JP6886717B2 - Construction method of steel pipe pile - Google Patents

Construction method of steel pipe pile Download PDF

Info

Publication number
JP6886717B2
JP6886717B2 JP2018207482A JP2018207482A JP6886717B2 JP 6886717 B2 JP6886717 B2 JP 6886717B2 JP 2018207482 A JP2018207482 A JP 2018207482A JP 2018207482 A JP2018207482 A JP 2018207482A JP 6886717 B2 JP6886717 B2 JP 6886717B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe pile
support layer
hammer
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018207482A
Other languages
Japanese (ja)
Other versions
JP2020070687A (en
Inventor
孝彦 樫本
孝彦 樫本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oak Co Ltd
Original Assignee
Oak Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oak Co Ltd filed Critical Oak Co Ltd
Priority to JP2018207482A priority Critical patent/JP6886717B2/en
Publication of JP2020070687A publication Critical patent/JP2020070687A/en
Application granted granted Critical
Publication of JP6886717B2 publication Critical patent/JP6886717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば鋼管矢板による橋梁基礎の外周部形成等、特に大口径の鋼管杭を大深度に建て込む場合に好適な施工方法に関する。 The present invention relates to a construction method suitable for building a steel pipe pile having a large diameter at a large depth, for example, forming an outer peripheral portion of a bridge foundation with a steel pipe sheet pile.

一般的に、大口径の鋼管矢板を用いて橋梁基礎、岸壁、護岸等の水域に臨んだ擁壁を構築する場合、クレーンで吊支したバイブロハンマの起振力によって鋼管矢板を地中に打ち込む振動工法、鋼管矢板の内側に挿通配置させたオーガスクリューやドリリングバケットで先端側を掘削しつつ、当該鋼管矢板を自重と圧入又は軽打によって地中に沈設する中堀り工法、油圧ハンマ、ディーゼルハンマ、ドロップハンマ等で鋼管矢板の頭部を打撃して地中に打ち込む打撃工法、鋼管矢板に油圧による静圧をかけて地中に圧入する圧入工法等が採用されている(非特許文献1,2)。 Generally, when constructing a retaining wall facing a water area such as a bridge foundation, a quay, or a shore using a large-diameter steel pipe sheet pile, the vibration of driving the steel pipe sheet pile into the ground by the vibrating force of a vibro hammer suspended by a crane. Construction method, Nakadori method, hydraulic hammer, diesel hammer, in which the steel pipe sheet pile is sunk in the ground by its own weight and press-fitting or light tapping while excavating the tip side with an auger screw or drilling bucket that is inserted and placed inside the steel pipe sheet pile. A striking method in which the head of a steel pipe sheet pile is struck with a drop hammer or the like to drive it into the ground, a press-fitting method in which a static pressure of hydraulic pressure is applied to the steel pipe sheet pile and the steel pipe sheet pile is press-fitted into the ground, etc. ).

しかしながら、礫層や岩盤等よりなる硬質の支持層が管頭から50m以上の大深度に存在し、その支持層内に鋼管矢板の先端側を貫入させる根入れを要する場合、何れの工法でも先端が支持層に到達するまでは該鋼管矢板を継ぎ足しつつ建て込みできるが、以降の支持層への根入れが極めて困難であった。これは、振動工法、打撃工法、圧入工法等では、鋼管矢板が長くなることで、地盤に対する摩擦抵抗が増大することに加え、鋼管矢板全体としての剛性が低下するため、振動工法での起振力、打撃工法での打撃力、圧入工法での圧入力が支持層に貫入し得るほど充分には作用しないことによる。一方、オーガスクリューによる中堀り工法では、大深度に対応して該オーガスクリューを継ぎ足しながら掘削するが、やはり長くなるほど該オーガスクリュー自体の剛性が低下するため、硬い支持層の掘削が困難になる。また、ドリリングバケットによる中堀り工法では、該ドリリングバケットはクレーンに昇降及び回転可能に保持されるケリーバの下端に取り付けられ、大深度に対応して該ケリーバを継ぎ足しながら掘削するが、細いケリーバが長くなることで剛性を失って曲がりや捩れ、振れを生じるため、ドリリングバケットに加える回転力及び押圧力が不足して硬い支持層を掘削できなくなる。 However, if a hard support layer consisting of a gravel layer, bedrock, etc. exists at a large depth of 50 m or more from the pipe head, and it is necessary to penetrate the tip side of the steel pipe sheet pile into the support layer, the tip can be used by any construction method. It was possible to build the steel pipe sheet pile while adding it until it reached the support layer, but it was extremely difficult to root it in the support layer thereafter. This is because in the vibration method, striking method, press-fitting method, etc., the length of the steel pipe sheet pile increases the frictional resistance against the ground, and the rigidity of the steel pipe sheet pile as a whole decreases. This is because the force, the striking force in the striking method, and the press-in input in the press-fitting method do not work sufficiently to penetrate the support layer. On the other hand, in the middle digging method using an auger screw, excavation is performed while adding the auger screw corresponding to a large depth, but the longer the auger screw itself, the lower the rigidity of the auger screw itself, which makes it difficult to excavate a hard support layer. Further, in the middle digging method using a drilling bucket, the drilling bucket is attached to the lower end of a kelly bar that is held up and down and rotatably by a crane, and excavates while adding the kelly bar corresponding to a large depth, but the thin kelly bar is long. As a result, the rigidity is lost and bending, twisting, and runout occur, so that the rotational force and pressing force applied to the drilling bucket are insufficient, and a hard support layer cannot be excavated.

