JP6959859B2 - Insulation deterioration diagnosis device and insulation deterioration location identification device - Google Patents

Insulation deterioration diagnosis device and insulation deterioration location identification device Download PDF

Info

Publication number
JP6959859B2
JP6959859B2 JP2017254205A JP2017254205A JP6959859B2 JP 6959859 B2 JP6959859 B2 JP 6959859B2 JP 2017254205 A JP2017254205 A JP 2017254205A JP 2017254205 A JP2017254205 A JP 2017254205A JP 6959859 B2 JP6959859 B2 JP 6959859B2
Authority
JP
Japan
Prior art keywords
partial discharge
time
current
insulation deterioration
magnitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017254205A
Other languages
Japanese (ja)
Other versions
JP2019120548A (en
Inventor
敏昭 吉浦
克己 梶谷
晃平 大谷
Original Assignee
九電テクノシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 九電テクノシステムズ株式会社 filed Critical 九電テクノシステムズ株式会社
Priority to JP2017254205A priority Critical patent/JP6959859B2/en
Publication of JP2019120548A publication Critical patent/JP2019120548A/en
Application granted granted Critical
Publication of JP6959859B2 publication Critical patent/JP6959859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Locating Faults (AREA)

Description

この発明は、特別高圧系統又は高圧系統に接続された電力ケーブル又は電気機器(以下「電力ケーブル等」という。)の絶縁劣化を診断する装置に関し、接地線に流れる放電電流に基づいて部分放電を検出する絶縁劣化診断装置及び部分放電が発生している箇所の標定を行う絶縁劣化箇所標定装置に関する。 The present invention relates to a device for diagnosing insulation deterioration of a power cable or an electric device (hereinafter referred to as "power cable, etc.") connected to a special high-voltage system or a high-voltage system, and performs partial discharge based on a discharge current flowing through a ground wire. The present invention relates to an insulation deterioration diagnostic device for detecting and an insulation deterioration location locating device for locating a location where a partial discharge is occurring.

部分放電とは、導体間に在る絶縁体(気体・液体・固体・真空)の局所的電界のために絶縁体に部分的に生じる局所的な電気的放電現象である。
部分放電が発生すると、紫外線、高エネルギー電子・粒子、化学活性の強いガスなどにより絶縁材料が劣化する。部分放電の発生により、気体・液体・固体絶縁システムの劣化が進行し、その後、絶縁破壊に至るので、部分放電は、絶縁材料の寿命を決定する要因となる。
電力ケーブル等の絶縁劣化を早期に発見するため、しきい値超過の波形を全て抽出し統計処理等により波形を峻別したのち、相電圧との相関による部分放電発生有無を判定する統計的手法が開発されている。
しかし、統計的手法による部分放電判別には、次のような短所がある。
(1)放送電波、無線ノイズ又は系統ノイズが多いため、劣化が進み部分放電の数量が多くならないと部分放電の発生が判別できない。
(2)部分放電波形の個別検出ができないため、部分放電の位置標定に活用できない。
Partial discharge is a local electrical discharge phenomenon that occurs partially in an insulator due to the local electric field of the insulator (gas, liquid, solid, vacuum) between conductors.
When a partial discharge occurs, the insulating material deteriorates due to ultraviolet rays, high-energy electrons / particles, gas with strong chemical activity, and the like. Due to the occurrence of partial discharge, deterioration of the gas / liquid / solid insulation system progresses, and then dielectric breakdown occurs. Therefore, partial discharge is a factor that determines the life of the insulating material.
In order to detect insulation deterioration of power cables, etc. at an early stage, a statistical method is used to extract all waveforms that exceed the threshold value, distinguish the waveforms by statistical processing, etc., and then determine the presence or absence of partial discharge due to the correlation with the phase voltage. It is being developed.
However, the partial discharge discrimination by the statistical method has the following disadvantages.
(1) Since there is a large amount of broadcast radio waves, radio noise, or system noise, the occurrence of partial discharge cannot be determined unless deterioration progresses and the quantity of partial discharge increases.
(2) Since the partial discharge waveform cannot be detected individually, it cannot be used for positioning the partial discharge.

また、特許文献1(特開2011−237182号公報)には、図8に示すように、ケーブル(2)の端部外周上の遮蔽層に接続された接地線(5)に取り付けられる部分放電判別装置及びその部分放電判別装置を用いて接地線(5)に流れる放電電流を検出し、ケーブル(2)の絶縁劣化に伴う放電電流が発生しているか否かを判別する部分放電判別装置及び方法が開示されている。
その部分放電判別装置は、接地線(5)に流れる電流を検出する変流器(7)、負荷抵抗(13)、抵抗(14)、増幅器(15)、バンドパスフィルタ(17)、ノイズ除去部(19)、波形記憶部(21)、特徴量導出部(23)及び放電判定部(25)を備えている。
そして、特徴量導出部(23)は、バンドパスフィルタ(17)を通過し波形記憶部(21) により記憶された波形に基づいて、振幅の大きさや振動の向き、ピークピッチ、収束時間等の特徴量を導出する(特に、段落0031を参照)。
また、放電判定部(25)は、特徴量導出部(23)により導出された特徴量に基づいて、所定時間内に検出された電流信号が複数の振動波形を有し、且つ複数の振動波形の中に大きさが略同等で振動の向きが互いに逆となる複数の波形が含まれていると判断する場合に、被測定線である接地線(5)で部分放電が生じたと判定する(特に、段落0032を参照)。
特許文献1に開示されている部分放電判別装置及び方法によれば、ある程度は部分放電の特徴を掴むことができるものの、絶縁劣化箇所がどこに存在しているかを特定することはできず、判定の信頼性もそれほど高くなかった。
Further, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2011-237182), as shown in FIG. 8, a partial discharge attached to a ground wire (5) connected to a shielding layer on the outer periphery of the end of the cable (2). A partial discharge discriminator that detects the discharge current flowing through the ground wire (5) using the discriminator and its partial discharge discriminator, and discriminates whether or not a discharge current is generated due to insulation deterioration of the cable (2). The method is disclosed.
The partial discharge discriminator is a current transformer (7), a load resistor (13), a resistor (14), an amplifier (15), a bandpass filter (17), and noise removal that detect the current flowing through the ground wire (5). It includes a unit (19), a waveform storage unit (21), a feature amount derivation unit (23), and a discharge determination unit (25).
Then, the feature amount derivation unit (23) passes through the bandpass filter (17) and based on the waveform stored by the waveform storage unit (21), the magnitude of the amplitude, the direction of vibration, the peak pitch, the convergence time, etc. Derivation of features (see in particular paragraph 0031).
Further, in the discharge determination unit (25), the current signal detected within a predetermined time has a plurality of vibration waveforms based on the feature quantity derived by the feature quantity derivation unit (23), and the plurality of vibration waveforms. When it is judged that a plurality of waveforms having substantially the same size and opposite vibration directions are included in the waveform, it is judged that a partial discharge has occurred at the ground wire (5) which is the measured line (the ground wire (5) to be measured). In particular, see paragraph 0032).
According to the partial discharge discriminating device and the method disclosed in Patent Document 1, although the characteristics of the partial discharge can be grasped to some extent, it is not possible to specify where the insulation deteriorated portion exists, and the determination is made. The reliability was not so high.

特開2011−237182号公報Japanese Unexamined Patent Publication No. 2011-237182

本発明は、停電させることなく活線状態で電力ケーブル等の絶縁劣化を診断することができる絶縁劣化診断装置において、接地線電流を計測し適切に処理することによって部分放電発生判定の信頼性を向上させ、かつ、その部分放電が電力ケーブル等のどこで発生しているかを標定できるようにすることを目的とする。 The present invention is an insulation deterioration diagnostic device capable of diagnosing insulation deterioration of a power cable or the like in a live wire state without causing a power failure. The purpose is to improve and to be able to determine where the partial discharge is occurring in the power cable or the like.

請求項1に係る発明の絶縁劣化診断装置は、
電力ケーブル又は電気機器における接地線電流を検出する電流検出手段と、
前記電流検出手段によって一定時間毎に検出された電流検出値に基づく電流データから特徴量を抽出する特徴量抽出手段と、
前記特徴量抽出手段により抽出された特徴量に基づいて、部分放電の特徴の有無を判定する部分放電波形判定手段と、
所定しきい値以上の大きさのノイズを検出するノイズ検出手段と、
前記部分放電波形判定手段が部分放電の特徴有りと判定した時点が、前記ノイズ検出手段が所定しきい値以上の大きさのノイズを検出してから第1の継続時間が経過した後であるか否かを判定する直前ノイズ管理手段と、
前記部分放電波形判定手段が部分放電の特徴有りと判定した時点から第2の継続時間が経過するまでに、前記ノイズ検出手段が所定しきい値以上の大きさのノイズを検出したか否かを判定する後続ノイズ管理手段と、
前記直前ノイズ管理手段が所定しきい値以上の大きさのノイズを検出してから第1の継続時間が経過した後であると判定し、かつ、前記後続ノイズ管理手段が部分放電の特徴有りと判定した時点から第2の継続時間が経過するまでに所定しきい値以上の大きさのノイズを検出しなかったと判定した時に、部分放電が発生したと判定する部分放電発生判定手段を備えていることを特徴とする。
The insulation deterioration diagnostic apparatus of the invention according to claim 1 is
A current detecting means for detecting a ground line current in a power cable or an electric device,
A feature amount extraction means for extracting a feature amount from current data based on a current detection value detected at regular time intervals by the current detection means, and a feature amount extraction means.
A partial discharge waveform determining means for determining the presence or absence of a partial discharge feature based on the feature amount extracted by the feature amount extracting means,
A noise detection means that detects noise with a magnitude greater than or equal to a predetermined threshold, and
Whether the time when the partial discharge waveform determining means determines that there is a characteristic of partial discharge is after the first duration elapses after the noise detecting means detects noise having a magnitude equal to or larger than a predetermined threshold value. Immediately before determining whether or not noise management means and
Whether or not the noise detecting means has detected noise having a magnitude equal to or greater than a predetermined threshold value from the time when the partial discharge waveform determining means determines that the partial discharge has a characteristic to the time when the second duration elapses. Subsequent noise management means to determine and
It is determined that the first duration has elapsed since the immediately preceding noise management means detected noise having a magnitude equal to or larger than a predetermined threshold value, and the subsequent noise management means has a characteristic of partial discharge. It is provided with a partial discharge generation determining means for determining that a partial discharge has occurred when it is determined that noise having a magnitude equal to or larger than a predetermined threshold value has not been detected between the time of the determination and the elapse of the second duration. It is characterized by that.

