JP6965531B2 - Die bond sheet and semiconductor device - Google Patents

Die bond sheet and semiconductor device Download PDF

Info

Publication number
JP6965531B2
JP6965531B2 JP2017045889A JP2017045889A JP6965531B2 JP 6965531 B2 JP6965531 B2 JP 6965531B2 JP 2017045889 A JP2017045889 A JP 2017045889A JP 2017045889 A JP2017045889 A JP 2017045889A JP 6965531 B2 JP6965531 B2 JP 6965531B2
Authority
JP
Japan
Prior art keywords
die bond
semiconductor element
copper particles
semiconductor device
bond sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017045889A
Other languages
Japanese (ja)
Other versions
JP2018152403A (en
Inventor
偉夫 中子
芳則 江尻
大 石川
千絵 須鎌
祐貴 川名
征央 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017045889A priority Critical patent/JP6965531B2/en
Publication of JP2018152403A publication Critical patent/JP2018152403A/en
Application granted granted Critical
Publication of JP6965531B2 publication Critical patent/JP6965531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40491Connecting portions connected to auxiliary connecting means on the bonding areas being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Die Bonding (AREA)
  • Conductive Materials (AREA)

Description

本発明は、ダイボンドシート及び半導体装置に関し、さらに詳しくは、パワー半導体、LSI、発光ダイオード(LED)等の半導体素子を、リードフレーム、セラミック配線板、ガラスエポキシ配線板、ポリイミド配線板等の半導体搭載用基板に接合するのに好適なダイボンドシート及びこれを用いて得られる半導体装置の製造方法に関する。 The present invention relates to a die bond sheet and a semiconductor device. More specifically, a semiconductor element such as a power semiconductor, an LSI, or a light emitting diode (LED) is mounted on a semiconductor such as a lead frame, a ceramic wiring board, a glass epoxy wiring board, or a polyimide wiring board. The present invention relates to a die bond sheet suitable for joining to a substrate for use, and a method for manufacturing a semiconductor device obtained by using the die bond sheet.

半導体装置を製造する際、半導体素子とリードフレーム(支持部材)とを接着させる方法としては、エポキシ系樹脂、ポリイミド系樹脂等の樹脂に銀粉等の充填剤を分散させたペースト状の接着剤(例えば、銀ペースト)を使用する方法がある。この方法では、ディスペンサー、印刷機、スタンピングマシン等を用いて、ペースト状接着剤をリードフレームのダイパッドに塗布した後、半導体素子をダイボンドし、加熱硬化により接着させ半導体装置とする。 When manufacturing a semiconductor device, as a method of adhering a semiconductor element and a lead frame (support member), a paste-like adhesive in which a filler such as silver powder is dispersed in a resin such as an epoxy resin or a polyimide resin ( For example, there is a method of using silver paste). In this method, a paste-like adhesive is applied to a die pad of a lead frame using a dispenser, a printing machine, a stamping machine, or the like, and then a semiconductor element is die-bonded and bonded by heat curing to form a semiconductor device.

近年、半導体素子の高速化、高集積化が進むに伴い、半導体装置の動作安定性を確保するために、接着剤にも高放熱特性が求められている。 In recent years, as semiconductor elements have become faster and more integrated, adhesives are also required to have high heat dissipation characteristics in order to ensure the operational stability of semiconductor devices.

これまでにも熱伝導性の向上を目的とした接着剤が提案されている。例えば、下記特許文献1〜5には、熱伝導率の高い銀粒子が高充填されたダイボンディングペースト(特許文献1及び2)、特定の粒径を有する球状銀粉を含有する導電性接着剤(特許文献3)、ハンダの粒子を含有する接着剤のペースト(特許文献4)、特定の粒子径を有する金属粉及び特定の粒子径を有する金属超微粒子を含有する導電性接着剤(特許文献5)が開示されている。 Adhesives for the purpose of improving thermal conductivity have been proposed so far. For example, Patent Documents 1 to 5 below include die bonding pastes (Patent Documents 1 and 2) highly filled with silver particles having high thermal conductivity, and conductive adhesives containing spherical silver powder having a specific particle size (Patent Documents 1 and 2). Patent Document 3), paste of adhesive containing solder particles (Patent Document 4), conductive adhesive containing metal powder having a specific particle size and ultrafine metal particles having a specific particle size (Patent Document 5). ) Is disclosed.

また、下記特許文献6には、表面処理が施された非球状銀粒子と揮発性分散媒とからなるペースト状銀粒子組成物を100℃以上400℃以下で加熱することにより銀粒子同士を焼結させて所定の熱伝導度を有する固形状銀にする技術が提案されている。 Further, in Patent Document 6 below, silver particles are burned by heating a paste-like silver particle composition composed of surface-treated non-spherical silver particles and a volatile dispersion medium at 100 ° C. or higher and 400 ° C. or lower. A technique has been proposed in which they are combined to form solid silver having a predetermined thermal conductivity.

特開2006−73811号公報Japanese Unexamined Patent Publication No. 2006-73811 特開2006−302834号公報Japanese Unexamined Patent Publication No. 2006-302834 特開平11−66953号公報Japanese Unexamined Patent Publication No. 11-66953 特開2005−93996号公報Japanese Unexamined Patent Publication No. 2005-93996 特開2006−83377号公報Japanese Unexamined Patent Publication No. 2006-833777 特許第4353380号公報Japanese Patent No. 4353380

特許文献6記載のペースト状銀粒子組成物は、銀が金属結合を形成するため、他の手法よりも熱伝導率及び高温下での接続信頼性が優れるものと考えられる。しかし、このようなペースト状銀粒子組成物では、塗布、予備乾燥及び加熱焼結の3段階の工程を必要とする。また溶媒を含むため、塗布時、乾燥時、半導体素子搭載時及び焼結時の流動による斑の発生、乾燥時及び焼結時のボイド発生といった問題がある。特許文献6では、界面の接合や銀接合部の物性向上のために接合時に加圧を必要とするため、生産性やデバイスダメージの問題がある。 It is considered that the paste-like silver particle composition described in Patent Document 6 is superior in thermal conductivity and connection reliability at high temperature as compared with other methods because silver forms a metal bond. However, such a paste-like silver particle composition requires three steps of coating, pre-drying and heat sintering. Further, since it contains a solvent, there are problems such as spots due to flow during coating, drying, mounting of a semiconductor element, and sintering, and voids during drying and sintering. Patent Document 6 has problems of productivity and device damage because pressurization is required at the time of joining in order to join the interface and improve the physical properties of the silver joint.

一方、ハンダを用いる場合、シート状のハンダを基板と半導体素子との間に介在させ、加熱溶融させることによりダイボンドが行われる。この手法では、ペーストに比べて工程の簡略化及び溶媒による斑やボイドの発生を抑制することができる。しかし、ハンダでは高温での接続信頼性に課題が生じる。なお、単にハンダに代えて高融点の金属を用いても、接合が困難になるという問題がある。 On the other hand, when solder is used, die bonding is performed by interposing a sheet-shaped solder between the substrate and the semiconductor element and heating and melting the solder. In this method, the process can be simplified and the generation of spots and voids due to the solvent can be suppressed as compared with the paste. However, solder poses a problem in connection reliability at high temperatures. Even if a metal having a high melting point is used instead of solder, there is a problem that joining becomes difficult.

本発明は、熱伝導性及び接続信頼性に優れ、半導体素子と半導体素子搭載用支持部材との接合を簡便な工程で行うことができるダイボンドシート、及びそれを用いて得られる半導体装置を提供することを目的とする。 The present invention provides a die bond sheet having excellent thermal conductivity and connection reliability and capable of joining a semiconductor element and a support member for mounting a semiconductor element in a simple process, and a semiconductor device obtained by using the die bond sheet. The purpose is.

本発明は、銅粒子を75質量%以上及び熱分解性樹脂を5質量%以上含むダイボンドシートを提供する。 The present invention provides a die bond sheet containing 75% by mass or more of copper particles and 5% by mass or more of a pyrolytic resin.

本発明において、熱分解性樹脂が、ポリカルボナート、ポリメタクリル酸、ポリメタクリル酸エステル及びポリエステルからなる群より選択される少なくとも一種であることが好ましい。 In the present invention, the pyrolytic resin is preferably at least one selected from the group consisting of polycarbonate, polymethacrylic acid, polymethacrylic acid ester and polyester.

本発明において、銅粒子が、体積平均粒径が0.12μm以上0.8μm以下であるサブマイクロ銅粒子と、最大径が1μm以上20μm以下でありかつアスペクト比が4以上のフレーク状マイクロ銅粒子と、を含み、フレーク状マイクロ銅粒子の含有量が、銅粒子の全質量を基準として50質量%以下であることが好ましい。 In the present invention, the copper particles are sub-micro copper particles having a volume average particle diameter of 0.12 μm or more and 0.8 μm or less, and flake-shaped micro copper particles having a maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of 4 or more. The content of the flake-shaped micro copper particles is preferably 50% by mass or less based on the total mass of the copper particles.

本発明は、銅粒子と、熱分解性樹脂と、分散媒とを含むペースト状組成物を成形・加熱してなるものであることが好ましい。 The present invention is preferably formed by molding and heating a paste-like composition containing copper particles, a pyrolytic resin, and a dispersion medium.

本発明は、また、上記のダイボンドシートの焼結体を介して、半導体素子と半導体素子搭載用支持部材とが接合されてなる、半導体装置を提供する。 The present invention also provides a semiconductor device in which a semiconductor element and a support member for mounting the semiconductor element are joined via the above-mentioned sintered body of the die bond sheet.

本発明によれば、熱伝導性及び接続信頼性に優れ、半導体素子と半導体素子搭載用支持部材との接合を簡便な工程で行うことができるダイボンドシート、及びそれを用いて得られる半導体装置を提供することができる。当該半導体装置は、本発明のダイボンドシートにより、半導体素子と半導体素子搭載用支持部材とが接合されてなる構造を有することにより、優れた熱伝導性及び接続信頼性を有することができる。 According to the present invention, a die bond sheet having excellent thermal conductivity and connection reliability and capable of joining a semiconductor element and a support member for mounting a semiconductor element in a simple process, and a semiconductor device obtained by using the die bond sheet. Can be provided. The semiconductor device can have excellent thermal conductivity and connection reliability by having a structure in which a semiconductor element and a support member for mounting the semiconductor element are joined by the die bond sheet of the present invention.