インターネット・ウエブ・一般社団法人 鋼管杭・鋼管矢板技術協会 鋼管矢板とは 検索日:2017年7月31日、http//www.jaspp.com/koukanyaita/construction.htmlInternet / Web / General Incorporated Association Steel Pipe Pile / Steel Pipe Sheet Sheet Technology Association What is Steel Pipe Sheet Sheet? Search date: July 31, 2017, http://www.jaspp.com/koukanyaita/construction.html インターネット・ウエブ・橋梁設計研修〜杭基礎の計画と設計〜(杭基礎の種類)平成23年8月30日 株式会社四電技術コンサルタント 池田 豊 検索日:2017年7月31日、http//www.kenji.net/kensyu_jisseki/h23/images/kuikiso_syurui.pdfInternet / Web / Bridge Design Training-Planning and Design of Pile Foundations- (Types of Pile Foundations) August 30, 2011 Yonden Consultants Co., Ltd. Yutaka Ikeda Search Date: July 31, 2017, http // www .kenji.net/kensyu_jisseki/h23/images/kuikiso_syurui.pdf

本発明は、上述の事情に鑑みて、鋼管矢板を含む鋼管杭の施工方法として、硬質の支持層が杭頭から50m以上の大深度に存在する場合でも、該支持層内に鋼管杭の先端側を容易に貫入させて確実に根入れし、もって高支持強度で高耐力の大深度建込施工を可能にする手段を提供することを目的としている。 In view of the above circumstances, the present invention is a method for constructing a steel pipe pile including a steel pipe sheet pile, even when a hard support layer exists at a large depth of 50 m or more from the pile head, the tip of the steel pipe pile is contained in the support layer. The purpose is to provide a means for easily penetrating the side to ensure rooting, thereby enabling high-depth construction with high support strength and high yield strength.

上記目的を達成するための手段を図面の参照符号を付して示せば、請求項1の発明に係る鋼管杭の施工方法は、鋼管杭(鋼管矢板1)を先端が硬質支持層Ghに到達するまで地中へ埋入させると共に、アースドリル掘削機Mに保持されるケリーバ2の下端に取り付けたドリリングバケット3の回転及び昇降操作により、該鋼管杭内の土砂を排出する第一工程と、鋼管杭内の土砂の略全量を排出後、前記ドリリングバケット3を取り外したケリーバ2の下端にエアスイベル機構4を介して、拡径式ハンマビット51を備えたダウンザホールハンマ5を取り付けると共に、該エアスイベル機構4と圧縮エアー供給源(エアーコンプレッサー6)との間にダウンザホールハンマ作動用のエアーホース7を接続する第二工程と、ケリーバ2に取り付けたダウンザホールハンマ5を鋼管杭内に挿入して着底させ、該ダウンザホールハンマ5の作動によって硬質支持層Ghを所定深度まで拡径掘削すると共に、その拡径掘削に伴って鋼管杭の先端側を硬質支持層Gh内へ自重で嵌入させる第三工程と、鋼管杭の先端側が硬質支持層Gh内の所定深度に達したのち、ダウンザホールハンマ5を抜出した該鋼管杭内にコンクリートCを打設する第四工程と、を順次経ることを特徴としている。 If the means for achieving the above object is shown with reference numerals in the drawings, the method for constructing a steel pipe pile according to the invention of claim 1 reaches the hard support layer Gh at the tip of the steel pipe pile (steel pipe sheet pile 1). The first step of discharging the earth and sand in the steel pipe pile by rotating and raising and lowering the drilling bucket 3 attached to the lower end of the kelly bar 2 held by the earth drill excavator M while embedding it in the ground until it is completed. After discharging substantially the entire amount of earth and sand in the steel pipe pile, a down-the-hole hammer 5 provided with a diameter-expanding hammer bit 51 is attached to the lower end of the kelly bar 2 from which the drilling bucket 3 has been removed via an air swivel mechanism 4, and the air swivel mechanism is attached. The second step of connecting the air hose 7 for operating the down-the-hole hammer between 4 and the compressed air supply source (air compressor 6), and the down-the-hole hammer 5 attached to the keriba 2 are inserted into the steel pipe pile and landed on the bottom. The third step of expanding the diameter of the hard support layer Gh to a predetermined depth by operating the down-the-hole hammer 5 and fitting the tip end side of the steel pipe pile into the hard support layer Gh by its own weight along with the expanded diameter excavation. After the tip end side of the steel pipe pile reaches a predetermined depth in the hard support layer Gh, a fourth step of placing concrete C in the steel pipe pile from which the down-the-hole hammer 5 is extracted is sequentially performed.

請求項2の発明は、上記請求項1の鋼管杭の施工方法において、エアスイベル機構4は、上下端をケリーバ2及びダウンザホールハンマ5に同心状に連結させる軸体4aに、外周にエアホース接続口41を有する筒体4bが相対回転自在に気密に外嵌し、該軸体4aと筒体4bとの間に構成された環状流路40に、エアホース接続口41と軸体4b側のエアー送給路42とが連通すると共に、筒体4b外側の周方向に等配する複数箇所に、半径方向に出退作動する突っ張り具43が設けられてなる構成としている。 The invention of claim 2 is the method of constructing a steel pipe pile according to claim 1, wherein the air swivel mechanism 4 has an air hose connection port 41 on the outer periphery of the shaft body 4a for concentrically connecting the upper and lower ends to the kelly bar 2 and the down-the-hole hammer 5. The tubular body 4b having the above is airtightly fitted so as to be relatively rotatable, and the air supply port 41 and the air supply on the shaft body 4b side are supplied to the annular flow path 40 formed between the shaft body 4a and the tubular body 4b. In addition to communicating with the road 42, the tensioning tools 43 that move in and out in the radial direction are provided at a plurality of locations that are evenly distributed on the outer side of the tubular body 4b in the circumferential direction.

請求項3の発明は、上記請求項1又は2の鋼管杭の施工方法において、硬質支持層Ghが杭頭位置から50m以上の深さdにあることを特徴としている。 The invention of claim 3 is characterized in that, in the method for constructing a steel pipe pile according to claim 1 or 2, the hard support layer Gh is at a depth d of 50 m or more from the pile head position.

請求項4の発明は、上記請求項1〜3のいずれかの鋼管杭の施工方法において、第一工程は、鋼管杭をバイブロハンマVの起振力で地中に打ち込んだのち、該鋼管杭内の土砂をドリリングバケット3によって排出するものであることを特徴としている。 The invention of claim 4 is the method of constructing a steel pipe pile according to any one of claims 1 to 3, wherein in the first step, the steel pipe pile is driven into the ground by the vibrating force of the vibro hammer V, and then inside the steel pipe pile. It is characterized in that the earth and sand of the above is discharged by the drilling bucket 3.