請求項2に係る発明は、請求項1に記載の絶縁劣化診断装置において、
部分放電第1波が立下りの場合に、前記特徴量抽出手段は、立下り電流値の大きさ、立下り所要時間、立上り電流値の大きさ及び立上り所要時間を特徴量として抽出し、
前記部分放電波形判定手段は、立下り電流値の大きさが所定範囲内であること、立下り所要時間が第3の継続時間以内であること、立上り電流値の大きさが立下り電流値の大きさより大きいこと及び立上り所要時間が立下り所要時間より大きく立下り所要時間の3倍より小さいことの条件を満足している時に、部分放電の特徴有りと判定し、
部分放電第1波が立上りの場合に、前記特徴量抽出手段は、立上り電流値の大きさ、立上り所要時間、立下り電流値の大きさ及び立下り所要時間を特徴量として抽出し、
前記部分放電波形判定手段は、立上り電流値の大きさが所定範囲内であること、立上り所要時間が所定時間以内であること、立下り電流値の大きさが立上り電流値の大きさより大きいこと及び立下り所要時間が立上り所要時間より大きく立上り所要時間の3倍より小さいことの条件を満足している時に、部分放電の特徴有りと判定することを特徴とする。
The invention according to claim 2 is the insulation deterioration diagnostic apparatus according to claim 1.
When the first wave of the partial discharge is falling, the feature amount extracting means extracts the magnitude of the falling current value, the required falling time, the magnitude of the rising current value, and the required rising time as the feature amount.
In the partial discharge waveform determining means, the magnitude of the falling current value is within a predetermined range, the required falling time is within the third duration, and the magnitude of the rising current value is the falling current value. When the conditions that the size is larger and the rise time is larger than the fall time and less than 3 times the fall time are satisfied, it is judged that the partial discharge is characteristic.
When the first wave of the partial discharge is rising, the feature amount extracting means extracts the magnitude of the rising current value, the required rising time, the magnitude of the falling current value, and the required falling time as the feature amount.
The partial discharge waveform determining means means that the magnitude of the rising current value is within a predetermined range, the required rising time is within a predetermined time, the magnitude of the falling current value is larger than the magnitude of the rising current value, and When the condition that the required fall time is larger than the required rise time and less than three times the required rise time is satisfied, it is determined that the partial discharge is characteristic.

請求項3に係る発明の絶縁劣化診断装置は、
請求項1又は2に記載の絶縁劣化診断装置を、3相の電力ケーブルの各相に設置し、
いずれかの相の前記部分放電発生判定手段において、部分放電が発生したと判定された時に、各相の電流データ及び時刻情報の1サイクルメモリへの記録を停止し、停止した時点における各相の前記1サイクルメモリの情報を受信する部分放電解析手段を設け、
前記部分放電解析手段は、
受信した各相の電流データ及び時刻情報に基づいて、前記特徴量抽出手段及び前記部分放電波形判定手段によって部分放電の特徴有りと判定される波形の電流ピークの極性を検出する電流ピーク極性検出手段と、該電流ピークの絶対値を検出する電流ピーク値検出手段と、前記電流ピークの時刻を検出する電流ピーク時刻検出手段と、部分放電の特徴有りと判定された相以外の2相において、前記電流ピークの時刻における電流データの極性を検出する他相電流極性検出手段と、前記電流ピークの時刻における電流データの絶対値を検出する他相電流値検出手段と、
前記電流ピーク極性検出手段で検出された極性と前記他相電流極性検出手段で検出された極性が逆極性であり、かつ、前記電流ピーク値検出手段で検出された絶対値と前記他相電流値検出手段で検出された絶対値の2倍との差が判定値以下である場合にクロスボンド接続内部分放電であると判定する部分放電発生範囲判定手段を有していることを特徴とする。
The insulation deterioration diagnostic apparatus of the invention according to claim 3 is
The insulation deterioration diagnostic apparatus according to claim 1 or 2 is installed in each phase of the three-phase power cable.
When the partial discharge generation determination means of any phase determines that a partial discharge has occurred, the recording of the current data and time information of each phase in the one-cycle memory is stopped, and the recording of each phase at the time of the stop is stopped. A partial discharge analysis means for receiving the information of the one-cycle memory is provided.
The partial discharge analysis means
Current peak polarity detecting means for detecting the polarity of the current peak of the waveform determined by the feature amount extracting means and the partial discharge waveform determining means based on the received current data and time information of each phase. In two phases other than the current peak value detecting means for detecting the absolute value of the current peak, the current peak time detecting means for detecting the time of the current peak, and the phase determined to have the characteristic of partial discharge. The other-phase current polarity detecting means for detecting the polarity of the current data at the time of the current peak, the other-phase current value detecting means for detecting the absolute value of the current data at the time of the current peak, and the other-phase current value detecting means.
The polarity detected by the current peak polarity detecting means and the polarity detected by the other-phase current polarity detecting means are opposite polarities, and the absolute value detected by the current peak value detecting means and the other-phase current value. It is characterized by having a partial discharge generation range determining means for determining a partial discharge in a cross-bond connection when the difference from twice the absolute value detected by the detecting means is equal to or less than the determination value.

請求項4に係る発明の絶縁劣化箇所標定装置は、
電力ケーブル又は電気機器の一端側に一端側子局を設けるとともに、前記電力ケーブル又は電気機器の他端側に他端側子局を設け、
前記一端側子局は、請求項1又は2に記載の絶縁劣化診断装置と同じ構成の一端側絶縁劣化診断装置及び前記一端側絶縁劣化診断装置により部分放電が発生したと判定された時、一端側部分放電情報を親局に対して送信する一端側送信手段を備え、
前記他端側子局は、請求項1又は2に記載の絶縁劣化診断装置と同じ構成の他端側絶縁劣化診断装置及び前記他端側絶縁劣化診断装置により部分放電が発生したと判定された時、他端側部分放電情報を前記親局に対して送信する他端側送信手段を備え、
前記親局は、前記電力ケーブル又は電気機器の電線の長さ及び電流伝搬速度並びに受信した一端側部分放電情報及び他端側部分放電情報に基づいて絶縁劣化箇所の位置を計算する絶縁劣化位置計算手段と、
前記絶縁劣化位置計算手段による計算結果に基づいて前記絶縁劣化箇所の位置情報を表示する表示手段を備えていることを特徴とする。
The insulation deterioration location locating device of the invention according to claim 4 is
One end side slave station is provided on one end side of the power cable or the electric device, and the other end side slave station is provided on the other end side of the power cable or the electric device.
One end of the slave station is one end when it is determined that a partial discharge has occurred by the one end side insulation deterioration diagnosis device and the one end side insulation deterioration diagnosis device having the same configuration as the insulation deterioration diagnosis device according to claim 1 or 2. A one-sided transmission means for transmitting side partial discharge information to the master station is provided.
It was determined that the other end side slave station was partially discharged by the other end side insulation deterioration diagnosis device and the other end side insulation deterioration diagnosis device having the same configuration as the insulation deterioration diagnosis device according to claim 1 or 2. At the time, the other end side transmitting means for transmitting the other end side partial discharge information to the master station is provided.
The master station calculates the position of the insulation deterioration location based on the length and current propagation speed of the electric wire of the power cable or the electric device, and the received one-side partial discharge information and the other-end partial discharge information. Means and
It is characterized by including a display means for displaying the position information of the insulation deterioration location based on the calculation result by the insulation deterioration position calculation means.

請求項1に係る発明の絶縁劣化診断装置によれば、停電させることなく活線状態で電力ケーブルの絶縁劣化を診断することができるので、電力ケーブル又は電気機器の劣化状態を常時監視することが可能である。
また、大きなノイズが検出されない時間帯において部分放電の可能性がある電流波形を検出した場合にのみ部分放電が発生したと判定するので、部分放電発生判定の信頼性を高めることができ、早期に電力ケーブル又は電気機器が劣化状態にあることを発見できる。
According to the insulation deterioration diagnosis device of the invention according to claim 1, since the insulation deterioration of the power cable can be diagnosed in the live line state without causing a power failure, the deterioration state of the power cable or the electric device can be constantly monitored. It is possible.
In addition, since it is determined that a partial discharge has occurred only when a current waveform that may cause a partial discharge is detected during a time period when no large noise is detected, the reliability of the partial discharge generation determination can be improved and the reliability of the partial discharge generation determination can be improved at an early stage. It can be found that the power cable or electrical equipment is in a deteriorated state.

請求項2に係る発明の絶縁劣化診断装置によれば、請求項1に係る発明による効果に加えて、部分放電第1波が立下りの場合に、放電波形(sin曲線1サイクル近似波形)の特徴である、立下り電流値の大きさ、立下り所要時間、立上り電流値の大きさ及び立上り所要時間を特徴量として抽出し、立下り電流値の大きさが所定範囲内であること、立下り所要時間が所定時間以内であること、立上り電流値の大きさが立下り電流値の大きさより大きいこと及び立上り所要時間が立下り所要時間より大きく立下り所要時間の3倍より小さいことの条件を満足している時に、部分放電の特徴有りと判定し、部分放電第1波が立上りの場合に、放電波形(sin曲線1サイクル近似波形)の特徴である、立上り電流値の大きさ、立上り所要時間、立下り電流値の大きさ及び立下り所要時間を特徴量として抽出し、立上り電流値の大きさが所定範囲内であること、立上り所要時間が所定時間以内であること、立下り電流値の大きさが立上り電流値の大きさより大きいこと及び立下り所要時間が立上り所要時間より大きく立上り所要時間の3倍より小さいことの条件を満足している時に、部分放電の特徴有りと判定するので、部分放電の特徴の有無を的確に判定することができる。 According to the insulation deterioration diagnostic apparatus of the invention of claim 2, in addition to the effect of the invention of claim 1, when the first wave of partial current is falling, the discharge waveform (sin curve 1 cycle approximate waveform) The characteristics, the magnitude of the fall current value, the required fall time, the magnitude of the rise current value, and the required rise time are extracted as feature quantities, and the magnitude of the fall current value is within a predetermined range. The condition that the required downlink time is within the specified time, the magnitude of the rising current value is larger than the magnitude of the falling current value, and the required rising time is larger than the required downlink time and less than 3 times the required downlink time. When the above is satisfied, it is determined that the partial discharge has a characteristic, and when the first wave of the partial discharge rises, the magnitude of the rising current value and the rising, which are the characteristics of the discharge waveform (sin curve 1 cycle approximate waveform), are found. The required time, the magnitude of the falling current value, and the required falling time are extracted as feature quantities, and the magnitude of the rising current value is within a predetermined range, the required rising time is within a predetermined time, and the falling current. When the condition that the magnitude of the value is larger than the magnitude of the rising current value and the required falling time is larger than the required rising time and less than 3 times the required rising time is satisfied, it is determined that the partial discharge is characteristic. Therefore, it is possible to accurately determine the presence or absence of the characteristic of partial discharge.

