JP6904303B2 - Manufacturing method of positive electrode mixture - Google Patents

Manufacturing method of positive electrode mixture Download PDF

Info

Publication number
JP6904303B2
JP6904303B2 JP2018092541A JP2018092541A JP6904303B2 JP 6904303 B2 JP6904303 B2 JP 6904303B2 JP 2018092541 A JP2018092541 A JP 2018092541A JP 2018092541 A JP2018092541 A JP 2018092541A JP 6904303 B2 JP6904303 B2 JP 6904303B2
Authority
JP
Japan
Prior art keywords
positive electrode
mixture
solid electrolyte
solid
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018092541A
Other languages
Japanese (ja)
Other versions
JP2019197713A (en
Inventor
坂野 充
充 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018092541A priority Critical patent/JP6904303B2/en
Publication of JP2019197713A publication Critical patent/JP2019197713A/en
Application granted granted Critical
Publication of JP6904303B2 publication Critical patent/JP6904303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本願は、全固体リチウム硫黄電池用の正極合材の製造方法を開示するものである。 The present application discloses a method for producing a positive electrode mixture for an all-solid-state lithium-sulfur battery.

硫黄は高い理論電気化学容量を有するため、硫黄を正極活物質として用いたリチウム硫黄電池の開発が進められている。 Since sulfur has a high theoretical electrochemical capacity, the development of lithium-sulfur batteries using sulfur as a positive electrode active material is underway.

特許文献1には固体電解質としてLiS−P系硫化物固体電解質、硫黄及び/又はその放電生成物(LiS等)、及び、導電助材を用い、これらをメカニカルミリング処理して作製した全固体リチウム硫黄電池用正極合材が開示されている。特許文献2には、LiSとPとLiBrとを含む第一混合物を非晶質化する第一非晶質化工程と、非晶質化した第一混合物と、正極活物質としての単体硫黄と、炭素を含む導電助材と、を含む第二混合物を非晶質化する第二非晶質化工程を含む正極合材の製造方法が開示されている。 In Patent Document 1, Li 2 SP 2 S 5 sulfide solid electrolyte, sulfur and / or its discharge product (Li 2 S, etc.), and a conductive auxiliary material are used as the solid electrolyte, and these are mechanically milled. Disclosed is a positive electrode mixture for an all-solid-state lithium-sulfur battery. Patent Document 2 describes a first amorphization step of amorphizing a first mixture containing Li 2 S, P 2 S 5 and Li Br, an amorphized first mixture, and a positive electrode active material. A method for producing a positive electrode mixture including a second amorphization step of amorphizing a second mixture containing a simple sulfur and a conductive auxiliary material containing carbon is disclosed.

特開2015−5452号公報JP 2015-5452 特開2017−91810号公報JP-A-2017-91810

特許文献1に記載の方法では、正極活物質と固体電解質との間に空隙が多く、可逆放電容量が抑制される虞があった。これは特許文献1、2を組み合わせたとしても解決できない課題であった。 In the method described in Patent Document 1, there are many voids between the positive electrode active material and the solid electrolyte, and there is a risk that the reversible discharge capacity may be suppressed. This is a problem that cannot be solved even if Patent Documents 1 and 2 are combined.

そこで、本願では可逆放電容量が高い全固体リチウム硫黄電池用の正極合材の製造方法を提供することを課題とする。 Therefore, it is an object of the present application to provide a method for producing a positive electrode mixture for an all-solid-state lithium-sulfur battery having a high reversible discharge capacity.

本発明者は、鋭意検討の結果、メカニカルミリング処理を行って形成された複合体に対して、非酸素条件下、300℃〜500℃で熱処理することにより、製造される正極合材中の空隙率を低下させ、可逆放電容量を向上できることを見出し、本発明を完成させた。 As a result of diligent studies, the present inventor has made voids in the positive electrode mixture produced by heat-treating the composite formed by the mechanical milling treatment at 300 ° C. to 500 ° C. under non-oxygen conditions. We have found that the rate can be lowered and the reversible discharge capacity can be improved, and the present invention has been completed.

すなわち、本願は上記課題を解決する1つの手段として、LiSを含む正極活物質と、固体電解質と、導電助材とを含む原料混合物に対してメカニカルミリング処理を行い、複合体を形成する工程と、複合体を非酸素条件下、300℃〜500℃で熱処理する工程と、を含む、全固体リチウム硫黄電池用正極合材の製造方法を開示する。 That is, the present application as one means for solving the above problems, performs a positive electrode active material containing Li 2 S, and the solid electrolyte, the mechanical milling of the raw material mixture containing a conductive agent, to form a complex Disclosed is a method for producing a positive electrode mixture for an all-solid-state lithium-sulfur battery, which comprises a step and a step of heat-treating the composite at 300 ° C. to 500 ° C. under non-oxygen conditions.

本願が開示する製造方法によれば、可逆放電容量の高い全固体リチウム硫黄電池用の正極合材を製造することができる。 According to the manufacturing method disclosed in the present application, a positive electrode mixture for an all-solid-state lithium-sulfur battery having a high reversible discharge capacity can be manufactured.

製造方法10のフローチャートである。It is a flowchart of manufacturing method 10. 実施例1、2及び比較例1〜3の放電容量密度を示したグラフである。It is a graph which showed the discharge capacity density of Examples 1 and 2 and Comparative Examples 1 and 3. 実施例1及び比較例1の正極断面のSEM画像である。It is an SEM image of the positive electrode cross section of Example 1 and Comparative Example 1.

