JP6998834B2 - Cleaning test equipment for ion exchange resin - Google Patents

Cleaning test equipment for ion exchange resin Download PDF

Info

Publication number
JP6998834B2
JP6998834B2 JP2018100403A JP2018100403A JP6998834B2 JP 6998834 B2 JP6998834 B2 JP 6998834B2 JP 2018100403 A JP2018100403 A JP 2018100403A JP 2018100403 A JP2018100403 A JP 2018100403A JP 6998834 B2 JP6998834 B2 JP 6998834B2
Authority
JP
Japan
Prior art keywords
liquid
path
connection port
cheese
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018100403A
Other languages
Japanese (ja)
Other versions
JP2019202291A (en
Inventor
晃彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2018100403A priority Critical patent/JP6998834B2/en
Publication of JP2019202291A publication Critical patent/JP2019202291A/en
Application granted granted Critical
Publication of JP6998834B2 publication Critical patent/JP6998834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、水処理システムなどに使用されるイオン交換樹脂の洗浄性を試験するための装置に関する。 The present invention relates to an apparatus for testing the detergency of an ion exchange resin used in a water treatment system or the like.

水処理システムとして、イオン交換樹脂を用いた純水製造装置などがある。工業用水などの原水から純水を製造するにあたっては、原水中の硬度成分を除去する陽イオン交換樹脂とアニオン成分を除去する陰イオン交換樹脂とを組み合わせて使用する(例えば、特許文献1参照)。
イオン交換樹脂はある程度通水使用した場合、目的の除去性能が低下していく。そこで、性能を回復させるために再生処理が行われる。但し、再生では完全に新品の樹脂の状態まで回復させることはできず、徐々に回復力が低下していき、やがては寿命に達してイオン交換樹脂の交換が必要となる。有機物の除去を行う陰イオン交換樹脂は、原水毎に有機物の成分が異なり、陰イオン交換樹脂の交換時期が原水毎に異なる。特にフミン質を含む原水は、陰イオン交換樹脂を汚染しやすく、薬剤再生後の洗浄性が低下する。
As a water treatment system, there is a pure water production device using an ion exchange resin. In producing pure water from raw water such as industrial water, a cation exchange resin that removes the hardness component of the raw water and an anion exchange resin that removes the anion component are used in combination (see, for example, Patent Document 1). ..
When the ion exchange resin is used with water flow to some extent, the target removal performance deteriorates. Therefore, a reproduction process is performed to restore the performance. However, it cannot be completely restored to the state of a new resin by regeneration, and the resilience gradually decreases, and eventually the life is reached and the ion exchange resin needs to be replaced. The anion exchange resin that removes organic substances has different components of organic substances for each raw water, and the replacement timing of the anion exchange resin differs for each raw water. In particular, raw water containing humic acid tends to contaminate the anion exchange resin, and the detergency after chemical regeneration deteriorates.

つまりイオン交換樹脂の汚染度を原水毎にそれぞれ評価することが重要である。イオン交換樹脂の汚染度を実機のままで評価するには多量の再生液や洗浄水の通水が必要となることから、例えば、樹脂量を500ml程度に落とした試験装置を用いて行う。 In other words, it is important to evaluate the degree of contamination of the ion exchange resin for each raw water. Since a large amount of reclaimed liquid and washing water must be passed in order to evaluate the degree of contamination of the ion exchange resin as it is, for example, a test device in which the amount of resin is reduced to about 500 ml is used.

一般に試験装置は、実機と同様の構成が採用されている。例えばイオン交換樹脂を充填した樹脂筒、樹脂筒に再生液を供給する再生用経路、再生用流路に洗浄液(純水)を供給して洗浄する洗浄用経路を有する。試験では、先ず樹脂に再生液を供給し、次に樹脂および再生用経路の再生液を押し出した後、洗浄性試験用の液体(純水)を樹脂筒に流す。そして、樹脂筒の入口側・出口側の液体の電気伝導率を測定し、出口電気伝導率の低下度に基づき、イオン交換樹脂の洗浄性を評価する。 Generally, the test device has the same configuration as the actual machine. For example, it has a resin cylinder filled with an ion exchange resin, a regeneration route for supplying a regeneration liquid to the resin cylinder, and a cleaning route for supplying a cleaning liquid (pure water) to the regeneration flow path for cleaning. In the test, the regenerated liquid is first supplied to the resin, then the resin and the regenerated liquid in the regeneration path are extruded, and then the liquid for the detergency test (pure water) is poured into the resin cylinder. Then, the electric conductivity of the liquid on the inlet side and the outlet side of the resin cylinder is measured, and the detergency of the ion exchange resin is evaluated based on the degree of decrease in the outlet electric conductivity.

特開2000-84552号公報Japanese Unexamined Patent Publication No. 2000-8452

樹脂量を落とした試験装置では、実機をスケールダウンした樹脂量であるため、イオン交換樹脂への通水量もスケールダウンした割合で低下することになる。樹脂筒方向に再生液を押し出す場合、この通水量の低下に伴い、洗浄液での再生液の置換が十分にできず、特に配管中に残留する再生液の影響を受けて、洗浄性試験用の液体を用いた洗浄性の評価の信頼性が低下することになる。 In a test device with a reduced amount of resin, the amount of resin is scaled down from the actual machine, so the amount of water flowing through the ion exchange resin is also reduced at a scaled down rate. When the regenerated liquid is extruded in the direction of the resin cylinder, the regenerated liquid cannot be sufficiently replaced with the cleaning liquid due to the decrease in the amount of water flow, and it is particularly affected by the regenerated liquid remaining in the piping, and is used for the cleaning property test. The reliability of the evaluation of detergency using a liquid will decrease.