請求項3に係る発明の絶縁劣化箇所診断装置によれば、請求項1又は2に記載の絶縁劣化診断装置を、クロスボンド接地方式の3相の電力ケーブルの各相に設置し、
いずれかの相の前記部分放電発生判定手段において、部分放電が発生したと判定された時に、各相の電流データ及び時刻情報の1サイクルメモリへの記録を停止し、停止した時点における各相の前記1サイクルメモリの情報を受信する部分放電解析手段を設け、
部分放電解析手段は、
受信した各相の電流データ及び時刻情報に基づいて、特徴量抽出手段及び部分放電波形判定手段によって部分放電の特徴有りと判定される波形の電流ピークの極性を検出する電流ピーク極性検出手段と、電流ピークの絶対値を検出する電流ピーク値検出手段と、電流ピークの時刻を検出する電流ピーク時刻検出手段と、部分放電の特徴有りと判定された相以外の2相において、電流ピークの時刻における電流データの極性を検出する他相電流極性検出手段と、電流ピークの時刻における電流データの絶対値を検出する他相電流値検出手段と、
電流ピーク極性検出手段で検出された極性と他相電流極性検出手段で検出された極性が逆極性であり、かつ、電流ピーク値検出手段で検出された絶対値と他相電流値検出手段で検出された絶対値の2倍との差が判定値以下である場合にクロスボンド接続内部分放電であると判定する部分放電発生範囲判定手段を有しているので、
請求項1又は2に記載の絶縁劣化診断装置により検出された部分放電が、クロスボンド接続内部分放電であるか否かを判定することができる。
According to the insulation deterioration location diagnostic device of the invention according to claim 3, the insulation deterioration diagnosis device according to claim 1 or 2 is installed in each phase of the three-phase power cable of the cross-bond grounding method.
When the partial discharge generation determination means of any phase determines that a partial discharge has occurred, the recording of the current data and time information of each phase in the one-cycle memory is stopped, and the recording of each phase at the time of the stop is stopped. A partial discharge analysis means for receiving the information of the one-cycle memory is provided.
The partial discharge analysis means is
Based on the received current data and time information of each phase, the current peak polarity detecting means for detecting the polarity of the current peak of the waveform determined by the feature amount extracting means and the partial discharge waveform determining means to have the characteristic of the partial discharge, and the current peak polarity detecting means. At the time of the current peak, in two phases other than the current peak value detecting means for detecting the absolute value of the current peak, the current peak time detecting means for detecting the time of the current peak, and the phase determined to have the characteristic of partial discharge. The other-phase current polarity detecting means for detecting the polarity of the current data, the other-phase current value detecting means for detecting the absolute value of the current data at the time of the current peak, and the other-phase current value detecting means.
The polarity detected by the current peak polarity detecting means and the polarity detected by the other-phase current polarity detecting means are opposite, and the absolute value detected by the current peak value detecting means and the other-phase current value detecting means detect the polarity. Since it has a partial discharge generation range determining means for determining that it is a partial discharge in the cross-bond connection when the difference from twice the absolute value obtained is less than or equal to the determination value.
It is possible to determine whether or not the partial discharge detected by the insulation deterioration diagnostic apparatus according to claim 1 or 2 is a partial discharge in the cross-bond connection.

請求項4に係る発明の絶縁劣化箇所標定装置によれば、電力ケーブル又は電気機器の両端に一端側子局及び他端側子局を設け、一端側部分放電情報及び他端側部分放電情報を親局に対して送信し、親局は、電力ケーブル又は電気機器の電線の長さ(等価亘長)及び電流伝搬速度並びに受信した一端側部分放電情報及び他端側部分放電情報に基づいて、絶縁劣化箇所の位置を計算し表示することができるので、停電させることなく活線状態において、絶縁劣化が電力ケーブルのどこで発生しているかを標定し報知することができる。
そのため、電力ケーブルの絶縁劣化状態を常時監視することができるとともに、電力ケーブルの交換や修理すべき箇所についての情報を随時得ることができる。
According to the insulation deterioration location locating device of the invention according to claim 4, one end side slave station and the other end side slave station are provided at both ends of the power cable or the electric device, and one end side partial discharge information and the other end side partial discharge information are provided. It is transmitted to the master station, and the master station is based on the length (equivalent length) and current propagation speed of the power cable or the electric wire of the electric device, and the received one-side partial discharge information and the other-side partial discharge information. Since the position of the insulation deterioration location can be calculated and displayed, it is possible to determine and notify where in the power cable the insulation deterioration occurs in the live wire state without causing a power failure.
Therefore, the state of insulation deterioration of the power cable can be constantly monitored, and information on the replacement or repair of the power cable can be obtained at any time.

実施例1の絶縁劣化診断装置の概略図。The schematic diagram of the insulation deterioration diagnostic apparatus of Example 1. FIG. 1サイクルメモリ41に記録される電流データの一部を示すグラフ。The graph which shows a part of the current data recorded in 1 cycle memory 41. 部分放電の発生を判定するためのフローチャート。A flowchart for determining the occurrence of partial discharge. 3相の電力ケーブルにおけるクロスボンド接地方式の説明図。Explanatory drawing of the cross bond grounding system in a three-phase power cable. クロスボンド接地方式の電力ケーブルにおける部分放電に伴う各相電流データの一部を示すグラフ。The graph which shows a part of each phase current data with partial discharge in a cross-bond grounding type power cable. 実施例3の絶縁劣化箇所標定装置の概略図。The schematic diagram of the insulation deterioration part locating apparatus of Example 3. FIG. 絶縁劣化位置計算手段28の処理手順を示すフローチャート。The flowchart which shows the processing procedure of insulation deterioration position calculation means 28. 特許文献1記載の部分放電判別装置の構成を示すブロック図。The block diagram which shows the structure of the partial discharge discriminating apparatus described in Patent Document 1. FIG.

以下、実施例によって本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to examples.

実施例1の絶縁劣化診断装置は、図1にその概略を示すとおり、電力ケーブル1の端部にあるケーブルヘッド2の接地線3に高周波CT等の電流計測手段を取り付けてある。
電流検出手段4は、電流計測手段により得られた電流信号を、3相各々100kHz〜20MHzバンドパスフィルタ処理し増幅した後に得られた信号を150MHz以上のサンプリングによってA/D変換して電流データを得る。
そして、部分放電を検出した時の詳細処理のため商用周波1周期分の電流データを計時手段5から得た時刻情報とともに1サイクルメモリ41にサイクリックに記録していく。
また、通常の部分放電解析手段では、低周波帯域のノイズを除去するため当該電流データに2MHzハイパスフィルタ処理を実施し、処理用の電流データを得る。
一方、減衰が少なく遠隔地検出が可能な低周波成分を用いた低周波の部分放電解析手段では、当該電流データに1MHz程度のローパスフィルタ処理を実施し、低周波電流データを得る。
電流検出手段4には、特徴量抽出手段6とノイズ検出手段7が接続されるとともに、特徴量抽出手段6には部分放電波形判定手段8が接続されており、特徴量抽出手段6で抽出された特徴量に基づいて、部分放電の可能性がある電流波形を検出する。
なお、計時手段5は、電流検出手段4、直前ノイズ管理手段9及び後続ノイズ管理手段10に時刻情報を送信するが、いわゆる標準時に準拠した時間を出力する時計であっても良いし、基準時計手段によって特定される基準時点に同期させてリセットでき一定期間中にカウントアップ又はカウントダウンするカウンタであっても良い。
計時手段5が時計である場合には標準時に準拠した時間情報が時刻情報となり、計時手段5がカウンタである場合にはそのカウント値が時刻情報となる。
As the outline of the insulation deterioration diagnostic apparatus of the first embodiment is shown in FIG. 1, a current measuring means such as a high frequency CT is attached to the ground wire 3 of the cable head 2 at the end of the power cable 1.
The current detecting means 4 A / D-converts the current signal obtained by the current measuring means by A / D conversion by sampling of 150 MHz or more to obtain current data after performing bandpass filtering of 100 kHz to 20 MHz for each of the three phases and amplifying the signal. obtain.
Then, for detailed processing when the partial discharge is detected, the current data for one cycle of the commercial frequency is cyclically recorded in the one-cycle memory 41 together with the time information obtained from the time measuring means 5.
Further, in a normal partial discharge analysis means, in order to remove noise in a low frequency band, the current data is subjected to 2 MHz high-pass filter processing to obtain current data for processing.
On the other hand, in the low-frequency partial discharge analysis means using a low-frequency component that has little attenuation and can detect a remote location, the current data is subjected to a low-pass filter process of about 1 MHz to obtain low-frequency current data.
The feature amount extracting means 6 and the noise detecting means 7 are connected to the current detecting means 4, and the partial discharge waveform determining means 8 is connected to the feature amount extracting means 6, and the feature amount extracting means 6 extracts the features. Based on the features, the current waveform that may be partially discharged is detected.
The time measuring means 5 transmits time information to the current detecting means 4, the immediately preceding noise management means 9, and the succeeding noise management means 10, but may be a clock that outputs a time conforming to the so-called standard time, or a reference clock. It may be a counter that can be reset in synchronization with a reference time point specified by the means and counts up or down during a certain period of time.
When the time measuring means 5 is a clock, the time information based on the standard time becomes the time information, and when the time measuring means 5 is a counter, the count value becomes the time information.