請求項5の発明は、上記請求項1〜4のいずれかの鋼管杭の施工方法において、鋼管杭が相互の継手1aを介して連結しつつ複数本を順次並列に打ち込む鋼管矢板1である構成としている。 The invention according to claim 5 is a steel pipe sheet pile 1 in which a plurality of steel pipe piles are sequentially driven in parallel while being connected to each other via a joint 1a in the method for constructing a steel pipe pile according to any one of claims 1 to 4. It is supposed to be.

請求項6の発明は、上記請求項5の鋼管杭の施工方法において、複数本の鋼管矢板1を環状に配列するように水上から水底地盤に順次打込んで橋梁基礎10の外周壁体10aを形成するものとしている。 The invention of claim 6 is the method of constructing a steel pipe pile according to claim 5, wherein a plurality of steel pipe sheet piles 1 are sequentially driven from the water to the bottom ground so as to be arranged in a ring shape to form an outer wall body 10a of the bridge foundation 10. It is supposed to be formed.

以下に、本発明の効果について、図面を参照して具体的に説明する。本発明に係る鋼管杭の施工方法では、第一工程において鋼管杭(鋼管矢板1)を先端が硬質支持層Ghに到達するまで地中に建込むと共に、該鋼管杭内の土砂をケリーバ2の下端に取り付けたドリリングバケット3によって排出するが、次の第二工程において、該ドリリングバケット3に代えて、拡径式ハンマビット51を備えたダウンザホールハンマ5をエアスイベル機構4を介してケリーバ2に取り付ける。そして、第三工程において、該ダウンザホールハンマ5を作動させることにより、硬質支持層Ghを所定深度まで拡径掘削し、これ伴って鋼管杭の先端側を支持層Gh内へ自重で嵌入させるから、従来では困難であった硬質支持層Ghに対する該鋼管杭の根入れを能率よく容易に且つ確実に行うことができる。そして、第四工程において、ダウンザホールハンマ5を抜出した該鋼管杭内にコンクリートCを打設することで、高強度の杭を構築できる。なお、ダウンザホールハンマ5は、作動に回転を伴うが、ケリーバの下端に対してエアスイベル機構4を介して取り付けられているから、圧縮エアー供給源(エアーコンプレッサー6)からエアーホース7を通して送給される作動用の圧縮エアーを支障なく導入できる。 Hereinafter, the effects of the present invention will be specifically described with reference to the drawings. In the method for constructing a steel pipe pile according to the present invention, in the first step, the steel pipe pile (steel pipe sheet pile 1) is built in the ground until the tip reaches the hard support layer Gh, and the earth and sand in the steel pipe pile is laid in the keriba 2. It is discharged by the drilling bucket 3 attached to the lower end, and in the next second step, a down-the-hole hammer 5 provided with a diameter-expanding hammer bit 51 is attached to the kelly bar 2 via the air swivel mechanism 4 instead of the drilling bucket 3. .. Then, in the third step, by operating the down-the-hole hammer 5, the hard support layer Gh is excavated to a predetermined depth, and the tip end side of the steel pipe pile is fitted into the support layer Gh by its own weight. It is possible to efficiently, easily and surely root the steel pipe pile into the hard support layer Gh, which has been difficult in the past. Then, in the fourth step, a high-strength pile can be constructed by placing concrete C in the steel pipe pile from which the down-the-hole hammer 5 has been pulled out. Although the down-the-hole hammer 5 is operated with rotation, it is attached to the lower end of the kelly bar via the air swivel mechanism 4, so that the down-the-hole hammer 5 is supplied from the compressed air supply source (air compressor 6) through the air hose 7. Compressed air for operation can be introduced without any trouble.

請求項2の発明によれば、エアスイベル機構4は、ケリーバ2及びダウンザホールハンマ5に同心状に連結させる軸体4aに、外周にエアホース接続口41を有する筒体4bが相対回転自在に気密に外嵌する構造であるが、この筒体4aに半径方向に出退作動する複数の突っ張り具43が設けられており、これら突っ張り具43を鋼管杭の内周面に当接又は近接するように張出させることで、該鋼管杭内でダウンザホールハンマ5を揺動しない安定姿勢に保持できるから、該ダウンザホールハンマ5による高い掘削能率を確保できる。 According to the invention of claim 2, in the air swivel mechanism 4, a tubular body 4b having an air hose connection port 41 on the outer periphery thereof is airtightly externally rotatably attached to a shaft body 4a which is concentrically connected to the kelly bar 2 and the down-the-hole hammer 5. Although it has a structure to be fitted, the tubular body 4a is provided with a plurality of tensioning tools 43 that move in and out in the radial direction, and these tensioning tools 43 are stretched so as to abut or approach the inner peripheral surface of the steel pipe pile. By pulling it out, the down-the-hole hammer 5 can be held in a stable posture that does not swing in the steel pipe pile, so that high excavation efficiency by the down-the-hole hammer 5 can be ensured.

請求項3の発明によれば、硬質支持層Ghが杭頭位置から50m以上の深さdにある大深度施工において、従来では極めて困難であった該硬質支持層Ghに対する鋼管杭の根入れを能率よく容易に且つ確実に行うことができる。 According to the invention of claim 3, in the deep construction where the hard support layer Gh is at a depth d of 50 m or more from the pile head position, it is extremely difficult in the past to root the steel pipe pile into the hard support layer Gh. It can be done efficiently, easily and surely.

請求項4の発明によれば、第一工程は、鋼管杭をバイブロハンマVの起振力で地中に打ち込んだのち、該鋼管杭内の土砂をドリリングバケット3によって排出することから、高い施工能率が得られる。 According to the invention of claim 4, in the first step, after the steel pipe pile is driven into the ground by the vibrating force of the vibro hammer V, the earth and sand in the steel pipe pile is discharged by the drilling bucket 3, so that the construction efficiency is high. Is obtained.

請求項5の発明によれば、鋼管杭が相互の継手1aを介して連結しつつ複数本を順次並列に打ち込む鋼管矢板1であるが、大深度施工でも各鋼管矢板1を硬質支持層Ghに容易に確実に根入れして高耐力の壁体を構築できる。 According to the invention of claim 5, the steel pipe sheet pile 1 is a steel pipe sheet pile 1 in which a plurality of steel pipe piles are sequentially driven in parallel while being connected to each other via a joint 1a. It can be easily and surely rooted to build a high-strength wall body.

