw materials can be changed by changing the distance.
After installing the raw material, Ar was allowed to flow at 500 sccm for about 10 minutes to eliminate the internal atmosphere and replace it with Ar. After that, the temperature of the furnace 24 was raised from room temperature to 1100 ° C. over about 75 minutes. When the temperature of the furnace 24 reached between 1000 and 1100 ° C., the temperature of the furnace 22 was raised from room temperature to 160 to 200 ° C. at an arbitrary timing, and the temperature of the furnace 22 was appropriately adjusted to control the sulfur supply amount. ..
After this, vapors of sulfur and molybdenum oxide are supplied onto the substrate, and WS 2 crystal growth begins at various points on the substrate, usually with crystals of various thicknesses and sizes, from single to 20 layers. can get. In particular, triangular or hexagonal sheet-like crystals can be obtained, reflecting the structure of the substance.
At this time, the edge of the sheet tends to be linear because a specific crystal plane is likely to appear.
After keeping the temperature constant for 30 minutes, the electric furnace was cooled with a fan or the like, and the temperature was returned to room temperature to recover the substrate. The WS 2 crystal formed on the obtained substrate was a single-layer crystal.

2.ナノリボンの成長
次に、同様に図2に示す装置を用いて、結晶生成部10の中に、設置部32に硫黄のフレークを2g、設置部34に酸化モリブデン (IV) (MoO2)粉末を16mg設置した。
なお、設置部34は設置部32の50~500mm下流に設置されており、設置部34の1~200mm下流に設置部36を設け、二硫化タングステン結晶の形成された基板を設置した。
原料を設置した後、Arを500sccmで10分ほど流し、内部の大気を排除し、Arに置換した。置換後に、炉24の温度を室温から1100℃までおよそ75分程度かけて上昇させた。炉24の温度が1000~1100℃の間に到達したら、任意のタイミングで炉22の温度を室温から160℃まで上昇させた。
この後、硫黄と酸化モリブデンの蒸気が基板上に供給され、基板上の様々な箇所からMoS2の結晶成長を行った。この時、先に存在するWS2結晶の端は、成長起点として働くため、最も優先的にMoS2の結晶成長が始まる。30分ほど、成長を進めた後に、電気炉は扇風機等で冷やし、室温に戻して基板を回収する。
得られたナノリボンは、光学顕微鏡、蛍光顕微鏡、発光・ラマン分光マッピング、走査プローブ顕微鏡等で観察し結果、厚さ 0.7 nm、幅 400 nmのナノリボンであった。
発光強度マップと原子間顕微鏡像とをそれぞれ図3に示す。図3において、(a)は発光強度マップ(青がWS2、赤がMoS2の発光強度に対応)、(b)が原子間力顕微鏡像、(c)がbの白点線に沿って取得した高さプロファイル、(d)がaの白点線に沿って測定した発光スペクトルである。
化学気相成長により、単層WS2結晶の周囲に成長させた単層MoS2ナノリボンは、図3に示すように、(a)に示す点線の上部(すなわち赤い部分ではMoS2、下部(すなわち青い部分)ではWS2の発光ピークがそれぞれ観測されており、WS2結晶の周囲に成長させた単層MoS2ナノリボンが生成しているのがわかる。
2. 2. Growth of Nanoribbon Next, using the device shown in FIG. 2, similarly, in the crystal forming section 10, 2 g of sulfur flakes were placed in the setting section 32, and molybdenum (IV) oxide (MoO 2 ) powder was placed in the setting section 34. 16 mg was installed.
The installation unit 34 is installed 50 to 500 mm downstream of the installation unit 32, the installation unit 36 is provided 1 to 200 mm downstream of the installation unit 34, and a substrate on which tungsten disulfide crystals are formed is installed.
After installing the raw material, Ar was allowed to flow at 500 sccm for about 10 minutes to eliminate the internal atmosphere and replace it with Ar. After the replacement, the temperature of the furnace 24 was raised from room temperature to 1100 ° C. over about 75 minutes. When the temperature of the furnace 24 reached between 1000 and 1100 ° C., the temperature of the furnace 22 was raised from room temperature to 160 ° C. at an arbitrary timing.
After that, vapors of sulfur and molybdenum oxide were supplied onto the substrate, and MoS 2 crystals grew from various points on the substrate. At this time, since the end of the WS 2 crystal existing earlier acts as a growth starting point, the crystal growth of MoS 2 starts with the highest priority. After advancing the growth for about 30 minutes, the electric furnace is cooled with a fan or the like, and the temperature is returned to room temperature to recover the substrate.
The obtained nanoribbon was observed with an optical microscope, a fluorescence microscope, a light emitting / Raman spectroscopic mapping, a scanning probe microscope, etc., and as a result, it was a nanoribbon with a thickness of 0.7 nm and a width of 400 nm.
The emission intensity map and the atomic force microscope image are shown in FIG. 3, respectively. In FIG. 3, (a) is an emission intensity map (blue corresponds to WS 2 and red corresponds to MoS 2 emission intensity), (b) is an atomic force microscope image, and (c) is acquired along the white dotted line of b. The height profile, (d), is the emission spectrum measured along the white dotted line of a.
As shown in FIG. 3, the single-layer MoS 2 nanoribbons grown around the single-layer WS 2 crystal by chemical vapor deposition are the upper part of the dotted line shown in (a) (that is, the upper part of the dotted line (that is, the red part is MoS 2 and the lower part (that is, that is)). In the blue part), the emission peaks of WS 2 are observed respectively, and it can be seen that a single-layer MoS 2 nanoribbon grown around the WS 2 crystal is generated.