本発明の目的は、実機から採取したイオン交換樹脂の一部を用いて、該イオン交換樹脂の洗浄性を試験する場合に、通水量の低下による配管中の残留再生液の影響が少なく、信頼性の高い洗浄試験装置を提供することにある。 An object of the present invention is that when a part of the ion exchange resin collected from an actual machine is used to test the detergency of the ion exchange resin, the influence of the residual regenerated liquid in the pipe due to the decrease in the amount of water flow is small and the reliability is low. It is an object of the present invention to provide a cleaning test apparatus having high performance.

本発明に係る洗浄試験装置は、実機から採取したイオン交換樹脂の一部を用いて、該イオン交換樹脂の再生後の洗浄性を試験する装置であって、試験するイオン交換樹脂を充填した樹脂筒と、該イオン交換樹脂の再生を行う再生液を該樹脂筒に通液する再生液経路と、該再生液経路とは異なる経路にて該樹脂筒に充填したイオン交換樹脂の洗浄を行う洗浄水通水経路と、該洗浄水通水経路中にあり、該樹脂筒の入口側の洗浄水の電気伝導率を測定する入口電気伝導率セルと、該樹脂筒の出口側の該洗浄水の電気伝導率を測定する出口電気伝導率セルとを有し、
該樹脂筒の上部に、該再生液経路と該洗浄水通水経路と該樹脂筒の3方向に通液できるチーズを配し、該チーズを介して該洗浄水通水経路からの洗浄水で該再生液経路の該チーズとの接続部を含む少なくとも一部を逆洗可能としたことを特徴とする。
The cleaning test apparatus according to the present invention is an apparatus for testing the cleaning property of the ion exchange resin after regeneration by using a part of the ion exchange resin collected from the actual machine, and is a resin filled with the ion exchange resin to be tested. Cleaning that cleans the cylinder, the regenerated liquid path through which the regenerated liquid for regenerating the ion exchange resin is passed through the resin cylinder, and the ion exchange resin filled in the resin cylinder by a route different from the regenerated liquid path. A water flow path, an inlet electric conductivity cell in the wash water flow path for measuring the electric conductivity of the wash water on the inlet side of the resin cylinder, and the wash water on the outlet side of the resin cylinder. It has an outlet electrical conductivity cell to measure the electrical conductivity and
A cheese that can pass liquid in three directions of the regenerated liquid path, the washing water passage path, and the resin cylinder is arranged on the upper part of the resin cylinder, and the washing water from the washing water passing passage passes through the cheese. It is characterized in that at least a part of the regenerated liquid pathway including the connection portion with the cheese can be backwashed.

本発明に依れば、再生液の通液経路に残る再生液を逆洗することで、通水量が低下するスケールダウンした樹脂筒を用いても、洗浄性評価への配管中の残留再生液の影響を少なくすることができ、イオン交換樹脂の洗浄性評価の信頼性を高めることができる。 According to the present invention, even if a scaled-down resin cylinder is used in which the amount of water flow is reduced by backwashing the regenerated liquid remaining in the liquid passage path of the regenerated liquid, the residual regenerated liquid in the piping for the detergency evaluation is used. The influence of the above can be reduced, and the reliability of the detergency evaluation of the ion exchange resin can be improved.

本発明の一実施形態に係る洗浄試験装置の概略図。The schematic diagram of the cleaning test apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る洗浄試験装置における液体の流れを示す概略図。The schematic diagram which shows the flow of the liquid in the cleaning test apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る洗浄試験装置における液体の流れを示す概略図。The schematic diagram which shows the flow of the liquid in the cleaning test apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る洗浄試験装置における液体の流れを示す概略図。The schematic diagram which shows the flow of the liquid in the cleaning test apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る洗浄試験装置における液体の流れを示す概略図。The schematic diagram which shows the flow of the liquid in the cleaning test apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る洗浄試験装置における液体の流れを示す概略図。The schematic diagram which shows the flow of the liquid in the cleaning test apparatus which concerns on one Embodiment of this invention. 比較例の洗浄試験装置の概略図。The schematic diagram of the cleaning test apparatus of the comparative example. 本発明の一実施形態に係る洗浄試験装置と比較例の洗浄試験装置における洗浄性を電気伝導率の変化で示したグラフ。The graph which showed the cleaning property in the cleaning test apparatus which concerns on one Embodiment of this invention, and the cleaning test apparatus of a comparative example by the change of electric conductivity.

以下、図面を用いて本発明の実施形態について説明する。ここでは、陰イオン交換樹脂に対する洗浄性を試験する装置について説明するが、陽イオン交換樹脂にも適用できる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, an apparatus for testing the detergency for an anion exchange resin will be described, but the present invention can also be applied to a cation exchange resin.