請求項6の発明によれば、複数本の鋼管矢板1を環状に配列するように水上から水底地盤に順次打込んで橋梁基礎10の外周壁体10aを形成する場合に、硬質支持層Ghが大深度に位置しても、確実に根入れして高耐力の外周壁体10aを構築できる。 According to the invention of claim 6, when a plurality of steel pipe sheet piles 1 are sequentially driven into the bottom ground from the water so as to be arranged in an annular shape to form the outer peripheral wall body 10a of the bridge foundation 10, the hard support layer Gh is formed. Even if it is located at a large depth, it can be reliably rooted to construct an outer wall body 10a having a high yield strength.

本発明に係る鋼管杭の施工方法を橋梁基礎施工に適用した一実施形態における第一工程のバイブロハンマによる鋼管矢板の打込み状況を示す縦断側面図である。It is a longitudinal side view which shows the driving state of the steel pipe sheet pile by the vibro hammer of the 1st process in one Embodiment which applied the construction method of the steel pipe pile which concerns on this invention to the bridge foundation construction. 同第一工程のドリリングバケットによる鋼管矢板内の土砂の排出状況を示す縦断側面図である。It is a vertical sectional side view which shows the discharge state of earth and sand in a steel pipe sheet pile by the drilling bucket of the 1st process. 同第一実施形態における第三工程のダウンザホールハンマによる硬質支持層の掘削状況を示す縦断側面図である。It is a longitudinal side view which shows the excavation state of the hard support layer by the down-the-hole hammer of the 3rd process in the 1st Embodiment. 同ダウンザホールハンマのケリーバに対する取付部に介在させるエアースイベル機構を示し、(a)は平面図、(b)は要部縦断正面図である。The air swivel mechanism interposed in the attachment portion of the down-the-hole hammer to the keriba is shown, (a) is a plan view, and (b) is a vertical sectional front view of a main part. 同エアースイベル機構を介したケリーバとダウンザホールハンマとの連結部分を示す展開斜視図である。It is a developed perspective view which shows the connection part of a keriba and a down-the-hole hammer via the air swivel mechanism. 鋼管矢板内に装填したダウンザホールハンマによる硬質支持層の掘削状況を拡大して示す縦断側面図である。It is a longitudinal side view which shows the excavation situation of the hard support layer by the down-the-hole hammer loaded in the steel pipe sheet pile in an enlarged manner. 同橋梁基礎施工を示し、(a)は第四工程の鋼管矢板内へコンクリートを打設した状態を示す縦断側面図、(b)は橋梁基礎の外周壁体を構成する鋼管矢板の井筒範列を示す平面図、(c)は橋梁基礎に橋脚を構築した状態の正面図である。The bridge foundation construction is shown, (a) is a vertical sectional side view showing a state in which concrete is poured into the steel pipe sheet pile in the fourth step, and (b) is a row of steel pipe sheet piles constituting the outer peripheral wall of the bridge foundation. (C) is a front view showing a state in which a pier is constructed on a bridge foundation.

本発明に係る鋼管杭の施工方法は、既述のように、次の第一工程〜第四工程を順次経ることを特徴としている。
〔第一工程〕・・・鋼管杭を先端が硬質支持層に到達するまで地中へ埋入させると共に、アースドリル掘削機に保持されるケリーバの下端に取り付けたドリリングバケットの回転及び昇降操作により、該鋼管杭内の土砂を排出する。
〔第二工程〕・・・鋼管杭内の土砂の略全量を排出後、前記ドリリングバケットを取り外したケリーバの下端にエアスイベル機構を介して、拡径式ハンマビットを備えたダウンザホールハンマを取り付けると共に、該エアスイベル機構と圧縮エアー供給源との間にダウンザホールハンマ作動用のエアーホースを接続する。
〔第三工程〕・・・ケリーバに取り付けたダウンザホールハンマを鋼管杭内に挿入して着底させ、該ダウンザホールハンマの作動によって硬質支持層を所定深度まで拡径掘削すると共に、その拡径掘削に伴って鋼管杭の先端側を硬質支持層内へ自重で嵌入させる。
〔第四工程〕・・・鋼管杭の先端側が硬質支持層内の所定深度に達したのち、ダウンザホールハンマを抜出した該鋼管杭内にコンクリートを打設する。
As described above, the method for constructing a steel pipe pile according to the present invention is characterized in that the following first steps to fourth steps are sequentially performed.
[First step] ... The steel pipe pile is embedded in the ground until the tip reaches the hard support layer, and the drilling bucket attached to the lower end of the keriba held by the earth drill excavator is rotated and raised and lowered. , The earth and sand in the steel pipe pile is discharged.
[Second step] ... After discharging almost all of the earth and sand in the steel pipe pile, a down-the-hole hammer equipped with a diameter-expanding hammer bit is attached to the lower end of the keriba from which the drilling bucket has been removed via an air swivel mechanism. An air hose for operating the down-the-hole hammer is connected between the air swivel mechanism and the compressed air supply source.
[Third step] ... The down-the-hole hammer attached to the keriba is inserted into the steel pipe pile to land on the bottom, and the hard support layer is excavated to a predetermined depth by the operation of the down-the-hole hammer, and the diameter is expanded. Along with this, the tip side of the steel pipe pile is fitted into the hard support layer by its own weight.
[Fourth step] ... After the tip end side of the steel pipe pile reaches a predetermined depth in the hard support layer, concrete is poured into the steel pipe pile from which the down-the-hole hammer has been pulled out.