直前ノイズ管理手段9は、ノイズ検出手段7が、例えば0.01A以上又は−0.01A以下(以下「所定しきい値以上」と記載する。)の大きなノイズ(部分放電でないと判定された波形を含む。)を検出したら、直前ノイズカウンタ(図示せず)に2μs相当のカウント値をセットしA/D変換の度にカウントダウンしていく。
すなわち、大きなノイズを検出してから2μsが経過し直前ノイズカウンタが0になっていれば、直前ノイズはない状態であることを確認できる。
なお、直前ノイズカウンタが0になるまでの時間は2μsに限る必要はなく、直前ノイズ管理手段9は、大きなノイズを検出してから第1の継続時間が経過した後であるか否かを判定するものとする。(通常は部分放電の継続時間の数倍である1〜3μsの範囲で選択する。)
後続ノイズ管理手段10は、部分放電波形判定手段8が部分放電の可能性がある電流波形を検出したら、後続ノイズカウンタに2μs相当のカウント値をセットしA/D変換の度にカウントダウンしていく。そして、後続ノイズカウンタが0以下(終了状態)になっていれば後続ノイズはないことを確認することができる。(実際には、後続ノイズカウンタは当該部分放電が未だ継続している可能性のある時間が経過するのを待って、カウント値をセットしてから一定時間(例えば1μs)経過後に監視を開始し、その後1μs経過するまで監視する。)
すなわち、部分放電の可能性がある電流波形を検出してから2μsが経過し後続ノイズカウンタが終了状態になっていれば、後続ノイズはない状態であることを確認できる(部分放電の場合は単発の放電波形であるが、ノイズの場合は信号が連続するため、後続ノイズがなければ部分放電の可能性があると判定する)。
なお、後続ノイズカウンタが0になるまでの時間は2μsに限る必要はなく、後続ノイズ管理手段10は、部分放電の可能性がある電流波形を検出してから第2の継続時間が経過するまでに、大きなノイズを検出したか否かを判定するものとする。(3MHz〜20MHzの高周波帯域の場合、通常は1〜3μsの範囲で選択する。)
そして、部分放電発生判定手段11は、直前ノイズ管理手段9が大きなノイズを検出してから第1の継続時間が経過した後であると判定し、かつ、後続ノイズ管理手段10が部分放電の可能性がある電流波形を検出してから第2の継続時間が経過するまでに大きなノイズを検出しなかったと判定した時に、部分放電が発生したと判定する。
In the immediately preceding noise management means 9, the noise detecting means 7 has, for example, 0.01 A or more or −0.01 A or less (hereinafter, referred to as “predetermined threshold value or more”), a large noise (waveform determined not to be a partial discharge). (Including) is detected, a count value equivalent to 2 μs is set in the immediately preceding noise counter (not shown), and the count is counted down each time A / D conversion is performed.
That is, if 2 μs has passed since the detection of large noise and the immediately preceding noise counter becomes 0, it can be confirmed that there is no immediately preceding noise.
The time until the immediately preceding noise counter becomes 0 does not have to be limited to 2 μs, and the immediately preceding noise management means 9 determines whether or not the first duration has elapsed after detecting a large noise. It shall be. (Usually, it is selected in the range of 1 to 3 μs, which is several times the duration of partial discharge.)
When the partial discharge waveform determining means 8 detects a current waveform that may be partially discharged, the subsequent noise management means 10 sets a count value equivalent to 2 μs in the subsequent noise counter and counts down each time A / D conversion is performed. .. Then, if the subsequent noise counter is 0 or less (end state), it can be confirmed that there is no subsequent noise. (Actually, the subsequent noise counter waits for the time when the partial discharge may still continue, and starts monitoring after a certain time (for example, 1 μs) has passed since the count value was set. After that, monitor until 1 μs elapses.)
That is, if 2 μs elapses after detecting the current waveform that may be partially discharged and the succeeding noise counter is in the terminated state, it can be confirmed that there is no succeeding noise (in the case of partial discharge, a single shot). However, in the case of noise, the signal is continuous, so if there is no subsequent noise, it is judged that there is a possibility of partial discharge).
The time until the subsequent noise counter becomes 0 is not limited to 2 μs, and the subsequent noise management means 10 detects a current waveform that may be partially discharged until the second duration elapses. In addition, it is determined whether or not a large noise is detected. (In the case of a high frequency band of 3 MHz to 20 MHz, it is usually selected in the range of 1 to 3 μs.)
Then, the partial discharge generation determination means 11 determines that the first duration has elapsed since the immediately preceding noise management means 9 detected a large noise, and the subsequent noise management means 10 is capable of partial discharge. It is determined that a partial discharge has occurred when it is determined that no large noise is detected between the detection of the characteristic current waveform and the elapse of the second duration.

次に、特徴量抽出手段6と部分放電波形判定手段8について詳しく説明する。
図2は、1サイクルメモリ41に記録される電流データの一部を示すグラフであり、部分放電第1波が立下りの場合において、部分放電の特徴を有している波形の例である。
特徴量抽出手段6は、立下り電流値の大きさ(|Idown|)、立下り所要時間(Tdown)、立上り電流値の大きさ(Iup)及び立上り所要時間(Tup)を特徴量として抽出する。
なお、図2の点線で囲まれた部分におけるノイズレベル変動は除外処理される。
そして、部分放電波形判定手段8は、特徴量抽出手段6が抽出した4つの特徴量が次の4つの条件を満足している時に、部分放電の可能性がある電流データであると判定する。
(1)立下り電流値の大きさが所定範囲内(Ia<|Idown|<Iupper)
(2)立下り所要時間が所定時間以内(Tdown<Ta)
(3)立上り電流値の大きさが立下り電流値の大きさより大きい(Iup>|Idown|)
(4)立上り所要時間が立下り所要時間より大きく立下り所要時間の3倍より小さい
(Tdown<Tup<Tdown×3)
ただし、部分放電第1波が立上りの場合には、立下りと立上りの関係が逆になり、Ia<Iup<Iupper、Tup<Ta、|Idown|>Iup、Tup<Tdown<Tup×3の4条件となる。
また、低周波電流データについても、同様に特徴量抽出及び部分放電の可能性がある波形であるか否かの判定を行う。
なお、Iaの値は可能な限り高感度にするため回路ノイズレベルより大きい程度とし、Iupperの値は500〜1000mA程度、Taの値は1サイクルメモリ41に記録される電流データの場合3〜13MHzの0.02〜0.1μs程度(低周波電流データの場合100kHz〜1MHzの0.3〜3μs程度)である。
Next, the feature amount extracting means 6 and the partial discharge waveform determining means 8 will be described in detail.
FIG. 2 is a graph showing a part of the current data recorded in the one-cycle memory 41, and is an example of a waveform having a characteristic of partial discharge when the first wave of partial discharge falls.
The feature amount extracting means 6 extracts the magnitude of the falling current value (| Idown |), the required falling time (Tdown), the magnitude of the rising current value (Iup), and the required rising time (Tup) as feature quantities. ..
The noise level fluctuation in the portion surrounded by the dotted line in FIG. 2 is excluded.
Then, the partial discharge waveform determining means 8 determines that the current data has a possibility of partial discharge when the four feature quantities extracted by the feature quantity extracting means 6 satisfy the following four conditions.
(1) The magnitude of the falling current value is within the predetermined range (Ia << | Idown | <Iupper)
(2) Time required for falling down is within a predetermined time (Tdown <Ta)
(3) The magnitude of the rising current value is larger than the magnitude of the falling current value (Iup> | Idown |)
(4) The rise time is larger than the fall time and less than 3 times the fall time (Tdown <Tup <Tdown x 3).
However, when the first wave of partial discharge is rising, the relationship between falling and rising is reversed, and Ia <Iup <Iupper, Tup <Ta, | Idown |> Iup, Tup <Tdown <Tup × 3 4 It becomes a condition.
Similarly, for low-frequency current data, feature quantity extraction and determination of whether or not the waveform has a possibility of partial discharge are performed.
The value of Ia is set to be larger than the circuit noise level in order to make the sensitivity as high as possible, the value of Iupper is about 500 to 1000 mA, and the value of Ta is 3 to 13 MHz in the case of current data recorded in the 1-cycle memory 41. It is about 0.02 to 0.1 μs (in the case of low frequency current data, about 0.3 to 3 μs of 100 kHz to 1 MHz).

図3は、部分放電の発生を判定するためのフローチャートである。
これらの処理は、U相、V相、W相それぞれについて継続的に行われるが、1つの相のみについて説明する。
また、部分放電が発生したと判定されたら、商用周波1周期から第2の継続時間を引いた時間が経過した時点で1サイクルメモリ41への記録は停止される。
部分放電解析手段では、1サイクルメモリ41に記録された電流データについて、上記特徴量抽出手段6と同様の抽出手段を用いて部分放電の特徴を有する波形の検出を行い、送信された商用周波1周期分の電流データについて、上記した部分放電の特徴を有していると判定される波形を全て検出する。
そして、部分放電解析手段では、その検出処理終了後に検出再開の指令を送る。
以下では、図3に示すフローチャートの各ステップについて、部分放電第1波が立下りの場合を例に説明する。
FIG. 3 is a flowchart for determining the occurrence of partial discharge.
These processes are continuously performed for each of the U phase, the V phase, and the W phase, but only one phase will be described.
Further, if it is determined that a partial discharge has occurred, the recording in the 1-cycle memory 41 is stopped when the time obtained by subtracting the second duration from the commercial frequency 1 cycle elapses.
The partial discharge analysis means detects a waveform having the characteristics of partial discharge from the current data recorded in the one-cycle memory 41 using the same extraction means as the feature amount extraction means 6, and transmits the commercial frequency 1. For the current data for the cycle, all the waveforms determined to have the above-mentioned partial discharge characteristics are detected.
Then, the partial discharge analysis means sends a command to restart the detection after the detection process is completed.
In the following, each step of the flowchart shown in FIG. 3 will be described by taking the case where the first wave of partial discharge falls as an example.

ST1:初期化処理、すなわち、1サイクルメモリ41をクリアし、直前ノイズカウンタ及び後続ノイズカウンタをリセットするとともに、後続ノイズカウンタがセット中であることを示すフラグを降ろす処理。
ST2:電流データ取得処理、すなわち、電流検出手段4により電流信号を100kHz〜20MHzバンドパスフィルタ処理し、増幅して得られた信号を150MHz以上のサンプリングによってA/D変換して電流データを得た後に、低周波帯域のノイズを除去するため当該電流データに2MHzハイパスフィルタ処理を実施し、処理用の電流データを得る処理。
ST3:特徴量抽出処理、すなわち、特徴量抽出手段6により、電流波形から立下り電流値の大きさ(|Idown|)、立下り所要時間(Tdown)、立上り電流値の大きさ(Iup)及び立上り所要時間(Tup)を抽出する処理。また、1MHzローパスフィルタ処理した低周波データについても同様の抽出処理を行う。
ST4:特徴量判定処理、すなわち、ノイズ検出手段7により、所定しきい値以上の大きさのノイズ波形が検出されたか否かを判定するとともに、部分放電波形判定手段8により、抽出された4つの特徴量に基づいて、部分放電波形であるか否かを判定し、ノイズ波形が検出されていればST5に進み、部分放電波形であればST6に進み、ノイズ波形とも部分放電波形とも判定されなければST7に進む。
ST5:直前ノイズカウンタセット処理、すなわち、直前ノイズカウンタに2μs相当のカウント値をセットし、ST2(電流データ取得)に戻る処理。
ST1: Initialization process, that is, a process of clearing the one-cycle memory 41, resetting the immediately preceding noise counter and the succeeding noise counter, and lowering a flag indicating that the succeeding noise counter is being set.
ST2: Current data acquisition processing, that is, the current signal is subjected to 100 kHz to 20 MHz bandpass filter processing by the current detecting means 4, and the amplified signal is A / D converted by sampling at 150 MHz or more to obtain current data. Later, in order to remove noise in the low frequency band, the current data is subjected to 2 MHz high-pass filter processing to obtain current data for processing.
ST3: Feature extraction process, that is, the magnitude of the falling current value (| Idown |), the required time required for falling (Tdown), the magnitude of the rising current value (Iup), and the magnitude of the rising current value (Iup) from the current waveform by the feature amount extracting means 6. A process to extract the rise time (Tup). Further, the same extraction processing is performed on the low frequency data subjected to the 1MHz low-pass filter processing.
ST4: The feature amount determination process, that is, whether or not a noise waveform having a magnitude equal to or larger than a predetermined threshold value is detected by the noise detecting means 7, and four extracted by the partial discharge waveform determining means 8. Based on the feature amount, it is determined whether or not it is a partial discharge waveform, and if a noise waveform is detected, the process proceeds to ST5, if it is a partial discharge waveform, the process proceeds to ST6, and both the noise waveform and the partial discharge waveform must be determined. If so, proceed to ST7.
ST5: Immediate noise counter set processing, that is, a process of setting a count value equivalent to 2 μs in the immediately preceding noise counter and returning to ST2 (current data acquisition).