図1は、本発明の一実施形態に係る洗浄試験装置1000の概略図である。洗浄試験装置1000は、樹脂筒61、再生液経路、洗浄水通水経路、入口電気伝導率セル31、及び出口電気伝導率セル32を有する。樹脂筒61には、実機から一部抜き出したイオン交換樹脂63が樹脂筒61に空気層62を残して充填される。再生液経路は、イオン交換樹脂の再生を行う再生液を、再生液タンク51から樹脂筒61に通液する。洗浄水通水経路は、再生液経路と異なる経路にて、純水タンク11から洗浄水を樹脂筒61に通液し、イオン交換樹脂の洗浄を行う。樹脂筒61の出口からの排液は、再生液での再生及び再生液の押出の場合は第二のドレイン(D2)72から、洗浄水モニター中は第三のドレイン(D3)73から排出する。入口電気伝導率セル31は、洗浄水通水経路中にあり、樹脂筒61の入口側の洗浄水の電気伝導率を測定する。出口電気伝導率セル32は、樹脂筒61の出口側の洗浄水の電気伝導率を測定する。符号41~46は弁を示し、本実施形態では電磁弁を用いるが、手動のコックやその他の機械弁なども使用できる。これらの弁は、目的に応じて二方弁又は三方弁が用いられる。また、符号101~119は各要素をつなぐ配管である。また、弁42、43、47からの排液は配管111~113を経由して第一のドレイン(D1)71に排出する。 FIG. 1 is a schematic view of a cleaning test apparatus 1000 according to an embodiment of the present invention. The cleaning test apparatus 1000 has a resin cylinder 61, a reclaimed liquid path, a washing water passage path, an inlet electric conductivity cell 31, and an outlet electric conductivity cell 32. The resin cylinder 61 is filled with the ion exchange resin 63 partially extracted from the actual machine, leaving the air layer 62 in the resin cylinder 61. In the regenerating liquid path, the regenerating liquid for regenerating the ion exchange resin is passed from the regenerating liquid tank 51 to the resin cylinder 61. The washing water flow path is different from the regeneration liquid path, and the washing water is passed from the pure water tank 11 to the resin cylinder 61 to wash the ion exchange resin. The drainage from the outlet of the resin cylinder 61 is discharged from the second drain (D2) 72 in the case of regeneration with the regeneration liquid and extrusion of the regeneration liquid, and from the third drain (D3) 73 during the washing water monitor. .. The inlet electric conductivity cell 31 is in the washing water passage path, and measures the electric conductivity of the washing water on the inlet side of the resin cylinder 61. The outlet electric conductivity cell 32 measures the electric conductivity of the washing water on the outlet side of the resin cylinder 61. Reference numerals 41 to 46 indicate valves, and although an electromagnetic valve is used in this embodiment, a manual cock or other mechanical valve can also be used. As these valves, a two-way valve or a three-way valve is used depending on the purpose. Further, reference numerals 101 to 119 are pipes connecting each element. Further, the drainage from the valves 42, 43, 47 is discharged to the first drain (D1) 71 via the pipes 111 to 113.

再生液経路は、再生液タンク51、ポンプ22、三方弁(三方電磁弁)41~43を有する。
三方電磁弁41~43は、それぞれ3つの接続口を有する。電流を印加していない状態(オフ状態)で、開口している接続口をNO(ノーマリーオープン)、閉口している接続口をNC(ノーマーリークローズ)、電流印加に関係なく常に開口している接続口をCOM(コモン)と呼ぶ。電流を印加した状態(オン状態)ではNOとNCの開口状態が逆転する。つまり、オフ状態では、接続口COMと接続口NOが繋がり、オン状態では接続口COMと接続口NCが繋がる。このように、図示しない制御回路による電流のオン・オフに基づき接続口NO、NCの開閉が制御される。
The regenerating liquid path includes a regenerating liquid tank 51, a pump 22, and a three-way valve (three-way solenoid valve) 41 to 43.
Each of the three-way solenoid valves 41 to 43 has three connection ports. When no current is applied (off state), the open connection port is NO (normally open), the closed connection port is NC (normally closed), and the connection port is always open regardless of the current application. The existing connection port is called COM (common). When a current is applied (on state), the opening states of NO and NC are reversed. That is, in the off state, the connection port COM and the connection port NO are connected, and in the on state, the connection port COM and the connection port NC are connected. In this way, the opening and closing of the connection port NO and NC is controlled based on the on / off of the current by the control circuit (not shown).

再生液タンク51は再生液を貯留し、再生液タンク51の出口は配管106を介して三方電磁弁41の接続口NCに接続されている。三方電磁弁41の接続口COMは、配管107、ポンプ22、配管108を介して三方電磁弁42の接続口COMに接続されている。三方電磁弁42の接続口NOは配管113を介してドレイン71に接続され、三方電磁弁42の接続口NCは配管109を介して三方電磁弁43の接続口NOに接続されている。三方電磁弁43の接続口NCは配管112を介してドレイン71に接続され、三方電磁弁43の接続口COMは配管110、チーズ81を介して樹脂筒61の入口に接続されている。2つの三方電磁弁42と43のうち、チーズ81側の三方電磁弁43を「第一の三方弁」、三方電磁弁42を「第二の三方弁」ということがある。 The regenerating liquid tank 51 stores the regenerating liquid, and the outlet of the regenerating liquid tank 51 is connected to the connection port NC of the three-way solenoid valve 41 via the pipe 106. The connection port COM of the three-way solenoid valve 41 is connected to the connection port COM of the three-way solenoid valve 42 via the pipe 107, the pump 22, and the pipe 108. The connection port NO of the three-way solenoid valve 42 is connected to the drain 71 via the pipe 113, and the connection port NC of the three-way solenoid valve 42 is connected to the connection port NO of the three-way solenoid valve 43 via the pipe 109. The connection port NC of the three-way solenoid valve 43 is connected to the drain 71 via the pipe 112, and the connection port COM of the three-way solenoid valve 43 is connected to the inlet of the resin cylinder 61 via the pipe 110 and the cheese 81. Of the two three-way solenoid valves 42 and 43, the three-way solenoid valve 43 on the cheese 81 side may be referred to as a "first three-way valve" and the three-way solenoid valve 42 may be referred to as a "second three-way valve".