〔実施例2〕
1.テンプレートとなるTMDC原子層、単層の二硫化モリブデン(MoS 2 )結晶の作成
基板、酸化モリブデン (IV) (MoO2)粉末、硫黄フレークを、図2に示す装置における設置部36、34、32それぞれに設置した。また、結晶生成部10としては、長さ1000~1200mm、内径26mmの石英管を用いた。そして、図2に示す装置1は、硫黄を加熱する電気炉22と、遷移金属酸化物及び成長基板を加熱する電気炉24の二つの電気炉を利用して、結晶生成部10の上流からは不活性ガス(アルゴン(Ar)等)を流すことで、原料を基板上に効率よく輸送し、また原料や生成物の酸化を防ぐように構成されている。
本実施例においては、Arを流す上流側の設置部32に硫黄を設置し、その50~500mm下流に設置部34を設けてMoO2粉末を設置し、設置部34の1~200mm下流に設置部36を設け基板を設置した。距離を変えることで原料の供給速度を変えることができる。
原料を設置した後、Arを500sccmで10分ほど流し、内部の大気を排除し、Arに置換した。その後に、炉24の温度を室温から1100℃まで75分程度かけて昇温した。炉24の温度が1000~1100℃の間に到達したら、任意のタイミングで炉22の温度を室温から160~200℃まで上昇させ、炉22の温度を適宜調整して硫黄の供給量を制御した。
この後、硫黄と酸化モリブデンの蒸気が基板上に供給され、基板上の様々な点においてMoS2の結晶成長が始まり、通常は、単層から20層までの様々な厚さ、サイズの結晶が得られる。特に、物質の構造を反映し、三角形や六角形のシート状の結晶が得られる。
この時、シートの端はある特定の結晶面が出やすいため、直線的になる。
30分温度を一定にした後に、電気炉は扇風機等で冷やし、室温に戻して基板を回収した。得られた基板上に形成された二硫化モリブデン結晶は、1層の結晶体であった。
[Example 2]
1. 1. Preparation of template TMDC atomic layer and single layer molybdenum disulfide (MoS 2 ) crystals
The substrate, molybdenum (IV) oxide (MoO 2 ) powder, and sulfur flakes were installed in the installation sections 36, 34, and 32 of the apparatus shown in FIG. 2, respectively. Further, as the crystal forming unit 10, a quartz tube having a length of 1000 to 1200 mm and an inner diameter of 26 mm was used. The apparatus 1 shown in FIG. 2 utilizes two electric furnaces, an electric furnace 22 for heating sulfur and an electric furnace 24 for heating the transition metal oxide and the growth substrate, from the upstream of the crystal forming unit 10. By flowing an inert gas (argon (Ar) or the like), the raw material is efficiently transported onto the substrate, and the raw material and the product are prevented from being oxidized.
In this embodiment, sulfur is installed in the installation portion 32 on the upstream side where Ar flows, the installation portion 34 is provided 50 to 500 mm downstream thereof, MoO 2 powder is installed, and the MoO 2 powder is installed 1 to 200 mm downstream of the installation portion 34. A portion 36 was provided and a substrate was installed. The supply speed of raw materials can be changed by changing the distance.
After installing the raw material, Ar was allowed to flow at 500 sccm for about 10 minutes to eliminate the internal atmosphere and replace it with Ar. After that, the temperature of the furnace 24 was raised from room temperature to 1100 ° C. over about 75 minutes. When the temperature of the furnace 24 reached between 1000 and 1100 ° C., the temperature of the furnace 22 was raised from room temperature to 160 to 200 ° C. at an arbitrary timing, and the temperature of the furnace 22 was appropriately adjusted to control the amount of sulfur supplied. ..
After this, vapors of sulfur and molybdenum oxide are supplied onto the substrate, and crystal growth of MoS 2 begins at various points on the substrate, usually crystals of various thicknesses and sizes from a single layer to 20 layers. can get. In particular, triangular or hexagonal sheet-like crystals can be obtained, reflecting the structure of the substance.
At this time, the edge of the sheet tends to be linear because a specific crystal plane is likely to appear.
After keeping the temperature constant for 30 minutes, the electric furnace was cooled with a fan or the like, and the temperature was returned to room temperature to recover the substrate. The molybdenum disulfide crystal formed on the obtained substrate was a single-layer crystal.