ST6:直前ノイズカウンタ判定処理、すなわち、直前ノイズカウンタが0以下になっているか否かを判定する処理。0以下になっていなければST5に進み、0以下になっていればST8に進む。
ST7:後続ノイズカウンタセット中判定処理、すなわち、後続ノイズカウンタがセット中であることを示すフラグが立っているか否かを判定する処理。フラグが立っていなければST2(電流データ取得)に戻り、フラグが立っていればST9に進む。
ST8:後続ノイズカウンタセット中判定処理、すなわち、後続ノイズカウンタがセット中であることを示すフラグが立っているか否かを判定する処理。フラグが立っていればST10に進み、フラグが立っていなければST11に進む。
ST9:後続ノイズカウンタ判定処理、すなわち、後続ノイズカウンタが0以下になっているか否かを判定する処理。0以下になっていなければST2(電流データ取得)に戻り、0以下になっていればST12に進む。
ST10:後続ノイズカウンタリセット処理、すなわち、後続ノイズカウンタをリセットするとともに、後続ノイズカウンタがセット中であることを示すフラグを降ろし、ST5に進む処理。
ST11:後続ノイズカウンタセット処理、すなわち、後続ノイズカウンタに2μs相当のカウント値をセットし、後続ノイズカウンタがセット中であることを示すフラグを立てる処理。
ST12:部分放電発生処理、すなわち、部分放電発生判定手段11が部分放電発生と判定し、商用周波1周期から第2の継続時間を引いた時間が経過した時点で1サイクルメモリ41への記録を停止し、各相における1周期分の電流データ及び時刻情報を部分放電解析手段に送信する処理。
その後、部分放電解析手段では、各相における1周期分の電流データ及び時刻情報に基づいて、部分放電の特徴を有する波形の検出等を行う。
なお、いずれかのステップからST2に戻る際には、直前ノイズカウンタ及び後続ノイズカウンタを管理する処理(具体的にはカウント値を1減らす処理)を行う。
ST6: Immediate noise counter determination process, that is, a process of determining whether or not the immediately preceding noise counter is 0 or less. If it is not 0 or less, the process proceeds to ST5, and if it is 0 or less, the process proceeds to ST8.
ST7: Subsequent noise counter setting determination process, that is, a process of determining whether or not a flag indicating that the subsequent noise counter is being set is set. If the flag is not set, the process returns to ST2 (current data acquisition), and if the flag is set, the process proceeds to ST9.
ST8: Subsequent noise counter setting determination process, that is, a process of determining whether or not a flag indicating that the subsequent noise counter is being set is set. If the flag is set, the process proceeds to ST10, and if the flag is not set, the process proceeds to ST11.
ST9: Subsequent noise counter determination process, that is, a process of determining whether or not the subsequent noise counter is 0 or less. If it is not 0 or less, it returns to ST2 (current data acquisition), and if it is 0 or less, it proceeds to ST12.
ST10: Subsequent noise counter reset process, that is, a process of resetting the succeeding noise counter, lowering a flag indicating that the succeeding noise counter is being set, and proceeding to ST5.
ST11: Subsequent noise counter set processing, that is, a process of setting a count value equivalent to 2 μs in the succeeding noise counter and setting a flag indicating that the succeeding noise counter is being set.
ST12: Partial discharge generation processing, that is, when the partial discharge generation determination means 11 determines that partial discharge has occurred and the time obtained by subtracting the second duration from the commercial frequency 1 cycle elapses, the recording in the 1-cycle memory 41 is recorded. A process of stopping and transmitting current data and time information for one cycle in each phase to the partial discharge analysis means.
After that, the partial discharge analysis means detects a waveform having a characteristic of partial discharge based on the current data and time information for one cycle in each phase.
When returning to ST2 from any step, a process of managing the immediately preceding noise counter and the succeeding noise counter (specifically, a process of reducing the count value by 1) is performed.

図4は、3相の電力ケーブルにおけるクロスボンド接地方式の説明図である。
クロスボンド接地方式は、特別高圧及び超高圧(220kV以上)の電力ケーブルで採用されており、電磁誘導によって金属シースに流れる循環電流をキャンセルするために、電力ケーブルの両端の近傍において3相の金属シース同士を一括接地するとともに、電力ケーブルの中間部で3相のうちの2相の金属シース同士を3組短絡(クロスボンド)する方式である。
図4のクロスボンド1及び2が、2相の金属シース同士を3組短絡した部分を示しており、電力ケーブルの長さに応じて1箇所又は複数箇所に設けられる。
実施例2は、実施例1の電流計測手段をクロスボンド接地方式の電力ケーブルの各相に設置し、いずれかの相の部分放電発生判定手段において部分放電が発生したと判定された時に、各相の電流検出手段によって得られた同じ時刻帯における電流データに基づいて、図4に記載したクロスボンド区間内で発生した部分放電(以下「クロスボンド接続内部分放電」と記載する。)であるか否かを判定する範囲判定手段である。
実施例2の範囲判定手段は、通常、実施例1の部分放電解析手段に設置され、いずれかの相の部分放電発生判定手段において、部分放電が発生したと判定された時に、各相の電流検出手段から得られた1周期分の電流データ及び時刻情報に基づいて、クロスボンド接続内部分放電であるか否かを判定する。
FIG. 4 is an explanatory diagram of a cross-bond grounding method for a three-phase power cable.
The cross-bond grounding method is used in extra-high and ultra-high pressure (220 kV or higher) power cables, and is a three-phase metal near both ends of the power cable in order to cancel the circulating current flowing through the metal sheath by electromagnetic induction. This is a method in which the sheaths are grounded together and three sets of metal sheaths of two of the three phases are short-circuited (cross-bonded) at the middle part of the power cable.
Cross-bonds 1 and 2 in FIG. 4 show a portion in which three sets of two-phase metal sheaths are short-circuited, and are provided at one or a plurality of locations depending on the length of the power cable.
In the second embodiment, when the current measuring means of the first embodiment is installed in each phase of the cross-bond grounding type power cable and the partial discharge generation determining means of any of the phases determines that a partial discharge has occurred, each of them. It is a partial discharge (hereinafter referred to as “partial discharge in the cross bond connection”) generated in the cross bond section shown in FIG. 4 based on the current data in the same time zone obtained by the phase current detecting means. It is a range determination means for determining whether or not.
The range determination means of the second embodiment is usually installed in the partial discharge analysis means of the first embodiment, and when the partial discharge generation determination means of any phase determines that a partial discharge has occurred, the current of each phase. Based on the current data and time information for one cycle obtained from the detection means, it is determined whether or not the cross-bond connection is a partial discharge.

図5は、クロスボンド接地方式の電力ケーブルにおける部分放電に伴う各相電流データの一部を示すグラフである。
図5において、実線のグラフは部分放電が発生したと判定された相において部分放電の特徴有りと判定された電流データの波形を示し、点線と一点鎖線のグラフは他の2相において実線のグラフと同時刻に計測された電流データの波形を示している。
ここで、3相における電流データの波形がクロスボンド接続内部分放電に伴うものであれば、クロスボンド接地方式の電力ケーブルにおいては、図4の右側の三相一括接地点を通過する部分放電に伴う電流変化(電流変化の大きさは、図4右上の長い点線矢印)を打ち消すために、各相末端の接地線から部分放電に伴う電流変化とは逆向きの電流(逆向き電流の大きさは、図4右側の3本の細い実線矢印)が流れ、電流波動として伝搬する。
そうすると、部分放電が発生している相の接地線においては部分放電に伴う電流変化の3分の2にあたる電流変化(図4右上の太い実線矢印)が計測され、他の2相においては部分放電に伴う電流変化の3分の1にあたる逆向きの電流変化(図4右中央の細い実線矢印と同図右下の細い実線矢印)が計測される。
FIG. 5 is a graph showing a part of each phase current data associated with partial discharge in a cross-bond grounded power cable.
In FIG. 5, the solid line graph shows the waveform of the current data determined to have the characteristic of partial discharge in the phase determined to have generated partial discharge, and the dotted line and one-point chain line graphs are solid line graphs in the other two phases. The waveform of the current data measured at the same time as is shown.
Here, if the waveform of the current data in the three phases accompanies the partial discharge in the cross-bond connection, in the cross-bond grounding type power cable, the partial discharge passes through the three-phase collective grounding point on the right side of FIG. In order to cancel the accompanying current change (the magnitude of the current change is the long dotted arrow in the upper right of Fig. 4), the current from the ground wire at the end of each phase is in the opposite direction to the current change due to partial discharge (the magnitude of the reverse current). 3 thin solid line arrows on the right side of FIG. 4) flow and propagate as a current wave.
Then, the current change (thick solid arrow in the upper right of FIG. 4), which is two-thirds of the current change due to the partial discharge, is measured in the ground wire of the phase in which the partial discharge is occurring, and the partial discharge in the other two phases. The reverse current change (thin solid line arrow in the center right of FIG. 4 and thin solid line arrow in the lower right of FIG. 4), which corresponds to one-third of the current change accompanying the discharge, is measured.