洗浄水通水経路は、純水を貯留する純水タンク11、配管101、ポンプ21、配管102、103、三方電磁弁47を有する。三方電磁弁47は、上述した三方電磁弁41~43と同様の構成を有する。三方電磁弁47を「第三の三方弁」ということがある。 The wash water passage path includes a pure water tank 11 for storing pure water, a pipe 101, a pump 21, pipes 102 and 103, and a three-way solenoid valve 47. The three-way solenoid valve 47 has the same configuration as the above-mentioned three-way solenoid valves 41 to 43. The three-way solenoid valve 47 is sometimes referred to as a "third three-way valve".

また、純水タンク11の出口は配管101,105を介して再生液経路の三方電磁弁41の接続口NOに接続されている。また、純水タンク11から三方電磁弁47までの洗浄水通水経路には、配管102と103の間に入口電気伝導率セル31が設けられており、配管103は三方電磁弁47の接続口COMに接続されている。三方電磁弁47の接続口NCは配管111を介して第一のドレイン71に接続され、三方電磁弁47の接続口NOは配管104、チーズ81を介して樹脂筒61の入口に接続されている。 Further, the outlet of the pure water tank 11 is connected to the connection port NO of the three-way solenoid valve 41 of the reclaimed liquid path via the pipes 101 and 105. Further, an inlet electric conductivity cell 31 is provided between the pipes 102 and 103 in the washing water passage path from the pure water tank 11 to the three-way solenoid valve 47, and the pipe 103 is a connection port of the three-way solenoid valve 47. It is connected to COM. The connection port NC of the three-way solenoid valve 47 is connected to the first drain 71 via the pipe 111, and the connection port NO of the three-way solenoid valve 47 is connected to the inlet of the resin cylinder 61 via the pipe 104 and the cheese 81. ..

チーズ81は、3方向に通液できる配管継ぎ手である。各配管及びチーズは、通液する液体に対して耐性を有し、有機物を溶出しない材料で構成されており、例えば、フッ素樹脂などの樹脂製チューブや、金属材料の管の内側を樹脂ライニングしたものなど、公知のものが使用できる。各配管及びチーズの内径は、通液する液体の通液量に合わせて適宜選択される。チーズ81は、配管104及び110及び樹脂筒61の入口の3方向に接続される。なお、チーズ81と樹脂筒61との間に、本発明の効果に影響のない範囲で短い配管を配置してもよい。 Cheese 81 is a pipe joint that can pass liquid in three directions. Each pipe and cheese is made of a material that is resistant to liquids that pass through and does not elute organic substances. For example, the inside of a resin tube such as fluororesin or a metal tube is lined with resin. Known materials such as those can be used. The inner diameter of each pipe and cheese is appropriately selected according to the amount of liquid to be passed. The cheese 81 is connected in three directions of the pipes 104 and 110 and the inlet of the resin cylinder 61. A short pipe may be arranged between the cheese 81 and the resin cylinder 61 as long as the effect of the present invention is not affected.

樹脂筒61の出口は、排液のための経路に接続されている。該経路は、三方電磁弁44、二方電磁弁45、46を有する。三方電磁弁44は、上述した三方電磁弁41~43と同様の構成を有する。二方電磁弁45、46は、図示しない制御回路による電流のオン・オフに基づき開閉が制御され、オン状態の場合に繋がる。 The outlet of the resin cylinder 61 is connected to a path for drainage. The path has a three-way solenoid valve 44 and two-way solenoid valves 45, 46. The three-way solenoid valve 44 has the same configuration as the above-mentioned three-way solenoid valves 41 to 43. The two-way solenoid valves 45 and 46 are controlled to open and close based on the on / off of a current by a control circuit (not shown), and are connected to the on state.

三方電磁弁44の接続口COMは樹脂筒61の出口に配管114を介して接続され、三方電磁弁44の接続口NCは配管115、二方電磁弁45、配管116を介して第二のドレイン72に接続されている。三方電磁弁44の接続口NOは配管117、出口電気伝導率セル32、配管118、二方電磁弁46、配管119を介して第三のドレイン73に接続されている。
ポンプ21,22の排出量、電磁弁のオリフィス径、電気伝導率セルのチャンバーの容積などは、樹脂筒61に充填する樹脂量に合わせて適宜最適化される。
The connection port COM of the three-way solenoid valve 44 is connected to the outlet of the resin cylinder 61 via the pipe 114, and the connection port NC of the three-way solenoid valve 44 is the second drain via the pipe 115, the two-way solenoid valve 45, and the pipe 116. It is connected to 72. The connection port NO of the three-way solenoid valve 44 is connected to the third drain 73 via the pipe 117, the outlet electric conductivity cell 32, the pipe 118, the two-way solenoid valve 46, and the pipe 119.
The discharge amount of the pumps 21 and 22, the orifice diameter of the solenoid valve, the volume of the chamber of the electric conductivity cell and the like are appropriately optimized according to the amount of resin to be filled in the resin cylinder 61.

以下、図2~図6を参照して、図1に示す洗浄試験装置1000の動作を説明する。これらの図において、液の流れを太線で示している。
まず、図2は、再生液通液工程(第1工程)の液の流れを示しており、三方電磁弁41,42、44、45、47をオン状態とし、再生液ポンプ22を駆動させることで、再生液タンク51から再生液を樹脂筒61に通液し、第二のドレイン(D2)72に排出する。再生液を陰イオン交換樹脂63に通液することで、陰イオン交換樹脂63に付着した有機物などを除去する。その他の弁はオフ状態である。また、第三の三方弁47はオン状態とすることでチーズ側の接続口NOは閉じられており、チーズ81から弁47への逆流は起こらない。再生液としては、希釈したアルカリ、例えば数%濃度のNaOH水溶液を用いることができる。
Hereinafter, the operation of the cleaning test apparatus 1000 shown in FIG. 1 will be described with reference to FIGS. 2 to 6. In these figures, the flow of liquid is shown by a thick line.
First, FIG. 2 shows the flow of the liquid in the reclaimed liquid passing step (first step), and the three-way solenoid valves 41, 42, 44, 45, 47 are turned on to drive the regenerated liquid pump 22. Then, the regenerated liquid is passed from the regenerated liquid tank 51 to the resin cylinder 61 and discharged to the second drain (D2) 72. By passing the regenerated liquid through the anion exchange resin 63, organic substances and the like adhering to the anion exchange resin 63 are removed. The other valves are off. Further, by turning on the third three-way valve 47, the connection port NO on the cheese side is closed, and backflow from the cheese 81 to the valve 47 does not occur. As the regenerating liquid, a diluted alkali, for example, a NaOH aqueous solution having a concentration of several percent can be used.

