JP6962307B2 - Conductive particles for anisotropic conductive adhesives - Google Patents

Conductive particles for anisotropic conductive adhesives Download PDF

Info

Publication number
JP6962307B2
JP6962307B2 JP2018230630A JP2018230630A JP6962307B2 JP 6962307 B2 JP6962307 B2 JP 6962307B2 JP 2018230630 A JP2018230630 A JP 2018230630A JP 2018230630 A JP2018230630 A JP 2018230630A JP 6962307 B2 JP6962307 B2 JP 6962307B2
Authority
JP
Japan
Prior art keywords
tin alloy
suspension
resin particles
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018230630A
Other languages
Japanese (ja)
Other versions
JP2020095785A (en
Inventor
啓 竹中
盛典 富樫
光晴 松沢
直 工藤
和也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2018230630A priority Critical patent/JP6962307B2/en
Publication of JP2020095785A publication Critical patent/JP2020095785A/en
Application granted granted Critical
Publication of JP6962307B2 publication Critical patent/JP6962307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、異方導電性接着剤用の導電性粒子に関する。 The present invention relates to conductive particles for anisotropic conductive adhesives.

液晶表示用ガラスパネルに液晶駆動用IC(Integrated Circuit)を実装する方式は、COG(Chip−on−Glass)実装とCOF(Chip−on−Flex)実装の2種類に大別することができる。COG実装では、導電性粒子を含む異方導電性接着剤を用いて液晶駆動用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電性粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。異方導電性接着剤に用いられる導電性粒子としては、樹脂粒子の表面に金属の導電層が形成された導電性粒子が主流である。 The method of mounting a liquid crystal driving IC (Integrated Circuit) on a liquid crystal display glass panel can be roughly classified into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In COG mounting, the liquid crystal drive IC is directly bonded onto the glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and they are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The anisotropy here means that it conducts in the pressurized direction and maintains the insulating property in the non-pressurized direction. As the conductive particles used in the anisotropic conductive adhesive, the conductive particles in which a metallic conductive layer is formed on the surface of the resin particles are the mainstream.

近年、液晶ディスプレイ、パーソナルコンピュータ、タブレットPC、スマートフォン等の電子機器の分野では、電極回路の高精細化及び狭面積化が進んでおり、導電性粒子の微小化が必要となっている。しかしながら、導電性粒子の微小化に伴い金属の導電層の薄膜化が必要になり、さらに、既存のプロセスでは樹脂粒子に導電性を付与することは困難であるため、導電性粒子の微小化と低抵抗特性を両立することが困難になっている。そのため、導電性粒子の導電性を向上させる新たな技術が要求されている。 In recent years, in the field of electronic devices such as liquid crystal displays, personal computers, tablet PCs, and smartphones, the definition of electrode circuits has been increased and the area has been reduced, and it is necessary to reduce the size of conductive particles. However, with the miniaturization of the conductive particles, it is necessary to thin the conductive layer of the metal, and further, it is difficult to impart conductivity to the resin particles by the existing process. It is difficult to achieve both low resistance characteristics. Therefore, a new technique for improving the conductivity of conductive particles is required.

例えば、特許文献1は、接着性成分中に、複数個の金属微粒子を樹脂粒子表面に担持した金属微粒子担持樹脂粒子が分散されていることを特徴とする異方性導電接着剤を開示している。 For example, Patent Document 1 discloses an anisotropic conductive adhesive characterized in that metal fine particle-supporting resin particles in which a plurality of metal fine particles are supported on the surface of the resin particles are dispersed in an adhesive component. There is.

特許文献2は、基材樹脂粒子、複数のナノサイズ導電粒子及び導電層を備える導電性粒子であって、基材樹脂粒子の表面に付着する複数のナノサイズ導電粒子間の点状接合による導電ネットワーク及び前記ナノサイズ導電粒子上にめっきにより形成された導電層を備えることを特徴とする導電性粒子を開示している。 Patent Document 2 is a conductive particle provided with a base resin particle, a plurality of nano-sized conductive particles, and a conductive layer, and is conductive by point-like bonding between a plurality of nano-sized conductive particles adhering to the surface of the base resin particle. Disclosed are conductive particles characterized by comprising a network and a conductive layer formed by plating on the nano-sized conductive particles.

さらに、このような導電性粒子の製造方法として、特許文献3は、基材となるコア材に対し導電性を有する導通材を被膜する導電性粒子の製造方法であって、前記コア材に前記コア材よりも小さい前記導通材を投入し、当該投入された前記コア材及び前記導通材を混練する混練ステップを含み、前記混練ステップは、前記コア材に対して、前記導通材を付着するように圧縮力を付加しつつ、前記コア材に対して、前記導通材を付着するように複数の方向から剪断力を付加するねじり剪断ステップを備えたことを特徴とする導電性粒子の製造方法を開示している。 Further, as a method for producing such conductive particles, Patent Document 3 is a method for producing conductive particles in which a conductive material having conductivity is coated on a core material as a base material, and the core material is covered with the conductive material. The kneading step includes a kneading step in which the conductive material smaller than the core material is charged and the charged core material and the conductive material are kneaded, and the kneading step is such that the conductive material is attached to the core material. A method for producing conductive particles, which comprises a torsional shearing step in which a shearing force is applied from a plurality of directions so as to adhere the conductive material to the core material while applying a compressive force to the core material. It is disclosed.

特開2002−245853号公報Japanese Unexamined Patent Publication No. 2002-245853 特開2010−033911号公報Japanese Unexamined Patent Publication No. 2010-033911 特開2011−228281号公報Japanese Unexamined Patent Publication No. 2011-228281

例えば、特許文献1〜3に記載されている、異方性導電接着剤における金属微粒子は、Au、Pt、Ni、Cu、Ag等のめっきを形成することができる金属から構成されており、電極同士を圧着して粒子が変形した際に、金属微粒子同士が密着して良好な導通を得ることができるとされている。また、当該金属微粒子は、従来の金属被膜樹脂粒子のように、圧着時に金属被膜が破れて導通が確保できないという問題は発生しないことが利点であるとされている。 For example, the metal fine particles in the anisotropic conductive adhesive described in Patent Documents 1 to 3 are composed of metals capable of forming plating such as Au, Pt, Ni, Cu, and Ag, and are electrodes. It is said that when the particles are deformed by crimping each other, the metal fine particles adhere to each other and good conduction can be obtained. Further, it is said that the metal fine particles have an advantage that they do not have the problem that the metal film is broken during crimping and conduction cannot be ensured unlike the conventional metal film resin particles.

しかしながら、めっきを形成することができる金属微粒子は融点が高いため、熱で電極間を接合することは難しい。 However, since the metal fine particles capable of forming plating have a high melting point, it is difficult to heat the electrodes together.

本発明は、前記従来技術の課題に鑑みて達成されたものであり、熱による電極間の接合が可能な導電性粒子及びその製造方法を提供することを目的とする。 The present invention has been achieved in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide conductive particles capable of bonding electrodes between electrodes by heat and a method for producing the same.

本発明者らは、鋭意研究を重ねた結果、樹脂粒子の懸濁液(分散液)とスズ合金の懸濁液を混合したのちに撹拌を行い、静電気力又は分子間力を利用して樹脂粒子の表面にスズ合金を担持させたのちに、場合により加熱する方法により製造された、樹脂粒子と、樹脂粒子の表面を覆うように担持されたスズ合金と、を備え、スズ合金が層を形成しており、層の厚さの平均値が、樹脂粒子の平均粒径の0.003倍〜0.3倍である異方性導電膜用の導電性粒子によって、前記課題を解決できることを見出し、本発明を完成した。 As a result of diligent research, the present inventors have mixed a suspension of resin particles (dispersion liquid) and a suspension of tin alloy, and then agitated the resin, utilizing electrostatic force or intermolecular force. The tin alloy comprises a resin particle produced by a method of supporting a tin alloy on the surface of the particle and then heating in some cases, and a tin alloy supported so as to cover the surface of the resin particle, and the tin alloy forms a layer. It is said that the above-mentioned problems can be solved by the conductive particles for an anisotropic conductive film which are formed and whose average value of the layer thickness is 0.003 to 0.3 times the average particle size of the resin particles. The heading and the present invention have been completed.