以下において数値A及びBについて「A〜B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。 In the following, the notation "A to B" for the numerical values A and B shall mean "A or more and B or less". When a unit is attached only to the numerical value B in such a notation, the unit shall be applied to the numerical value A as well.

1.正極合材の製造方法
本願は全固体リチウム硫黄電池用正極合材の製造方法10(以下において「製造方法10」ということがある。)を開示するものである。図1に製造方法10のフローチャートを示した。図1に示したように、製造方法10は複合体を形成する工程S1(以下において、「工程S1」ということがある。)と、複合体を熱処理する工程S2(以下において、「工程S2」ということがある。)とを備えている。
以下に、詳しく説明する。
1. 1. Method for Manufacturing Positive Electrode Mixture The present application discloses a method 10 for manufacturing a positive electrode mixture for an all-solid-state lithium-sulfur battery (hereinafter, may be referred to as "manufacturing method 10"). FIG. 1 shows a flowchart of the manufacturing method 10. As shown in FIG. 1, the manufacturing method 10 includes a step S1 for forming a complex (hereinafter, may be referred to as “step S1”) and a step S2 for heat-treating the complex (hereinafter, “step S2”). There are times when.) And.
The details will be described below.

1.1.工程S1
工程S1では、LiSを含む正極活物質と、固体電解質と、導電助材とを含む原料混合物に対してメカニカルミリング処理を行い、複合体を形成する。「複合体」とは、単に所定の成分が混合されたものではなく、所定の成分が混合されたものに機械的、熱的エネルギーが加えられ、所定の成分の全部または一部に化学反応が生じたものを言う。工程S1ではメカニカルミリング処理により原料混合物に機械的、熱的エネルギーを付与して複合体を形成させている。
1.1. Process S1
In step S1, it performs a positive electrode active material containing Li 2 S, and the solid electrolyte, the mechanical milling of the raw material mixture containing a conductive agent, to form a complex. A "complex" is not simply a mixture of predetermined components, but mechanical and thermal energy is applied to a mixture of predetermined components, and a chemical reaction occurs in all or part of the predetermined components. Say what happened. In step S1, mechanical and thermal energy is applied to the raw material mixture by mechanical milling treatment to form a complex.

1.1.1.原料混合物
ここで、工程S1における原料混合物について説明する。原料混合物は上記のとおり、LiSを含む正極活物質と、固体電解質と、導電助材とを含むものである。
1.1.1. Raw Material Mixture Here, the raw material mixture in step S1 will be described. Feed mixture as described above, those containing a positive electrode active material containing Li 2 S, and a solid electrolyte, and a conductive additive.

正極活物質はLiSを含み、かつ、正極活物質として機能し得れば特に限定されない。例えば、LiSのみであってもよく、LiSと単体硫黄(S)との混合物であってもよい。好ましくはLiSのみからなる正極活物質である。原料混合物における正極活物質の割合は特に限定されるものではないが、下限が25質量%以上、上限が65質量%以下であることが好ましい。 The positive electrode active material include Li 2 S, and is not particularly limited as Ere acts as a positive electrode active material. For example, may only Li 2 S, may be a mixture of Li 2 S and elemental sulfur (S). Preferably a positive electrode active material composed only of Li 2 S. The proportion of the positive electrode active material in the raw material mixture is not particularly limited, but it is preferable that the lower limit is 25% by mass or more and the upper limit is 65% by mass or less.

固体電解質は全固体リチウム硫黄電池で使用可能な固体電解質であれば特に限定されない。ただし、有機ポリマー電解質と比較して高いイオン伝導度を有する観点から、無機固体電解質が好ましい。好ましい固体電解質としては、LiPO等の酸化物固体電解質やLiS−P、LiS−P−GeS(Li3.5Ge0.50.5)等の硫化物固体電解質のほか、LiBH等の水素化物固体電解質を例示することができる。イオン伝導度が高い等の観点から、これらの中でもLiS−P又はLiS−P−GeSを含む硫化物固体電解質が好ましい。特に好ましくはLiS−P−GeSを含む硫化物固体電解質である。原料混合物における固体電解質の割合は特に限定されるものではないが、下限が25質量%以上、上限が65質量%以下であることが好ましい。 The solid electrolyte is not particularly limited as long as it is a solid electrolyte that can be used in an all-solid-state lithium-sulfur battery. However, an inorganic solid electrolyte is preferable from the viewpoint of having a higher ionic conductivity than an organic polymer electrolyte. Preferred solid electrolytes, Li 3 oxide solid electrolyte PO 4, etc. or Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -GeS 2 (Li 3.5 Ge 0.5 P 0.5 In addition to sulfide solid electrolytes such as S 4 ), hydride solid electrolytes such as LiBH 4 can be exemplified. From the viewpoint of a high ionic conductivity, etc., sulfide solid electrolyte containing Li 2 S-P 2 S 5 or Li 2 S-P 2 S 5 -GeS 2 Among these are preferred. Particularly preferably a sulfide solid electrolyte containing Li 2 S-P 2 S 5 -GeS 2. The proportion of the solid electrolyte in the raw material mixture is not particularly limited, but it is preferable that the lower limit is 25% by mass or more and the upper limit is 65% by mass or less.