図3は、再生液押出工程(第2工程)の液の流れを示している。ここでは、弁41をオフ状態にした以外は図2と同じであり、再生液の代わりに純水タンク11から純水(超純水)が再生液経路(再生液ラインともいう)を通って樹脂筒61の残留再生液を押し出し、樹脂筒61からの排液は、第二のドレイン(D2)72に排出する。 FIG. 3 shows the flow of the liquid in the reclaimed liquid extrusion step (second step). Here, it is the same as FIG. 2 except that the valve 41 is turned off, and instead of the reclaimed liquid, pure water (ultrapure water) passes through the regenerated liquid path (also referred to as the regenerated liquid line) from the pure water tank 11. The residual regenerated liquid in the resin cylinder 61 is pushed out, and the drainage from the resin cylinder 61 is discharged to the second drain (D2) 72.

図4は、再生液ライン洗浄工程(第3工程)の液の流れを示している。ここでは、図3から、弁42をオフ状態として、純水タンク11から純水で弁41と弁42間の再生液供給経路の一部を洗浄して、弁42の接続口NOから配管113を介して排液をドレイン71に排出している。この第3工程は必要により行えばよく、必須ではない。 FIG. 4 shows the flow of the liquid in the reclaimed liquid line cleaning step (third step). Here, from FIG. 3, with the valve 42 turned off, a part of the regenerated liquid supply path between the valve 41 and the valve 42 is washed with pure water from the pure water tank 11, and the pipe 113 is connected to the connection port NO of the valve 42. The drainage liquid is discharged to the drain 71 via the above. This third step may be performed as needed and is not essential.

図5は、洗浄水ライン洗浄工程(第4工程)の液の流れを示している。弁47をオフ状態とし、ポンプ21を駆動することで洗浄水としての純水を入口電気伝導率セル31、弁47を経由する洗浄水通水経路(洗浄水ラインともいう)からチーズ81を介して弁43方向に逆洗し、弁43をオン状態として配管112を介してドレイン71に排出している。弁43を開放することで、樹脂筒61で充填樹脂63上の空気層62を押し込むよりも弁43への流入が優先されて、チーズ81から弁43に至る配管110が洗浄される。樹脂筒61に設けた空気層62は、このようにエアー弁として作用し、切り替え機構のないチーズ81での液流方向の変更を可能としている。この第4工程では、樹脂筒61における負荷がないため、弁43方向への洗浄水の通水が十分な流速で可能となり、配管110内の残留再生液の除去を行うことができる。なお、第3工程と本第4工程は同時に行ってもよい。また、第3工程もしくは第4工程後に、弁47をオン状態とし、ポンプ21を駆動することで洗浄液としての純水を配管111に流して、配管113、配管112の下流側の配管111の洗浄を行うことができる。また、弁47をオフ状態からオン状態にした際の余剰洗浄水の排液を行う。 FIG. 5 shows the flow of the liquid in the washing water line washing step (fourth step). By turning off the valve 47 and driving the pump 21, pure water as washing water is supplied from the washing water flow path (also called the washing water line) via the inlet electric conductivity cell 31 and the valve 47 via the cheese 81. The valve 43 is backwashed in the direction of the valve 43, and the valve 43 is turned on and discharged to the drain 71 via the pipe 112. By opening the valve 43, the inflow to the valve 43 is prioritized over pushing the air layer 62 on the filled resin 63 with the resin cylinder 61, and the pipe 110 from the cheese 81 to the valve 43 is washed. The air layer 62 provided in the resin cylinder 61 acts as an air valve in this way, and makes it possible to change the liquid flow direction in the cheese 81 having no switching mechanism. In this fourth step, since there is no load on the resin cylinder 61, the washing water can flow in the valve 43 direction at a sufficient flow rate, and the residual regenerated liquid in the pipe 110 can be removed. The third step and the fourth step may be performed at the same time. Further, after the third step or the fourth step, the valve 47 is turned on and the pump 21 is driven to allow pure water as a cleaning liquid to flow through the pipe 111 to clean the pipe 113 and the pipe 111 on the downstream side of the pipe 112. It can be performed. Further, the excess washing water when the valve 47 is turned from the off state to the on state is drained.

最後に、図6に示すように、入口電気伝導率セル31から出口電気伝導率セル32への洗浄水の通水を行うことで、イオン交換樹脂63の洗浄性を評価する。ここでは、弁44をオフ状態とし、弁46を開放して行う。弁42及び43もオフ状態とすることでチーズ81から洗浄水の逆流は止められている。弁44から配管117、出口電気伝導率セル32、配管118を通過する排水は弁46を開放して配管119を介してドレイン73に排出する。 Finally, as shown in FIG. 6, the detergency of the ion exchange resin 63 is evaluated by passing the washing water from the inlet electric conductivity cell 31 to the outlet electric conductivity cell 32. Here, the valve 44 is turned off and the valve 46 is opened. By turning off the valves 42 and 43, the backflow of the washing water from the cheese 81 is stopped. The drainage from the valve 44 that passes through the pipe 117, the outlet electric conductivity cell 32, and the pipe 118 is discharged to the drain 73 through the pipe 119 by opening the valve 46.