本発明によれば、樹脂粒子の表面をスズ合金で覆った構造を有する導電性粒子を提供することで、熱による金属間接合が可能な、導電性の高い導電性粒子及びそれを用いた異方導電性接着剤を実現することができるというきわめて優れた効果を発揮する。前記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, by providing conductive particles having a structure in which the surface of resin particles is covered with a tin alloy, highly conductive conductive particles capable of bonding between metals by heat and a difference using the same. It exerts an extremely excellent effect of being able to realize a conductive adhesive. Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.

本発明の導電性粒子の基本構造の一例を模式的に示す図である。It is a figure which shows typically an example of the basic structure of the conductive particle of this invention. 本発明の別形態の導電性粒子の基本構造の一例を模式的に示す図である。It is a figure which shows typically an example of the basic structure of the conductive particle of another form of this invention. 本発明の導電性粒子の調製方法の一例を模式的に示す図である。It is a figure which shows typically an example of the method of preparing the conductive particle of this invention. 本発明の別形態の導電性粒子の調製方法の一例を模式的に示す図である。It is a figure which shows typically an example of the method of preparing the conductive particle of another form of this invention. 本発明の導電性粒子の製造システムの一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing system of the conductive particle of this invention. 本発明の別形態の導電性粒子の製造システムの一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing system of the conductive particle of another form of this invention. 本発明の実施例で得られた導電性粒子を観察したSEM画像である。It is an SEM image which observed the conductive particle obtained in the Example of this invention. 本発明の実施例で得られた導電性粒子を観察したSEM画像である。It is an SEM image which observed the conductive particle obtained in the Example of this invention.

以下、図面を参照して、本発明の実施形態を説明する。図面では、明確化のために各部の寸法及び形状を誇張しており、実際の寸法及び形状を正確に描写してはいない。それ故、本発明の技術的範囲は、これら図面に表された各部の寸法及び形状に限定されるものではない。なお、後述する実施の形態は一例であって、各実施例同士の組み合わせ、公知又は周知の技術との組み合わせや置換による他の態様も可能であることは言うまでもない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the dimensions and shapes of each part are exaggerated for clarification, and the actual dimensions and shapes are not accurately depicted. Therefore, the technical scope of the present invention is not limited to the dimensions and shapes of the parts shown in these drawings. It is needless to say that the embodiment described later is an example, and other embodiments may be possible by combining each embodiment, combining with a known or well-known technique, or replacing the embodiment.

<導電性粒子>
本発明の異方性導電膜用の導電性粒子は、樹脂粒子と、樹脂粒子の表面を覆うように担持されたスズ合金と、を備え、スズ合金が層を形成しており、層の厚さの平均値が、樹脂粒子の平均粒径の0.003倍〜0.3倍、好ましくは0.01倍〜0.1倍、より好ましくは0.03倍〜0.1倍である。
<Conductive particles>
The conductive particles for the anisotropic conductive film of the present invention include resin particles and a tin alloy supported so as to cover the surface of the resin particles, and the tin alloy forms a layer, and the thickness of the layer is formed. The average value of the tin particles is 0.003 to 0.3 times, preferably 0.01 to 0.1 times, and more preferably 0.03 to 0.1 times the average particle size of the resin particles.

導電性粒子における樹脂粒子とスズ合金の層の厚さの比率が前記比率になることで、導電性粒子は、熱による金属間接合が可能な、異方導電性を有する、導電性の高い導電性粒子になる。スズ合金層の厚さが薄すぎると導電性が担保できず、また厚すぎると層の均一性が保てないため、層の厚さを制御することは重要である。 When the ratio of the thickness of the resin particles to the tin alloy layer in the conductive particles is the above ratio, the conductive particles can be bonded between metals by heat, have heteroconductiveity, and have high conductivity. Become a sex particle. If the thickness of the tin alloy layer is too thin, conductivity cannot be ensured, and if it is too thick, the uniformity of the layer cannot be maintained. Therefore, it is important to control the thickness of the layer.

ここで、樹脂粒子としては、当該技術分野における公知の樹脂粒子が挙げられ、限定されないが、例えば、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂、アルカンジオールジ(メタ)アクリレート及び/又はジビニルベンゼン等の重合体、スチレンの重合体であるポリスチレン等が挙げられる。樹脂粒子としては、回復率等の観点から、アルカンジオールジ(メタ)アクリレート及び/又はジビニルベンゼン等の重合体が好ましい。 Here, examples of the resin particles include, but are not limited to, resin particles known in the art, and examples thereof include acrylic resins such as polymethylmethacrylate and polymethylacrylate, and polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutadiene. , Alcandiol di (meth) acrylate and / or a polymer such as divinylbenzene, polystyrene which is a polymer of styrene and the like can be mentioned. As the resin particles, a polymer such as alkanediol di (meth) acrylate and / or divinylbenzene is preferable from the viewpoint of recovery rate and the like.

樹脂粒子の形状は、通常球状である。ここで、球状とは、真球だけでなく、楕円体、任意の回転体等も含み、例えば、アスペクト比としては、通常0.5以上であり、好ましくは0.8以上である。 The shape of the resin particles is usually spherical. Here, the sphere includes not only a true sphere but also an ellipsoid, an arbitrary rotating body, and the like, and for example, the aspect ratio is usually 0.5 or more, preferably 0.8 or more.

樹脂粒子が前記の樹脂粒子であることで、樹脂粒子表面へのスズ合金の担持が確保される。樹脂粒子は、真球度が高く、かつ粒度分布がそろっているため、接合面積が一定になることで熱接合が容易になる。 When the resin particles are the above-mentioned resin particles, the tin alloy is supported on the surface of the resin particles. Since the resin particles have a high sphericity and a uniform particle size distribution, the bonding area becomes constant, which facilitates thermal bonding.

樹脂粒子の大きさは、スズ合金により形成される層の厚さの平均値に対して前記で定義した範囲になれば限定されないが、平均粒径で、通常0.1μm〜10μm、好ましくは0.5μm〜3μmである。なお、樹脂粒子の平均粒径は、SEMにより測定することができる。 The size of the resin particles is not limited as long as it falls within the range defined above with respect to the average value of the thickness of the layer formed by the tin alloy, but the average particle size is usually 0.1 μm to 10 μm, preferably 0. It is .5 μm to 3 μm. The average particle size of the resin particles can be measured by SEM.

樹脂粒子の大きさが前記範囲であることで、導電性粒子における低い抵抗特性が確保される。 When the size of the resin particles is within the above range, low resistance characteristics of the conductive particles are ensured.

スズ合金としては、当該技術分野における公知のスズ合金が挙げられ、限定されないが、例えば、低融点の特徴を持つ合金である、Sn−Pb系、Pb−Sn−Sb系、Sn−Sb系、Sn−Pb−Bi系、Bi−Sn系、Sn−Cu系、Sn−Pb−Cu系、Sn−Ag系、Sn−Pb−Ag系、Sn−In系等が挙げられる。スズ合金としては、環境の観点から、Pbフリーが好ましく、低温接合が可能なことからBi−Sn系、Sn−In系が好ましい。さらには、外部温度に対する接合安定性の観点から、Bi−Sn系が好ましい。 Examples of the tin alloy include, but are not limited to, tin alloys known in the art, and for example, Sn-Pb type, Pb-Sn-Sb type, Sn-Sb type, which are alloys having a characteristic of low melting point. Examples thereof include Sn-Pb-Bi system, Bi-Sn system, Sn-Cu system, Sn-Pb-Cu system, Sn-Ag system, Sn-Pb-Ag system, Sn-In system and the like. As the tin alloy, Pb-free is preferable from the viewpoint of the environment, and Bi-Sn type and Sn-In type are preferable because low temperature bonding is possible. Furthermore, the Bi-Sn system is preferable from the viewpoint of bonding stability with respect to an external temperature.

スズ合金の組成が前記組成であることで、導電性粒子は、熱による金属間接合が可能な、異方導電性を有する、導電性の高い導電性粒子になる。 When the composition of the tin alloy is the above-mentioned composition, the conductive particles become conductive particles having anisotropic conductivity and high conductivity which can be bonded between metals by heat.

層を形成するスズ合金の形状は、粒子(球)状(粒子状スズ合金)、鱗片状等の片状(片状スズ合金)等である。スズ合金は、樹脂粒子表面全体を覆う被膜であってもよい(被膜状スズ合金)。層を形成するスズ合金の形状は均一であることが望ましい。 The shape of the tin alloy forming the layer is a particle (spherical) shape (particulate tin alloy), a flaky shape such as a scale (flake tin alloy), or the like. The tin alloy may be a coating film that covers the entire surface of the resin particles (coated tin alloy). It is desirable that the tin alloy forming the layer has a uniform shape.