導電助材は全固体リチウム硫黄電池の正極で使用可能な導電助材であれば、特に限定されない。例えば、アセチレンブラックやケッチェンブラック、気相成長炭素繊維(VGCF)等の炭素材料や、ニッケル、アルミニウム、ステンレス鋼等の金属材料等を例示することができる。原料混合物における導電助材の割合は特に限定されるものではないが、下限が10質量%以上、上限が20質量%以下であることが好ましい。 The conductive auxiliary material is not particularly limited as long as it is a conductive auxiliary material that can be used in the positive electrode of an all-solid-state lithium-sulfur battery. For example, carbon materials such as acetylene black, ketjen black, and vapor-grown carbon fiber (VGCF), metal materials such as nickel, aluminum, and stainless steel can be exemplified. The ratio of the conductive auxiliary material in the raw material mixture is not particularly limited, but it is preferable that the lower limit is 10% by mass or more and the upper limit is 20% by mass or less.

また、原料混合物中には必要に応じてPVDF(ポリフッ化ビニリデン)等のバインダーを添加することもできる。 Further, a binder such as PVDF (polyvinylidene fluoride) can be added to the raw material mixture as needed.

1.1.2.メカニカルミリング処理
工程S1におけるメカニカルミリング処理は、湿式メカニカルミリングであってもよく、乾式メカニカルミリングであってもよい。メカニカルミリング処理は、例えばボールミル装置で行うことができ、好ましくは遊星型ボールミル装置である。
1.1.2. Mechanical milling process The mechanical milling process in step S1 may be wet mechanical milling or dry mechanical milling. The mechanical milling process can be performed by, for example, a ball mill device, preferably a planetary ball mill device.

メカニカルミリングの各種条件は、原料混合物の全部または一部が化学反応を起こし、所望の複合体を形成させることができれば特に限定されず、目的に応じて適宜設定する。例えば、遊星型ボールミル装置を使用する場合には、回転数は150rpm〜600rpmの範囲であることが好ましい。処理時間は1時間〜100時間の範囲であることが好ましい。また、メカニカルミリングは非酸素条件下で行うことが好ましく、不活性化ガス雰囲気(例えば、Arガス雰囲気)下で行うことがより好ましい。 Various conditions of mechanical milling are not particularly limited as long as all or part of the raw material mixture can cause a chemical reaction to form a desired complex, and are appropriately set according to the purpose. For example, when using a planetary ball mill device, the rotation speed is preferably in the range of 150 rpm to 600 rpm. The treatment time is preferably in the range of 1 hour to 100 hours. Further, mechanical milling is preferably performed under non-oxygen conditions, and more preferably performed under an inert gas atmosphere (for example, Ar gas atmosphere).

1.2.工程S2
工程S2では、工程S1で作製された複合体を熱処理(焼成)して、正極合材を作製する。熱処理は非酸素条件下で行い、好ましくは真空下で行う。ここで「非酸素条件下」とは、雰囲気中の酸素の割合が1000ppm以下であることを言う。また、熱処理温度は300℃〜500℃の範囲内で行う。熱処理時間は特に限定されないが、下限が1時間以上、上限が8時間以下であることが好ましい。
1.2. Process S2
In step S2, the composite produced in step S1 is heat-treated (baked) to prepare a positive electrode mixture. The heat treatment is performed under non-oxygen conditions, preferably under vacuum. Here, "non-oxygen condition" means that the ratio of oxygen in the atmosphere is 1000 ppm or less. The heat treatment temperature is in the range of 300 ° C. to 500 ° C. The heat treatment time is not particularly limited, but it is preferable that the lower limit is 1 hour or more and the upper limit is 8 hours or less.

ここで、複合体を熱処理する理由について説明する。複合体はメカニカルミリング処理により混合された状態にある。すなわち、正極活物質に固体電解質及び導電助材が接触して、Liイオン伝導パスが確保された状態にある。しかしながら、メカニカルミリング処理のみでは複合体内に空隙が多く、Liイオン伝導パスをより多く確保する観点から改善の余地があった。そこで、本発明者は、複合体に対して所定の条件下で熱処理を行うことで、得られる正極合材の空隙率を低下させ(正極活物質及び固体電解質の接触率を増加させ)、Liイオン伝導パスをより多く確保できることを見出した。Liイオン伝導パスをより多く確保できるほど、可逆放電容量を増加させることができる。 Here, the reason for heat-treating the complex will be described. The complex is in a state of being mixed by a mechanical milling process. That is, the solid electrolyte and the conductive auxiliary material are in contact with the positive electrode active material, and the Li ion conduction path is secured. However, the mechanical milling treatment alone has many voids in the complex, and there is room for improvement from the viewpoint of securing more Li ion conduction paths. Therefore, the present inventor reduces the porosity of the obtained positive electrode mixture by heat-treating the composite under predetermined conditions (increasing the contact ratio of the positive electrode active material and the solid electrolyte), and Li. We have found that more ion conduction paths can be secured. The more Li ion conduction paths can be secured, the more the reversible discharge capacity can be increased.