図7は、従来の実機構成の縮小版に相当する比較例の洗浄試験装置2000の構成を示す概略図である。図1と同じ符号を付したものは同じ構成を示している。各配管については、弁43と樹脂筒61とを接続する配管120以外は符号を省略している。樹脂筒61の下流の排液のための経路は図1と同様である。
実機から一部抜き出したイオン交換樹脂63は樹脂筒61に空気層62を残して充填される。イオン交換樹脂の再生は、再生液を貯留する再生液タンク51から弁41、ポンプ22、弁42,43を介して樹脂筒61に導入し、イオン交換樹脂63を通過した再生液は、弁44,45を介してドレイン72に排出する。次に、洗浄性を評価する前に、弁42から樹脂筒61に至る配管の再生液を、タンク11から弁41を経由して洗浄液を導入することで押し出して、ドレイン72に排出する。また、タンク11から、弁41、ポンプ22、弁42,43、ドレイン71の経路にて配管洗浄も行われる。その後、ポンプ21、入口電気伝導率セル31、弁42、43を介して樹脂筒61に洗浄水を導入し、排液を弁44から出口電気伝導率セル32、弁46、ドレイン73へと排出する。樹脂筒の入口側・出口側の液体の電気伝導率を測定し、出口電気伝導率の低下度に基づき、イオン交換樹脂の洗浄性を評価する。
図7の装置においては、配管120への通水は、通水量が制限される樹脂筒61を経由してドレイン72へ排出を行う一方向のみとなり、配管120の残留再生液の影響が出口電気伝導率の低下度に大きく影響する。
FIG. 7 is a schematic view showing the configuration of the cleaning test apparatus 2000 of the comparative example corresponding to the reduced version of the conventional actual machine configuration. Those with the same reference numerals as those in FIG. 1 show the same configuration. For each pipe, the reference numerals are omitted except for the pipe 120 that connects the valve 43 and the resin cylinder 61. The route for drainage downstream of the resin cylinder 61 is the same as in FIG.
The ion exchange resin 63 partially extracted from the actual machine is filled in the resin cylinder 61, leaving the air layer 62. The regeneration of the ion exchange resin is introduced from the regeneration liquid tank 51 for storing the regeneration liquid into the resin cylinder 61 via the valve 41, the pump 22, and the valves 42, 43, and the regeneration liquid that has passed through the ion exchange resin 63 is the valve 44. , 45 is discharged to the drain 72. Next, before evaluating the detergency, the regenerated liquid of the pipe from the valve 42 to the resin cylinder 61 is extruded by introducing the cleaning liquid from the tank 11 via the valve 41 and discharged to the drain 72. In addition, pipe cleaning is also performed from the tank 11 through the routes of the valve 41, the pump 22, the valves 42, 43, and the drain 71. After that, wash water is introduced into the resin cylinder 61 via the pump 21, the inlet electric conductivity cell 31, the valves 42, and 43, and the drainage liquid is discharged from the valve 44 to the outlet electric conductivity cell 32, the valve 46, and the drain 73. do. The electric conductivity of the liquid on the inlet side and the outlet side of the resin cylinder is measured, and the detergency of the ion exchange resin is evaluated based on the degree of decrease in the outlet electric conductivity.
In the device of FIG. 7, the water flow to the pipe 120 is only in one direction in which the water is discharged to the drain 72 via the resin cylinder 61 in which the amount of water flow is limited, and the influence of the residual regenerated liquid in the pipe 120 is the outlet electricity. It greatly affects the degree of decrease in conductivity.

図8は、同じ水処理システムから抽出した陰イオン交換樹脂について、図7に示す比較例の洗浄試験装置2000と図1に示す本発明に係る洗浄試験装置1000を用いた場合の洗浄性を比較したグラフであり、横軸を洗浄水の通水時間、縦軸を出口電気伝導率セル32と入口電気伝導率セル31での測定値差、すなわち排出水の電気伝導率を示している。なお、洗浄試験装置1000の配管110と洗浄試験装置2000の配管120は同じ内径、同じ長さの配管であり、樹脂筒61への通水量は同じである。 FIG. 8 compares the cleaning properties of the anion exchange resin extracted from the same water treatment system when the cleaning test apparatus 2000 of the comparative example shown in FIG. 7 and the cleaning test apparatus 1000 according to the present invention shown in FIG. 1 are used. The horizontal axis shows the water flow time of the washing water, and the vertical axis shows the difference between the measured values of the outlet electric conductivity cell 32 and the inlet electric conductivity cell 31, that is, the electric conductivity of the discharged water. The pipe 110 of the cleaning test device 1000 and the pipe 120 of the cleaning test device 2000 have the same inner diameter and the same length, and the amount of water flowing to the resin cylinder 61 is the same.