スズ合金の形状が前記形状であることで、導電性粒子は、熱による金属間接合が可能な、異方導電性を有する、導電性の高い導電性粒子になる。 When the tin alloy has the above-mentioned shape, the conductive particles become highly conductive particles having anisotropic conductivity and capable of metal-to-metal bonding by heat.

層を形成するスズ合金の大きさは、層の厚さが樹脂粒子の平均粒径に対して前記で定義した範囲になれば限定されない。 The size of the tin alloy forming the layer is not limited as long as the thickness of the layer falls within the range defined above with respect to the average particle size of the resin particles.

例えば、層が粒子状スズ合金で構成される場合、粒子状スズ合金の大きさは、層の厚さが樹脂粒子の平均粒径に対して前記で定義した範囲になれば限定されないが、平均粒径で、通常0.001μm〜1μm、好ましくは0.03μm〜0.3μmである。なお、粒子状スズ合金の平均粒径は、SEMより測定することができる。 For example, when the layer is composed of a particulate tin alloy, the size of the particulate tin alloy is not limited as long as the thickness of the layer falls within the range defined above with respect to the average particle size of the resin particles, but the average. The particle size is usually 0.001 μm to 1 μm, preferably 0.03 μm to 0.3 μm. The average particle size of the particulate tin alloy can be measured by SEM.

例えば、層が片状スズ合金で構成される場合、スズ合金の大きさは、層の厚さが樹脂粒子の平均粒径に対して前記で定義した範囲になれば限定されないが、片の長辺の平均値で、通常0.001μm〜1μm、好ましくは0.03μm〜0.3μmである。なお、スズ合金の片の長辺の平均値は、SEMにより測定することができる。 For example, when the layer is composed of a flake tin alloy, the size of the tin alloy is not limited as long as the thickness of the layer is within the range defined above with respect to the average particle size of the resin particles, but the length of the piece. The average value of the sides is usually 0.001 μm to 1 μm, preferably 0.03 μm to 0.3 μm. The average value of the long sides of the tin alloy piece can be measured by SEM.

スズ合金により形成される導電層は、1層又は複数層であってもよく、好ましくは1層〜10層、より好ましくは1層〜5層が望ましい。 The conductive layer formed of the tin alloy may be one layer or a plurality of layers, preferably 1 to 10 layers, and more preferably 1 to 5 layers.

スズ合金により形成される層の厚さは、樹脂粒子の平均粒径に対して前記で定義した厚さになれば限定されないが、平均値で、通常0.001μm〜1μm、好ましくは0.03μm〜0.3μmである。なお、スズ合金により形成される層の厚さの平均値は、SEMにより測定することができる。 The thickness of the layer formed by the tin alloy is not limited as long as it has the thickness defined above with respect to the average particle size of the resin particles, but the average value is usually 0.001 μm to 1 μm, preferably 0.03 μm. It is ~ 0.3 μm. The average value of the thickness of the layer formed by the tin alloy can be measured by SEM.

スズ合金により形成される層の厚さが前記範囲であることで、導電性粒子は、熱による金属間接合が可能な、異方導電性を有する、導電性の高い導電性粒子になる。 When the thickness of the layer formed by the tin alloy is within the above range, the conductive particles become highly conductive particles having anisotropic conductivity and capable of bonding between metals by heat.

本発明の異方導電性接着剤用の導電性粒子は、異方導電性接着剤、例えば接着剤フィルム、及び異方導電性接着剤を用いた接続構造体に使用することができる。異方導電性接着剤は、回路部材同士を接着するとともにそれぞれの回路部材が有する回路電極同士を電気的に接続するために用いられるものである。異方導電性接着剤は、接着剤成分、導電性粒子を含有し、導電性粒子は、フィルム状の接着剤中に分散している。異方導電性接着剤中の導電性粒子の濃度は、異方導電性接着剤の全重量に対し、通常5質量%〜60質量%、好ましくは15質量%〜50質量%である。 The conductive particles for the anisotropic conductive adhesive of the present invention can be used for a connecting structure using an anisotropic conductive adhesive, for example, an adhesive film and an anisotropic conductive adhesive. The anisotropic conductive adhesive is used for adhering circuit members to each other and electrically connecting circuit electrodes of each circuit member. The anisotropic conductive adhesive contains an adhesive component and conductive particles, and the conductive particles are dispersed in the film-like adhesive. The concentration of the conductive particles in the anisotropic conductive adhesive is usually 5% by mass to 60% by mass, preferably 15% by mass to 50% by mass, based on the total weight of the anisotropic conductive adhesive.

図1に、本発明の導電性粒子10及びそれを用いた異方導電性接着剤1の一例の断面図を模式的に示す。図1に示すように、異方導電性接着剤1は、フィルム状の接着剤12内に導電性粒子10を一様に分散させた構造を持ち、導電性粒子10は、樹脂粒子101の表面が複数の粒子状スズ合金102により形成された層で覆われた構造を持つ。 FIG. 1 schematically shows a cross-sectional view of an example of the conductive particles 10 of the present invention and the anisotropic conductive adhesive 1 using the conductive particles 10. As shown in FIG. 1, the anisotropic conductive adhesive 1 has a structure in which the conductive particles 10 are uniformly dispersed in the film-shaped adhesive 12, and the conductive particles 10 are the surfaces of the resin particles 101. Has a structure covered with a layer formed of a plurality of particulate tin alloys 102.

図1の異方導電性接着剤1では、電極間に導電性粒子10を含む異方導電性接着材1を挟み、熱を加えることで、粒子状スズ合金102が融解し、電極間を接合する。導電性粒子10は電極間方向(z方向)に導電性を保つが、導電性粒子10は互いに接触していないため、接着剤12の面方向(x−y面)には絶縁性を保つ。 In the anisotropic conductive adhesive 1 of FIG. 1, the anisotropic tin alloy 102 is melted by sandwiching the anisotropic conductive adhesive 1 containing the conductive particles 10 between the electrodes and applying heat to join the electrodes. do. The conductive particles 10 maintain conductivity in the direction between the electrodes (z direction), but since the conductive particles 10 are not in contact with each other, they maintain insulation in the surface direction (xy surface) of the adhesive 12.

図2に、本発明の別形態の導電性粒子10及びそれを用いた異方導電性接着剤1の一例の断面図を模式的に示す。図2に示すように、異方導電性接着剤1は、フィルム状の接着剤12内に導電性粒子10を一様に分散させた構造を持ち、導電性粒子10は、樹脂粒子101の表面がスズ合金により形成された層又は被膜状スズ合金103で覆われた構造を持つ。 FIG. 2 schematically shows a cross-sectional view of an example of the conductive particles 10 of another embodiment of the present invention and the anisotropic conductive adhesive 1 using the conductive particles 10. As shown in FIG. 2, the anisotropic conductive adhesive 1 has a structure in which the conductive particles 10 are uniformly dispersed in the film-shaped adhesive 12, and the conductive particles 10 are the surfaces of the resin particles 101. Has a structure covered with a layer formed of a tin alloy or a coated tin alloy 103.

図1と同様に、図2の異方導電性接着剤1でも、電極間に導電性粒子10を含む異方導電性接着材1を挟み、熱を加えることで、スズ合金により形成された層又は被膜状スズ合金103が融解し、電極間を接合する。導電性粒子10は電極間方向(z方向)に導電性を保つが、導電性粒子10は互いに接触していないため、接着剤12の面方向(x−y面)には絶縁性を保つ。 Similar to FIG. 1, also in the anisotropic conductive adhesive 1 of FIG. 2, a layer formed of a tin alloy by sandwiching the anisotropic conductive adhesive 1 containing the conductive particles 10 between the electrodes and applying heat. Alternatively, the coated tin alloy 103 melts and joins the electrodes. The conductive particles 10 maintain conductivity in the direction between the electrodes (z direction), but since the conductive particles 10 are not in contact with each other, they maintain insulation in the surface direction (xy surface) of the adhesive 12.