ここで、特許文献1の[0036]には、正極合材の界面接触を強固にし、界面抵抗を低減させるために、正極合材の各成分を混合した後に加熱処理を行っても良いことが記載されている。また加熱処理の条件として、アルゴン、窒素、空気等の雰囲気下、80℃〜250℃の条件で、1秒〜10時間行うことが記載されている。
しかしながら、特許文献1では実際に加熱処理を行った例については記載されていない。また、加熱処理により複合体の空隙率が低下することは開示されていない。さらに、本願の熱処理は上記のように300℃〜500℃の温度範囲で行うところ、特許文献1に記載の加熱処理は80℃〜250℃の温度範囲である。後述の実施例からわかるように、熱処理温度を300℃〜500℃の範囲で行うことにより、正極合材の空隙率を大幅に低下させ、可逆放電容量を顕著に増加させることができる。
よって、熱処理温度を300℃〜500℃の範囲に設定することにより、空隙率を低下させ可逆放電容量を顕著に増加させる効果は、従来技術である特許文献1から容易に予期できぬ効果であると言える。
Here, in [0036] of Patent Document 1, in order to strengthen the interfacial contact of the positive electrode mixture and reduce the interfacial resistance, heat treatment may be performed after mixing each component of the positive electrode mixture. Are listed. Further, as the conditions of the heat treatment, it is described that the heat treatment is carried out in an atmosphere of argon, nitrogen, air or the like at 80 ° C. to 250 ° C. for 1 second to 10 hours.
However, Patent Document 1 does not describe an example in which heat treatment is actually performed. Further, it is not disclosed that the porosity of the complex is reduced by the heat treatment. Further, the heat treatment of the present application is performed in the temperature range of 300 ° C. to 500 ° C. as described above, and the heat treatment described in Patent Document 1 is in the temperature range of 80 ° C. to 250 ° C. As can be seen from the examples described later, by performing the heat treatment temperature in the range of 300 ° C. to 500 ° C., the porosity of the positive electrode mixture can be significantly reduced and the reversible discharge capacity can be significantly increased.
Therefore, the effect of lowering the porosity and remarkably increasing the reversible discharge capacity by setting the heat treatment temperature in the range of 300 ° C. to 500 ° C. is an effect that cannot be easily expected from Patent Document 1 which is a prior art. It can be said that.

なお、工程S2を経て得られる正極合材の空隙率は11%以下であることが好ましい。 The porosity of the positive electrode mixture obtained through step S2 is preferably 11% or less.

以上、製造方法10によれば可逆放電容量の高い全固体リチウム硫黄電池用の正極合材を製造することができる。 As described above, according to the manufacturing method 10, a positive electrode mixture for an all-solid-state lithium-sulfur battery having a high reversible discharge capacity can be manufactured.

2.全固体リチウム硫黄電池の製造方法
上記の製造方法から製造される正極合材は全固体リチウム硫黄電池の正極層に用いられる。そのため、本願は正極層と、負極層と、上記正極層および上記負極層の間に形成された固体電解質層と、を有する全固体リチウム硫黄電池の製造方法であって、上記正極層を上述した正極合材を用いて形成する工程を有する製造方法を提供することもできる。
2. Manufacturing method of all-solid-state lithium-sulfur battery The positive electrode mixture manufactured by the above manufacturing method is used for the positive electrode layer of the all-solid-state lithium-sulfur battery. Therefore, the present application is a method for manufacturing an all-solid-state lithium-sulfur battery having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer formed between the positive electrode layer and the negative electrode layer, and the positive electrode layer is described above. It is also possible to provide a manufacturing method having a step of forming using a positive electrode mixture.

正極層を上述した正極合材を用いて形成する工程は、公知の方法により行うことができる。例えば、正極合材をプレスして正極層としてもよく、あるいは、正極合材を任意の溶媒に溶かしてスラリーとし、該スラリーを塗工、乾燥させることにより正極層としてもよい。 The step of forming the positive electrode layer using the above-mentioned positive electrode mixture can be performed by a known method. For example, the positive electrode mixture may be pressed to form a positive electrode layer, or the positive electrode mixture may be dissolved in an arbitrary solvent to form a slurry, and the slurry may be applied and dried to form a positive electrode layer.

固体電解質層はリチウムイオン伝導性を有する固体電解質を含む層であれば特に限定されず、例えば上述した固体電解質を用いて作製することができる。負極層はリチウムイオンを吸蔵放出できる負極活物質を備えていれば特に限定されず、例えば金属リチウム、リチウム合金(例えば、Li−In合金)等を挙げることができる。なお、全固体リチウム硫黄電池は、正極層の集電を行なう正極集電体と、負極層の集電を行なう負極集電体とを備えることもできる。 The solid electrolyte layer is not particularly limited as long as it is a layer containing a solid electrolyte having lithium ion conductivity, and can be produced, for example, by using the above-mentioned solid electrolyte. The negative electrode layer is not particularly limited as long as it includes a negative electrode active material capable of storing and releasing lithium ions, and examples thereof include metallic lithium and lithium alloys (for example, Li-In alloys). The all-solid-state lithium-sulfur battery may also include a positive electrode current collector that collects electricity from the positive electrode layer and a negative electrode current collector that collects electricity from the negative electrode layer.