以下に、本発明の鋼管杭の施工方法を橋梁基礎施工に適用した一実施形態について、図面を参照して具体的に説明する。この橋梁基礎施工では、図1で示すように、水域にある施工位置において、その水面上から鋼管杭として複数本の鋼管矢板1を水底地盤に順次並列に建て込むことにより、橋梁基礎の外周壁体を構築するものである。しかして、水底地盤Gは上部から順次、土泥層Gm、砂や砂礫の堆積層Gs、粗大礫層や岩盤からなる硬質支持層Ghより構成されており、その硬質支持層Ghの杭頭位置からの深さdが50m以上の大深度にある。また、鋼管矢板1における鋼管口径は1〜2m程度である。なお、図中のWは水層を示す。 Hereinafter, an embodiment in which the method of constructing a steel pipe pile of the present invention is applied to bridge foundation construction will be specifically described with reference to the drawings. In this bridge foundation construction, as shown in FIG. 1, a plurality of steel pipe sheet piles 1 are sequentially built in parallel on the bottom ground as steel pipe piles from above the water surface at the construction position in the water area, thereby forming the outer peripheral wall of the bridge foundation. It builds the body. The submerged ground G is composed of a mud layer Gm, a sedimentary layer Gs of sand and gravel, a hard support layer Gh composed of a coarse gravel layer and a bedrock, and a pile head position of the hard support layer Gh. The depth d from is at a large depth of 50 m or more. The diameter of the steel pipe sheet pile 1 is about 1 to 2 m. W in the figure indicates an aqueous layer.

この実施形態の施工方法では、その第一工程において、まず図1で示すように、水上に浮かべた300t積み程度の平台船S上に、ブームB及びフロントフレームFを備えてアースドリル掘削機を構成し得る60〜65t級のクローラクレーンMが搭載され、そのブームBによって吊持されたバイブロハンマーVによって鋼管矢板1の頂部を把持し、該鋼管矢板1をバイブロハンマーVの起振力によって水底地盤Gに打ち込む。このとき、該鋼管矢板1は、先端が硬質支持層Ghに到達するまで、複数本を溶接で同心状に連結して継ぎ足してゆく。そして、該鋼管矢板1の先端が硬質支持層Ghに到達した時点で、バイブロハンマーVを鋼管矢板1から離脱させて平台船S上に降ろし、図2に示すように、クローラクレーンMの前方へ張出させたフロントフレームFの先端にヨークYを取り付けてアースドリル掘削機仕様とする。このヨークYは、ケリーバ駆動装置KDと、その下位にあって一対のホースリールHrを設置したロータリーテーブルRTとからなり、該ロータリーテーブルRTには油圧用及び電気配線用のロータリーカップリング(図示省略)が設けてある。 In the construction method of this embodiment, in the first step, as shown in FIG. 1, an earth drill excavator equipped with a boom B and a front frame F is mounted on a flatbed ship S having a load of about 300 tons floating on water. A 60-65 ton class crawler crane M that can be configured is mounted, the top of the steel pipe sheet pile 1 is gripped by the vibro hammer V suspended by the boom B, and the steel pipe sheet pile 1 is held on the bottom of the water by the vibrating force of the vibro hammer V. Drive into the ground G. At this time, a plurality of steel pipe sheet piles 1 are concentrically connected and added by welding until the tip reaches the hard support layer Gh. Then, when the tip of the steel pipe sheet pile 1 reaches the hard support layer Gh, the vibro hammer V is separated from the steel pipe sheet pile 1 and lowered onto the flatbed ship S, and as shown in FIG. 2, forward of the crawler crane M. A yoke Y is attached to the tip of the overhanging front frame F to make it an earth drill excavator specification. The yoke Y is composed of a keriba drive device KD and a rotary table RT below which a pair of hose reels Hr are installed. The rotary table RT has rotary couplings for hydraulic and electrical wiring (not shown). ) Is provided.

次に、このアースドリル掘削機仕様としたクローラクレーンMにおいて、角筒状のケリーバ2をスイベルジョイントJを介してブームBで吊支してヨークYに上下動可能に挿通させると共に、該ケリーバ2の下端にドリリングバケット3を取り付け、図2に示すように、先に硬質支持層Ghまで到達させた鋼管矢板1内に該ドリリングバケット3を挿入する。そして、ケリーバ2を介して該ドリリングバケット3の回転及び昇降操作を反復することにより、鋼管矢板1内の土砂を該ドリリングバケット3内へ掻き入れて外部へ排出するが、掻き入れ位置が深くなるのに対応してケリーバ2を継ぎ足しつつ、鋼管矢板1内の最低部まで排土する。 Next, in the crawler crane M having the specifications of the earth drill excavator, the square tubular kelly bar 2 is suspended by the boom B via the swivel joint J and inserted into the yoke Y so as to be vertically movable. The drilling bucket 3 is attached to the lower end of the pipe, and as shown in FIG. 2, the drilling bucket 3 is inserted into the steel pipe sheet pile 1 which has reached the hard support layer Gh first. Then, by repeating the rotation and raising / lowering operations of the drilling bucket 3 via the kelly bar 2, the earth and sand in the steel pipe sheet pile 1 is scraped into the drilling bucket 3 and discharged to the outside, but the scraping position becomes deep. While adding the Keriba 2 in response to the above, the soil is discharged to the lowest part in the steel pipe sheet pile 1.

かくして硬質支持層Ghまで到達させた鋼管矢板1内の排土が終了すれば、第二工程として、該鋼管矢板1から抜出したドリリングバケット3をケリーバ2から取り外し、そのケリーバ2の下端に、図3に示すように、エアスイベル機構4を介してダウンザホールハンマ5を取り付けると共に、平台船S上に搭載している圧縮エア供給源のエアコンプレッサー6とエアスイベル機構4との間に、ホースリール8を介してダウンザホールハンマ作動用のエアホース7を接続する。 When the soil removal in the steel pipe sheet pile 1 that has reached the hard support layer Gh is completed, as a second step, the drilling bucket 3 extracted from the steel pipe sheet pile 1 is removed from the kelly bar 2, and the lower end of the kelly bar 2 is shown. As shown in 3, the down-the-hole hammer 5 is attached via the air swivel mechanism 4, and the hose reel 8 is interposed between the air compressor 6 of the compressed air supply source mounted on the flatbed vessel S and the air swivel mechanism 4. Then connect the air hose 7 for operating the down-the-hole hammer.