<導電性粒子の製造方法>
本発明の導電性粒子の製造方法は、樹脂粒子の懸濁液と、スズ合金、例えば粒子状スズ合金又は片状スズ合金の懸濁液とを混合したのち撹拌を行い、静電気力又は分子間力を利用して樹脂粒子の表面にスズ合金を担持させることを含む。
<Manufacturing method of conductive particles>
In the method for producing conductive particles of the present invention, a suspension of resin particles and a suspension of a tin alloy, for example, a particulate tin alloy or a flake tin alloy are mixed and then stirred, and electrostatic force or intermolecular force is used. It involves using force to support a tin alloy on the surface of the resin particles.

ここで、樹脂粒子の懸濁液は、当該技術分野における公知の樹脂粒子の懸濁液であり、樹脂粒子としては、前記の<導電性粒子>で説明した樹脂粒子を使用することができる。樹脂粒子の懸濁液としては、例えば、蒸留水中にジメチルアミンボラン等により活性化された架橋ポリスチレン粒子を分散させた懸濁液等が挙げられる。 Here, the suspension of the resin particles is a suspension of the resin particles known in the art, and as the resin particles, the resin particles described in the above <conductive particles> can be used. Examples of the suspension of the resin particles include a suspension in which crosslinked polystyrene particles activated by dimethylamine borane or the like are dispersed in distilled water.

樹脂粒子の懸濁液として前記の樹脂粒子の懸濁液を使用することにより、樹脂粒子表面にスズ合金を担持することができる。 By using the suspension of the resin particles as the suspension of the resin particles, the tin alloy can be supported on the surface of the resin particles.

スズ合金の懸濁液は、前記の<導電性粒子>で説明した組成を有する粒子状スズ合金を溶媒中に分散させ、場合により粉砕することで得ることができる。粉砕方法は、当該技術分野における公知の粉砕方法を使用することができ、例えばビーズミルが挙げられる。スズ合金の懸濁液におけるスズ合金の形状は、粒子状スズ合金の粉砕条件、例えばビーズミルであれば、ビーズ径、粉砕時間、粉砕温度、溶媒等により調製することができる。例えば、粒子状スズ合金等の柔らかい金属をビーズミルで粉砕処理する場合、粒子状スズ合金はすぐに粉砕されず、小判状に引き延ばされた形状になる。その後、粉砕処理の時間を長くすることで、粒子はさらに引き延ばされ、徐々にちぎれることにより、微細化される。 The tin alloy suspension can be obtained by dispersing a particulate tin alloy having the composition described in the above <conductive particles> in a solvent and optionally pulverizing the suspension. As the pulverization method, a pulverization method known in the art can be used, and examples thereof include a bead mill. The shape of the tin alloy in the suspension of the tin alloy can be adjusted by the crushing conditions of the particulate tin alloy, for example, in the case of a bead mill, the bead diameter, crushing time, crushing temperature, solvent and the like. For example, when a soft metal such as a particulate tin alloy is crushed by a bead mill, the particulate tin alloy is not immediately crushed, but has an oval-shaped stretched shape. After that, by lengthening the pulverization treatment time, the particles are further stretched and gradually torn to be finely divided.

静電気力又は分子間力を利用して樹脂粒子の表面にスズ合金を担持させる方法としては、その一例として、静電気力を利用した交互積層法等が挙げられる。 As an example of the method of supporting the tin alloy on the surface of the resin particles by utilizing the electrostatic force or the intermolecular force, an alternating lamination method using the electrostatic force and the like can be mentioned.

樹脂粒子の懸濁液と、スズ合金の懸濁液とを混合したのち撹拌を行うことで、静樹脂粒子の表面上にスズ合金を静電気力又は分子間力によって担持することができる。 By mixing the suspension of the resin particles and the suspension of the tin alloy and then stirring the mixture, the tin alloy can be supported on the surface of the electrostatic resin particles by an electrostatic force or an intermolecular force.

さらに、本発明の別形態の導電性粒子の製造方法は、樹脂粒子の懸濁液と、スズ合金、例えば粒子状スズ合金又は片状スズ合金の懸濁液とを混合したのち撹拌を行い、静電気力又は分子間力を利用して樹脂粒子の表面にスズ合金を担持させることを経たのちに、加熱により樹脂粒子表面に担持したスズ合金を融解し、樹脂粒子の表面を融解したスズ合金で覆ったのち、冷却により融解したスズ合金を凝固させ、樹脂粒子の表面に被膜状スズ合金を形成することを含む。 Further, in another method of producing conductive particles of the present invention, a suspension of resin particles and a suspension of a tin alloy, for example, a particulate tin alloy or a flake tin alloy are mixed and then stirred. After the tin alloy is supported on the surface of the resin particles by using electrostatic force or intermolecular force, the tin alloy supported on the surface of the resin particles is melted by heating, and the surface of the resin particles is melted with the tin alloy. After covering, the tin alloy melted by cooling is solidified to form a film-like tin alloy on the surface of the resin particles.

ここで、加熱処理は、通常100℃〜200℃、好ましくは120℃〜170℃で、通常0.5分間〜5分間、好ましくは0.5分間〜3分間で行う。 Here, the heat treatment is usually carried out at 100 ° C. to 200 ° C., preferably 120 ° C. to 170 ° C., usually for 0.5 minutes to 5 minutes, preferably 0.5 minutes to 3 minutes.

前記条件において加熱処理を行うことで、樹脂粒子の表面上に担持されたスズ合金は、樹脂粒子の表面に被膜を形成することができる。 By performing the heat treatment under the above conditions, the tin alloy supported on the surface of the resin particles can form a film on the surface of the resin particles.

図3に、本発明の導電性粒子10の製造方法のプロセスの一例を示す。 FIG. 3 shows an example of the process of the method for producing the conductive particles 10 of the present invention.

まず、樹脂粒子101を含む懸濁液と粒子状スズ合金102を含む懸濁液を撹拌混合し、樹脂粒子101の表面に粒子状スズ合金102を担持させる。 First, the suspension containing the resin particles 101 and the suspension containing the particulate tin alloy 102 are stirred and mixed to support the particulate tin alloy 102 on the surface of the resin particles 101.

次に、濾過や沈降等の分離工程を実施することで、担持されなかった粒子状スズ合金102を除去し、導電性粒子10を精製する。分離の方法としては、粒径で分離するフィルタ濾過、粒径や質量の差で分離する沈降分離のほか、粒径に対する流速分布の差を利用した分離方法等があげられる。 Next, by carrying out separation steps such as filtration and sedimentation, the particulate tin alloy 102 that was not supported is removed, and the conductive particles 10 are purified. Examples of the separation method include filter filtration for separating by particle size, sedimentation separation for separating by difference in particle size and mass, and separation method using the difference in flow velocity distribution with respect to particle size.

図4に、本発明の導電性粒子10の別形態の製造方法のプロセスの一例を示す。 FIG. 4 shows an example of a process of a method for producing another form of the conductive particles 10 of the present invention.

まず、樹脂粒子101を含む懸濁液と粒子状スズ合金102を含む懸濁液を撹拌混合し、樹脂粒子101の表面に粒子状スズ合金102を担持させる。 First, the suspension containing the resin particles 101 and the suspension containing the particulate tin alloy 102 are stirred and mixed to support the particulate tin alloy 102 on the surface of the resin particles 101.

次に、濾過や沈降等の分離工程を実施することで、担持されなかった粒子状スズ合金102を除去し、導電性粒子10を精製する。分離の方法としては、粒径で分離するフィルタ濾過、粒径や質量の差で分離する沈降分離のほか、粒径に対する流速分布の差を利用した分離方法等があげられる。 Next, by carrying out separation steps such as filtration and sedimentation, the particulate tin alloy 102 that was not supported is removed, and the conductive particles 10 are purified. Examples of the separation method include filter filtration for separating by particle size, sedimentation separation for separating by difference in particle size and mass, and separation method using the difference in flow velocity distribution with respect to particle size.

さらに、分離した導電性粒子10を含む懸濁液を加熱し、樹脂粒子101の表面に担持された粒子状スズ合金102を融解させる。樹脂粒子101の融点より低い融点を有する粒子状スズ合金102を使用することで、融解した粒子状スズ合金102は、表面張力により樹脂粒子101表面を覆い、被膜状スズ合金103を形成する。その後、導電性粒子10を含む懸濁体を冷却し、粒子状スズ合金102の融点より液体の温度を下げることで、被膜状スズ合金103は凝固する。 Further, the suspension containing the separated conductive particles 10 is heated to melt the particulate tin alloy 102 supported on the surface of the resin particles 101. By using the particulate tin alloy 102 having a melting point lower than the melting point of the resin particles 101, the melted particulate tin alloy 102 covers the surface of the resin particles 101 by the surface tension to form the coated tin alloy 103. After that, the suspension containing the conductive particles 10 is cooled, and the temperature of the liquid is lowered from the melting point of the particulate tin alloy 102, so that the coated tin alloy 103 solidifies.