ここで、全固体リチウム硫黄電池は一次電池であってもよく、二次電池であってもよい。好ましくは二次電池である。繰り返し充放電でき、例えば車載用電池として有用だからである。なお、一次電池には二次電池の一次電池的使用(充電後、一度の放電だけを目的とした使用)も含まれる。 Here, the all-solid-state lithium-sulfur battery may be a primary battery or a secondary battery. A secondary battery is preferable. This is because it can be charged and discharged repeatedly and is useful as an in-vehicle battery, for example. The primary battery also includes the use of a secondary battery as a primary battery (use for the purpose of discharging only once after charging).

本願の正極合材の製造方法について、実施例及び比較例を用いて詳しく説明する。 The method for producing the positive electrode mixture of the present application will be described in detail with reference to Examples and Comparative Examples.

1.正極合材の作製
以下において、実施例1、2及び比較例1〜3に係る正極合材の作製方法について説明する。なお、特に断らない限り、以下の操作はArガス雰囲気下で行っている。
1. 1. Production of Positive Electrode Mixture The method for producing a positive electrode mixture according to Examples 1 and 2 and Comparative Examples 1 to 3 will be described below. Unless otherwise specified, the following operations are performed in an Ar gas atmosphere.

1.1.固体電解質(Li3.5Ge0.50.5)の作製
グローブボックス(Arガス雰囲気)内でLiS(日本化学工業社製)0.80g、P(アルドリッチ社製)0.56g、GeS(高純度化学研究所製)0.68gをそれぞれ秤量し、乳鉢に入れ15分混合した。混合した材料を遊星ボールミルポット(45mL、ZrO製)に投入し、さらにZrOボール(φ=10mm)を10個投入し、遊星ボールミルポットをオーバーポット(SUS製)に入れて完全に密閉した。つぎに、オーバーポットをグローブボックスから取り出し、遊星ボールミル装置(フリュッチェ製)に取り付けた。遊星ボールミル装置の回転数を370rpmに設定し、「1時間処理、15分停止、逆回転で1時間処理、15分停止」のサイクルで60時間のメカニカルミリング処理を行った。得られた試料のうち、1gをグローブボックス内でペレット化し、カーボンコート石英管に30Paで真空封入した。そして、500℃の温度で焼成し、固体電解質(Li3.5Ge0.50.5)を得た。
1.1. Preparation of solid electrolyte (Li 3.5 Ge 0.5 P 0.5 S 4 ) Li 2 S (manufactured by Nippon Kagaku Kogyo Co., Ltd.) 0.80 g, P 2 S 5 (manufactured by Aldrich) in a glove box (Ar gas atmosphere) (Manufactured by) 0.56 g and GeS 2 (manufactured by High Purity Chemical Laboratory) 0.68 g were weighed, placed in a dairy pot and mixed for 15 minutes. The mixed material was put into a planetary ball mill pot (45 mL, made by ZrO 2 ), 10 more ZrO 2 balls (φ = 10 mm) were put into it, and the planetary ball mill pot was put into an overpot (made by SUS) and completely sealed. .. Next, the overpot was taken out of the glove box and attached to a planetary ball mill device (manufactured by Fruche). The rotation speed of the planetary ball mill device was set to 370 rpm, and a 60-hour mechanical milling process was performed in a cycle of "1 hour processing, 15 minutes stop, 1 hour processing in reverse rotation, 15 minutes stop". Of the obtained samples, 1 g was pelletized in a glove box and vacuum-sealed in a carbon-coated quartz tube at 30 Pa. Then, it was calcined at a temperature of 500 ° C. to obtain a solid electrolyte (Li 3.5 Ge 0.5 P 0.5 S 4).

1.2.正極合材の作製
グローブボックス(Arガス雰囲気)内で、作製した固体電解質(Li3.5Ge0.50.5、0.303g)、LiS(日本化学工業社製、0.188g)、VGCF(昭和電工製、0.115g)をそれぞれ秤量し、乳鉢に入れ15分混合した。得られた混合物を遊星ボールミルポット(45mL、ZrO製)に投入し、さらにZrOボール(φ=5mm)を160個投入し、遊星ボールミルポットをオーバーポット(SUS製)に入れて完全に密閉した。つぎに、オーバーポットをグローブボックスから取り出し、遊星ボールミル装置(フリュッチェ製)に取り付けた。遊星ボールミル装置の回転数を500rpmに設定し、24時間のメカニカルミリング処理を行った。得られた複合体をグローブボックス内でペレット化し、カーボンコート石英管に30Paで真空封入した。そして、表1の温度で5時間焼成し、その後自然放冷して実施例1、2及び比較例1〜3に係る正極合材をそれぞれ作製した。
1.2. Preparation of positive electrode mixture Solid electrolyte (Li 3.5 Ge 0.5 P 0.5 S 4 , 0.303 g) prepared in a glove box (Ar gas atmosphere), Li 2 S (manufactured by Nippon Kagaku Kogyo Co., Ltd., 0.188 g) and VGCF (manufactured by Showa Denko, 0.115 g) were weighed, placed in a dairy pot and mixed for 15 minutes. The resulting mixture planetary ball mill pot (45 mL, ZrO Ltd. 2) were charged, and further ZrO 2 balls (phi = 5 mm) was put 160, completely sealed putting planetary ball mill pot over pot (manufactured by SUS) did. Next, the overpot was taken out of the glove box and attached to a planetary ball mill device (manufactured by Fruche). The rotation speed of the planetary ball mill device was set to 500 rpm, and mechanical milling processing was performed for 24 hours. The obtained complex was pelletized in a glove box and vacuum-sealed in a carbon-coated quartz tube at 30 Pa. Then, it was fired at the temperature shown in Table 1 for 5 hours, and then naturally allowed to cool to prepare positive electrode mixture materials according to Examples 1 and 2, and Comparative Examples 1 to 3, respectively.