半導体装置の製造方法を示す模式断面図である。It is a schematic cross-sectional view which shows the manufacturing method of a semiconductor device. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment. 本実施形態の半導体装置の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor device of this embodiment.

<ダイボンドシート>
本実施形態のダイボンドシートは、銅粒子および熱分解性樹脂を少なくとも必須とする。銅粒子は焼成により焼結して被着体および焼結性銅粒子同士が金属結合により結合し、接合する機能を発現する。熱分解性樹脂は、銅粒子の間を繋ぎシート状に成型する役目を果たす。また、熱分解性樹脂として熱可塑性の物を選ぶことにより、熱圧着により、被着体同士を仮止めする機能を発現する。さらに、焼結温度より低温で熱分解するものを選ぶことで焼結を阻害せず、銅粒子が焼結して焼結銅の良好な接合層を形成することができる。
<Die bond sheet>
The die bond sheet of the present embodiment requires at least copper particles and a thermally decomposable resin. The copper particles are sintered by firing, and the adherend and the sintered copper particles are bonded to each other by a metal bond to exhibit a function of joining. The pyrolytic resin serves to connect the copper particles and mold them into a sheet. Further, by selecting a thermoplastic material as the pyrolytic resin, the function of temporarily fixing the adherends to each other is exhibited by thermocompression bonding. Further, by selecting one that thermally decomposes at a temperature lower than the sintering temperature, it is possible to form a good bonding layer of sintered copper by sintering copper particles without hindering sintering.

<銅粒子>
銅粒子(焼結性銅粒子)は、熱伝導率、焼結性、接続信頼性の観点から銅を主成分とすることが好ましい。銅粒子に含まれる元素の内、水素、炭素、酸素を除く元素割合の内で、銅が占める元素割合は、60原子%以上が好ましく、70原子%以上であることがより好ましく、80原子%以上であることがさらに好ましい。これより銅の含有率が低下すると、生成した銅焼結体接合層が銅とは異なる性質を有する合金になり、熱伝導率、接続信頼性が低下する。
<Copper particles>
The copper particles (sinterable copper particles) preferably contain copper as a main component from the viewpoint of thermal conductivity, sinterability, and connection reliability. Among the elements contained in the copper particles, the element ratio of copper in the element ratio excluding hydrogen, carbon, and oxygen is preferably 60 atomic% or more, more preferably 70 atomic% or more, and more preferably 80 atomic%. The above is more preferable. If the copper content is lower than this, the produced copper sintered body bonding layer becomes an alloy having properties different from those of copper, and the thermal conductivity and connection reliability are lowered.

銅粒子は、焼結温度を低温(例えば300℃以下)にするために、体積平均粒径が0.12μm以上0.8μm以下のサブマイクロ銅粒子(微小粒径銅粒子)を、銅粒子の全質量を基準として少なくとも50質量%以上含むことが好ましい。このサイズのサブマイクロ銅粒子は250℃程度から焼結を開始し、低温度での接合を可能とする。なお、体積平均粒径が0.12μm以上であれば、サブマイクロ銅粒子の合成コストの抑制、良好な分散性、表面処理剤の使用量の抑制といった効果が得られやすくなる。体積平均粒径が0.8μm以下であれば、サブマイクロ銅粒子の焼結性が優れるという効果が得られやすくなる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の体積平均粒径は、0.15μm以上0.8μm以下であってもよく、0.15μm以上0.6μm以下であってもよく、0.2μm以上0.5μm以下であってもよく、0.3μm以上0.45μm以下であってもよい。なお、本願明細書において体積平均粒径とは、50%体積平均粒径を意味する。 In order to lower the sintering temperature (for example, 300 ° C. or lower), the copper particles are made of sub-micro copper particles (micro-particle size copper particles) having a volume average particle size of 0.12 μm or more and 0.8 μm or less. It is preferable to contain at least 50% by mass or more based on the total mass. Sub-micro copper particles of this size start sintering at about 250 ° C. and can be bonded at a low temperature. When the volume average particle size is 0.12 μm or more, the effects of suppressing the synthesis cost of the sub-micro copper particles, good dispersibility, and suppressing the amount of the surface treatment agent used can be easily obtained. When the volume average particle size is 0.8 μm or less, the effect of excellent sinterability of the submicro copper particles can be easily obtained. From the viewpoint of further exerting the above effect, the volume average particle size of the sub-micro copper particles may be 0.15 μm or more and 0.8 μm or less, 0.15 μm or more and 0.6 μm or less, and may be 0. It may be .2 μm or more and 0.5 μm or less, and may be 0.3 μm or more and 0.45 μm or less. In the specification of the present application, the volume average particle diameter means a 50% volume average particle diameter.

前述のサブマイクロ銅粒子単体での焼結では、体積収縮が大きく焼結体へのヒビ、被着面との剥離、焼結体緻密度の低下が生じ易い。そのため、サブマイクロ銅粒子と共に、最大径が1μm以上20μm以下のマイクロ銅粒子を共に含んでいることが好ましい。マイクロ銅粒子を含む場合、焼結時の体積収縮の低減や焼結後の接合層の強度向上の効果を得られる。より一層上記効果を奏するという観点から、マイクロ銅粒子の最大径は、1μm以上10μm以下であってもよく、3μm以上10μm以下であってもよい。 In the above-mentioned sintering of the sub-micro copper particles alone, the volume shrinkage is large, and cracks on the sintered body, peeling from the adherend surface, and a decrease in the density of the sintered body are likely to occur. Therefore, it is preferable that the sub-micro copper particles and the micro copper particles having a maximum diameter of 1 μm or more and 20 μm or less are contained together. When micro-copper particles are contained, the effect of reducing the volume shrinkage during sintering and improving the strength of the bonded layer after sintering can be obtained. From the viewpoint of further exerting the above effect, the maximum diameter of the micro copper particles may be 1 μm or more and 10 μm or less, or 3 μm or more and 10 μm or less.

銅粒子中のマイクロ銅粒子の含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。当該含有量の上限は50質量%以下であることが好ましい。マイクロ銅粒子の含有量が多すぎると、300℃以下での焼結性が低下し易く、接合強度が低下する傾向がある。 The content of the micro copper particles in the copper particles is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more. The upper limit of the content is preferably 50% by mass or less. If the content of the micro copper particles is too large, the sinterability at 300 ° C. or lower tends to decrease, and the bonding strength tends to decrease.

マイクロ銅粒子の形状としては、球状、略球状、多面体状、針状、フレーク状が挙げられる。特に、アスペクト比の大きな針状、フレーク状の銅粒子を用いた場合には、マイクロ銅粒子の配向による補強効果や緻密度向上効果が得られるため好適である。 Examples of the shape of the micro copper particles include a spherical shape, a substantially spherical shape, a polyhedral shape, a needle shape, and a flake shape. In particular, when needle-shaped or flake-shaped copper particles having a large aspect ratio are used, the reinforcing effect and the density improving effect due to the orientation of the micro copper particles can be obtained, which is preferable.

マイクロ銅粒子がフレーク状である(フレーク状マイクロ銅粒子である)場合、アスペクト比は4以上であってもよく、6以上であってもよい。アスペクト比が上記範囲内であれば、接合用銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向することにより、接合用銅ペーストを焼結させたときの体積収縮が抑制し易い。本明細書において、「アスペクト比」とは、粒子の長辺/厚みを示す。粒子の長辺及び厚みの測定は、例えば、粒子のSEM像から求めることができる。 When the micro-copper particles are flake-shaped (flake-shaped micro-copper particles), the aspect ratio may be 4 or more, or 6 or more. When the aspect ratio is within the above range, the flake-shaped microcopper particles in the bonding copper paste are oriented substantially parallel to the bonding surface, so that the volume shrinkage when the bonding copper paste is sintered is reduced. Easy to suppress. As used herein, the "aspect ratio" refers to the long side / thickness of the particles. The measurement of the long side and the thickness of the particle can be obtained from, for example, an SEM image of the particle.

本明細書において、サブマイクロ銅粒子とは、粒子径が0.1μm以上1.0μm未満である粒子を意味し、マイクロ銅粒子とは、粒子径が1.0μm以上20μm未満である粒子を意味する。 In the present specification, the sub-micro copper particles mean particles having a particle diameter of 0.1 μm or more and less than 1.0 μm, and the micro copper particles mean particles having a particle diameter of 1.0 μm or more and less than 20 μm. do.

<熱分解性樹脂>
熱分解性樹脂としては、焼結性銅粒子の間を繋ぎシート状に成型する目的から、分子量1000以上のものが好ましく、特に10000以上のものがより好ましい。これ以下では、熱分解性樹脂の靭性が乏しくなり、シート状に成型するのに必要な樹脂量が増え、接合特性が悪くなる。
<Pyrolytic resin>
The thermally decomposable resin preferably has a molecular weight of 1000 or more, and more preferably 10,000 or more, for the purpose of connecting the sintered copper particles and molding the resin into a sheet. Below this, the toughness of the pyrolytic resin becomes poor, the amount of resin required for molding into a sheet increases, and the bonding characteristics deteriorate.

熱分解性樹脂としては熱可塑性のものが好ましい。すなわち、架橋高分子ではなく、直鎖あるいは分岐状高分子であることが好ましい。仮圧着を可能とする点から、軟化点(ガラス転移点)が仮圧着温度より低い高分子が好ましい。仮圧着温度は、200℃程度より低いことから、軟化点(ガラス転移点)は200℃以下が好ましく、170℃以下がより好ましく、150℃以下がさらに好ましい。 As the pyrolytic resin, a thermoplastic one is preferable. That is, it is preferably a linear or branched polymer rather than a crosslinked polymer. From the viewpoint of enabling temporary crimping, a polymer having a softening point (glass transition point) lower than the temporary crimping temperature is preferable. Since the temporary crimping temperature is lower than about 200 ° C., the softening point (glass transition point) is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, and even more preferably 150 ° C. or lower.