<導電性粒子の製造システム>
本発明の導電性粒子の製造システムは、樹脂粒子の懸濁液を保持するための樹脂粒子懸濁液用の容器と、樹脂粒子の懸濁液を送液するための樹脂粒子懸濁液用の送液ポンプと、樹脂粒子の懸濁液を撹拌し樹脂粒子の沈殿を防止するための樹脂粒子懸濁液用撹拌機と、スズ合金の懸濁液を保持するためのスズ合金懸濁液用の容器と、スズ合金の懸濁液を送液するためのスズ合金懸濁液用の送液ポンプと、スズ合金の懸濁液を撹拌しスズ合金の沈殿を防止するためのスズ合金懸濁液用の撹拌機と、樹脂粒子の懸濁液とスズ合金の懸濁液を混合し樹脂粒子の表面にスズ合金を担持させるための混合機構と、スズ合金を表面に担持した樹脂粒子と担持されなかったスズ合金とを分離するための分離機構と、分離された担持されなかったスズ合金の懸濁液を保持するためのスズ合金用の容器とを含む、又はそれらから構成される導電性粒子を製造するためのシステムである。なお、各装置間は、適切な接続機構により接続される。
<Manufacturing system for conductive particles>
The conductive particle manufacturing system of the present invention is for a container for a resin particle suspension for holding a suspension of resin particles and a resin particle suspension for feeding the suspension of resin particles. Liquid feed pump, a stirrer for resin particle suspension to stir the suspension of resin particles and prevent precipitation of resin particles, and a tin alloy suspension for holding a suspension of tin alloy. Container, a liquid feed pump for tin alloy suspension to feed the tin alloy suspension, and a tin alloy suspension to stir the tin alloy suspension and prevent the tin alloy from settling. A stirrer for turbid liquid, a mixing mechanism for mixing a suspension of resin particles and a suspension of tin alloy to support the tin alloy on the surface of the resin particles, and resin particles carrying the tin alloy on the surface. Conductivity that includes or comprises a separation mechanism for separating the unsupported tin alloy and a container for the tin alloy for holding a suspended suspension of the separated unsupported tin alloy. It is a system for producing sex particles. The devices are connected by an appropriate connection mechanism.

本発明の導電性粒子の製造システムとして前記システムを使用することにより、本発明の導電性粒子を効率よく製造することができる。 By using the system as the system for producing the conductive particles of the present invention, the conductive particles of the present invention can be efficiently produced.

さらに、本発明の別形態の導電性粒子の製造システムは、樹脂粒子の懸濁液を保持するための樹脂粒子懸濁液用の容器と、樹脂粒子の懸濁液を送液するための樹脂粒子懸濁液用の送液ポンプと、樹脂粒子の懸濁液を撹拌し樹脂粒子の沈殿を防止するための樹脂粒子懸濁液用撹拌機と、スズ合金の懸濁液を保持するためのスズ合金懸濁液用の容器と、スズ合金の懸濁液を送液するためのスズ合金懸濁液用の送液ポンプと、スズ合金の懸濁液を撹拌しスズ合金の沈殿を防止するためのスズ合金懸濁液用の撹拌機と、樹脂粒子の懸濁液とスズ合金の懸濁液を混合し樹脂粒子の表面にスズ合金を担持させるための混合機構と、スズ合金を表面に担持した樹脂粒子と担持されなかったスズ合金とを分離するための分離機構と、分離された担持されなかったスズ合金の懸濁液を保持するためのスズ合金用の容器と、スズ合金を表面に担持した樹脂粒子を加熱することでスズ合金を融解し、樹脂粒子表面に被膜状スズ合金を構成するための加熱機構と、加熱機構を通過した懸濁液を回収するための導電性粒子含有懸濁液用の容器とを含む、又はそれらから構成される導電性粒子を製造するためのシステムである。なお、各装置間は、適切な接続機構により接続される。 Further, in another form of the conductive particle production system of the present invention, a container for resin particle suspension for holding a suspension of resin particles and a resin for feeding the suspension of resin particles are supplied. A liquid feed pump for particle suspension, a stirrer for resin particle suspension to stir the suspension of resin particles and prevent precipitation of resin particles, and a stirrer for holding a suspension of tin alloy. A container for the tin alloy suspension, a liquid feed pump for the tin alloy suspension for feeding the tin alloy suspension, and a stirring of the tin alloy suspension to prevent the tin alloy from settling. A stirrer for a tin alloy suspension, a mixing mechanism for mixing a suspension of resin particles and a suspension of tin alloy to support the tin alloy on the surface of the resin particles, and a tin alloy on the surface. A separation mechanism for separating the supported resin particles and the unsupported tin alloy, a container for the tin alloy for holding the separated suspension of the unsupported tin alloy, and a surface of the tin alloy. Contains a heating mechanism for melting the tin alloy by heating the resin particles carried on the resin particles to form a film-like tin alloy on the surface of the resin particles, and conductive particles for recovering the suspension that has passed through the heating mechanism. A system for producing conductive particles that include or are composed of a container for suspension. The devices are connected by an appropriate connection mechanism.

本発明の導電性粒子の製造システムにさらに加熱機構が追加されることにより、本発明の被膜状スズ合金を備える導電性粒子を効率よく製造することができる。 By further adding a heating mechanism to the system for producing conductive particles of the present invention, conductive particles containing the coated tin alloy of the present invention can be efficiently produced.

図5に、本発明の導電性粒子10の製造システム11の構成図の一例を模式的に示す。 FIG. 5 schematically shows an example of a configuration diagram of the manufacturing system 11 for the conductive particles 10 of the present invention.

本発明の製造システム11は、樹脂粒子の懸濁液1110を保持するための樹脂粒子懸濁液用の容器111と、樹脂粒子の懸濁液1110を送液するための樹脂粒子懸濁液用の送液ポンプ112と、樹脂粒子の懸濁液1110を撹拌し樹脂粒子101(図3)の沈殿を防止するための樹脂粒子懸濁液用の撹拌機113と、スズ合金の懸濁液1140を保持するためのスズ合金懸濁液用の容器114と、スズ合金の懸濁液1140を送液するためのスズ合金懸濁液用の送液ポンプ115と、スズ合金の懸濁液1140を撹拌し粒子状スズ合金102(図3)の沈殿を防止するためのスズ合金懸濁液用の撹拌機116と、樹脂粒子の懸濁液1110とスズ合金の懸濁液1140を混合し樹脂粒子101(図3)の表面に粒子状スズ合金102(図3)を担持させるための混合機構117と、粒子状スズ合金102(図3)を表面に担持した樹脂粒子101(図3)と担持されなかった粒子状スズ合金102(図3)を分離するための分離機構118と、分離された担持されなかった粒子状スズ合金102(図3)の懸濁液1190を保持するための粒子状スズ合金102(図3)用の容器と、分離機構118を通過した導電性粒子10を含む懸濁液(導電性粒子含有懸濁液1200)を回収するための導電性粒子含有懸濁液用の容器120とを含む、又はそれらから構成される。なお、各装置間は、例えば樹脂粒子懸濁液用の容器111と樹脂粒子懸濁液用の送液ポンプ112の接続機構2011のように、適切な接続機構により接続される。 The manufacturing system 11 of the present invention is for a container 111 for holding a suspension of resin particles 1110 and a suspension for resin particles for feeding the suspension 1110 of resin particles. The liquid feed pump 112, the stirrer 113 for the resin particle suspension to stir the resin particle suspension 1110 and prevent the resin particles 101 (FIG. 3) from settling, and the tin alloy suspension 1140. A container 114 for a tin alloy suspension, a liquid feed pump 115 for a tin alloy suspension, and a tin alloy suspension 1140 for feeding the tin alloy suspension 1140. A stirrer 116 for a tin alloy suspension for stirring and preventing the precipitation of the particulate tin alloy 102 (FIG. 3), a resin particle suspension 1110 and a tin alloy suspension 1140 are mixed and the resin particles are mixed. A mixing mechanism 117 for supporting the particulate tin alloy 102 (FIG. 3) on the surface of 101 (FIG. 3), and resin particles 101 (FIG. 3) supporting the particulate tin alloy 102 (FIG. 3) on the surface. Separation mechanism 118 for separating unsupported particulate tin alloy 102 (FIG. 3) and particulate suspension 1190 for separated unsupported particulate tin alloy 102 (FIG. 3). For a container for tin alloy 102 (FIG. 3) and a suspension containing conductive particles for recovering a suspension containing conductive particles 10 that has passed through a separation mechanism 118 (suspension containing conductive particles 1200). Contains or consists of a container 120 of. The devices are connected by an appropriate connection mechanism, such as the connection mechanism 2011 of the container 111 for the resin particle suspension and the liquid feed pump 112 for the resin particle suspension.