2.全固体リチウム硫黄電池の作製
次に、実施例1、2及び比較例1〜3に係る全固体リチウム硫黄電池の作製方法について説明する。なお、特に断らない限り、以下の操作はArガス雰囲気下で行っている。
2. Fabrication of All-Solid-State Lithium-Sulfur Battery Next, a method for producing an all-solid-state lithium-sulfur battery according to Examples 1 and 2 and Comparative Examples 1 to 3 will be described. Unless otherwise specified, the following operations are performed in an Ar gas atmosphere.

2.1.固体電解質(75LiS・25P)の作製
グローブボックス(Arガス雰囲気)内でLiS(日本化学工業社製、1.1g)、P(アルドリッチ社製、1.78g)をそれぞれ秤量し、乳鉢に入れ15分混合した。混合した材料を遊星ボールミルポット(45mL、ZrO製)に投入し、さらにZrOボール(φ=10mm)を10個投入し、遊星ボールミルポットをオーバーポット(SUS製)に入れて完全に密閉した。つぎに、オーバーポットをグローブボックスから取り出し、遊星ボールミル装置(フリュッチェ製)に取り付けた。遊星ボールミル装置の回転数を510rpmに設定し、「1時間処理、15分停止、逆回転で1時間処理、15分停止」のサイクルで10時間のメカニカルミリング処理を行った。これにより、固体電解質(75LiS・25P)を得た。
2.1. Solid electrolytes (75Li 2 S · 25P 2 S 5) Preparation of a glove box (Ar gas) in a Li 2 S (Nippon Chemical Industrial Co., Ltd., 1.1g), P 2 S 5 ( Aldrich, 1.78 g ) Weighed, placed in a mortar and mixed for 15 minutes. The mixed material was put into a planetary ball mill pot (45 mL, made by ZrO 2 ), 10 more ZrO 2 balls (φ = 10 mm) were put into it, and the planetary ball mill pot was put into an overpot (made by SUS) and completely sealed. .. Next, the overpot was taken out of the glove box and attached to a planetary ball mill device (manufactured by Fruche). The rotation speed of the planetary ball mill device was set to 510 rpm, and a 10-hour mechanical milling process was performed in a cycle of "1 hour processing, 15 minutes stop, 1 hour processing in reverse rotation, 15 minutes stop". This gave a solid electrolyte (75Li 2 S · 25P 2 S 5).

2.2.全固体リチウム硫黄電池の作製
底面が1cmの金型に作製した固体電解質(75LiS・25P)を加えて6t/cmでプレスし、固体電解質層を作製した。上記により作製した正極合材9mgを正極として用いて、固体電解質層の一方の面に接するように金型に加え、全体を1t/cmでプレスした。また、リチウム箔を負極として用いて、固体電解質層の他方の面に接するように金型に加え、1t/cmでプレスした。これにより実施例1、2及び比較例1〜3に係る全固体リチウム硫黄電池をそれぞれ作製した。
2.2. By addition of solid electrolyte prepared bottom was manufactured in a mold of 1 cm 2 of an all-solid-state lithium-sulfur battery (75Li 2 S · 25P 2 S 5) were pressed at 6t / cm 2, to prepare a solid electrolyte layer. Using 9 mg of the positive electrode mixture prepared as described above as the positive electrode, the mixture was added to the mold so as to be in contact with one surface of the solid electrolyte layer, and the whole was pressed at 1 t / cm 2. Further, using a lithium foil as a negative electrode, it was added to the die so as to be in contact with the other surface of the solid electrolyte layer, and pressed at 1 t / cm 2. As a result, all-solid-state lithium-sulfur batteries according to Examples 1 and 2 and Comparative Examples 1 to 3 were produced.