熱分解性樹脂は、焼結温度より低温で熱分解することが好ましい。特に、無酸素雰囲気下の熱分解時に残渣など残さずガス化する樹脂であることが好ましい。熱分解後のオリゴマーや炭化物などの残渣は、焼結を阻害するため好ましくない。熱分解性樹脂の熱分解後の残渣は、銅粒子の焼結を妨げるため少ないほど良く、熱分解前の樹脂質量に対し通常5質量%以下が好ましく、2質量%以下がより好ましい。熱分解性樹脂の熱分解後の残渣量は、3〜5質量%水素含有イナートガス(窒素あるいはアルゴン)中で熱分解性樹脂のTG/DTAにより焼結温度で焼結時間だけ保持した後の重量変化量として測定できる。なお、空気中でのTG/DTA測定は酸化分解が進むため、還元雰囲気での残渣量と比較して少なくなるため好ましくない。 The thermally decomposable resin is preferably thermally decomposed at a temperature lower than the sintering temperature. In particular, it is preferable that the resin is gasified without leaving any residue during thermal decomposition in an oxygen-free atmosphere. Residues such as oligomers and carbides after thermal decomposition are not preferable because they inhibit sintering. The amount of the residue after thermal decomposition of the pyrolyzable resin is better because it hinders the sintering of copper particles, and is usually preferably 5% by mass or less, more preferably 2% by mass or less, based on the mass of the resin before thermal decomposition. The amount of residue after pyrolysis of the pyrolyzable resin is the weight after holding for the sintering time at the sintering temperature by the TG / DTA of the pyrolysis resin in 3 to 5% by mass hydrogen-containing inert gas (nitrogen or argon). It can be measured as the amount of change. It should be noted that the TG / DTA measurement in air is not preferable because the amount of residue in the reducing atmosphere is smaller than that in the reducing atmosphere because oxidative decomposition proceeds.

なお、熱分解性樹脂は熱解重合性の結合基を主鎖中に有する高分子が好ましい。上記所望の特性を有するこのような高分子として、ポリカルボナート、ポリメタクリル酸、ポリメタクリル酸エステル、ポリエステル、ポリアクリル酸、ポリアクリル酸エステル、が挙げられる。 The thermally decomposable resin is preferably a polymer having a thermally depolymerizable bonding group in the main chain. Examples of such a polymer having the above desired properties include polycarbonate, polymethacrylic acid, polymethacrylic acid ester, polyester, polyacrylic acid, and polyacrylic acid ester.

<その他の金属粒子>
ダイボンドシートは、その他の金属粒子として金粒子、銀粒子、パラジウム粒子、亜鉛粒子、ニッケル粒子等を含み得る。これらの金属粒子が少量含まれることにより、金属銅粒子の焼結温度が低下し、接合し易くなる。
<Other metal particles>
The die bond sheet may contain gold particles, silver particles, palladium particles, zinc particles, nickel particles and the like as other metal particles. By containing a small amount of these metal particles, the sintering temperature of the metallic copper particles is lowered, and bonding becomes easy.

焼成後のダイボンドシートから生じた銅焼結体(接合層)に含まれる炭素分は0.5質量%以下であることが好ましく、0.3質量%以下がより好ましく、0.2質量%以下がさらに好ましい。これより多い炭素分が含まれると、焼結が阻害され接合強度、接続信頼性が低下する。 The carbon content in the copper sintered body (bonding layer) generated from the die-bonded sheet after firing is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and 0.2% by mass or less. Is even more preferable. If a larger amount of carbon is contained, sintering is hindered and the bonding strength and connection reliability are lowered.

本実施形態のダイボンドシートは、銅粒子と熱分解性樹脂を含み、炭素分が2.0質量%以上10.0質量%以下であることが好ましい。炭素分は「金属中の炭素定量方法」で用いられる測定方法、例えば誘導加熱燃焼赤外線吸収法で測定することができる。 The die bond sheet of the present embodiment contains copper particles and a thermally decomposable resin, and preferably has a carbon content of 2.0% by mass or more and 10.0% by mass or less. The carbon content can be measured by the measuring method used in the "carbon quantification method in metal", for example, the induction heating combustion infrared absorption method.

<ダイボンドシートの組成比>
銅粒子の含有量は、ダイボンドシートの全質量を基準として70質量%以上95質量%以下であることが好ましく、75質量%以上94質量%以下であることがより好ましい。銅粒子の割合がこれより少ない場合には、熱分解性樹脂の分解に伴う体積収縮が大きくなり、ヒビ、剥離、マクロボイドの発生、焼結体密度の低下による接合不良の発生や接続信頼性の低下が生じる原因となる。また、これより多い場合には、熱分解性樹脂の割合が低下し、成形性の低下、仮止め性の低下が生じる。
<Composition ratio of die bond sheet>
The content of the copper particles is preferably 70% by mass or more and 95% by mass or less, and more preferably 75% by mass or more and 94% by mass or less, based on the total mass of the die bond sheet. When the proportion of copper particles is smaller than this, the volume shrinkage due to the decomposition of the thermally decomposable resin becomes large, cracks, peeling, macrovoids occur, bonding defects occur due to a decrease in sintered body density, and connection reliability. It causes a decrease in. On the other hand, if the amount is more than this, the proportion of the thermally decomposable resin decreases, resulting in a decrease in moldability and a decrease in temporary fixing property.

また、熱分解性樹脂の含有量は、ダイボンドシートの全質量を基準として5質量%以上25質量%以下であることが好ましく、6質量%以上20質量%以下であることが好ましい。この場合、仮止め性と接着強度を向上させることができる。 The content of the thermally decomposable resin is preferably 5% by mass or more and 25% by mass or less, and preferably 6% by mass or more and 20% by mass or less, based on the total mass of the die bond sheet. In this case, the temporary fixing property and the adhesive strength can be improved.

その他の金属粒子が含まれる場合、その含有量は、ダイボンドシートの全質量を基準として0.05質量%以上10質量%以下であることが好ましく、0.1質量%以上5質量%以下であることが好ましい。これにより、焼結温度が低下し、接合し易くなる。 When other metal particles are contained, the content thereof is preferably 0.05% by mass or more and 10% by mass or less, and 0.1% by mass or more and 5% by mass or less, based on the total mass of the die bond sheet. Is preferable. This lowers the sintering temperature and facilitates joining.

<ダイボンドシートの製造方法>
次に、本実施形態のダイボンドシートの製造方法について説明する。ダイボンドシートを得るためには、原材料を分散あるいは溶解したペースト状組成物を塗工によりシート状に成形する方法、原材料の粉末を混合し熱間ロール、プレスによりシート状に成形する方法が挙げられる。
<Manufacturing method of die bond sheet>
Next, a method for manufacturing the die bond sheet of the present embodiment will be described. In order to obtain a die bond sheet, there are a method of forming a paste-like composition in which raw materials are dispersed or dissolved into a sheet by coating, and a method of mixing powders of raw materials and forming into a sheet by a hot roll or a press. ..

塗工に用いられるペースト状組成物は、原材料である粒子や樹脂を溶剤に分散あるいは溶解してペースト状にして用いることが好ましい。このペースト状組成物に用いられる溶剤としては、銅粒子の分散性が高く、熱分解性樹脂を高濃度に溶解でき、且つ、乾燥工程で揮発するものが好ましい。 The paste-like composition used for coating is preferably used in the form of a paste by dispersing or dissolving particles or resins as raw materials in a solvent. As the solvent used in this paste-like composition, it is preferable that the copper particles have high dispersibility, the pyrolytic resin can be dissolved at a high concentration, and the solvent is volatilized in the drying step.

銅粒子を分散できかつ熱分解性樹脂を溶解できる分散媒は、銅粒子の表面処理剤の種類、接合用銅ペーストに添加された分散剤の種類、熱分解性樹脂の種類等に依存する。例えば、高極性な分散剤、高極性な熱分解性樹脂を選んだ場合には高極性な溶剤が好適であり、低極性な分散剤、低極性な熱分解性樹脂を選んだ場合には低極性な溶剤が好適である。
このような分散剤、熱分解性樹脂、溶剤の種類の組み合わせには、それぞれのハンセン溶解度パラメータが近いものを選ぶことが好適であると類推される。ハンセン溶解度パラメータは、例えば、下記公開文献の巻末データベースから検索する、又は、データベース及びシミュレーション統合ソフトウエアHSPiPで検索/計算することができる。
公開文献:「HANSEN SOLUBILITY PARAMETERS:A USER’S HANDBOOK」(CRC Press、1999)
The dispersion medium capable of dispersing the copper particles and dissolving the pyrolytic resin depends on the type of the surface treatment agent for the copper particles, the type of the dispersant added to the copper paste for bonding, the type of the pyrolytic resin, and the like. For example, when a highly polar dispersant or a highly polar pyrolytic resin is selected, a highly polar solvent is suitable, and when a low polar dispersant or a low polar pyrolytic resin is selected, it is low. Polar solvents are preferred.
It is inferred that it is preferable to select a combination of such dispersants, pyrolytic resins, and solvents having similar Hansen solubility parameters. The Hansen solubility parameter can be searched, for example, from the database at the end of the following publications, or searched / calculated by the database and simulation integrated software HSPiP.
Published literature: "HANSEN SOLUBILITY PARAMETERS: A USER'S HANDBOOK" (CRC Press, 1999)

銅粒子の分散性が良好で、熱分解性樹脂を高濃度に溶解したペースト状組成物を構成するには、表1に示したような態様が好ましい。仮にこれらの態様を採用しない場合、銅粒子の分散性不良、熱分解性樹脂が溶解不良により、粘度の上昇、濃度の低下、粗粒の発生などのペースト性状の低下が生じ易い。また、得られるシートが脆くなる、シート内の組成が不均一になるなどのシート性状の低下、ダイボンド層の不均一化、接合強度の低下などが生じ易い。 In order to form a paste-like composition in which the dispersibility of the copper particles is good and the pyrolytic resin is dissolved at a high concentration, the embodiment shown in Table 1 is preferable. If these aspects are not adopted, poor dispersibility of copper particles and poor dissolution of the thermally decomposable resin tend to cause a decrease in viscosity, a decrease in concentration, and a decrease in paste properties such as generation of coarse particles. Further, the obtained sheet tends to be brittle, the composition in the sheet becomes non-uniform, and the sheet properties deteriorate, the die bond layer becomes non-uniform, and the bonding strength tends to decrease.