上記の現象を利用して、実施例2の範囲判定手段では、次の手順でクロスボンド接続内部分放電であるか否かを判定する。
(1)電流ピーク極性検出手段によって、部分放電の特徴有りと判定される波形の電流ピークの極性を検出する。
(2)電流ピーク値検出手段によって、部分放電の特徴有りと判定される波形の電流ピークの大きさ(絶対値)を検出する。
(3)電流ピーク時刻検出手段によって、部分放電の特徴有りと判定される波形の電流ピークの時刻を検出する。
(4)部分放電発生範囲判定手段によって、部分放電の特徴有りと判定された相以外の2相において、上記(3)で検出された電流ピークの時刻における電流データの極性が上記(1)で検出された電流ピークの極性と逆極性であるかないかを判定するとともに、その電流ピークの時刻における電流データの大きさ(絶対値)の2倍と上記(2)で検出された電流ピークの大きさ(絶対値)との差が判定値以下であるか否かを判定し、逆極性であり、かつ、差が判定値以下である場合にクロスボンド接続内部分放電であると判定する。
(5)部分放電の特徴有りと判定された相以外の2相において、上記(3)で検出された電流ピークの時刻における電流データの大きさ(絶対値)が小さい(ほとんど変化していない)場合には、単独の部分放電(クロスボンド接続内部以外での部分放電)と判定し、そうでない場合には、ノイズであると判定する。
Utilizing the above phenomenon, the range determination means of the second embodiment determines whether or not the cross-bond connection is partially discharged by the following procedure.
(1) The polarity of the current peak of the waveform determined to have the characteristic of partial discharge is detected by the current peak polarity detecting means.
(2) The current peak value detecting means detects the magnitude (absolute value) of the current peak of the waveform determined to have the characteristic of partial discharge.
(3) The current peak time detecting means detects the time of the current peak of the waveform determined to have the characteristic of partial discharge.
(4) In the two phases other than the phase determined to have the characteristic of partial discharge by the partial discharge generation range determining means, the polarity of the current data at the time of the current peak detected in the above (3) is the above (1). It is determined whether or not the polarity of the detected current peak is opposite to that of the detected current peak, and the magnitude (absolute value) of the current data at the time of the current peak is twice as large as the magnitude of the current peak detected in (2) above. It is determined whether or not the difference from the (absolute value) is equal to or less than the determination value, and if the polarity is opposite and the difference is equal to or less than the determination value, it is determined that the cross-bond connection is a partial discharge.
(5) In the two phases other than the phase determined to have the characteristic of partial discharge, the magnitude (absolute value) of the current data at the time of the current peak detected in (3) above is small (almost unchanged). In that case, it is determined that it is a single partial discharge (partial discharge other than inside the cross-bond connection), and if not, it is determined that it is noise.

実施例3は、実施例1の絶縁劣化診断装置を電力ケーブル1の一端部及び他端部の2箇所に設けて、絶縁劣化箇所がどこに存在しているかを特定するための絶縁劣化箇所標定装置であり、その概略図を図6に示す。 In the third embodiment, the insulation deterioration diagnosis device of the first embodiment is provided at two locations, one end and the other end of the power cable 1, and an insulation deterioration location locating device for identifying where the insulation deterioration location exists. A schematic diagram thereof is shown in FIG.

図6に示すとおり、実施例3の絶縁劣化箇所標定装置は、電力ケーブル1の一端部に設置された一端側子局20と、電力ケーブル1の他端部に設置された他端側子局21と、各子局20、21から送信された情報に基づいて絶縁劣化箇所のある相及び絶縁劣化箇所のある位置を標定する親局22によって構成されている。
一端側子局20は、実施例1で説明した絶縁劣化診断装置と同じ構成の一端側絶縁劣化診断装置23を備え、部分放電が発生したと判定された時に、部分放電解析手段が検出した全ての部分放電検出情報(部分放電の特徴を有する波形の相情報及び時刻情報)を、一端側送信手段24により親局22に送信する。
また、他端側子局21は、実施例1で説明した絶縁劣化診断装置と同じ構成の他端側絶縁劣化診断装置25を備え、部分放電が発生したと判定された時に、部分放電解析手段が検出した全ての部分放電検出情報を、他端側送信手段26により親局22に送信する。
親局22は、各子局20、21から送信された情報を受信する受信手段27と、受信手段27で受信した情報に基づいて絶縁劣化箇所のある位置を計算する絶縁劣化位置計算手段28と、計算された絶縁劣化箇所のある位置に関する情報を表示する表示手段29を備えている。
As shown in FIG. 6, the insulation deterioration location locating device of the third embodiment has one end side slave station 20 installed at one end of the power cable 1 and the other end side slave station installed at the other end of the power cable 1. It is composed of 21 and a master station 22 that defines a phase with an insulation deterioration portion and a position with an insulation deterioration portion based on the information transmitted from each of the slave stations 20 and 21.
The one-side slave station 20 is provided with the one-side insulation deterioration diagnosis device 23 having the same configuration as the insulation deterioration diagnosis device described in the first embodiment, and all detected by the partial discharge analysis means when it is determined that a partial discharge has occurred. The partial discharge detection information (phase information and time information of the waveform having the characteristic of partial discharge) is transmitted to the master station 22 by the one-side transmission means 24.
Further, the other end side slave station 21 includes the other end side insulation deterioration diagnosis device 25 having the same configuration as the insulation deterioration diagnosis device described in the first embodiment, and when it is determined that a partial discharge has occurred, the partial discharge analysis means. All the partial discharge detection information detected by is transmitted to the master station 22 by the other end side transmitting means 26.
The master station 22 includes a receiving means 27 that receives information transmitted from each of the slave stations 20 and 21, and an insulating deterioration position calculating means 28 that calculates a position where the insulation deteriorated portion is located based on the information received by the receiving means 27. The display means 29 for displaying the calculated position of the insulation deterioration portion is provided.

絶縁劣化位置計算手段28は、各子局20、21から送信され、受信手段27で受信した全ての部分放電検出情報に基づいて、絶縁劣化箇所のある相を特定するとともに、同じ絶縁劣化箇所において同じタイミングで発生した部分放電に起因して伝搬し、一端側子局20に到達したと考えられる部分放電検出情報と他端側子局21に到達したと考えられる部分放電検出情報の時刻差が当該ケーブルの通過に要する時間以内のペア(以下「ペア情報」と記載する。)を決定し、部分放電の特徴を有する波形が各子局20、21に到達した時刻を特定する。
そして、部分放電の特徴を有する波形が各子局20、21に到達した時刻を特定できれば、特開2001−133504号公報に記載されている手法により、絶縁劣化箇所のある位置を式1によって計算することができる。
式1:L1={L+(t1−t2)×v}/2
ここで、L1は一端側子局20から絶縁劣化箇所のある位置までの電力ケーブル1の長さ、Lは一端側子局20から他端側子局21までの電力ケーブル1の長さ、t1は一端側子局20における到達時刻、t2は他端側子局21における到達時刻、vは電力ケーブル1における電流伝搬速度である。
なお、各子局は、定時又は指定された正時(部分放電検出再開指示後の正1秒、正10秒又は正1分)毎に部分放電検出を開始するため、発生した部分放電を各子局が検出した場合、時刻整合が取れる。
The insulation deterioration position calculation means 28 identifies a phase having an insulation deterioration location based on all the partial discharge detection information transmitted from the slave stations 20 and 21 and received by the reception means 27, and at the same insulation deterioration location. The time difference between the partial discharge detection information that is thought to have reached the slave station 20 at one end and the partial discharge detection information that is thought to have reached the slave station 21 at the other end is propagated due to the partial discharge that occurred at the same timing. A pair within the time required for the cable to pass through (hereinafter referred to as "pair information") is determined, and the time when the waveform having the characteristic of partial discharge reaches the slave stations 20 and 21 is specified.
Then, if the time when the waveform having the characteristic of partial discharge reaches each of the slave stations 20 and 21 can be specified, the position where the insulation deterioration portion is located is calculated by the formula 1 by the method described in Japanese Patent Application Laid-Open No. 2001-133504. can do.
Equation 1: L1 = {L + (t1-t2) × v} / 2
Here, L1 is the length of the power cable 1 from the slave station 20 on one end to the position where the insulation is deteriorated, and L is the length of the power cable 1 from the slave station 20 on one end to the slave station 21 on the other end, t1. Is the arrival time at one end side slave station 20, t2 is the arrival time at the other end side slave station 21, and v is the current propagation velocity in the power cable 1.
In addition, since each slave station starts the partial discharge detection at a fixed time or at a designated hour (1 second, 10 seconds, or 1 minute after the instruction to restart the partial discharge detection), each of the generated partial discharges is detected. If the slave station detects it, the time can be matched.

図7は、絶縁劣化位置計算手段28の処理手順を示すフローチャートである。
(1)部分放電情報受信処理
一端側子局20から1周期分の部分放電検出情報(以下「一端側部分放電情報」という。)を受信するとともに、他端側子局21から1周期分の部分放電検出情報(以下「他端側部分放電情報」という。)を受信する(ST31)。
(2)両端側データ対比処理
一端側部分放電情報から1データ(以下「一端側データ」という。)を取り出し(ST32)、他端側データ取り出しカウンタを初期化(他端側部分放電情報に含まれるデータ数をセット)した後(ST33)、他端側部分放電情報から1データ(以下「他端側データ」という。)を取り出す(ST34)。
そして、一端側データの相情報と他端側データの相情報が一致しているか否かを判断し(ST35)、一致していなければST34に戻り、一致していればST36に進む。
なお、ST34に戻る際には他端側データ取り出しカウンタを1減らし、0になっていればST38に進む。
(3)ペア情報抽出処理
一端側子局20及び他端側子局21間における電力ケーブル1の長さ(L)を、電力ケーブル1の両端間の電流伝搬速度(v)で除して伝搬許容時間(L/v)を求める。
そして、一端側データの時刻情報(t1)と、他端側データの時刻情報(t2)との時刻差(|t1−t2|)を求め、|t1−t2|≦L/vを満たしているか否かを判断し(ST36)、満たしていなければST34に戻り、満たしていればそれらをペア情報として抽出しST37に進む。
なお、上記(2)と同様、ST34に戻る際には他端側データ取り出しカウンタを1減らし、0になっていればST38に進む。
(4)絶縁劣化位置計算処理
抽出したペア情報について、絶縁劣化箇所のある位置、すなわち、一端側子局20から絶縁劣化箇所のある位置までの電力ケーブル1の長さ(L1)を式1によって計算し、計算結果を保存する(ST37)。
(5)一端側データ終了確認処理
一端側部分放電情報から全てのデータを取り出したか確認し(ST38)、取り出していなければST32に戻り、取り出していれば終了する。
FIG. 7 is a flowchart showing a processing procedure of the insulation deterioration position calculation means 28.
(1) Partial discharge information reception processing While receiving partial discharge detection information for one cycle from one end side slave station 20 (hereinafter referred to as "one end side partial discharge information"), one cycle worth of partial discharge information is received from the other end side slave station 21. The partial discharge detection information (hereinafter referred to as "the other end side partial discharge information") is received (ST31).
(2) Data comparison processing on both ends side One data (hereinafter referred to as "one end side data") is extracted from one end side partial discharge information (ST32), and the other end side data extraction counter is initialized (included in the other end side partial discharge information). After (ST33), one data (hereinafter referred to as "other end side data") is taken out from the other end side partial discharge information (ST34).
Then, it is determined whether or not the phase information of the one end side data and the phase information of the other end side data match (ST35), and if they do not match, the process returns to ST34, and if they match, the process proceeds to ST36.
When returning to ST34, the data retrieval counter on the other end side is decremented by 1, and if it becomes 0, the process proceeds to ST38.
(3) Pair information extraction processing Propagation by dividing the length (L) of the power cable 1 between the slave station 20 on one end side and the slave station 21 on the other end side by the current propagation velocity (v) between both ends of the power cable 1. Obtain the permissible time (L / v).
Then, the time difference (| t1-t2 |) between the time information (t1) of the one-sided data and the time information (t2) of the other-side data is obtained, and whether | t1-t2 | ≦ L / v is satisfied. It is determined whether or not (ST36), and if it is not satisfied, the process returns to ST34, and if it is satisfied, they are extracted as pair information and the process proceeds to ST37.
As in (2) above, when returning to ST34, the data retrieval counter on the other end side is decremented by 1, and if it becomes 0, the process proceeds to ST38.
(4) Insulation Deterioration Position Calculation Process For the extracted pair information, the length (L1) of the power cable 1 from the position where the insulation deterioration point is located, that is, from the one-side slave station 20 to the position where the insulation deterioration location is located is calculated by Equation 1. Calculate and save the calculation result (ST37).
(5) One-sided data end confirmation process It is confirmed whether all the data has been taken out from the one-sided partial discharge information (ST38), and if it has not been taken out, it returns to ST32, and if it has been taken out, it ends.