3.放電容量の評価
上記により作製した実施例1、2及び比較例1〜3に係る全固体リチウム硫黄電池を充放電試験装置(北斗電工製)に取り付け、以下の(1)〜(7)の手順を行いながら、放電容量密度について測定した。なお、以下において1C=4.56mA/cmである。
(1)OCV測定。
(2)C/10で1.5Vまで放電後、休止10分。
(3)C/10で3.1Vまで充電後、休止10分。その後、C/10で1.5Vまで放電し、休止10分。これらを計5サイクル行った。
(4)C/10で3.1Vまで充電後、休止10分。その後、C/3で1.5Vまで放電し、休止10分。その後、C/10で1.5Vまで放電し、休止10分。
(5)C/10で3.1Vまで充電後、休止10分。その後、1Cで1.5Vまで放電し、休止10分。その後、C/10で1.5Vまで放電し、休止10分。
(6)C/10で3.1Vまで充電後、休止10分。その後、2Cで1.5Vまで放電し、休止10分。その後、C/10で1.5Vまで放電し、休止10分。
(7)C/10で3.1Vまで充電後、休止10分。その後、C/10で1.5Vまで放電し、休止10分。
3. 3. Evaluation of Discharge Capacity The all-solid-state lithium-sulfur batteries according to Examples 1 and 2 and Comparative Examples 1 to 3 prepared above were attached to a charge / discharge test device (manufactured by Hokuto Denko), and the following procedures (1) to (7) were performed. The discharge capacity density was measured while performing the above. In the following, 1C = 4.56mA / cm 2 .
(1) OCV measurement.
(2) After discharging to 1.5V at C / 10, pause for 10 minutes.
(3) After charging to 3.1V with C / 10, rest for 10 minutes. After that, it was discharged to 1.5V at C / 10 and paused for 10 minutes. These were performed for a total of 5 cycles.
(4) After charging to 3.1V with C / 10, rest for 10 minutes. After that, it was discharged to 1.5V at C / 3, and the rest was 10 minutes. After that, it was discharged to 1.5V at C / 10 and paused for 10 minutes.
(5) After charging to 3.1V with C / 10, rest for 10 minutes. After that, it was discharged to 1.5V at 1C, and paused for 10 minutes. After that, it was discharged to 1.5V at C / 10 and paused for 10 minutes.
(6) After charging to 3.1V with C / 10, rest for 10 minutes. After that, it was discharged to 1.5V at 2C, and paused for 10 minutes. After that, it was discharged to 1.5V at C / 10 and paused for 10 minutes.
(7) After charging to 3.1V with C / 10, rest for 10 minutes. After that, it was discharged to 1.5V at C / 10 and paused for 10 minutes.

得られた測定結果のうち、(3)の2サイクル目のC/10で1.5Vまで放電した際の放電容量密度(mAh/g)、(4)のC/3で1.5Vまで放電した際の放電容量密度(mAh/g)をそれぞれ表1に示した。また、これらの結果を図2にも示した。 Among the obtained measurement results, the discharge capacity density (mAh / g) when discharging to 1.5V at C / 10 in the second cycle of (3), and discharging to 1.5V at C / 3 of (4). The discharge capacity densities (mAh / g) at the time of the discharge are shown in Table 1, respectively. These results are also shown in FIG.

4.空隙率の評価
上記により作製した実施例1、2及び比較例1〜3に係る全固体リチウム硫黄電池の正極をCP(日立ハイテクノロジーズ社製、IM4000)により断面加工した後、SEM(FE−SEM、加速電圧1.0kV)により加工された正極断面を観察した。そして、SEM画像を次のように解析し、正極の空隙率を求めた。
(1)Fuji ImageJ, Weka Machine Learningにより、SEM画像をLiS、固体電解質、空隙の3種の領域に分割する。
(2)Matlabにより、それぞれの領域の面積を算出し、空隙率(空隙面積/観察領域面積)を求めた。
4. Evaluation of void ratio After cross-sectional processing the positive electrode of the all-solid-state lithium-sulfur battery according to Examples 1 and 2 and Comparative Examples 1 to 3 produced above by CP (manufactured by Hitachi High-Technologies Corporation, IM4000), SEM (FE-SEM) , The positive electrode cross section processed by the acceleration voltage 1.0 kV) was observed. Then, the SEM image was analyzed as follows to determine the porosity of the positive electrode.
(1) Fuji ImageJ, by Weka Machine Learning, divides the SEM image Li 2 S, a solid electrolyte, the three regions of the air gap.
(2) The area of each region was calculated by Matlab, and the porosity (porosity area / observation area area) was obtained.

得られた空隙率を表1に示した。また、実施例1及び比較例1のSEM画像を図3に示した。 The obtained porosity is shown in Table 1. Moreover, the SEM images of Example 1 and Comparative Example 1 are shown in FIG.

Figure 0006904303
Figure 0006904303

5.結果
表1、図2から明らかなように、電池の放電容量密度は比較例1〜2に比べて、実施例1、2が顕著に高いことが分かった。これは、実施例1、2の空隙率が比較例1〜2に比べて低いためと考えられる。空隙率が低下することにより、LiS(正極活物質)及び固体電解質の接触率が増加するため、Liイオン伝導パスがより多く確保でき、放電容量密度が増加すると考えられる。また比較例3について、空隙率は低いものの、固体電解質が分解してイオン伝導度が下がったため、放電容量密度が下がったと考えられる。図3に示した実施例1及び比較例1のSEM画像を比較しても、実施例1は明らかに空隙がなく、LiS(正極活物質)及び固体電解質が密に接していることが分かる。
以上の結果から、正極合材の作製時において、メカニカルミリング処理後に、所定の条件下で複合体の熱処理を行うことで、電池の放電容量密度が向上することが分かった。
5. Results As is clear from Tables 1 and 2, it was found that the discharge capacity densities of the batteries were significantly higher in Examples 1 and 2 than in Comparative Examples 1 and 2. It is considered that this is because the porosity of Examples 1 and 2 is lower than that of Comparative Examples 1 and 2. By porosity is lowered, since the Li 2 S (positive electrode active material) and the solid electrolyte contact ratio is increased, Li ion conductivity path can be more secured, it believed discharge capacity density is increased. Further, in Comparative Example 3, although the porosity was low, it is considered that the discharge capacity density was lowered because the solid electrolyte was decomposed and the ionic conductivity was lowered. Be compared SEM images of Example 1 and Comparative Example 1 shown in FIG. 3, Example 1 clearly no voids, that Li 2 S (positive electrode active material) and the solid electrolyte is closely contact I understand.
From the above results, it was found that the discharge capacity density of the battery is improved by performing the heat treatment of the composite under predetermined conditions after the mechanical milling treatment at the time of producing the positive electrode mixture.