Figure 0006965531
Figure 0006965531

高極性溶剤の例としては、1,3−ジオキソラン−2−オン、4−メチル−1,3−ジオキソラン−2−オンなどの炭酸エステル類、メタノール、エタノールなどの低級アルコール類、グリセリン、ジグリセリン、ジエチレングリコール、プロピレングリコールなどの多価アルコール類、アミン類、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等の酸アミド、γ―ブチロラクトンなどのエステル類、水が挙げられる。 Examples of highly polar solvents include carbonic acid esters such as 1,3-dioxolan-2-one and 4-methyl-1,3-dioxolan-2-one, lower alcohols such as methanol and ethanol, glycerin and diglycerin. , Polyhydric alcohols such as diethylene glycol and propylene glycol, amines, acid amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, esters such as γ-butyrolactone, water. Can be mentioned.

低極性溶剤の例としては、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、エチレングリコール、ブチレングリコール、α―テルピネオール、ボルニルシクロヘキサノール(MTPH)等の高級アルコール類及びエチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)、乳酸エチル、乳酸ブチル、炭酸プロピレン等のエステル類、シクロヘキサノン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられる。 Examples of low polar solvents include higher alcohols such as pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, butylene glycol, α-terpineol, and bornylcyclohexanol (MTPH), and ethylene glycol butyl ether and ethylene glycol phenyl ether. , Diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropylmethyl ether, triethylene glycol Dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether, tripropylene Ethers such as glycol dimethyl ether, ethylene glycol ethyl ether acetate, ethylene glycol butyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol butyl ether acetate, dipropylene glycol methyl ether acetate (DPMA), ethyl lactate, butyl lactate, esters such as propylene carbonate, etc. Examples thereof include aliphatic hydrocarbons such as cyclohexanone, octane, nonane, decane and undecane, and aromatic hydrocarbons such as benzene, toluene and xylene.

溶剤の配合量は、金属粒子100質量部(銅粒子、及び含まれる場合はその他の金属粒子の合計量)に対し、10〜40質量部であることが好ましい。 The blending amount of the solvent is preferably 10 to 40 parts by mass with respect to 100 parts by mass of the metal particles (the total amount of the copper particles and other metal particles, if included).

ペースト状組成物は、塗布・成型性の観点から、25℃におけるCasson粘度が0.01Pa・s以上10Pa・s以下であることが好ましく、0.05Pa・s以上5Pa・s以下であることがより好ましい。 From the viewpoint of coating and moldability, the paste-like composition preferably has a Casson viscosity at 25 ° C. of 0.01 Pa · s or more and 10 Pa · s or less, and preferably 0.05 Pa · s or more and 5 Pa · s or less. More preferred.

上記組成物をシート状に成形させる手法としては、ペースト状組成物をシート状に成形させられる手法であればよく、このような手法として、インクジェット印刷、スクリーン印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、バーコート、アプリケータ、スプレーコータ、電着塗装等を用いることができる。 The method for molding the composition into a sheet may be any method as long as the paste-like composition is formed into a sheet, and such methods include inkjet printing, screen printing, jet printing, dispenser, and jet dispenser. , Kamma coater, slit coater, die coater, gravure coater, slit coat, letterpress printing, intaglio printing, gravure printing, stencil printing, bar coat, applicator, spray coater, electrodeposition coating and the like can be used.

ペースト状組成物は、接合を行う被着体の被着面に直接、シート状に形成されてもよい。また、仮の成形基板にシート状に形成した後、剥離して用いても良い。 The paste-like composition may be formed in the form of a sheet directly on the adherend surface of the adherend to be bonded. Further, it may be used after being formed into a sheet on a temporary molded substrate and then peeled off.

成形基板としては平滑なものが好ましい。成形基板の平滑性は、成形されたダイボンドシートの平滑性の観点から、十点平均表面粗さが20μm以下の平坦面を有する板状又はシート状の基板が好ましい。また、乾燥工程を経て形成されたダイボンドシートを基板から離型する必要性から、成形基板の表面材質はダイボンドシートに対し接着性を有していないものが好ましい。さらに乾燥温度で変形しない耐熱性を有する材質であることが好ましい。 A smooth molded substrate is preferable. From the viewpoint of the smoothness of the molded die-bonded sheet, the smoothness of the molded substrate is preferably a plate-like or sheet-like substrate having a flat surface having a ten-point average surface roughness of 20 μm or less. Further, since it is necessary to release the die bond sheet formed through the drying step from the substrate, it is preferable that the surface material of the molded substrate does not have adhesiveness to the die bond sheet. Further, it is preferable that the material has heat resistance that does not deform at the drying temperature.

このような成形基板の材質としては、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリイミド、PEEK、アルミニウム、ガラス、アルミナ、窒化ケイ素、ステンレススチールを用いることができる。また、耐熱性を有する基板やクロスに上記材質をコート又は含浸したものを、成形基板として用いてもよい。 As the material of such a molded substrate, polyethylene terephthalate, polytetrafluoroethylene, polyimide, PEEK, aluminum, glass, alumina, silicon nitride, and stainless steel can be used. Further, a heat-resistant substrate or cloth coated or impregnated with the above material may be used as a molded substrate.

シート状に成形されたペースト状組成物は、溶剤を乾燥させることで、熱分解性樹脂が銅粒子のバインダとなって固形化し、自立シートとして分離できる。 The paste-like composition formed into a sheet can be separated as a self-supporting sheet by drying the solvent so that the pyrolytic resin becomes a binder of copper particles and solidifies.

上記の乾燥方法は、常温放置による乾燥、加熱乾燥又は減圧乾燥を用いることができる。加熱乾燥又は減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整することが好ましく、例えば、50〜180℃で1〜120分間乾燥させることが好ましい。 As the above-mentioned drying method, drying by leaving at room temperature, heat drying or vacuum drying can be used. For heat drying or vacuum drying, hot plate, warm air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device , A heater heating device, a steam heating furnace, a hot plate pressing device, or the like can be used. The drying temperature and time are preferably adjusted appropriately according to the type and amount of the dispersion medium used, and for example, drying at 50 to 180 ° C. for 1 to 120 minutes is preferable.

銅粒子の酸化抑制の観点から、非酸化雰囲気で乾燥してもよい。アルゴン、窒素、水蒸気などの非酸化性ガスによる置換、吹きつけ、が挙げられる。 From the viewpoint of suppressing the oxidation of copper particles, the copper particles may be dried in a non-oxidizing atmosphere. Substitution and spraying with non-oxidizing gases such as argon, nitrogen and water vapor can be mentioned.

得られたダイボンドシートはダイボンド工程に用いられる。離型性が悪い場合には、ブレード状の板を得られたダイボンドシートと成形基板との間に差し込んで分離することができる。 The obtained die bond sheet is used in the die bond process. When the releasability is poor, the blade-shaped plate can be inserted between the obtained die bond sheet and the molded substrate to separate them.

ダイボンドシートは、ダイボンド工程で必要なサイズに切断することができる。切断は成形基板上から離型する前に行ってもよいし、後に行ってもよい。 The die bond sheet can be cut to the size required in the die bond process. The cutting may be performed before the mold is released from the molded substrate, or may be performed after the mold is released.

ダイボンドシートの厚みは、被着体である半導体素子及び半導体素子搭載用支持部材の表面粗さ及び接合後の接続信頼性に応じて適宜設定することができる。5μm以上であることが好ましく、10μm以上であることがより好ましい。 The thickness of the die bond sheet can be appropriately set according to the surface roughness of the semiconductor element as an adherend and the support member for mounting the semiconductor element and the connection reliability after joining. It is preferably 5 μm or more, and more preferably 10 μm or more.

<半導体装置の製造方法>
半導体装置は、本実施形態のダイボンドシートを、半導体素子と半導体素子搭載用支持部材との間に挟み、あるいは、被着物の被着面に形成されたダイボンドシート上に他方の被着部材を重ねて、熱圧着して仮留めし、さらに(場合により無加圧で)熱焼成することにより半導体素子と半導体素子搭載用支持部材とを接合することで得られる。
<Manufacturing method of semiconductor devices>
In the semiconductor device, the die bond sheet of the present embodiment is sandwiched between the semiconductor element and the support member for mounting the semiconductor element, or the other adherend member is superposed on the die bond sheet formed on the adherend surface of the adherend. It is obtained by joining the semiconductor element and the support member for mounting the semiconductor element by heat-bonding, temporarily fixing, and then heat-burning (in some cases, without pressurization).

図1は、半導体装置の製造方法を示す模式図である。図1(a)では、ダイボンドシート1aが自立したシート状物として成形されており、半導体素子2、半導体素子搭載用支持部材3の間に挟んで接合に供される。図1(b)では、ダイボンドシート1bは半導体素子搭載用支持部材3上に接してシート状に形成されており、ダイボンドシート1b上に半導体素子2を載せて接合に供される。ダイボンドシート1bは接合処理前でも、含有する熱分解性樹脂の付着性により、半導体素子搭載用支持部材3に付着している。図1(c)では、ダイボンドシート1cは半導体素子2に接してシート状に形成されており、ダイボンドシート1cが半導体素子搭載用支持部材3に接するように半導体素子2を半導体素子搭載用支持部材3に載せて接合に供される。ダイボンドシート1cは接合処理前でも、含有する熱分解性樹脂の付着性により、半導体素子2に付着している。 FIG. 1 is a schematic view showing a method of manufacturing a semiconductor device. In FIG. 1A, the die bond sheet 1a is formed as a self-supporting sheet, and is sandwiched between the semiconductor element 2 and the semiconductor element mounting support member 3 for joining. In FIG. 1B, the die bond sheet 1b is formed in contact with the semiconductor element mounting support member 3 in a sheet shape, and the semiconductor element 2 is placed on the die bond sheet 1b and subjected to bonding. The die bond sheet 1b is attached to the semiconductor element mounting support member 3 due to the adhesiveness of the contained pyrolytic resin even before the joining treatment. In FIG. 1C, the die bond sheet 1c is formed in a sheet shape in contact with the semiconductor element 2, and the semiconductor element 2 is placed in contact with the semiconductor element mounting support member 3 so that the die bond sheet 1c is in contact with the semiconductor element mounting support member 3. It is placed on 3 and used for joining. The die bond sheet 1c adheres to the semiconductor element 2 even before the bonding treatment due to the adhesiveness of the contained pyrolytic resin.