このような手順によって抽出されたペア情報について、特定された絶縁劣化箇所のある相及び計算された絶縁劣化箇所のある位置に関する情報を表示手段29に出力する。
そして、相に関する情報としては、通常U、V、Wや青、赤、白等の文字、長さの情報としては、通常一端側子局20からの長さを示す数値を用いるが、青、赤、白3本のケーブル配置図を地図とともに表示し、そのケーブル中における絶縁劣化箇所のある場所を示すマーク等を用いても良い。
With respect to the pair information extracted by such a procedure, the information regarding the phase having the identified insulation deterioration portion and the calculated position of the insulation deterioration portion is output to the display means 29.
As information on the phase, characters such as U, V, W and blue, red, and white are usually used, and as information on the length, a numerical value indicating the length from the slave station 20 at one end is usually used, but blue, A red and white cable layout diagram may be displayed together with a map, and a mark or the like indicating a location of insulation deterioration in the cable may be used.

実施例1の絶縁劣化診断装置及び実施例3の絶縁劣化箇所標定装置に関する変形例を列記する。
(1)実施例1では、絶縁劣化診断装置を3相の電力ケーブルに適用する例を説明したが、単相又は2相の電力ケーブルにも適用できる。
(2)実施例1の絶縁劣化診断装置においては、メモリを節約するため商用周波1周期分の電流データ等を1サイクルメモリ41にサイクリックに記録したが、商用周波複数周期分の電流データ等をサイクリックに記録しても良い。
(3)実施例1の絶縁劣化診断装置においては、1サイクルメモリ41に記録される電流データについて、特徴量抽出及び部分放電の可能性がある波形であるか否かの判定を行ったが、当該電流データに代えて又は加えて、低周波電流データを商用周波1周期分記録し特徴量抽出及び部分放電の可能性がある波形であるか否かの判定を行っても良い。
A modification of the insulation deterioration diagnosis device of Example 1 and the insulation deterioration location locating device of Example 3 is listed.
(1) In the first embodiment, an example in which the insulation deterioration diagnosis device is applied to a three-phase power cable has been described, but it can also be applied to a single-phase or two-phase power cable.
(2) In the insulation deterioration diagnostic apparatus of Example 1, in order to save memory, current data for one cycle of commercial frequency and the like are cyclically recorded in the memory 41 for one cycle, but current data for multiple cycles of commercial frequency and the like are recorded cyclically. May be recorded cyclically.
(3) In the insulation deterioration diagnostic apparatus of Example 1, the current data recorded in the one-cycle memory 41 was subjected to feature quantity extraction and determination as to whether or not the waveform had a possibility of partial discharge. In place of or in addition to the current data, low-frequency current data may be recorded for one commercial frequency cycle to perform feature extraction and determination of whether or not the waveform has a possibility of partial discharge.

(4)実施例3では、3相の電力ケーブルを前提として説明したが、単相又は2相の電力ケーブルにも適用でき、単相の電力ケーブルの場合は相情報を送信する必要はない。
(5)実施例3では、一端側子局20、他端側子局21及び親局22を設置したが、親局22は一端側子局20又は他端側子局21を兼ねていても良い。
すなわち、一端側子局20又は他端側子局21のいずれかに親局機能を持たせても良い。
(4) Although the description has been made on the premise of a three-phase power cable in the third embodiment, it can also be applied to a single-phase or two-phase power cable, and in the case of a single-phase power cable, it is not necessary to transmit phase information.
(5) In the third embodiment, one end side slave station 20, the other end side slave station 21 and the master station 22 are installed, but the master station 22 may also serve as one end side slave station 20 or the other end side slave station 21. good.
That is, either one end side slave station 20 or the other end side slave station 21 may have a master station function.

1 電力ケーブル 2 ケーブルヘッド 3 接地線 4 電流検出手段
5 計時手段 6 特徴量抽出手段 7 ノイズ検出手段
8 部分放電波形判定手段 9 直前ノイズ管理手段
10 後続ノイズ管理手段 11 部分放電発生判定手段
20 一端側子局 21 他端側子局 22 親局
23 一端側絶縁劣化診断装置 24 一端側送信手段
25 他端側絶縁劣化診断装置 26 他端側送信手段 27 受信手段
28 絶縁劣化位置計算手段 29 表示手段 41 1サイクルメモリ
1 Power cable 2 Cable head 3 Ground wire 4 Current detection means 5 Timing means 6 Feature extraction means 7 Noise detection means 8 Partial discharge waveform judgment means 9 Immediately preceding noise management means 10 Subsequent noise management means 11 Partial discharge generation judgment means 20 One end side Slave station 21 End side slave station 22 Master station 23 One end side insulation deterioration diagnostic device 24 One end side transmission means 25 One end side insulation deterioration diagnosis device 26 Other end side transmission means 27 Reception means 28 Insulation deterioration position calculation means 29 Display means 41 1 cycle memory

Claims (4)