図6に、本発明の別形態の導電性粒子10の製造システム11の構成図の一例を模式的に示す。 FIG. 6 schematically shows an example of a configuration diagram of a manufacturing system 11 for the conductive particles 10 of another embodiment of the present invention.

本発明の製造システム11は、樹脂粒子の懸濁液1110を保持するための樹脂粒子懸濁液用の容器111と、樹脂粒子の懸濁液1110を送液するための樹脂粒子懸濁液用の送液ポンプ112と、樹脂粒子の懸濁液1110を撹拌し樹脂粒子101(図4)の沈殿を防止するための樹脂粒子懸濁液用の撹拌機113と、スズ合金の懸濁液1140を保持するためのスズ合金懸濁液用の容器114と、スズ合金の懸濁液1140を送液するためのスズ合金懸濁液用の送液ポンプ115と、スズ合金の懸濁液1140を撹拌し粒子状スズ合金102(図4)の沈殿を防止するためのスズ合金懸濁液用の撹拌機116と、樹脂粒子の懸濁液1110とスズ合金の懸濁液1140を混合し樹脂粒子101(図4)の表面に粒子状スズ合金102(図4)を担持させるための混合機構117と、粒子状スズ合金102(図4)を表面に担持した樹脂粒子101(図4)と担持されなかった粒子状スズ合金102(図4)を分離するための分離機構118と、分離された担持されなかった粒子状スズ合金102(図4)の懸濁液1190を保持するための粒子状スズ合金102(図4)用の容器と、粒子状スズ合金102(図4)を表面に担持した樹脂粒子101(図4)を加熱することで粒子状スズ合金102(図4)を融解し、樹脂粒子101(図4)表面に被膜状スズ合金103(図4)を構成するための加熱機構119と、加熱機構119を通過した導電性粒子10を含む懸濁液(導電性粒子含有懸濁液1200)を回収するための導電性粒子含有懸濁液用の容器120とを含む、又はそれらから構成される。なお、各装置間は、例えば樹脂粒子懸濁液用の容器111と樹脂粒子懸濁液用の送液ポンプ112の接続機構2011のように、適切な接続機構により接続される。 The manufacturing system 11 of the present invention is for a container 111 for holding a suspension of resin particles 1110 and a container for a suspension of resin particles 1110 for feeding the suspension of resin particles 1110. The liquid feed pump 112, the stirrer 113 for the resin particle suspension for stirring the resin particle suspension 1110 to prevent the resin particles 101 (FIG. 4) from settling, and the tin alloy suspension 1140. A container 114 for a tin alloy suspension for holding the particles, a liquid feed pump 115 for a tin alloy suspension for feeding the tin alloy suspension 1140, and a tin alloy suspension 1140. A stirrer 116 for a tin alloy suspension for stirring and preventing the precipitation of the particulate tin alloy 102 (FIG. 4), a resin particle suspension 1110, and a tin alloy suspension 1140 are mixed and the resin particles are mixed. A mixing mechanism 117 for supporting the particulate tin alloy 102 (FIG. 4) on the surface of 101 (FIG. 4), and resin particles 101 (FIG. 4) supporting the particulate tin alloy 102 (FIG. 4) on the surface. A separation mechanism 118 for separating the unsupported particulate tin alloy 102 (FIG. 4) and a particulate for holding the separated suspension 1190 of the unsupported particulate tin alloy 102 (FIG. 4). The particulate tin alloy 102 (FIG. 4) is melted by heating the container for the tin alloy 102 (FIG. 4) and the resin particles 101 (FIG. 4) on which the particulate tin alloy 102 (FIG. 4) is supported on the surface. , A suspension containing the heating mechanism 119 for forming the coated tin alloy 103 (FIG. 4) on the surface of the resin particles 101 (FIG. 4) and the conductive particles 10 that have passed through the heating mechanism 119 (conducting particle-containing suspension). Containing or composed of a container 120 for a conductive particle-containing suspension for recovering the turbid liquid 1200). The devices are connected by an appropriate connection mechanism, such as the connection mechanism 2011 of the container 111 for the resin particle suspension and the liquid feed pump 112 for the resin particle suspension.

二つの撹拌機(113、116)の撹拌方法としては、へらや磁性撹拌子を回転させることで懸濁液を撹拌する方法があげられる。 Examples of the stirring method of the two stirrers (113, 116) include a method of stirring the suspension by rotating a spatula or a magnetic stirrer.

混合機構117の混合方法としては、撹拌槽で二液を撹拌し、混合するバッチ方式のほか、微小流路の中で二液を流し、拡散効果により混合するフロー方式があげられる。 Examples of the mixing method of the mixing mechanism 117 include a batch method in which the two liquids are stirred in a stirring tank and mixed, and a flow method in which the two liquids are flowed in a microchannel and mixed by a diffusion effect.

分離機構118の分離方法としては、フィルタ濾過、沈降分離や流速分布の差を利用した機構があげられる。 Examples of the separation method of the separation mechanism 118 include filter filtration, sedimentation separation, and a mechanism utilizing the difference in the flow velocity distribution.

加熱機構119の加熱方法としては、対象液体を保持する容器を加熱及び冷却する方法や、対象液体が流れる流路を加熱及び冷却する方法があげられる。 Examples of the heating method of the heating mechanism 119 include a method of heating and cooling the container holding the target liquid, and a method of heating and cooling the flow path through which the target liquid flows.

[導電性粒子の調製]
(工程a)樹脂粒子の懸濁液の調製
平均粒径3.0μmの架橋ポリスチレン粒子をpH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、表面が活性化された樹脂粒子を得た。その後、20mLの蒸留水に、表面が活性化された樹脂粒子を浸漬し、超音波分散することで、樹脂粒子の懸濁液を得た。
[Preparation of conductive particles]
(Step a) Preparation of suspension of resin particles A resin whose surface is activated by adding crosslinked polystyrene particles having an average particle size of 3.0 μm to a 0.5 mass% dimethylamine borane solution adjusted to pH 6.0. Obtained particles. Then, the surface-activated resin particles were immersed in 20 mL of distilled water and ultrasonically dispersed to obtain a suspension of the resin particles.

(工程b)スズ合金の懸濁液の調製
(1)粉砕処理をしていない粒子状スズ合金の懸濁液
粒子状スズ合金(平均粒径5μm、Bi−Sn系)を、イソプロパノール中に、粒子状スズ合金の濃度が懸濁液総重量に対して約10質量%になるように添加して懸濁液を得た。懸濁液について、超音波による撹拌を15分間実施したのち、80分静置して大きい金属粒子を沈降分離させ、上澄み液を回収することで、大きいスズ合金を除去した粉砕処理をしていない粒子状スズ合金の懸濁液を得た。
(Step b) Preparation of suspension of tin alloy (1) Suspension of particulate tin alloy that has not been pulverized A particulate tin alloy (average particle size 5 μm, Bi-Sn system) is placed in isopropanol. A suspension was obtained by adding the particulate tin alloy so that the concentration was about 10% by mass based on the total weight of the suspension. The suspension was stirred by ultrasonic waves for 15 minutes, then allowed to stand for 80 minutes to settle and separate large metal particles, and the supernatant was recovered, so that the suspension was not pulverized to remove the large tin alloy. A suspension of particulate tin alloy was obtained.