2.ナノリボンの成長
次に、同様に図2に示す装置を用いて、結晶生成部10の中に、設置部32に硫黄のフレークを2g、設置部34に酸化タングステン(VI) WO3の粉末を6mg設置した。
なお、設置部34は設置部32の50~500mm下流に設置されており、設置部34の1~200mm下流に設置部36を設け、二硫化モリブデン結晶の形成された基板を設置した。
原料を設置した後、Arを500sccmで10分ほど流し、内部の大気を排除し、Arに置換した。置換後に、炉24の温度を室温から1100℃までおよそ75分程度かけて上昇させた。炉24の温度が1000~1100℃の間に到達したら、任意のタイミングで炉22の温度を室温から160℃まで上昇させた。
この後、硫黄と酸化タングステンの蒸気が基板上に供給され、基板上の様々な箇所からWS2の結晶成長を行った。この時、先に存在するMoS2結晶の端は、成長起点として働くため、最も優先的にWS2の結晶成長が始まる。30分ほど、成長を進めた後に、電気炉は扇風機等で冷やし、室温に戻して基板を回収する。
得られたナノリボンは、光学顕微鏡、蛍光顕微鏡、ラマン分光マッピング、走査プローブ顕微鏡等で観察し結果、厚さ 0.7 nm、幅 300 nmのナノリボンであった。
化学気相成長により、単層MoS2結晶の周囲に成長させた単層WS2ナノリボンの(a)発光強度マップ(青がWS2、赤がMoS2の発光強度に対応)、(b) aの白点線に沿って測定した発光スペクトルを示す。
図4に得られたナノリボンの発光強度マップと発光スぺクトルとを示す。図4に示す結果から、aの点線の上部(すなわち赤い部分)ではMoS2、下側(すなわち青い部分)ではWS2の発光ピークがそれぞれ観測されており、MoS2の周囲にWS2ナノリボンが生成しているのがわかる。
2. 2. Growth of nanoribbon Next, using the apparatus shown in FIG. 2, 2 g of sulfur flakes were added to the installation unit 32 and tungsten oxide (VI) WO 3 was added to the installation unit 34 in the crystal generation unit 10. 6 mg of the powder was placed.
The installation unit 34 is installed 50 to 500 mm downstream of the installation unit 32, the installation unit 36 is provided 1 to 200 mm downstream of the installation unit 34, and a substrate on which molybdenum disulfide crystals are formed is installed.
After installing the raw material, Ar was allowed to flow at 500 sccm for about 10 minutes to eliminate the internal atmosphere and replace it with Ar. After the replacement, the temperature of the furnace 24 was raised from room temperature to 1100 ° C. over about 75 minutes. When the temperature of the furnace 24 reached between 1000 and 1100 ° C., the temperature of the furnace 22 was raised from room temperature to 160 ° C. at an arbitrary timing.
After that, vapors of sulfur and tungsten oxide were supplied onto the substrate, and WS 2 crystals were grown from various points on the substrate. At this time, since the end of the MoS 2 crystal existing earlier acts as a growth starting point, the crystal growth of WS 2 starts with the highest priority. After advancing the growth for about 30 minutes, the electric furnace is cooled with a fan or the like, and the temperature is returned to room temperature to recover the substrate.
The obtained nanoribbon was observed with an optical microscope, a fluorescence microscope, Raman spectroscopic mapping, a scanning probe microscope, etc., and as a result, it was a nanoribbon with a thickness of 0.7 nm and a width of 300 nm.
(A) Emission intensity map of a single-layer WS 2 nanoribbon grown around a single-layer MoS 2 crystal by chemical vapor deposition (blue corresponds to WS 2 and red corresponds to MoS 2 emission intensity), (b) a The emission spectrum measured along the white dotted line of is shown.
FIG. 4 shows the emission intensity map and emission spectrum of the obtained nanoribbon. From the results shown in FIG. 4, the emission peaks of MoS 2 are observed at the upper part (that is, the red part) of the dotted line of a, and the emission peaks of WS 2 are observed at the lower part (that is, the blue part), and the WS 2 nanoribbon is observed around MoS 2 . You can see that it is being generated.