熱圧着による仮留めは、ダイボンドシートに含まれる熱分解性樹脂を軟化させて圧力を加えることで、熱分解性樹脂の密着力が生じ、これにより半導体素子と半導体素子搭載用支持部材とを接合することを意味している。このため、銀や銅のシート状多孔質体をもちいるような金属接合の形成とは異なり、低温短時間での処理が可能であるため、チップマウンタやフリップチップボンダのようなチップ搭載装置、熱圧着装置などを用いて簡便に行うことができる。 Temporary fastening by thermocompression bonding softens the pyrolytic resin contained in the die bond sheet and applies pressure to generate adhesion of the pyrolytic resin, thereby joining the semiconductor element and the support member for mounting the semiconductor element. Means to do. For this reason, unlike the formation of metal joints that use silver or copper sheet-like porous materials, processing can be performed at low temperatures in a short time, so chip mounting devices such as chip mounters and flip chip bonders can be used. This can be easily performed using a thermocompression bonding device or the like.

半導体素子と半導体素子搭載用支持部材をダイボンドシートで仮止めすることで、次の焼結工程までの工程の取り回しが楽になり、半導体素子と半導体素子搭載用支持部材の接合位置精度を上げられる。また、厚みの決まったシート状のダイボンドシートを用いることにより、焼成後のダイボンド層厚みの制御が容易になる。 By temporarily fixing the semiconductor element and the support member for mounting the semiconductor element with a die bond sheet, the process up to the next sintering step can be easily handled, and the joint position accuracy between the semiconductor element and the support member for mounting the semiconductor element can be improved. Further, by using a sheet-shaped die bond sheet having a fixed thickness, it becomes easy to control the thickness of the die bond layer after firing.

仮止めの温度の下限は、熱分解性樹脂が軟化する温度であり、熱分解性樹脂の種類、分子量、分岐度により異なるが、通常60℃以上である。また、仮止めの温度の上限は、熱分解性樹脂の熱分解開始温度であり、熱分解性樹脂の種類によって異なるが、通常200℃以上300℃以下である。ただし、これらの温度は、ダイボンドシートの温度であり、短時間で昇温する目的で、加熱装置の温度をこの温度以上に設定しても良い。 The lower limit of the temperature for temporary fixing is the temperature at which the pyrolytic resin softens, and varies depending on the type, molecular weight, and degree of branching of the pyrolytic resin, but is usually 60 ° C. or higher. The upper limit of the temperature for temporary fixing is the thermal decomposition start temperature of the thermally decomposable resin, which varies depending on the type of the thermally decomposable resin, but is usually 200 ° C. or higher and 300 ° C. or lower. However, these temperatures are the temperatures of the die bond sheet, and the temperature of the heating device may be set to this temperature or higher for the purpose of raising the temperature in a short time.

仮止め工程の圧着圧力は、熱分解性樹脂が軟化した状態でダイボンドシートが被着体に変形・密着するのに必要な圧力であり、ダイボンドシートの溶融粘度に依存するが、通常0.01MPa以上であり、0.1MPa以上が好ましい。圧着圧力の上限は、ダイボンドシートの変形によるチップ端部への這い上がり量により制約され、通常10MPa以下である。 The crimping pressure in the temporary fixing step is the pressure required for the die bond sheet to deform and adhere to the adherend in the softened state of the pyrolyzable resin, and depends on the melt viscosity of the die bond sheet, but is usually 0.01 MPa. As mentioned above, 0.1 MPa or more is preferable. The upper limit of the crimping pressure is limited by the amount of creeping up to the tip end due to the deformation of the die bond sheet, and is usually 10 MPa or less.

ダイボンドシートにより仮止めされた半導体素子と半導体素子搭載用支持部材は、次いで加熱工程で熱分解性樹脂の脱離と銅粒子の焼結が進行し、半導体素子と半導体素子搭載用支持部材間を銅焼結体で強固に接合する。 The semiconductor element temporarily fixed by the die bond sheet and the support member for mounting the semiconductor element are then desorbed from the thermally decomposable resin and sintered with copper particles in the heating process, and the semiconductor element and the support member for mounting the semiconductor element are separated from each other. Firmly join with a copper sintered body.

仮止め工程から加熱工程の間に、仮止めされた半導体素子と半導体素子搭載用支持部材は、室温に冷却されていてもかまわない。熱分解性樹脂で仮止めされているため、この間のハンドリング時の半導体素子のズレが抑制でき、取り扱いが簡便になる。さらに、ペースト状組成物とは異なり揮発性の有機溶剤を実質的に含まないため、仮止めされた状態での可使時間に制約を生じない、有機溶剤用の排気設備を必要としないといった特長がある。 During the period from the temporary fixing step to the heating step, the temporarily fixed semiconductor element and the semiconductor element mounting support member may be cooled to room temperature. Since it is temporarily fixed with a pyrolytic resin, it is possible to suppress the displacement of the semiconductor element during handling during this period, and the handling becomes easy. Furthermore, unlike the paste-like composition, it does not substantially contain a volatile organic solvent, so that there is no restriction on the pot life in the temporarily fixed state, and no exhaust equipment for the organic solvent is required. There is.

加熱工程は、熱分解性樹脂の分解・脱離と、銅粒子の焼結が進行するのに十分な温度が必要であり、通常、180℃以上が好ましく、200℃以上がより好ましい。温度の上限は、半導体素子の耐熱性や、焼成後の残留熱応力の程度により決まり、通常350℃以下であることが好ましい。また、銅粒子の酸化物除去や酸化防止の観点から、好ましくは還元雰囲気で加熱する。還元雰囲気としては、水素、アンモニアガス、ギ酸、等の還元性ガスやこれらの還元性ガスと窒素、アルゴン、水蒸気等の不活性ガスとの混合ガスが挙げられる。 The heating step requires a temperature sufficient for the decomposition / desorption of the pyrolytic resin and the sintering of the copper particles to proceed, and is usually preferably 180 ° C. or higher, more preferably 200 ° C. or higher. The upper limit of the temperature is determined by the heat resistance of the semiconductor element and the degree of residual thermal stress after firing, and is usually preferably 350 ° C. or lower. Further, from the viewpoint of removing oxides of copper particles and preventing oxidation, heating is preferably performed in a reducing atmosphere. Examples of the reducing atmosphere include reducing gases such as hydrogen, ammonia gas, and formic acid, and mixed gases of these reducing gases and inert gases such as nitrogen, argon, and steam.

加熱工程において、無加圧での焼成が可能であり、この場合、特殊な熱圧着装置を必要とせず、多量の半導体装置を一括で処理できるため、コストが有利になる。ただし、歩留まり向上、焼結体緻密度向上を目的に、ダイボンドシートに対し加圧を行っても良い。加圧圧力は0.01MPa〜10MPaとすることができる。0.01MPa〜0.1MPa程度の低圧であれば、剥離等の接合欠陥を抑えて歩留まりの向上が見込まれる。一方、0.1MPa〜10MPa程度の圧力であれば焼結体緻密度の向上により、接後強度の向上や、熱伝導率の向上が見込める。加熱加圧方法としては、重り、バネ冶具、シリコーンゴム等による加圧冶具、熱圧着装置、熱板プレス装置が挙げられる。 In the heating step, firing without pressurization is possible, and in this case, a large amount of semiconductor devices can be processed in a batch without the need for a special thermocompression bonding device, so that the cost is advantageous. However, the die bond sheet may be pressurized for the purpose of improving the yield and the density of the sintered body. The pressurizing pressure can be 0.01 MPa to 10 MPa. At a low pressure of about 0.01 MPa to 0.1 MPa, it is expected that the yield will be improved by suppressing joint defects such as peeling. On the other hand, if the pressure is about 0.1 MPa to 10 MPa, it is expected that the post-contact strength and the thermal conductivity will be improved by improving the density of the sintered body. Examples of the heating and pressurizing method include a weight, a spring jig, a pressure jig using silicone rubber, a thermocompression bonding device, and a hot plate pressing device.

以上の工程を経ることにより、図2に示すように、半導体素子2と半導体素子搭載用支持部材3とが、ダイボンドシートの焼結体(焼結金属層)4を介して接合されてなる、半導体装置100を得ることができる。 Through the above steps, as shown in FIG. 2, the semiconductor element 2 and the semiconductor element mounting support member 3 are joined via the sintered body (sintered metal layer) 4 of the die bond sheet. The semiconductor device 100 can be obtained.

図3は、本実施形態の半導体装置の一例を示す模式断面図である。図3に示す半導体装置110は、リードフレーム11a上に焼結金属層4を介して接続された半導体素子14と、これらをモールドするモールドレジン13とからなる。半導体素子14は、ワイヤ12を介してリードフレーム11bに接続されている。 FIG. 3 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. The semiconductor device 110 shown in FIG. 3 includes a semiconductor element 14 connected to the lead frame 11a via a sintered metal layer 4, and a mold resin 13 for molding the semiconductor elements 14. The semiconductor element 14 is connected to the lead frame 11b via a wire 12.

図4は、本実施形態の半導体装置の一例を示す模式断面図である。図4に示される半導体装置200は、第一の電極22及び第二の電極24を有する絶縁基板21と、第一の電極22上に焼結金属層4によって接合された半導体素子23と、半導体素子23と第二の電極24とを電気的に接続する金属配線25とを備える。金属配線25と半導体素子23、及び金属配線25と第二の電極24はそれぞれ焼結金属層4によって接合されている。また、半導体素子23は、ワイヤ27を介して第三の電極26に接続されている。半導体装置200は、絶縁基板21の上記電極等が搭載されている面とは反対側に、金属板28を備えている。半導体装置200は、上記構造体が絶縁体29で封止されている。半導体装置200は、第一の電極22上に半導体素子23を1個有しているが、2個以上有していてもよい。この場合、複数ある半導体素子23はそれぞれ焼結金属層4によって金属配線25と接合することができる。 FIG. 4 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. The semiconductor device 200 shown in FIG. 4 includes an insulating substrate 21 having a first electrode 22 and a second electrode 24, a semiconductor element 23 bonded to the first electrode 22 by a sintered metal layer 4, and a semiconductor. A metal wiring 25 for electrically connecting the element 23 and the second electrode 24 is provided. The metal wiring 25 and the semiconductor element 23, and the metal wiring 25 and the second electrode 24 are joined by a sintered metal layer 4, respectively. Further, the semiconductor element 23 is connected to the third electrode 26 via a wire 27. The semiconductor device 200 includes a metal plate 28 on the side of the insulating substrate 21 opposite to the surface on which the electrodes and the like are mounted. In the semiconductor device 200, the structure is sealed with an insulator 29. The semiconductor device 200 has one semiconductor element 23 on the first electrode 22, but may have two or more. In this case, the plurality of semiconductor elements 23 can be joined to the metal wiring 25 by the sintered metal layer 4, respectively.