ここで、エアスイベル機構4は、図4(a)(b)に示すように、略丸軸状の軸体4aに、略短円筒状の筒体4bが上下の軸受44及びシールリング45を介して相対回転自在で気密に外嵌している。そして、該軸体4aと筒体4bとの間に環状流路40が構成され、筒体4bの周面に開口するエアホース接続口41が該環状流路40に連通すると共に、軸体4b側の軸方向に沿うエアー送給路42が半径方向の通気孔42aを介して該環状流路40に連通している。 Here, in the air swivel mechanism 4, as shown in FIGS. 4A and 4B, a substantially round shaft-shaped shaft body 4a has a substantially short cylindrical cylinder 4b via upper and lower bearings 44 and a seal ring 45. It is relatively rotatable and airtightly fitted. An annular flow path 40 is formed between the shaft body 4a and the cylinder body 4b, and an air hose connection port 41 that opens on the peripheral surface of the cylinder body 4b communicates with the annular flow path 40 and is on the shaft body 4b side. An air supply path 42 along the axial direction of the above means communicating with the annular flow path 40 via a vent hole 42a in the radial direction.

エアスイベル機構4の軸体4aは、上端側が角筒部47をなし、その対向壁の中間部に各々ピン挿通孔47aが貫設される共に、下端側が外周円形の連結用筒部48を構成し、該連結用筒部48の内側が下方に開放した六角穴48aとなり、エアー送給路42が該六角穴48aの内底に連通している。そして、連結用筒部48には一対のピン挿通孔48bが平行に貫設されており、各ピン挿通孔48bは六角穴48aの対向内側面に設けた半円形溝部48cに臨んでいる。また、筒体4bの上端にはフランジ部46が形成されており、該フランジ部46上の径方向両側位置に、各々油圧シリンダ43aによって半径方向に出退作動する突っ張り具43が設けられている。なお、突っ張り具43は、略矩形板状で、外面側が筒体4bの周方向に沿う円弧面になっている。 The shaft body 4a of the air swivel mechanism 4 has a square tubular portion 47 on the upper end side, and pin insertion holes 47a are formed in the middle portions of the facing walls thereof, and the lower end side constitutes a connecting tubular portion 48 having a circular outer circumference. The inside of the connecting cylinder 48 is a hexagonal hole 48a that is open downward, and the air supply path 42 communicates with the inner bottom of the hexagonal hole 48a. A pair of pin insertion holes 48b are formed in parallel in the connecting cylinder portion 48, and each pin insertion hole 48b faces a semicircular groove portion 48c provided on the opposite inner side surface of the hexagonal hole 48a. Further, a flange portion 46 is formed at the upper end of the tubular body 4b, and a tensioning tool 43 that moves in and out in the radial direction by a hydraulic cylinder 43a is provided at both radial positions on the flange portion 46. .. The tensioning tool 43 has a substantially rectangular plate shape, and the outer surface side is an arc surface along the circumferential direction of the tubular body 4b.

図5に示すように、上記構成のエアスイベル機構4では、ケリーバ2のピン挿通孔2aを有する下端部を角筒部47に挿嵌し、側方から連結ピン21を該ケリーバ2及び角筒部47の両ピン挿通孔2a,47aを通して貫入させることにより、該ケリーバ2に対して同軸状に相対回転不能に連結される。なお、角筒部47の上端近傍には位置決め用のフランジ部47bが形成されており、ケリーバ2の下端部を角筒部47に挿嵌した際に、該フランジ部47bにケリーバ2側のフランジ部(図示省略)が当接することで、ケリーバ2及び角筒部47の両ピン挿通孔2a,47aが合致するように設定されている。 As shown in FIG. 5, in the air swivel mechanism 4 having the above configuration, the lower end portion of the kelly bar 2 having the pin insertion hole 2a is inserted into the square tube portion 47, and the connecting pin 21 is connected to the kelly bar 2 and the square tube portion from the side. By penetrating through both pin insertion holes 2a and 47a of 47, they are coaxially and non-rotatably connected to the keriba 2. A flange portion 47b for positioning is formed near the upper end of the square cylinder portion 47, and when the lower end portion of the kelly bar 2 is inserted into the square cylinder portion 47, the flange portion 47b is fitted with the flange on the kelly bar 2 side. When the portions (not shown) come into contact with each other, the pin insertion holes 2a and 47a of the keriba 2 and the square cylinder portion 47 are set to match.

一方、エアスイベル機構4は、ダウンザホールハンマ5に対し、その上端軸部5aの頂面に突設された六角軸部52を連結用筒部48の六角穴48aに挿嵌し、側方から一対の連結ピン22を該連結用筒部48の両ピン挿通孔48b,48bに貫入させることにより、同軸状に相対回転不能に連結される。なお、ダウンザホールハンマ5の六角軸部52には、その対向側面に各々横方向の半円形溝部52aが形成されており、該六角軸部52をエアスイベル機構4の六角穴48aに挿嵌した際に、両者の半円形溝部48c,52aが合わさって円孔を構成し、その円孔に連結ピン22が挿嵌することで、六角軸部52は六角穴48aから抜出不能となる。 On the other hand, the air swivel mechanism 4 inserts the hexagonal shaft portion 52 projecting from the top surface of the upper end shaft portion 5a into the hexagonal hole 48a of the connecting cylinder portion 48 with respect to the down-the-hole hammer 5, and a pair from the side. By penetrating the connecting pins 22 into the insertion holes 48b and 48b of both pins of the connecting cylinder portion 48, the connecting pins 22 are coaxially and non-rotatably connected. The hexagonal shaft portion 52 of the down-the-hole hammer 5 is formed with a semicircular groove portion 52a in the lateral direction on the opposite side surface thereof, and when the hexagonal shaft portion 52 is inserted into the hexagonal hole 48a of the air swivel mechanism 4. The semicircular groove portions 48c and 52a of both are combined to form a circular hole, and the connecting pin 22 is inserted into the circular hole so that the hexagonal shaft portion 52 cannot be pulled out from the hexagonal hole 48a.