電力ケーブル又は電気機器における接地線電流を検出する電流検出手段と、
前記電流検出手段によって一定時間毎に検出された電流検出値に基づく電流データから特徴量を抽出する特徴量抽出手段と、
前記特徴量抽出手段により抽出された特徴量に基づいて、部分放電の特徴の有無を判定する部分放電波形判定手段と、
所定しきい値以上の大きさのノイズを検出するノイズ検出手段と、
前記部分放電波形判定手段が部分放電の特徴有りと判定した時点が、前記ノイズ検出手段が所定しきい値以上の大きさのノイズを検出してから第1の継続時間が経過した後であるか否かを判定する直前ノイズ管理手段と、
前記部分放電波形判定手段が部分放電の特徴有りと判定した時点から第2の継続時間が経過するまでに、前記ノイズ検出手段が所定しきい値以上の大きさのノイズを検出したか否かを判定する後続ノイズ管理手段と、
前記直前ノイズ管理手段が所定しきい値以上の大きさのノイズを検出してから第1の継続時間が経過した後であると判定し、かつ、前記後続ノイズ管理手段が部分放電の特徴有りと判定した時点から第2の継続時間が経過するまでに所定しきい値以上の大きさのノイズを検出しなかったと判定した時に、部分放電が発生したと判定する部分放電発生判定手段を備えている
ことを特徴とする絶縁劣化診断装置。
A current detecting means for detecting a ground line current in a power cable or an electric device,
A feature amount extraction means for extracting a feature amount from current data based on a current detection value detected at regular time intervals by the current detection means, and a feature amount extraction means.
A partial discharge waveform determining means for determining the presence or absence of a partial discharge feature based on the feature amount extracted by the feature amount extracting means,
A noise detection means that detects noise with a magnitude greater than or equal to a predetermined threshold, and
Whether the time when the partial discharge waveform determining means determines that there is a characteristic of partial discharge is after the first duration elapses after the noise detecting means detects noise having a magnitude equal to or larger than a predetermined threshold value. Immediately before determining whether or not noise management means and
Whether or not the noise detecting means has detected noise having a magnitude equal to or greater than a predetermined threshold value from the time when the partial discharge waveform determining means determines that the partial discharge has a characteristic to the time when the second duration elapses. Subsequent noise management means to determine and
It is determined that the first duration has elapsed since the immediately preceding noise management means detected noise having a magnitude equal to or larger than a predetermined threshold value, and the subsequent noise management means has a characteristic of partial discharge. It is provided with a partial discharge generation determining means for determining that a partial discharge has occurred when it is determined that noise having a magnitude equal to or larger than a predetermined threshold value has not been detected between the time of the determination and the elapse of the second duration. An insulation deterioration diagnostic device characterized by this.
部分放電第1波が立下りの場合に、前記特徴量抽出手段は、立下り電流値の大きさ、立下り所要時間、立上り電流値の大きさ及び立上り所要時間を特徴量として抽出し、
前記部分放電波形判定手段は、立下り電流値の大きさが所定範囲内であること、立下り所要時間が第3の継続時間以内であること、立上り電流値の大きさが立下り電流値の大きさより大きいこと及び立上り所要時間が立下り所要時間より大きく立下り所要時間の3倍より小さいことの条件を満足している時に、部分放電の特徴有りと判定し、
部分放電第1波が立上りの場合に、前記特徴量抽出手段は、立上り電流値の大きさ、立上り所要時間、立下り電流値の大きさ及び立下り所要時間を特徴量として抽出し、
前記部分放電波形判定手段は、立上り電流値の大きさが所定範囲内であること、立上り所要時間が所定時間以内であること、立下り電流値の大きさが立上り電流値の大きさより大きいこと及び立下り所要時間が立上り所要時間より大きく立上り所要時間の3倍より小さいことの条件を満足している時に、部分放電の特徴有りと判定する
ことを特徴とする請求項1に記載の絶縁劣化診断装置。
When the first wave of the partial discharge is falling, the feature amount extracting means extracts the magnitude of the falling current value, the required falling time, the magnitude of the rising current value, and the required rising time as the feature amount.
In the partial discharge waveform determining means, the magnitude of the falling current value is within a predetermined range, the required falling time is within the third duration, and the magnitude of the rising current value is the falling current value. When the conditions that the size is larger and the rise time is larger than the fall time and less than 3 times the fall time are satisfied, it is judged that the partial discharge is characteristic.
When the first wave of the partial discharge is rising, the feature amount extracting means extracts the magnitude of the rising current value, the required rising time, the magnitude of the falling current value, and the required falling time as the feature amount.
The partial discharge waveform determining means means that the magnitude of the rising current value is within a predetermined range, the required rising time is within a predetermined time, the magnitude of the falling current value is larger than the magnitude of the rising current value, and The insulation deterioration diagnosis according to claim 1, wherein it is determined that there is a characteristic of partial discharge when the condition that the required fall time is larger than the required rise time and less than three times the required rise time is satisfied. Device.
請求項1又は2に記載の絶縁劣化診断装置を、3相の電力ケーブルの各相に設置し、
いずれかの相の前記部分放電発生判定手段において、部分放電が発生したと判定された時に、各相の電流データ及び時刻情報の1サイクルメモリへの記録を停止し、停止した時点における各相の前記1サイクルメモリの情報を受信する部分放電解析手段を設け、
前記部分放電解析手段は、
受信した各相の電流データ及び時刻情報に基づいて、前記特徴量抽出手段及び前記部分放電波形判定手段によって部分放電の特徴有りと判定される波形の電流ピークの極性を検出する電流ピーク極性検出手段と、該電流ピークの絶対値を検出する電流ピーク値検出手段と、前記電流ピークの時刻を検出する電流ピーク時刻検出手段と、部分放電の特徴有りと判定された相以外の2相において、前記電流ピークの時刻における電流データの極性を検出する他相電流極性検出手段と、前記電流ピークの時刻における電流データの絶対値を検出する他相電流値検出手段と、
前記電流ピーク極性検出手段で検出された極性と前記他相電流極性検出手段で検出された極性が逆極性であり、かつ、前記電流ピーク値検出手段で検出された絶対値と前記他相電流値検出手段で検出された絶対値の2倍との差が判定値以下である場合にクロスボンド接続内部分放電であると判定する部分放電発生範囲判定手段を有している
ことを特徴とする絶縁劣化診断装置。
The insulation deterioration diagnostic apparatus according to claim 1 or 2 is installed in each phase of the three-phase power cable.
When the partial discharge generation determination means of any phase determines that a partial discharge has occurred, the recording of the current data and time information of each phase in the one-cycle memory is stopped, and the recording of each phase at the time of the stop is stopped. A partial discharge analysis means for receiving the information of the one-cycle memory is provided.
The partial discharge analysis means
Current peak polarity detecting means for detecting the polarity of the current peak of the waveform determined by the feature amount extracting means and the partial discharge waveform determining means based on the received current data and time information of each phase. In two phases other than the current peak value detecting means for detecting the absolute value of the current peak, the current peak time detecting means for detecting the time of the current peak, and the phase determined to have the characteristic of partial discharge. The other-phase current polarity detecting means for detecting the polarity of the current data at the time of the current peak, the other-phase current value detecting means for detecting the absolute value of the current data at the time of the current peak, and the other-phase current value detecting means.
The polarity detected by the current peak polarity detecting means and the polarity detected by the other-phase current polarity detecting means are opposite polarities, and the absolute value detected by the current peak value detecting means and the other-phase current value. Insulation characterized by having a partial discharge generation range determining means for determining a partial discharge in a cross-bond connection when the difference from twice the absolute value detected by the detecting means is less than or equal to the determination value. Deterioration diagnostic equipment.
電力ケーブル又は電気機器の一端側に一端側子局を設けるとともに、前記電力ケーブル又は電気機器の他端側に他端側子局を設け、
前記一端側子局は、請求項1又は2に記載の絶縁劣化診断装置と同じ構成の一端側絶縁劣化診断装置及び前記一端側絶縁劣化診断装置により部分放電が発生したと判定された時、一端側部分放電情報を親局に対して送信する一端側送信手段を備え、
前記他端側子局は、請求項1又は2に記載の絶縁劣化診断装置と同じ構成の他端側絶縁劣化診断装置及び前記他端側絶縁劣化診断装置により部分放電が発生したと判定された時、他端側部分放電情報を前記親局に対して送信する他端側送信手段を備え、
前記親局は、前記電力ケーブル又は電気機器の電線の長さ及び電流伝搬速度並びに受信した一端側部分放電情報及び他端側部分放電情報に基づいて絶縁劣化箇所の位置を計算する絶縁劣化位置計算手段と、
前記絶縁劣化位置計算手段による計算結果に基づいて前記絶縁劣化箇所の位置情報を表示する表示手段を備えている
ことを特徴とする絶縁劣化箇所標定装置。
One end side slave station is provided on one end side of the power cable or the electric device, and the other end side slave station is provided on the other end side of the power cable or the electric device.
One end of the slave station is one end when it is determined that a partial discharge has occurred by the one end side insulation deterioration diagnosis device and the one end side insulation deterioration diagnosis device having the same configuration as the insulation deterioration diagnosis device according to claim 1 or 2. A one-sided transmission means for transmitting side partial discharge information to the master station is provided.
It was determined that the other end side slave station was partially discharged by the other end side insulation deterioration diagnosis device and the other end side insulation deterioration diagnosis device having the same configuration as the insulation deterioration diagnosis device according to claim 1 or 2. At the time, the other end side transmitting means for transmitting the other end side partial discharge information to the master station is provided.
The master station calculates the position of the insulation deterioration location based on the length and current propagation speed of the electric wire of the power cable or the electric device, and the received one-side partial discharge information and the other-end partial discharge information. Means and
An insulation deterioration location locating device comprising a display means for displaying position information of the insulation deterioration location based on a calculation result by the insulation deterioration position calculation means.
JP2017254205A 2017-12-28 2017-12-28 Insulation deterioration diagnosis device and insulation deterioration location identification device Active JP6959859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017254205A JP6959859B2 (en) 2017-12-28 2017-12-28 Insulation deterioration diagnosis device and insulation deterioration location identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017254205A JP6959859B2 (en) 2017-12-28 2017-12-28 Insulation deterioration diagnosis device and insulation deterioration location identification device

Publications (2)

Publication Number Publication Date
JP2019120548A JP2019120548A (en) 2019-07-22
JP6959859B2 true JP6959859B2 (en) 2021-11-05

Family

ID=67307185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017254205A Active JP6959859B2 (en) 2017-12-28 2017-12-28 Insulation deterioration diagnosis device and insulation deterioration location identification device

Country Status (1)

Country Link
JP (1) JP6959859B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791312B (en) * 2021-08-02 2023-06-06 深圳供电局有限公司 Cable insulation assessment system and method with accurate positioning
CN114184904B (en) * 2021-11-05 2022-07-08 西南交通大学 Method for evaluating insulation damage degree of ethylene propylene rubber cable of motor train unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461672A (en) * 1987-09-01 1989-03-08 Fujikura Ltd Accident section discriminating method for cable line
JP2511324Y2 (en) * 1990-02-16 1996-09-25 株式会社明電舎 Internal partial discharge detection device for electrical equipment
JPH06109799A (en) * 1992-09-25 1994-04-22 Meidensha Corp Partial discharge detecting device
JPH08160098A (en) * 1994-12-01 1996-06-21 Showa Electric Wire & Cable Co Ltd Method for detecting partial discharge signal
JP5256483B2 (en) * 2007-08-23 2013-08-07 中部電力株式会社 Method and apparatus for detecting partial discharge of electrical equipment
JP2011099775A (en) * 2009-11-06 2011-05-19 Toshiba Industrial Products Manufacturing Corp Partial discharge current measuring system
ES2379831A1 (en) * 2010-05-26 2012-05-04 Universidad Politécnica de Madrid METHOD FOR THE CONTINUOUS MONITORING AND DIAGNOSIS OF SOURCES OF PARTIAL DISCHARGES (PDs) IN HIGH-VOLTAGE CABLES DURING CONNECTION TO, AND OPERATION IN THE POWER GRID, AND PHYSICAL SYSTEM FOR CARRYING OUT SAME
JP6310334B2 (en) * 2014-06-06 2018-04-11 九電テクノシステムズ株式会社 Insulation degradation diagnosis device and method for power cable or electrical equipment
JP6457988B2 (en) * 2016-09-16 2019-01-23 東芝インフラシステムズ株式会社 Partial discharge measurement system and partial discharge measurement method using repetitive impulse voltage

Also Published As

Publication number Publication date
JP2019120548A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
Pommerenke et al. Discrimination between internal PD and other pulses using directional coupling sensors on HV cable systems
JP4735470B2 (en) Insulation diagnostic device and insulation diagnostic method
JP6959859B2 (en) Insulation deterioration diagnosis device and insulation deterioration location identification device
JP2004004003A (en) Device for detecting partial discharge from power apparatus utilizing radiated electronic waves
JP7157261B2 (en) Partial discharge monitoring device and partial discharge monitoring method
KR100978459B1 (en) Partial discharge counter for ultra high voltage power cable
JP6310334B2 (en) Insulation degradation diagnosis device and method for power cable or electrical equipment
CN104849635A (en) Partial discharge positioning system based on ultrasonic sensor array
JP2005147890A (en) Insulation abnormality diagnostic device
JP2010230497A (en) Insulation deterioration diagnostic device of high voltage power receiving facility
EP3816641B1 (en) Electrical device partial discharge monitoring
JP2009266988A (en) Diagnostic method of internal failure of oil-filled electric apparatus
KR101782475B1 (en) Apparatus and method for noise detecting from partial discharge
JP6605992B2 (en) Insulation diagnostic apparatus and insulation diagnostic method for power equipment
JP2019039845A (en) Partial discharge diagnosis device and partial discharge diagnosis method
CN101975912A (en) Transformer partial discharge on-line monitoring method and device
JP2831042B2 (en) Partial discharge monitoring device for oil-immersed transformer
JP2008216141A (en) Method of locating occurrence of partial discharge in electric power cable, and its device
JP3895450B2 (en) Rotating electrical machine abnormality detection device
CN201765301U (en) Online monitor apparatus for partial discharge of transformer
JP3124359B2 (en) Method and apparatus for measuring partial discharge of power cable
Minullin et al. Specifics of detecting ice coatings on electric power lines using radar probing
JPH04194762A (en) Device for monitoring partial discharge of electric apparatus
JPH08166421A (en) Method for measuring partial discharge
JP5080517B2 (en) Partial discharge monitoring device and partial discharge monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211008

R150 Certificate of patent or registration of utility model

Ref document number: 6959859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150