本発明のナノリボンは導電性や磁性を有する新しい微細な細線状の材料であるため、電子デバイス、光学デバイス用材料などとして使用されることが期待される。 Since the nanoribbon of the present invention is a new fine linear material having conductivity and magnetism, it is expected to be used as a material for electronic devices and optical devices.

Claims (2)

基礎結晶の端部から結晶成長させることにより、MX2(式中、Mは、遷移金属原子を示し、Xはカルコゲン原子を示し、上記遷移金属原子が、モリブデン(Mo)又はタングステン(w)であり、上記カルコゲン原子が、硫黄(S)である)で表される層状物質からなるナノリボンを製造するナノリボンの製造方法であって、
基板上で、不活性ガスの存在下、遷移金属酸化物とカルコゲン原子とを反応させて1又は複数の層が積層されてなる層状の結晶成分である基礎結晶を得る基礎結晶製造工程と、
上記基礎結晶が形成された基板上において、不活性ガスの存在下、上記基礎結晶用いたものとは異なる遷移金属化合物と、カルコゲン原子とを反応させてナノリボンを形成するナノリボン製造工程と
を具備するナノリボンの製造方法。
By growing the crystal from the end of the basic crystal, MX 2 (in the formula, M indicates a transition metal atom, X indicates a chalcogen atom, and the transition metal atom is molybdenum (Mo) or tungsten (w)). It is a method for producing a nanoribbon, which is a method for producing a nanoribbon made of a layered substance represented by (the chalcogen atom is sulfur (S)) .
A basic crystal manufacturing step of reacting a transition metal oxide with a chalcogen atom on a substrate in the presence of an inert gas to obtain a basic crystal which is a layered crystal component in which one or more layers are laminated.
On the substrate on which the basic crystal is formed, a nanoribbon manufacturing step of reacting a transition metal compound different from that used with the basic crystal with a chalcogen atom to form a nanoribbon is provided in the presence of an inert gas. Manufacturing method of nano ribbon.
上記基礎結晶がMoS2の層状の結晶成分であり、上記ナノリボンがWS であることを特徴とする請求項記載のナノリボンの製造方法。 The method for producing a nanoribbon according to claim 1 , wherein the basic crystal is a layered crystal component of MoS 2 and the nanoribbon is WS 2 .
JP2017018312A 2017-02-03 2017-02-03 Manufacturing method of nano ribbon Active JP7004960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018312A JP7004960B2 (en) 2017-02-03 2017-02-03 Manufacturing method of nano ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018312A JP7004960B2 (en) 2017-02-03 2017-02-03 Manufacturing method of nano ribbon

Publications (2)

Publication Number Publication Date
JP2018123039A JP2018123039A (en) 2018-08-09
JP7004960B2 true JP7004960B2 (en) 2022-01-21