図5は、本実施形態の半導体装置の一例を示す模式断面図である。図5に示される半導体装置210は、半導体素子23と金属配線25との間にブロック体30が設けられており、半導体素子23とブロック体30、及びブロック体30と金属配線25がそれぞれ焼結金属層4によって接合されていること以外は、図4に示される半導体装置200と同様の構成を有する。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。ブロック体30としては、一般に熱伝導性及び導電性に優れるものを用いることができる。 FIG. 5 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. In the semiconductor device 210 shown in FIG. 5, a block body 30 is provided between the semiconductor element 23 and the metal wiring 25, and the semiconductor element 23 and the block body 30 and the block body 30 and the metal wiring 25 are sintered. It has the same configuration as the semiconductor device 200 shown in FIG. 4, except that it is joined by the metal layer 4. The position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example. As the block body 30, generally, a block body 30 having excellent thermal conductivity and conductivity can be used.

図6は、本実施形態の半導体装置の一例を示す模式断面図である。図6に示される半導体装置220は、第一の電極22上に、半導体素子23及びブロック体30並びにこれらを接合する焼結金属層4が更に設けられていること以外は、図5に示される半導体装置210と同様の構成を有する。半導体装置220は、第一の電極22上に半導体素子を2個有しているが、3個以上有していてもよい。この場合も、3個以上ある半導体素子23はそれぞれブロック体30を介して焼結金属層4によって金属配線25と接合することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。 FIG. 6 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. The semiconductor device 220 shown in FIG. 6 is shown in FIG. 5, except that the semiconductor element 23, the block body 30, and the sintered metal layer 4 for joining the semiconductor element 23 and the block body 30 are further provided on the first electrode 22. It has the same configuration as the semiconductor device 210. The semiconductor device 220 has two semiconductor elements on the first electrode 22, but may have three or more. In this case as well, the three or more semiconductor elements 23 can be joined to the metal wiring 25 by the sintered metal layer 4 via the block body 30, respectively. The position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example.

図7は、本実施形態の半導体装置の一例を示す模式断面図である。図7に示される半導体装置300は、第一の電極22と、第一の電極22上に焼結金属層4によって接合された半導体素子23と、半導体素子23と第二の電極24とを電気的に接続する金属配線25とを備える。金属配線25と半導体素子23、及び金属配線25と第二の電極24はそれぞれ焼結金属層4によって接合されている。また、半導体素子23は、ワイヤ27を介して第三の電極26に接続されている。半導体装置300は、上記構造体が封止材31で封止されている。半導体装置300は、第一の電極22上に半導体素子23を1個有しているが、2個以上有していてもよい。この場合、複数ある半導体素子23はそれぞれ焼結金属層4によって金属配線25と接合することができる。 FIG. 7 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. In the semiconductor device 300 shown in FIG. 7, the first electrode 22, the semiconductor element 23 bonded to the first electrode 22 by the sintered metal layer 4, the semiconductor element 23, and the second electrode 24 are electrically connected to each other. It is provided with a metal wiring 25 for connecting to the object. The metal wiring 25 and the semiconductor element 23, and the metal wiring 25 and the second electrode 24 are joined by a sintered metal layer 4, respectively. Further, the semiconductor element 23 is connected to the third electrode 26 via a wire 27. In the semiconductor device 300, the structure is sealed with a sealing material 31. The semiconductor device 300 has one semiconductor element 23 on the first electrode 22, but may have two or more. In this case, the plurality of semiconductor elements 23 can be joined to the metal wiring 25 by the sintered metal layer 4, respectively.

図8は、本実施形態の半導体装置の一例を示す模式断面図である。図8に示す半導体装置310は、半導体素子23と金属配線25との間にブロック体30が設けられており、半導体素子23とブロック体30、及びブロック体30と金属配線25がそれぞれ焼結金属層4によって接合されていること以外は、図7に示される半導体装置300と同様の構成を有する。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。 FIG. 8 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. In the semiconductor device 310 shown in FIG. 8, a block body 30 is provided between the semiconductor element 23 and the metal wiring 25, and the semiconductor element 23 and the block body 30 and the block body 30 and the metal wiring 25 are made of sintered metal, respectively. It has the same configuration as the semiconductor device 300 shown in FIG. 7, except that it is joined by the layer 4. The position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example.

図9は、本実施形態の半導体装置の一例を示す模式断面図である。図9に示される半導体装置320は、第一の電極22上に、半導体素子23及びブロック体30並びにこれらを接合する焼結金属層4が更に設けられていること以外は、図8に示される半導体装置310と同様の構成を有する。半導体装置320は、第一の電極22上に半導体素子を2個有しているが、3個以上有していてもよい。この場合も、3個以上ある半導体素子23はそれぞれブロック体30を介して焼結金属層4によって金属配線25と接合することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。 FIG. 9 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. The semiconductor device 320 shown in FIG. 9 is shown in FIG. 8 except that the semiconductor element 23, the block body 30, and the sintered metal layer 4 for joining the semiconductor element 23 and the block body 30 are further provided on the first electrode 22. It has the same configuration as the semiconductor device 310. The semiconductor device 320 has two semiconductor elements on the first electrode 22, but may have three or more. In this case as well, the three or more semiconductor elements 23 can be joined to the metal wiring 25 by the sintered metal layer 4 via the block body 30, respectively. The position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example.

図10は、本実施形態の半導体装置の一例を示す模式断面図である。図10に示す半導体装置400は、第一の熱伝導部材32と、第一の熱伝導部材32上に焼結金属層4を介して接合された半導体素子23と、半導体素子23上に焼結金属層4を介して接合されたブロック体30と、ブロック体30上に焼結金属層4を介して接合された第二の熱伝導部材33と、を備える。半導体素子23は、ワイヤ35を介して電極34に接続されている。半導体装置400は、第一の熱伝導部材32と第二の熱伝導部材の間が封止材31で封止されている。半導体装置400は、半導体素子を2個有しているが、1個又は3個以上有していてもよく、ブロック体の数も適宜変更することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。熱伝導部材は、半導体素子23から発生した熱を外部へ放出する機能、及び半導体素子を外部と電気的に接続するための電極としての機能を併せ持つものである。 FIG. 10 is a schematic cross-sectional view showing an example of the semiconductor device of the present embodiment. In the semiconductor device 400 shown in FIG. 10, the first heat conductive member 32, the semiconductor element 23 bonded to the first heat conductive member 32 via the sintered metal layer 4, and the semiconductor element 23 are sintered. A block body 30 joined via a metal layer 4 and a second heat conductive member 33 joined onto the block body 30 via a sintered metal layer 4 are provided. The semiconductor element 23 is connected to the electrode 34 via a wire 35. In the semiconductor device 400, the space between the first heat conductive member 32 and the second heat conductive member is sealed with a sealing material 31. Although the semiconductor device 400 has two semiconductor elements, it may have one or three or more, and the number of blocks can be appropriately changed. The position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example. The heat conductive member has both a function of releasing heat generated from the semiconductor element 23 to the outside and a function of an electrode for electrically connecting the semiconductor element to the outside.

上述のとおり、本実施形態のダイボンドシートは、図3に示す半導体装置110とは異なる構造を有する、図4〜10に示す半導体装置の製造にも用いることができる。例えば、図4〜10に示す構造を有する半導体装置は、大容量で高信頼性を要求される場面において好適に用いることができる。これらの構造では、半導体素子上部の端子に対して接続信頼性に劣るワイヤ接続を廃し、その代わりに金属配線25、ブロック体30を、ダイボンドシートの焼結体である焼結金属層4で接合することで、高い温度サイクル信頼性を得ることができる。 As described above, the die bond sheet of the present embodiment can also be used for manufacturing the semiconductor device shown in FIGS. 4 to 10 having a structure different from that of the semiconductor device 110 shown in FIG. For example, the semiconductor device having the structure shown in FIGS. 4 to 10 can be suitably used in a situation where a large capacity and high reliability are required. In these structures, the wire connection which is inferior in connection reliability to the terminal on the upper part of the semiconductor element is eliminated, and instead, the metal wiring 25 and the block body 30 are joined by the sintered metal layer 4 which is a sintered body of the die bond sheet. By doing so, high temperature cycle reliability can be obtained.

本実施形態のダイボンドシートを用いて得られる半導体装置としては、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、LEDモジュール等が挙げられる。本実施形態のダイボンドシートを用いて得られるパワーモジュール、発信機、増幅器、LEDモジュールは、半導体素子と半導体素子搭載用支持部材との間に高接着性を有することができる。 Examples of the semiconductor device obtained by using the die bond sheet of the present embodiment include a power module including a diode, a rectifier, a thyristor, a MOS gate driver, a power switch, a power MOSFET, an IGBT, a Schottky diode, a fast recovery diode, and a transmitter. Examples include amplifiers and LED modules. The power module, transmitter, amplifier, and LED module obtained by using the die bond sheet of the present embodiment can have high adhesiveness between the semiconductor element and the support member for mounting the semiconductor element.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(ペースト状組成物の材料)
CH−0200:サブマイクロ銅粒子(三井金属鉱業社製、製品名「CH−0200」、50%体積平均粒径 0.3μm)。
MA−025KFD:マイクロ銅粒子(三井金属鉱業社製、製品名「MA−025KFD」、フレーク状、50%体積平均粒径 4μm)。
亜鉛粒子:亜鉛粒子(Alfa−Aesar製、フレーク状)
ポリ(プロピレンカルボナート):熱分解性樹脂(Sigma−Aldrich社製)
炭酸プロピレン:溶剤(和光純薬工業製、製品名「4−メチル−1、3−ジオキソラン−2−オン」)
(Material of paste-like composition)
CH-0200: Sub-micro copper particles (manufactured by Mitsui Mining & Smelting Co., Ltd., product name "CH-0200", 50% volume average particle size 0.3 μm).
MA-025KFD: Micro copper particles (manufactured by Mitsui Mining & Smelting Co., Ltd., product name "MA-025KFD", flake-shaped, 50% volume average particle size 4 μm).
Zinc particles: Zinc particles (made by Alfa-Aesar, flakes)
Poly (propylene carbonate): Pyrolytic resin (manufactured by Sigma-Aldrich)
Propylene carbonate: Solvent (manufactured by Wako Pure Chemical Industries, Ltd., product name "4-methyl-1,3-dioxolane-2-one")