図8に示すように、図7の比較例の洗浄試験装置2000は、通水量の低下する少量のイオン交換樹脂では、再生液の配管中の残留の影響を受けて電気伝導率の低下が遅く、また、終了時の電気伝導率も高くなっている。このため、洗浄試験装置2000を用いた場合、イオン交換樹脂に影響する有機物が多いと判定されてしまう。一方、本発明に係る洗浄試験装置1000では再生液の影響が少なく、適切に評価できることが分かる。
洗浄試験装置2000の配管120内の残留再生液の影響を少なくするために、配管120の長さを短くする、あるいは配管120の内径を小さくして流速を上げるなどの手段も考えられるが、装置配置の自由度が低下したり、圧損による流量変化が生じたりするなどの不具合を生じる。
一方、本発明では、配管110の洗浄が樹脂筒61を経由することなく可能であることから、十分な通水量を確保でき、配管110は配管120よりも長くすることも可能である。その結果、装置配置の自由度が向上する。
本発明に係る洗浄試験装置を用いることで、イオン交換樹脂を用いた水処理システムにおける原水の影響、特に原水中の有機物による陰イオン交換樹脂への影響を少ない通水量で的確に確認することができる。
As shown in FIG. 8, in the cleaning test apparatus 2000 of the comparative example of FIG. 7, the decrease in electrical conductivity is slow due to the influence of the residue in the piping of the regenerated liquid in the case of a small amount of ion exchange resin in which the amount of water flow decreases. Also, the electrical conductivity at the end is high. Therefore, when the cleaning test apparatus 2000 is used, it is determined that there are many organic substances that affect the ion exchange resin. On the other hand, it can be seen that the cleaning test apparatus 1000 according to the present invention is less affected by the regenerated liquid and can be appropriately evaluated.
In order to reduce the influence of the residual regenerated liquid in the pipe 120 of the cleaning test apparatus 2000, it is conceivable to shorten the length of the pipe 120 or reduce the inner diameter of the pipe 120 to increase the flow velocity. Problems such as a decrease in the degree of freedom of arrangement and a change in the flow rate due to pressure loss occur.
On the other hand, in the present invention, since the pipe 110 can be washed without passing through the resin cylinder 61, a sufficient amount of water flow can be secured, and the pipe 110 can be made longer than the pipe 120. As a result, the degree of freedom in device arrangement is improved.
By using the cleaning test apparatus according to the present invention, it is possible to accurately confirm the influence of raw water in a water treatment system using an ion exchange resin, particularly the influence of organic substances in the raw water on the anion exchange resin with a small amount of water flow. can.

11 純水タンク
21、22 ポンプ
31 入口電気伝導率セル
32 出口電気伝導率セル
41~47 弁
51 再生液タンク
61 樹脂筒
62 空気層
63 イオン交換樹脂
71~73 ドレイン
81 チーズ
101~119 配管
1000 洗浄試験装置
11 Pure water tank 21, 22 Pump 31 Inlet electric conductivity cell 32 Outlet electric conductivity cell 41-47 Valve 51 Regeneration liquid tank 61 Resin cylinder 62 Air layer 63 Ion exchange resin 71-73 Drain 81 Cheese 101-119 Piping 1000 Cleaning Test equipment

Claims (5)

実機から採取したイオン交換樹脂の一部を用いて、該イオン交換樹脂の再生後の洗浄性を試験する装置であって、
試験するイオン交換樹脂を充填した樹脂筒と、
該イオン交換樹脂の再生を行う再生液を該樹脂筒に通液する再生液経路と、
該再生液経路とは異なる経路にて該樹脂筒に充填したイオン交換樹脂の洗浄を行う洗浄水通水経路と、
該洗浄水通水経路中にあり、該樹脂筒の入口側の洗浄水の電気伝導率を測定する入口電気伝導率セルと、
該樹脂筒の出口側の該洗浄水の電気伝導率を測定する出口電気伝導率セルと
を有し、
該樹脂筒の上部に、該再生液経路と該洗浄水通水経路と該樹脂筒の3方向に通液できるチーズを配し、該チーズを介して該洗浄水通水経路からの洗浄水で該再生液経路の該チーズとの接続部を含む少なくとも一部を逆洗可能としたことを特徴とする洗浄試験装置。
A device for testing the detergency of the ion exchange resin after regeneration using a part of the ion exchange resin collected from the actual machine.
A resin cylinder filled with an ion exchange resin to be tested and
A regenerating liquid path for passing a regenerating liquid for regenerating the ion exchange resin through the resin cylinder, and
A cleaning water passage route for cleaning the ion exchange resin filled in the resin cylinder by a route different from the regeneration liquid route, and a cleaning water passage route.
An inlet electric conductivity cell in the washing water passage path for measuring the electric conductivity of the washing water on the inlet side of the resin cylinder, and an inlet electric conductivity cell.
It has an outlet electric conductivity cell for measuring the electric conductivity of the washing water on the outlet side of the resin cylinder.
On the upper part of the resin cylinder, a cheese that can pass liquid in three directions of the regenerated liquid passage, the washing water passage, and the resin cylinder is arranged, and the washing water from the washing water passage is used through the cheese. A washing test apparatus characterized in that at least a part of the reclaimed liquid path including a connection portion with the cheese can be backwashed.
前記再生液経路は、前記チーズの前段に2つの三方弁を有し、前記チーズ側の第一の三方弁が前記チーズ側に接続される常に開放状態の接続口と、互いに切り替え可能な第二の三方弁側に接続される接続口及び該第一の三方弁を通過する液体を排液するための経路側に接続される接続口とを有し、前記洗浄水にて、前記チーズから該第一の三方弁までの再生液経路の逆洗を前記排液するための経路側の接続口を開口に切り替えて行うように制御する請求項1に記載の洗浄試験装置。 The reclaimed liquid path has two three-way valves in front of the cheese, a always open connection port to which the first three-way valve on the cheese side is connected to the cheese side, and a second switchable to each other. It has a connection port connected to the three-way valve side of the cheese and a connection port connected to the path side for draining the liquid passing through the first three-way valve. The cleaning test apparatus according to claim 1, wherein the backwashing of the regenerated liquid path up to the first three-way valve is controlled so that the connection port on the path side for draining the liquid is switched to an opening. 前記第二の三方弁が、常に開放状態の前記再生液が供給される側の接続口と、互いに切り替え可能な前記第一の三方弁側に接続される接続口及び該第二の三方弁を通過する液体を排液するための経路側に接続される接続口とを有し、前記洗浄水通水経路とは別の経路から洗浄水を通水して前記第二の三方弁までの再生液経路を洗浄して、前記排液するための経路に洗浄水を排液可能とした請求項2に記載の洗浄試験装置。 The second three-way valve has a connection port on the side to which the regenerated liquid is always in an open state, a connection port connected to the first three-way valve side that can be switched to each other, and the second three-way valve. It has a connection port connected to the path side for draining the passing liquid, and the wash water is passed from a path different from the wash water flow path to regenerate the second three-way valve. The cleaning test apparatus according to claim 2, wherein the liquid path is washed and the washing water can be drained to the path for draining the liquid. 前記洗浄水通水経路は、前記入口電気伝導率セルと前記チーズとの間に第三の三方弁を有し、該第三の三方弁は、常に開放状態の前記入口電気伝導率セル側に接続される接続口と、互いに切り替え可能な前記チーズ側に接続される接続口及び該第三の三方弁を通過する液体を排液するための経路側に接続される接続口とを有する請求項1~3のいずれか1項に記載の洗浄試験装置。 The wash water passage has a third three-way valve between the inlet electrical conductivity cell and the cheese, and the third three-way valve is always on the inlet electrical conductivity cell side in an open state. A claim having a connection port to be connected, a connection port connected to the cheese side which is switchable to each other, and a connection port connected to a path side for draining liquid passing through the third three-way valve. The cleaning test apparatus according to any one of 1 to 3. 前記樹脂筒は、前記イオン交換樹脂が充填された領域上に空気層を有する請求項1~4のいずれか1項に記載の洗浄試験装置。 The cleaning test apparatus according to any one of claims 1 to 4, wherein the resin cylinder has an air layer on a region filled with the ion exchange resin.
JP2018100403A 2018-05-25 2018-05-25 Cleaning test equipment for ion exchange resin Active JP6998834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018100403A JP6998834B2 (en) 2018-05-25 2018-05-25 Cleaning test equipment for ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100403A JP6998834B2 (en) 2018-05-25 2018-05-25 Cleaning test equipment for ion exchange resin