(2)粉砕処理を行った片状スズ合金の懸濁液
粒子状スズ合金(平均粒径5μm、Bi−Sn系)を、イソプロパノール中に、粒子状スズ合金の濃度が懸濁液総重量に対して約10質量%になるように添加して懸濁液を得た。得られた懸濁液について、ビーズミル(日本コークス社製、商品名「MSC−50」)で、懸濁液総重量に対して約10質量%のφ0.2mmジルコニア粒子を用いて、粉砕処理を行った。
(2) Suspension of pulverized flake tin alloy The concentration of the particulate tin alloy in isopropanol is adjusted to the total suspension weight of the particulate tin alloy (average particle size 5 μm, Bi-Sn system). A suspension was obtained by adding the mixture so as to be about 10% by mass. The obtained suspension was pulverized with a bead mill (manufactured by Nippon Coke & Co., Ltd., trade name "MSC-50") using φ0.2 mm zirconia particles having a weight of about 10% by mass based on the total weight of the suspension. went.

粒子状スズ合金等の柔らかい金属をビーズミルで粉砕処理を行った場合、金属粒子はすぐに粉砕せず、小判状に引き延ばされた形状になった。また、粉砕処理の時間を長くすることで、粒子はさらに引き延ばされ、徐々にちぎれることにより、微細化することができた。本実施例では、粉砕処理を360分間実施した。 When a soft metal such as a particulate tin alloy was crushed with a bead mill, the metal particles were not crushed immediately, but were stretched into an oval shape. Further, by lengthening the pulverization treatment time, the particles were further stretched and gradually torn off, so that the particles could be made finer. In this example, the pulverization treatment was carried out for 360 minutes.

粉砕処理後のスズ合金の懸濁液には、微細化されたスズ合金のほか、引き延ばされたスズ合金が含まれていた。これらの引き延ばされた大きいスズ合金を除去するために、粉砕処理後のスズ合金の懸濁液について、超音波による撹拌を15分間実施したのち、80分静置して大きい金属粒子を沈降させ、上澄み液を回収することで、大きいスズ合金を除去した粉砕処理を行った片状スズ合金の懸濁液を得た。 The suspension of the tin alloy after the pulverization treatment contained a stretched tin alloy as well as a finely divided tin alloy. In order to remove these stretched large tin alloys, the pulverized tin alloy suspension was stirred with ultrasonic waves for 15 minutes and then allowed to stand for 80 minutes to settle large metal particles. Then, the supernatant was recovered to obtain a suspension of a flake tin alloy that had been pulverized by removing a large tin alloy.

(工程c)樹脂粒子表面へのスズ合金の修飾
工程bで回収したスズ合金の懸濁液100μLに、6%樹脂粒子の懸濁液10μLを追加して、混合懸濁液を得た。混合懸濁液は、転倒混和(0.5分)と超音波撹拌(5分)を繰り返し実施した(計24回)。転倒混和と超音波撹拌は、粒子の沈降と粒子の凝集を防止し、一つの樹脂粒子の表面にスズ合金を修飾させる効果がある。
(Step c) Modification of tin alloy to the surface of resin particles 10 μL of a suspension of 6% resin particles was added to 100 μL of the suspension of tin alloy recovered in step b to obtain a mixed suspension. The mixed suspension was repeatedly mixed by inversion (0.5 minutes) and ultrasonically stirred (5 minutes) (24 times in total). Inversion mixing and ultrasonic agitation have the effect of preventing particle settling and particle agglutination and modifying the surface of one resin particle with a tin alloy.

[導電性粒子の評価]
調製した導電性粒子を走査型電子顕微鏡(canning lectron icroscope、以下SEM)を用い、観察した。取得したSEM画像を図7及び8(a)〜(d)に示す。
[Evaluation of conductive particles]
The prepared conductive particles scanning electron microscope (S canning E lectron M icroscope, hereinafter SEM) was used to observe. The acquired SEM images are shown in FIGS. 7 and 8 (a) to 8 (d).

図7は、(工程c)において、(工程a)で調製した樹脂粒子の懸濁液の樹脂粒子表面に、(工程b)の(1)で調製した粉砕処理をしていない粒子状スズ合金を担持させた導電性粒子のSEM画像であり、図8(a)〜(d)は、(工程c)において、(工程a)で調製した樹脂粒子の懸濁液の樹脂粒子表面に、(工程b)の(2)で粉砕処理を行った片状スズ合金を担持させた導電性粒子のSEM画像である。 FIG. 7 shows a particulate tin alloy prepared in (1) of (step b) on the surface of the resin particles of the suspension of the resin particles prepared in (step a) in (step c). 8 (a) to 8 (d) are SEM images of the conductive particles on which the above-mentioned substances are carried. 6 is an SEM image of conductive particles carrying a flake tin alloy that has been pulverized in step b) (2).

図7では、樹脂粒子表面に粒子状スズ合金が担持していることを確認することができた。また、図8(a)〜(d)では、樹脂粒子表面に片状スズ合金が担持していることを確認することができた。この結果から、本明細書の方法により、表面にスズ合金を担持した樹脂粒子を調製することができることを確認した。 In FIG. 7, it was confirmed that the particulate tin alloy was supported on the surface of the resin particles. Further, in FIGS. 8A to 8D, it was confirmed that the flake tin alloy was supported on the surface of the resin particles. From this result, it was confirmed that the resin particles having a tin alloy supported on the surface can be prepared by the method of the present specification.

なお、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.

1:異方導電性接着剤、10:導電性粒子、11:製造システム、12:接着剤、101:樹脂粒子、102:粒子状スズ合金、103:被膜状スズ合金、111:樹脂粒子懸濁液用の容器、112:樹脂粒子懸濁液用の送液ポンプ、113:樹脂粒子懸濁液用の撹拌機、114:スズ合金懸濁液用の容器、115:スズ合金懸濁液用の送液ポンプ、116:スズ合金懸濁液用の撹拌機、117:混合機構、118:分離機構、119:加熱機構、120:導電性粒子含有懸濁液用の容器、1110:樹脂粒子の懸濁液、1140:スズ合金の懸濁液、1190:分離された担持されなかったスズ合金の懸濁液、1200:導電性粒子含有懸濁液、2011:樹脂粒子懸濁液用の容器と樹脂粒子懸濁液用の送液ポンプの接続機構 1: Heterogeneous conductive adhesive, 10: Conductive particles, 11: Manufacturing system, 12: Adhesive, 101: Resin particles, 102: Particle-like tin alloy, 103: Film-like tin alloy, 111: Resin particle suspension Liquid container, 112: Liquid feed pump for resin particle suspension, 113: Stirrer for resin particle suspension, 114: Container for tin alloy suspension, 115: For tin alloy suspension Liquid transfer pump, 116: Stirrer for tin alloy suspension 117: Mixing mechanism, 118: Separation mechanism, 119: Heating mechanism, 120: Container for suspension containing conductive particles 1110: Suspension of resin particles Turbid liquid, 1140: Suspension of tin alloy, 1190: Suspension of separated unsupported tin alloy, 1200: Suspension containing conductive particles, 2011: Container and resin for resin particle suspension Connection mechanism of liquid feed pump for particle suspension

Claims (8)