(実施例1)
分散媒として炭酸プロピレン8.84g及び熱分解性樹脂としてポリ(プロピレンカルボナート)3.30gをポリ瓶に混合し、密栓し、静置して溶解した。この60体積%ポリ(プロピレンカルボナート)溶液に、サブマイクロ銅粒子としてCH−0200を26.21g添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。さらに、3本ロールミル(M−50、EXAKT社製)を用い、15回処理した。この分散処理液25.6gに、マイクロ銅粒子MA−025KFDを4.38gおよび亜鉛粒子(Alfa−Aesar製)を0.044g添加し、スパチュラで乾燥粉がなくなるまでかき混ぜ、密栓をして自転公転型攪拌装置(Planetry Vacuum Mixer ARV−310、シンキー社製)を用いて、2000rpmで1分間撹拌し、3本ロールミルで5回処理してペースト状組成物を得た。
(Example 1)
8.84 g of propylene carbonate as a dispersion medium and 3.30 g of poly (propylene carbonate) as a pyrolytic resin were mixed in a plastic bottle, sealed, and allowed to stand to dissolve. To this 60% by volume poly (propylene carbonate) solution, 26.21 g of CH-0200 as submicrocopper particles was added, and the mixture was stirred with a spatula until the dry powder disappeared. Further, the treatment was carried out 15 times using a 3-roll mill (M-50, manufactured by EXAKT). To 25.6 g of this dispersion treatment liquid, 4.38 g of micro copper particles MA-025KFD and 0.044 g of zinc particles (manufactured by Alfa-Aesar) are added, stirred with a spatula until the dry powder disappears, and the mixture is sealed and revolved. Using a mold stirrer (Planetry Vacuum Mixer ARV-310, manufactured by Shinky Co., Ltd.), the mixture was stirred at 2000 rpm for 1 minute and treated 5 times with a 3-roll mill to obtain a paste-like composition.

(実施例2〜4及び比較例1〜3)
組成を表2のように変更したこと以外は、実施例1と同様にしてペースト状組成物を得た。
(Examples 2 to 4 and Comparative Examples 1 to 3)
A paste-like composition was obtained in the same manner as in Example 1 except that the composition was changed as shown in Table 2.

Figure 0006965531
Figure 0006965531

[シート形成性]
各実施例及び比較例のペースト状組成物を、テフロン(登録商標)コートしたステンレス板上に、ギャップを250μmにセットしたベーカーアプリケータ(YBA5型、ヨシミツ精機社製)を用いて膜状に塗布した。このステンレス板をホットプレート上で90℃2時間放置して溶剤を除去した。室温(25℃)に戻した後、ペースト状組成物の乾燥膜を剥離することで、自立膜として得た。この自立膜を切断して、ダイボンドシートとした。デジタルリニアゲージ(DG−525H、小野測器社製)を用いて、ダイボンドシートの膜厚を測定した結果、120μmであった。なお、この工程において、ダイボンドシートを形成できたものは○、できなかったものは×と評価した。結果を表3に示す。
[Sheet formability]
The paste-like compositions of each Example and Comparative Example are applied in a film form on a Teflon (registered trademark) coated stainless steel plate using a baker applicator (YBA5 type, manufactured by Yoshimitsu Seiki Co., Ltd.) with a gap of 250 μm. bottom. The stainless steel plate was left on a hot plate at 90 ° C. for 2 hours to remove the solvent. After returning to room temperature (25 ° C.), the dry film of the paste-like composition was peeled off to obtain a self-supporting film. This self-supporting film was cut to obtain a die bond sheet. The film thickness of the die bond sheet was measured using a digital linear gauge (DG-525H, manufactured by Ono Sokki Co., Ltd.) and found to be 120 μm. In this step, those that could form the die bond sheet were evaluated as ◯, and those that could not form the die bond sheet were evaluated as x. The results are shown in Table 3.

[仮圧着性評価、ダイシェア強度の測定]
銅基板30mm×25mm×3mm上に、5mm×5mmに切断したダイボンドシートを設置し、その上にチタン、ニッケルがこの順で製膜され、3mm×3mmの被着面がニッケルめっきであるシリコンチップを置き、130℃に加熱した加熱圧着装置(テスター産業社製)を用いて、空気中5分余熱後、空気中1MPa、1分間処理して仮接合した。なお、この工程において、銅基板とシリコンチップとの仮圧着が良好にできたものを○と評価した。
[Temporary crimpability evaluation, die shear strength measurement]
A die bond sheet cut into 5 mm x 5 mm is placed on a copper substrate 30 mm x 25 mm x 3 mm, titanium and nickel are formed on the copper substrate in this order, and a silicon chip having a 3 mm x 3 mm adherend surface is nickel-plated. Was placed and preheated in air for 5 minutes using a heat-pressing device (manufactured by Tester Sangyo Co., Ltd.) heated to 130 ° C., and then treated in air at 1 MPa for 1 minute for temporary bonding. In this step, those in which the temporary crimping between the copper substrate and the silicon chip was successfully performed were evaluated as ◯.

仮接合したサンプルを雰囲気制御可能なチューブオーブン(エイブイシー社製)に設置し、水素中、昇温30分、300℃保持1時間の条件で処理した。そして、ダイボンドシートの接着強度を、ダイシェア強度により評価した。DS−100ロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード5mm/min、測定高さ50μmでシリコンチップを水平方向に押し、ダイボンドシートのダイシェア強度を測定した。3枚のシリコンチップを測定した値の平均値をダイシェア強度とした。結果を表3に示す。 The temporarily bonded sample was placed in an atmosphere-controllable tube oven (manufactured by ABC) and treated in hydrogen under the conditions of a temperature rise of 30 minutes and a holding temperature of 300 ° C. for 1 hour. Then, the adhesive strength of the die bond sheet was evaluated by the die shear strength. Using a universal bond tester (4000 series, manufactured by DAGE) equipped with a DS-100 load cell, the silicon chip was pushed horizontally at a measurement speed of 5 mm / min and a measurement height of 50 μm to measure the die shear strength of the die bond sheet. The average value of the measured values of the three silicon chips was taken as the die shear strength. The results are shown in Table 3.

Figure 0006965531
Figure 0006965531

表3に示すように、熱分解性樹脂であるポリ(プロピレンカルボナート)の添加量が5質量%未満のダイボンドシートは、自立膜にはならなかった。一方、当該添加量が、5質量%以上ダイボンドシートは、自立膜であり、またシリコンチップと銅基板の仮圧着、焼成による接合ができ、さらにダイシェア強度は20MPa以上となり良好であった。 As shown in Table 3, a die bond sheet in which the amount of poly (propylene carbonate) added as a pyrolytic resin was less than 5% by mass did not form a self-supporting film. On the other hand, the die bond sheet having an addition amount of 5% by mass or more was a self-standing film, and the silicon chip and the copper substrate could be joined by temporary crimping and firing, and the die shear strength was 20 MPa or more, which was good.

<断面モルフォロジーの観察>
シリコンチップ及び基板をダイボンドシートで接合したサンプルをカップ内にサンプルクリップ(Samplklip I、Buehler社製)で固定し、周囲にエポキシ注形樹脂(エポマウント、リファインテック社製)をサンプル全体が埋まるまで流し込み、真空デシケータ内に静置し、1分間減圧して脱泡した。その後、室温下(25℃)10時間放置後、60℃の恒温機で2時間エポキシ注形樹脂を硬化した。ダイヤモンド切断ホイール(11−304、リファインテック社製)をつけたリファインソー・ロー(リファインテック製)を用い、注形したサンプルの観察したい断面付近で切断した。耐水研磨紙(カーボマックペーパー、リファインテック社製)をつけた研磨装置(Refine Polisher HV、リファインテック社製)で断面を削り、シリコンチップにクラックの無い断面を出した。その後、バフ研磨剤を染ませたバフ研磨布をセットした研磨装置で断面を平滑に仕上げSEM用サンプルとした。SEM用サンプルをSEM装置(ESEM XL30、Philips社製)により、ダイボンドシートの断面を印加電圧10kV、各種倍率で観察した。粒子間は焼結し、被着面とも融合、接合しており、良好な接合状態にあった。他の実施例も同様の結果であった。
<Observation of cross-sectional morphology>
A sample in which a silicon chip and a substrate are bonded with a die bond sheet is fixed in a cup with a sample clip (Samplklip I, manufactured by Buehler), and an epoxy casting resin (Epomount, manufactured by Refine Tech) is filled around the sample until the entire sample is filled. It was poured, allowed to stand in a vacuum desiccator, and defoamed by reducing the pressure for 1 minute. Then, after leaving it at room temperature (25 ° C.) for 10 hours, the epoxy casting resin was cured in a thermostat at 60 ° C. for 2 hours. Using a refine saw low (manufactured by Refine Tech) equipped with a diamond cutting wheel (11-304, manufactured by Refine Tech), the cast sample was cut near the cross section to be observed. The cross section was ground with a polishing device (Refine Polisher HV, manufactured by Refine Tech) equipped with water resistant polishing paper (Carbomac Paper, manufactured by Refine Tech) to obtain a crack-free cross section on the silicon chip. Then, the cross section was smoothed with a polishing apparatus set with a buffing polishing cloth dyed with a buffing agent to prepare a sample for SEM. The cross section of the die bond sheet was observed with an SEM device (ESEM XL30, manufactured by Philips) at an applied voltage of 10 kV and various magnifications for the SEM sample. The particles were sintered and fused and bonded to the adherend surface, and were in a good bonding state. Similar results were obtained in other examples.