Publications (2)

Publication Number Publication Date
JP2019202291A JP2019202291A (en) 2019-11-28
JP6998834B2 true JP6998834B2 (en) 2022-01-18

Family

ID=68725680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100403A Active JP6998834B2 (en) 2018-05-25 2018-05-25 Cleaning test equipment for ion exchange resin

Country Status (1)

Country Link
JP (1) JP6998834B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892614A (en) * 2021-01-29 2021-06-04 福建宁德核电有限公司 Resin integrated regenerating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048776A (en) 2000-08-07 2002-02-15 Japan Organo Co Ltd Performance evaluation method and device of anion- exchange resin and condensate demineralizer
JP2009066472A (en) 2007-09-10 2009-04-02 Panasonic Corp Regeneration method of ion exchange resin
JP2016093779A (en) 2014-11-13 2016-05-26 栗田工業株式会社 Method for operating regeneration type ion exchange device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105242B2 (en) * 1985-01-14 1994-12-21 オルガノ株式会社 Ion exchange resin performance tester
GB9221947D0 (en) * 1992-10-17 1992-12-02 Northern Eng Ind Method of regenerating resin beads for use in water purification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048776A (en) 2000-08-07 2002-02-15 Japan Organo Co Ltd Performance evaluation method and device of anion- exchange resin and condensate demineralizer
JP2009066472A (en) 2007-09-10 2009-04-02 Panasonic Corp Regeneration method of ion exchange resin
JP2016093779A (en) 2014-11-13 2016-05-26 栗田工業株式会社 Method for operating regeneration type ion exchange device

Also Published As

Publication number Publication date
JP2019202291A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
KR20030004055A (en) Water softening device and method for regeneration control thereof
JP2002035743A (en) Water softener
JP6998834B2 (en) Cleaning test equipment for ion exchange resin
KR20200107785A (en) Water softening system
KR101573569B1 (en) Cleaning system of separation membrane and method using the same
CN103936180B (en) Drinking water treatment equipment
KR102218025B1 (en) Method and apparatus for inspection of polymeric membrane aging in water treatment process
KR101109014B1 (en) Piping connector capable of automatic backwash
US11655904B1 (en) Valve control system
JP2017202432A (en) Corrosive anion removing device and method for reproducing anion exchange resin
JPWO2019106927A1 (en) Liquid distribution system, processing line, and liquid distribution method
JP2008053386A (en) Device and method for processing substrate
WO2021065191A1 (en) Pure water manufacturing management system and pure water manufacturing management method
CN209968126U (en) Water purifier with split type membrane filtering filter element
JP2019130446A (en) Regeneration tool
JP2001205261A (en) Water softener, method for judging degree of deterioration of ion exchange resin in water softener and method for controlling water softener
JPH11347426A (en) Method for controlling water softener
JPH059114Y2 (en)
KR200420293Y1 (en) Automatic Filter Cleaning and Fluid Temperature Maintenance Using Backflow
JP2015139734A (en) Filter replacement method for filter device, filter device and multi-directional valve
JP2005007261A (en) Ion exchange method and ion exchange system
JP2020039992A (en) Water softener
CN219571646U (en) Pipeline system
CN214470365U (en) Cleaning system for evaporator
CN221832024U (en) Membrane cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211221

R150 Certificate of patent or registration of utility model

Ref document number: 6998834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250