エアホース7は、その下端側をエアスイベル機構4のエアホース接続口41に接続するが、図5に示すように、まずエアホース接続口41にエルボ管71を螺挿固着し、ホース下端に止着したアダプター72を該エルボ管71に螺合接続する。なお、ダウンザホールハンマ5の六角軸部52の端面には圧縮エアー導入口50が開口しており、該エアホース7を通して供給される圧縮エアーがエアスイベル機構4の環状流路40及びエアー送給路42を経て該圧縮エアー導入口50よりダウンザホールハンマ5に供給される。 The lower end side of the air hose 7 is connected to the air hose connection port 41 of the air swivel mechanism 4. As shown in FIG. 5, the elbow pipe 71 is first screwed and fixed to the air hose connection port 41, and the adapter is fixed to the lower end of the hose. 72 is screwed and connected to the elbow tube 71. A compressed air introduction port 50 is opened at the end surface of the hexagonal shaft portion 52 of the down-the-hole hammer 5, and the compressed air supplied through the air hose 7 passes through the annular flow path 40 and the air supply path 42 of the air swivel mechanism 4. After that, it is supplied to the down-the-hole hammer 5 from the compressed air introduction port 50.

上述のように第二工程でケリーバ2にエアスイベル機構4を介してダウンザホールハンマ5を取り付けたのち、第三工程として、図3に示すように、該ダウンザホールハンマ5を鋼管矢板1内に挿入して硬質支持層Gh上に着底させ、該ダウンザホールハンマ5の作動によって硬質支持層Ghを掘削する。しかして、図6に示すように、ダウンザホールハンマ5はハンマーケーシング50の下端側に拡径式ハンマビット51を装着したものであり、該ハンマビット51を縮径状態で鋼管矢板1の下端より下方突出させ、掘削方向に回転させることにより、地盤との摩擦抵抗で該ハンマビット51の複数個のビッドヘッド51aが自動的に拡径状態に変位する。従って、その拡径掘削に伴って鋼管矢板1が自重で先端側を硬質支持層Gh内へ進入して根入れされる。 As described above, the down-the-hole hammer 5 is attached to the keriba 2 via the air swivel mechanism 4 in the second step, and then the down-the-hole hammer 5 is inserted into the steel pipe sheet pile 1 as shown in FIG. 3 as the third step. The bottom is landed on the hard support layer Gh, and the hard support layer Gh is excavated by the operation of the down-the-hole hammer 5. As shown in FIG. 6, the down-the-hole hammer 5 has a diameter-expanding hammer bit 51 mounted on the lower end side of the hammer casing 50, and the hammer bit 51 is reduced in diameter and is below the lower end of the steel pipe sheet pile 1. By projecting and rotating in the excavation direction, the plurality of bid heads 51a of the hammer bit 51 are automatically displaced to the enlarged diameter state due to frictional resistance with the ground. Therefore, along with the expanded diameter excavation, the steel pipe sheet pile 1 enters the hard support layer Gh on the tip side by its own weight and is rooted.

このダウンザホールハンマ5による硬質支持層Ghを掘削では、ケリーバ2と一体に回転させながら圧縮エアーをハンマーケーシング50内に供給することにより、内部のピストン(図示省略)がハンマービッド51の頂端を打撃し、これに伴うビッドヘッド51aの回転打撃作用によって硬質支持層Ghの礫や岩盤を破砕してゆく。しかして、大深度施工では細いケリーバ2が長くなって揺動し易いが、図6に示すように、エアスイベル機構4に付設された一対の突っ張り具43,43を張出作動させて鋼管矢板1内で突っ張らせることで、ケリーバ2の揺動が防止されるから、該鋼管矢板1でダウンザホールハンマ5が安定姿勢に保持され、もって硬質支持層Ghを能率よく迅速に掘削できる。また、ダウンザホールハンマ5はケリーバ2の下端に対してエアスイベル機構4を介して取り付けられるから、該エアスイベル機構4の非回転側である筒体4bにエアーホース7を接続して、エアーコンプレッサー6から供給される作動用の圧縮エアーを該エアーホース7を通して支障なく導入できる。 In excavation of the hard support layer Gh by the down-the-hole hammer 5, the compressed air is supplied into the hammer casing 50 while rotating integrally with the keriba 2, and the internal piston (not shown) hits the top end of the hammer bid 51. The gravel and bedrock of the hard support layer Gh are crushed by the rotational impact action of the bid head 51a accompanying this. Therefore, in deep construction, the thin keriba 2 becomes long and easily swings, but as shown in FIG. 6, the pair of tensioning tools 43, 43 attached to the air swivel mechanism 4 is extended to operate the steel pipe sheet pile 1. Since the Keriba 2 is prevented from swinging by being stretched inside, the down-the-hole hammer 5 is held in a stable posture by the steel pipe sheet pile 1, so that the hard support layer Gh can be excavated efficiently and quickly. Further, since the down-the-hole hammer 5 is attached to the lower end of the kelly bar 2 via the air swivel mechanism 4, the air hose 7 is connected to the cylinder 4b on the non-rotating side of the air swivel mechanism 4 and supplied from the air compressor 6. Compressed air for operation can be introduced through the air hose 7 without any trouble.

このダウンザホールハンマ5による掘削で鋼管矢板1の硬質支持層Ghに対する所定深度(通常1〜2m程度)の根入れが完了すれば、該鋼管矢板1内からダウンザホールハンマ5を抜出し、第四工程として、図7(a)に示すように、該鋼管矢板1内にコンクリートCを打設して硬化させる。このコンクリートCは鋼管矢板1の少なくとも根入れ部分(硬質支持層Ghへの貫入部分)を超える高さまで打設し、コンクリートCの打設層より上位には土砂Saを充填すればよい。なお、その土砂Saとして、第一工程でドリリングバケット3にて掘削排土したものを埋め戻す形で用いてもよい。 When the embedding of the steel pipe sheet pile 1 with respect to the hard support layer Gh at a predetermined depth (usually about 1 to 2 m) is completed by excavation with the down-the-hole hammer 5, the down-the-hole hammer 5 is extracted from the steel pipe sheet pile 1, and as a fourth step, As shown in FIG. 7A, concrete C is cast and hardened in the steel pipe sheet pile 1. The concrete C may be cast to a height exceeding at least the embedding portion (the portion penetrating into the hard support layer Gh) of the steel pipe sheet pile 1, and earth and sand Sa may be filled above the casting layer of the concrete C. In addition, as the earth and sand Sa, the earth and sand excavated by the drilling bucket 3 in the first step may be backfilled.