(実施例5〜8、比較例4〜6)
調製例1〜7のペースト状組成物を、銅基板上に、13mm×13mmの正方形の開口を有する厚さ200μmのステンレスマスクとスキージを用いてステンシル印刷した。その後、90℃のホットプレート上で1時間乾燥して、銅基板上にダイボンドシートを形成した。なお、この工程において、ダイボンドシートを形成できたものは○、できなかったものは×と評価した。
(Examples 5 to 8, Comparative Examples 4 to 6)
The paste-like compositions of Preparation Examples 1 to 7 were stencil-printed on a copper substrate using a 200 μm-thick stainless steel mask and a squeegee having a 13 mm × 13 mm square opening. Then, it was dried on a hot plate at 90 ° C. for 1 hour to form a die bond sheet on a copper substrate. In this step, those that could form the die bond sheet were evaluated as ◯, and those that could not form the die bond sheet were evaluated as x.

銅基板上に形成されたダイボンドシート上に、3mm×3mmの、被着面がニッケルめっきであるシリコンチップを置き、130℃に加熱した加熱圧着装置を用いて、空気中5分余熱後、空気中1MPa、1分間処理して仮接合した。なお、この工程において、銅基板とシリコンチップとの仮圧着が良好にできたものを○、できなかったものを×と評価した。 A 3 mm × 3 mm silicon chip having a nickel-plated adherend surface is placed on a die bond sheet formed on a copper substrate, and a heat-bonding device heated to 130 ° C. is used to preheat in air for 5 minutes and then air. Medium 1 MPa, treated for 1 minute for temporary bonding. In this step, those in which the temporary crimping between the copper substrate and the silicon chip was successfully performed were evaluated as ◯, and those in which the temporary crimping was not possible were evaluated as x.

仮接合したサンプルを、雰囲気制御可能なチューブオーブン(エイブイシー社製)に設置し、水素中、昇温30分、300℃保持1時間の条件で処理した。そして、上記と同様にして、ダイボンドシートの接着強度をダイシェア強度により評価した。以上の結果を表4に示す。 The temporarily bonded sample was placed in an atmosphere-controllable tube oven (manufactured by ABC) and treated in hydrogen under the conditions of a temperature rise of 30 minutes and a holding temperature of 300 ° C. for 1 hour. Then, in the same manner as described above, the adhesive strength of the die bond sheet was evaluated by the die shear strength. The above results are shown in Table 4.

Figure 0006965531
Figure 0006965531

実施例のダイボンドシートは熱伝導性及び接続信頼性に優れるだけでなく、自立膜として取り扱うことができ、仮圧着性にも優れることから、半導体素子と半導体素子搭載用支持部材との接合を簡便な工程で行うことができることが理解される。 The die bond sheet of the example is not only excellent in thermal conductivity and connection reliability, but also can be handled as a self-supporting film and is also excellent in temporary crimping property. Therefore, it is easy to join the semiconductor element and the support member for mounting the semiconductor element. It is understood that it can be carried out in various steps.

1a、1b、1c…ダイボンドシート、2…半導体素子、3…半導体素子搭載用支持部材、4…ダイボンドシートの焼結体(焼結金属層)、11a、11b…リードフレーム、12…ワイヤ、13…モールドレジン、14…半導体素子、21…絶縁基板、22…第一の電極、23…半導体素子、24…第二の電極、25…金属配線、26…第三の電極、27…ワイヤ、28…金属板、29…絶縁体、30…ブロック体、31…封止材、32…第一の熱伝導部材、33…第二の熱伝導部材、34…電極、35…ワイヤ、100…半導体装置、110…半導体装置、200…半導体装置、210…半導体装置、220…半導体装置、300…半導体装置、310…半導体装置、320…半導体装置、400…半導体装置。

1a, 1b, 1c ... Die bond sheet, 2 ... Semiconductor element, 3 ... Support member for mounting semiconductor element, 4 ... Sintered body (sinter metal layer) of die bond sheet, 11a, 11b ... Lead frame, 12 ... Wire, 13 ... Mold resin, 14 ... Semiconductor element, 21 ... Insulated substrate, 22 ... First electrode, 23 ... Semiconductor element, 24 ... Second electrode, 25 ... Metal wiring, 26 ... Third electrode, 27 ... Wire, 28 ... metal plate, 29 ... insulator, 30 ... block body, 31 ... encapsulant, 32 ... first heat conductive member, 33 ... second heat conductive member, 34 ... electrode, 35 ... wire, 100 ... semiconductor device , 110 ... semiconductor device, 200 ... semiconductor device, 210 ... semiconductor device, 220 ... semiconductor device, 300 ... semiconductor device, 310 ... semiconductor device, 320 ... semiconductor device, 400 ... semiconductor device.

Claims (4)

銅粒子を75質量%以上及び熱分解性樹脂を5質量%以上含み、
前記銅粒子が、体積平均粒径が0.12μm以上0.8μm以下であるサブマイクロ銅粒子と、最大径が1μm以上20μm以下でありかつアスペクト比が4以上のフレーク状マイクロ銅粒子と、を含み、前記フレーク状マイクロ銅粒子の含有量が、銅粒子の全質量を基準として50質量%以下である、ダイボンドシート。
Copper particles 75 mass% or more and a thermally decomposable resin viewed containing 5 wt% or more,
The copper particles include submicro copper particles having a volume average particle diameter of 0.12 μm or more and 0.8 μm or less, and flake-shaped micro copper particles having a maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of 4 or more. A die bond sheet containing, and the content of the flake-shaped micro copper particles is 50% by mass or less based on the total mass of the copper particles.
前記熱分解性樹脂が、ポリカルボナート、ポリメタクリル酸、ポリメタクリル酸エステル及びポリエステルからなる群より選択される少なくとも一種である、請求項1に記載のダイボンドシート。 The die bond sheet according to claim 1, wherein the pyrolytic resin is at least one selected from the group consisting of polycarbonate, polymethacrylic acid, polymethacrylic acid ester, and polyester. 銅粒子と、熱分解性樹脂と、分散媒とを含むペースト状組成物を成形・加熱してなる、請求項1又は2に記載のダイボンドシート。 The die bond sheet according to claim 1 or 2 , wherein a paste-like composition containing copper particles, a pyrolytic resin, and a dispersion medium is molded and heated. 請求項1〜のいずれか一項に記載のダイボンドシートの焼結体を介して、半導体素子と半導体素子搭載用支持部材とが接合されてなる、半導体装置。 A semiconductor device in which a semiconductor element and a support member for mounting a semiconductor element are joined via a sintered body of the die bond sheet according to any one of claims 1 to 3.
JP2017045889A 2017-03-10 2017-03-10 Die bond sheet and semiconductor device Active JP6965531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017045889A JP6965531B2 (en) 2017-03-10 2017-03-10 Die bond sheet and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017045889A JP6965531B2 (en) 2017-03-10 2017-03-10 Die bond sheet and semiconductor device

Publications (2)

Publication Number Publication Date
JP2018152403A JP2018152403A (en) 2018-09-27
JP6965531B2 true JP6965531B2 (en) 2021-11-10

Family

ID=63680522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045889A Active JP6965531B2 (en) 2017-03-10 2017-03-10 Die bond sheet and semiconductor device

Country Status (1)

Country Link
JP (1) JP6965531B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419674B2 (en) * 2019-06-03 2024-01-23 株式会社レゾナック Metal paste, sintered body, wiring, article, method for manufacturing sintered body, and method for manufacturing article
US20220293554A1 (en) * 2019-08-26 2022-09-15 Lintec Corporation Method of manufacturing laminate
US20220293555A1 (en) * 2019-08-26 2022-09-15 Lintec Corporation Method of manufacturing laminate
CN113257683B (en) * 2021-04-14 2023-02-28 深圳基本半导体有限公司 Bonding method of silicon carbide power device chip and lead frame
JP2023098498A (en) * 2021-12-28 2023-07-10 三菱マテリアル株式会社 Bonding sheet, and method for producing bonded body
WO2023190950A1 (en) * 2022-03-31 2023-10-05 リンテック株式会社 Laminated body manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6682235B2 (en) * 2014-12-24 2020-04-15 日東電工株式会社 Heat bonding sheet and heat bonding sheet with dicing tape
JP6967839B2 (en) * 2016-03-23 2021-11-17 日東電工株式会社 Heat bonding sheet, heat bonding sheet with dicing tape, manufacturing method of bonded body, power semiconductor device

Also Published As

Publication number Publication date
JP2018152403A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6965531B2 (en) Die bond sheet and semiconductor device
JP6848549B2 (en) Copper paste for bonding and semiconductor devices
JP6477486B2 (en) Die bond sheet and semiconductor device manufacturing method
KR102580090B1 (en) Copper paste for joining, manufacturing method of joining body, and manufacturing method of semiconductor device
JP5664625B2 (en) Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method
CN107921541B (en) Bonded body and semiconductor device
JP6704322B2 (en) Sheets and composite sheets
KR102643575B1 (en) Manufacturing method and bonding material of bonded body
JPWO2014129626A1 (en) Connection structure and semiconductor device
CN108883490B (en) Method for manufacturing bonded body
JP2013041884A (en) Semiconductor device
JPWO2020032161A1 (en) Bonding composition, bonding structure of conductor and method for manufacturing the same
JP2013258122A (en) Adhesive composition and semiconductor device using the same
JP6849374B2 (en) Conductive paste for joining
JP2015109434A (en) Die bond layer-attached semiconductor device-mounting support member, die bond layer-attached semiconductor device, and die bond layer-attached bonding board
CN112041972A (en) Method for manufacturing semiconductor device
JP6984146B2 (en) Resin-containing copper sintered body and its manufacturing method, bonded body, and semiconductor device
TW202039139A (en) Sheet for sintering bonding, sheet for sintering bonding with base material, and semiconductor chip with layer of material for sintering bonding
WO2017057485A1 (en) Sheet and composite sheet
TWI759279B (en) Copper paste for pressureless bonding, bonding body, method for producing the same, and semiconductor device
TWI841606B (en) Method for manufacturing joint body and semiconductor device and copper paste for joint
JP2016098459A (en) Nonwoven fabric, and semiconductor device and manufacturing method thereof
JP2016056288A (en) Adhesive composition and semiconductor device using the same
JP2016054252A (en) Porous layer-attached semiconductor element for die bonding, method for manufacturing semiconductor device by use thereof, and semiconductor device
JP2021063260A (en) Metal paste for joining, method for manufacturing joined body, and joined body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350