Family

ID=63108867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018312A Active JP7004960B2 (en) 2017-02-03 2017-02-03 Manufacturing method of nano ribbon

Country Status (1)

Country Link
JP (1) JP7004960B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614471B1 (en) * 2018-03-19 2019-12-04 Dic株式会社 Molybdenum sulfide, production method thereof, and hydrogen generation catalyst
US11041236B2 (en) * 2019-03-01 2021-06-22 Honda Motor Co., Ltd. Method for direct patterned growth of atomic layer metal dichalcogenides with pre-defined width
CN110835747B (en) * 2019-11-21 2021-09-07 华东师范大学 Method for regulating and controlling morphology and defects of molybdenum disulfide through temperature
JP2021150486A (en) 2020-03-19 2021-09-27 キオクシア株式会社 Semiconductor storage device
US12060642B2 (en) 2020-04-16 2024-08-13 Honda Motor Co., Ltd. Method for growth of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
US11408073B2 (en) 2020-04-16 2022-08-09 Honda Motor Co., Ltd. Method for growth of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
US11639546B2 (en) * 2020-04-16 2023-05-02 Honda Motor Co., Ltd. Moisture governed growth method of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
JP2021169663A (en) * 2020-04-16 2021-10-28 本田技研工業株式会社 Method for moisture-governed growth of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
US11519068B2 (en) * 2020-04-16 2022-12-06 Honda Motor Co., Ltd. Moisture governed growth method of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
JP2021172570A (en) * 2020-04-28 2021-11-01 東京都公立大学法人 Conductive film, conductive member and method for manufacturing conductive film
KR20230159414A (en) * 2021-03-24 2023-11-21 디아이씨 가부시끼가이샤 Molybdenum disulfide particles and lubricating compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, Zhiyong et al.,"Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes",Journal of Materials Chemistry,2011年01月07日,Vol.21/No.1,Page.171-180 ,特に、Abstract, Introduction, Experimentalなど参照。

Also Published As

Publication number Publication date
JP2018123039A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP7004960B2 (en) Manufacturing method of nano ribbon
Shi et al. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques
Reale et al. From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis
Fang et al. ZnS nanostructures: from synthesis to applications
KR101636442B1 (en) Method of fabricating graphene using alloy catalyst
US20170073809A1 (en) Method for manufacturing metal chalcogenide thin film and thin film manufactured thereby
Kim et al. Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering
Park et al. Vapor transport synthesis of two-dimensional SnS2 nanocrystals using a SnS2 precursor obtained from the sulfurization of SnO2
Fan et al. Novel micro-rings of molybdenum disulfide (MoS 2)
Yan et al. CVD controlled preparation and growth mechanism of 2H-WS2 nanosheets
JP6597333B2 (en) Growth method of layered chalcogenide film
Umar et al. Temperature-dependant non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process
Chen et al. A feasible approach to fabricate two-dimensional WS2 flakes: From monolayer to multilayer
Young et al. Uniform large-area growth of nanotemplated high-quality monolayer MoS2
KR102283872B1 (en) Method for manufacturing carbon nanotube catalyst and carbon nanotube using the same
KR102280763B1 (en) Transition metal dichalcogenides thin film, method and apparatus for manufacturing the same
Cheng et al. Single crystal monolayer MoS2 triangles with wafer-scale spatial uniformity by MoO3 pre-deposited chemical vapor deposition
Wong Chemical vapor deposition growth of 2D semiconductors
Duraia et al. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires
Thiandoume et al. Morphology transition of one-dimensional ZnO grown by metal organic vapour phase epitaxy on (0 0 0 1)-ZnO substrate
Klementová et al. Cu-Si nanoobjects prepared by CVD on Cu/Cu5Si-substrates using various precursors (SiH4, EtSiH3, BuSiH3) with added H2 or air
Thandavan et al. Synthesis of ZnO nanowires via hotwire thermal evaporation of brass (CuZn) assisted by vapor phase transport of methanol
Zhou et al. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires
Kim et al. Simply heating to remove the sacrificial core TeO2 nanowires and to generate tubular nanostructures of metal oxides
Song et al. Low-temperature synthesis of ZnO nanonails

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7004960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150