Claims (1)

LiSを含む正極活物質と、固体電解質と、導電助材とを含む原料混合物に対してメカニカルミリング処理を行い、複合体を形成する工程と、
前記複合体を非酸素条件下、300℃〜500℃の範囲内で熱処理する工程と、を含む、
全固体リチウム硫黄電池用正極合材の製造方法。
A positive electrode active material containing li 2 S, and the solid electrolyte, performs mechanical milling of the raw material mixture containing a conductive agent, a step of forming a complex,
A step of heat-treating the complex under non-oxygen conditions in the range of 300 ° C. to 500 ° C.
A method for manufacturing a positive electrode mixture for an all-solid-state lithium-sulfur battery.
JP2018092541A 2018-05-11 2018-05-11 Manufacturing method of positive electrode mixture Active JP6904303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018092541A JP6904303B2 (en) 2018-05-11 2018-05-11 Manufacturing method of positive electrode mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092541A JP6904303B2 (en) 2018-05-11 2018-05-11 Manufacturing method of positive electrode mixture

Publications (2)

Publication Number Publication Date
JP2019197713A JP2019197713A (en) 2019-11-14
JP6904303B2 true JP6904303B2 (en) 2021-07-14

Family

ID=68537773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092541A Active JP6904303B2 (en) 2018-05-11 2018-05-11 Manufacturing method of positive electrode mixture

Country Status (1)

Country Link
JP (1) JP6904303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799459B (en) * 2020-08-21 2021-09-17 中南大学 Preparation method of sulfur composite cathode material and all-solid-state lithium sulfur battery
WO2024048476A1 (en) * 2022-08-30 2024-03-07 三井金属鉱業株式会社 Method for producing composite material and composite material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176484A (en) * 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd Positive electrode and negative electrode for all-solid lithium secondary battery, and all-solid lithium secondary battery
JP6071171B2 (en) * 2010-09-01 2017-02-01 出光興産株式会社 Electrode material and lithium ion battery using the same
EP2669974A4 (en) * 2011-01-27 2016-03-02 Idemitsu Kosan Co Composite material of alkali metal sulfide and conducting agent
JP5912493B2 (en) * 2011-12-15 2016-04-27 出光興産株式会社 Composition comprising lithium particles, electrode and battery
JP5912551B2 (en) * 2012-01-11 2016-04-27 出光興産株式会社 Electrode material, electrode and battery using the same
JP5995695B2 (en) * 2012-12-03 2016-09-21 シチズンホールディングス株式会社 Manufacturing method of LED device
JP5445809B1 (en) * 2013-06-21 2014-03-19 ナガセケムテックス株式会社 Positive electrode mixture and all-solid-state lithium-sulfur battery
KR20160140030A (en) * 2015-05-29 2016-12-07 현대자동차주식회사 A manufacturing method of positive active material-solid eletrolyte complex for all solid-state litium sulfur battery
JP6648649B2 (en) * 2016-08-08 2020-02-14 トヨタ自動車株式会社 Manufacturing method of all solid lithium sulfur battery

Also Published As

Publication number Publication date
JP2019197713A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP5660210B2 (en) Solid electrolyte material, solid battery, and method for producing solid electrolyte material
TWI609519B (en) Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
JP6946836B2 (en) Lithium solid-state battery and manufacturing method of lithium solid-state battery
JP6172295B2 (en) Lithium solid state battery, lithium solid state battery module, and method for producing lithium solid state battery
JP5445809B1 (en) Positive electrode mixture and all-solid-state lithium-sulfur battery
KR101498797B1 (en) Negative Electrode Material for Sodium-Ion Batteries and Sodium-Ion Battery Having the Same
JP6108267B2 (en) Positive electrode mixture and all-solid-state lithium-sulfur battery
JP2014035987A (en) METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
JP6904303B2 (en) Manufacturing method of positive electrode mixture
CN112400242A (en) Negative electrode material and battery
JP7156157B2 (en) Positive electrode mixture, all-solid battery, method for producing positive electrode mixture, and method for producing all-solid battery
JP2019053850A (en) Sulfide solid electrolyte
JP7151658B2 (en) positive electrode mixture
JP7156048B2 (en) Sulfide solid electrolyte particles and all-solid battery
JP2020087736A (en) Positive electrode mixture, all-solid-state battery, and method of manufacturing positive electrode mixture
EP3312909A1 (en) Electroactive composites comprising silicon particles, metal nanoparticles and carbon nanostructures
KR20140137936A (en) Negative Electrode Material for Sodium-Ion Batteries and Sodium-Ion Battery Having the Same
JP7070455B2 (en) Positive electrode active material layer for all-solid-state batteries
JP6583254B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery and method for producing positive electrode material for non-aqueous secondary battery
JP2021068663A (en) Method for producing positive electrode material
JP2020194739A (en) Lithium ion secondary battery and manufacturing method thereof
JP6233252B2 (en) Method for producing solid electrolyte battery
US20240154106A1 (en) Negative electrode active material, negative electrode material and battery
US20240162427A1 (en) Negative electrode active material and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R151 Written notification of patent or utility model registration

Ref document number: 6904303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151