樹脂粒子と、樹脂粒子の表面を覆うように担持されたスズ合金と、を備え、スズ合金が片状スズ合金であり、スズ合金が層を形成しており、層の厚さの平均値が、樹脂粒子の平均粒径の0.003倍〜0.3倍であり、スズ合金が、Sn−Pb系、Pb−Sn−Sb系、Sn−Sb系、Sn−Pb−Bi系、Bi−Sn系、Sn−Ag系、Sn−Pb−Ag系、及びSn−In系からなる群から選択される少なくとも1種(ただし、スズ合金がCuを含む場合を除く。)である、異方性導電膜用の導電性粒子。 It comprises resin particles and a tin alloy supported so as to cover the surface of the resin particles, the tin alloy is a flake tin alloy, the tin alloy forms a layer, and the average value of the layer thickness is , 0.003 times to 0.3 Baidea an average particle diameter of the resin particles is, tin alloy, Sn-Pb-based, Pb-Sn-Sb-based, Sn-Sb-based, Sn-Pb-Bi-based, Bi -Sn based, Sn-Ag-based, Sn-Pb-Ag system, and at least one selected from the group consisting of Sn-In system (provided that tin alloy except if it contains Cu.) der Ru, different Conductive particles for square conductive films. 樹脂粒子が、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン、アルカンジオールジ(メタ)アクリレート及び/若しくはジビニルベンゼンの重合体、又はポリスチレンである、請求項1に記載の導電性粒子。 The conductivity according to claim 1, wherein the resin particles are a polymer of polymethylmethacrylate, polymethylacrylate, polyethylene, polypropylene, polyisobutylene, polybutadiene, alcandiol di (meth) acrylate and / or divinylbenzene, or polystyrene. particle. 請求項1又は2に記載の導電性粒子がフィルム状の接着剤内に分散されている異方導電性接着剤。 An anisotropic conductive adhesive in which the conductive particles according to claim 1 or 2 are dispersed in a film-like adhesive. 樹脂粒子の懸濁液とスズ合金の懸濁液とを混合したのち撹拌を行い、静電気力又は分子間力を利用して樹脂粒子の表面にスズ合金を担持させることを含む、樹脂粒子と、樹脂粒子の表面を覆うように担持されたスズ合金と、を備え、スズ合金が層を形成しており、層の厚さの平均値が、樹脂粒子の平均粒径の0.003倍〜0.3倍である、異方性導電膜用の導電性粒子を製造する方法。 The resin particles, which include mixing the suspension of the resin particles and the suspension of the tin alloy, stirring the mixture, and supporting the tin alloy on the surface of the resin particles by utilizing electrostatic force or intramolecular force. A tin alloy supported so as to cover the surface of the resin particles is provided, and the tin alloy forms a layer, and the average value of the layer thickness is 0.003 to 0 times the average particle size of the resin particles. A method for producing conductive particles for anisotropic conductive film, which is 3 times larger. スズ合金の懸濁液が粒子状スズ合金を粉砕することで得られる、請求項に記載の方法。 The method according to claim 4 , wherein the tin alloy suspension is obtained by pulverizing the particulate tin alloy. さらに、加熱により樹脂粒子表面に担持したスズ合金を融解し、樹脂粒子の表面を融解したスズ合金で覆ったのち、冷却により融解したスズ合金を凝固させ、樹脂粒子の表面に被膜状スズ合金を形成することを含む、請求項又はに記載の方法。 Further, the tin alloy supported on the surface of the resin particles is melted by heating, the surface of the resin particles is covered with the melted tin alloy, the tin alloy melted by cooling is solidified, and the coated tin alloy is formed on the surface of the resin particles. The method of claim 4 or 5 , comprising forming. 樹脂粒子の懸濁液を保持するための樹脂粒子懸濁液用の容器と、樹脂粒子の懸濁液を送液するための樹脂粒子懸濁液用の送液ポンプと、樹脂粒子の懸濁液を撹拌し樹脂粒子の沈殿を防止するための樹脂粒子懸濁液用撹拌機と、スズ合金の懸濁液を保持するためのスズ合金懸濁液用の容器と、スズ合金の懸濁液を送液するためのスズ合金懸濁液用の送液ポンプと、スズ合金の懸濁液を撹拌しスズ合金の沈殿を防止するためのスズ合金懸濁液用の撹拌機と、樹脂粒子の懸濁液とスズ合金の懸濁液を混合し樹脂粒子の表面にスズ合金を担持させるための混合機構と、スズ合金を表面に担持した樹脂粒子と担持されなかったスズ合金とを分離するための分離機構と、分離された担持されなかったスズ合金の懸濁液を保持するためのスズ合金用の容器とを含む、樹脂粒子と、樹脂粒子の表面を覆うように担持されたスズ合金と、を備え、スズ合金が層を形成しており、層の厚さの平均値が、樹脂粒子の平均粒径の0.003倍〜0.3倍である、異方性導電膜用の導電性粒子を製造するためのシステム。 A container for the resin particle suspension for holding the suspension of the resin particles, a liquid feed pump for the resin particle suspension for feeding the suspension of the resin particles, and a suspension of the resin particles. A stirrer for resin particle suspension to stir the liquid and prevent the precipitation of resin particles, a container for tin alloy suspension to hold the tin alloy suspension, and a tin alloy suspension. A liquid feed pump for tin alloy suspension, a stirrer for tin alloy suspension to stir the tin alloy suspension, and a stirrer for tin alloy suspension to prevent sedimentation of the tin alloy, and resin particles. A mixing mechanism for mixing the suspension and the suspension of the tin alloy to support the tin alloy on the surface of the resin particles, and for separating the resin particles supporting the tin alloy on the surface and the tin alloy not supported. Resin particles and a tin alloy supported to cover the surface of the resin particles, including a separation mechanism for the tin alloy and a container for the tin alloy for holding a separated suspension of the unsupported tin alloy. , And the tin alloy forms a layer, and the average value of the layer thickness is 0.003 to 0.3 times the average particle size of the resin particles. A system for producing sex particles. さらに、スズ合金を表面に担持した樹脂粒子を加熱することでスズ合金を融解し、樹脂粒子表面に被膜状スズ合金を構成するための加熱機構と、加熱機構を通過した懸濁液を回収するための導電性粒子含有懸濁液用の容器とを含む、請求項に記載のシステム。 Further, the tin alloy is melted by heating the resin particles carrying the tin alloy on the surface, and the heating mechanism for forming the coated tin alloy on the surface of the resin particles and the suspension that has passed through the heating mechanism are recovered. 7. The system of claim 7 , comprising a container for a suspension containing conductive particles for the purpose.
JP2018230630A 2018-12-10 2018-12-10 Conductive particles for anisotropic conductive adhesives Active JP6962307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018230630A JP6962307B2 (en) 2018-12-10 2018-12-10 Conductive particles for anisotropic conductive adhesives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018230630A JP6962307B2 (en) 2018-12-10 2018-12-10 Conductive particles for anisotropic conductive adhesives

Publications (2)

Publication Number Publication Date
JP2020095785A JP2020095785A (en) 2020-06-18
JP6962307B2 true JP6962307B2 (en) 2021-11-05

Family

ID=71086248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018230630A Active JP6962307B2 (en) 2018-12-10 2018-12-10 Conductive particles for anisotropic conductive adhesives

Country Status (1)

Country Link
JP (1) JP6962307B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864329A (en) * 2020-08-03 2020-10-30 江西沃格光电股份有限公司 Dielectric resonator, preparation method thereof, dielectric filter and communication equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179474A (en) * 2004-11-26 2006-07-06 Sanyo Chem Ind Ltd Conductive particulates
KR100765363B1 (en) * 2005-10-31 2007-10-09 전자부품연구원 Manufacturing method of electroconductive particle
KR101815336B1 (en) * 2010-09-30 2018-01-04 세키스이가가쿠 고교가부시키가이샤 Conductive particles, anisotropic conductive material and connection structure
JP6313669B2 (en) * 2013-06-20 2018-04-18 積水化学工業株式会社 Conductive material and connection structure

Also Published As

Publication number Publication date
JP2020095785A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
EP3142124B1 (en) Anisotropic conductive material and an electronic device including anisotropic conductive material
KR101623449B1 (en) Bonding material and bonding method each using metal nanoparticles
TWI826476B (en) Anisotropic conductive film, method for manufacturing same, and method for manufacturing connected structure
JP4686120B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
CN102482540A (en) Anisotropic conductive adhesive for ultrasonic bonding, and electronic component connection method using same
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
TWI841520B (en) Metal-containing particles, connecting material, connecting structure, and method for manufacturing the connecting structure
JP2014060025A (en) Anisotropic conductive film, connection method and joined body
US20060035036A1 (en) Anisotropic conductive adhesive for fine pitch and COG packaged LCD module
JP6962307B2 (en) Conductive particles for anisotropic conductive adhesives
JP2018145418A (en) Resin composition, method for producing resin composition, and structure
JP2009259804A (en) Coated conductive particulate, anisotropic conductive material, and conductive connection structure
JP5059458B2 (en) Conductive powder, conductive paste, conductive sheet, circuit board and electronic component mounting circuit board
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
US8506850B2 (en) Conductive fine particles, anisotropic conductive element, and connection structure
JP4391836B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4739999B2 (en) Method for manufacturing anisotropic conductive material and anisotropic conductive material
WO2022107800A1 (en) Adhesive film for circuit connection, and connection structure and method for manufacturing same
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP2006131978A (en) SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM
JP2010253507A (en) Conductive particulate, anisotropic conductive material, and connecting structure
JP5421667B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2021108269A (en) Core-shell type solder particle, method for producing core-shell type solder particle, anisotropic conductive film, and method for producing anisotropic conductive film
JP2003247083A (en) Conductive fine particle with flux, and conductive connecting structure
JP2006111807A (en) Electronic part and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R151 Written notification of patent or utility model registration

Ref document number: 6962307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350