橋梁基礎施工では、図7(b)に示すように、鋼管矢板1の複数本を相互に継手1aにて連結してゆく形で、各々上述の第一〜第四工程を経て順次並列に建て込んで井筒に配列することにより、橋梁基礎10の外周壁体10aを形成したのち、この外周壁体10aの内側を所定深さまで排土し、その排土した内側に鉄筋を配して底盤コンクリートを打設し、この底盤上に図7(c)の如く鉄筋コンクリートの橋脚を構築する。しかして、外周壁体10aは相互に連結した各鋼管矢板1が硬質支持層Ghに根入れしているため、橋梁基礎として極めて高耐力になっている。 In the bridge foundation construction, as shown in FIG. 7 (b), a plurality of steel pipe sheet piles 1 are connected to each other by a joint 1a, and they are sequentially built in parallel through the above-mentioned first to fourth steps. After forming the outer peripheral wall body 10a of the bridge foundation 10 by arranging it in the well, the inside of the outer peripheral wall body 10a is discharged to a predetermined depth, and the reinforcing bars are arranged inside the discharged soil to form the bottom concrete. Is placed, and a reinforced concrete bridge pier is constructed on this bottom plate as shown in FIG. 7 (c). As a result, the outer peripheral wall body 10a has extremely high yield strength as a bridge foundation because the steel pipe sheet piles 1 connected to each other are rooted in the hard support layer Gh.

鋼管矢板1の継手1aは、詳細な図示を省略しているが、各鋼管矢板1の外周両側に長手方向に沿って予め設けてある継手部を、隣接する鋼管矢板1,1同士で互いに係合して一体化させるものであり、従来より知られる種々の継手形態を採用できる。その代表的な継手形態としては、縦方向の切れ目がある鋼管からなる継手部同士を係合させるP−P型、同様の鋼管からなる継手部とT形鋼からなる継手部とを係合させるP−T型、対向配置する一対の山形鋼からなる継手部とT形鋼からなる継手部とを係合させるL−T型等がある。また、外周壁体10aを構築する鋼管矢板1の井筒配列は、図7(b)で例示した小判形に限らず、円形や矩形等の他の種々の環状形態を採用できる。 Although detailed illustration of the joint 1a of the steel pipe sheet pile 1 is omitted, joint portions provided in advance along the longitudinal direction on both outer peripheral sides of each steel pipe sheet pile 1 are engaged with each other by the adjacent steel pipe sheet piles 1 and 1. It is integrated together, and various conventionally known joint forms can be adopted. As a typical joint form, a PP type that engages joint portions made of steel pipes with vertical cuts, and a joint portion made of similar steel pipes and a joint portion made of T-shaped steel are engaged. There are PT type, LT type that engages a joint portion made of a pair of angle steels arranged opposite to each other and a joint portion made of T-shaped steel. Further, the well cylinder arrangement of the steel pipe sheet pile 1 for constructing the outer peripheral wall body 10a is not limited to the oval shape illustrated in FIG. 7B, and various other annular shapes such as a circle and a rectangle can be adopted.

なお、ダウンザホールハンマ5としては、拡径式ハンマビット51を備えるものであれば、特に制約なく既存のものを使用できる。その拡径式ハンマビット51におけるビッドヘッド51aの数と形態についても特に制約はない。また、エアスイベル機構4における突っ張り具43は、実施形態のように径方向両側の一対とする以外に、周方向に等配する3つ又は4つとしてもよく、該突っ張り具43の形状についても種々設定できる。 As the down-the-hole hammer 5, any existing down-the-hole hammer 5 can be used as long as it includes a diameter-expanding hammer bit 51 without any particular limitation. There are no particular restrictions on the number and form of the bid heads 51a in the enlarged diameter hammer bit 51. Further, the tensioning tools 43 in the air swivel mechanism 4 may be three or four evenly arranged in the circumferential direction, in addition to the pair on both sides in the radial direction as in the embodiment, and the shapes of the tensioning tools 43 are also various. Can be set.

本発明では、第一工程において鋼管矢板1を先端が硬質支持層Ghに到達するまで地中へ埋入させる手段として、実施形態で例示したバイブロハンマVの起振力を利用する振動工法に限らず、例えば、鋼管矢板1の内側に挿通配置させたオーガスクリューやドリリングバケットで先端側を掘削しつつ、当該鋼管矢板1を自重と圧入又は軽打によって地中に沈設する中堀り工法、油圧ハンマ、ディーゼルハンマ、ドロップハンマ等で鋼管矢板1の頭部を打撃して地中に打ち込む打撃工法、鋼管矢板1に油圧による静圧をかけて地中に圧入する圧入工法等も採用可能である。ただし、施工能率の面からは、例示したバイブロハンマVを用いる振動工法が推奨される。なお、実施形態では第一工程におけるバイブロハンマVによる鋼管矢板1の打込みにアースドリル掘削機となるクローラクレーンMを用いているが、該バイブロハンマVによる打込み施工をアースドリル掘削機とは別のクローラクレーンにて行ってもよい。 The present invention is not limited to the vibration method using the vibrating force of the vibro hammer V exemplified in the embodiment as a means for embedding the steel pipe sheet pile 1 in the ground until the tip reaches the hard support layer Gh in the first step. For example, an underground digging method in which the steel pipe sheet pile 1 is submerged in the ground by its own weight and press-fitting or light tapping while excavating the tip side with an auger screw or drilling bucket inserted and arranged inside the steel pipe sheet pile 1, hydraulic hammer, It is also possible to adopt a striking method in which the head of the steel pipe sheet pile 1 is hit with a diesel hammer, a drop hammer or the like to drive it into the ground, or a press-fitting method in which the steel pipe sheet pile 1 is press-fitted into the ground by applying static pressure by flood control. However, from the viewpoint of construction efficiency, the vibration method using the illustrated Vibrohammer V is recommended. In the embodiment, a crawler crane M serving as an earth drill excavator is used for driving the steel pipe sheet pile 1 by the vibro hammer V in the first process, but the driving work by the vibro hammer V is performed by a crawler crane different from the earth drill excavator. You may go at.

本発明の鋼管杭の施工方法は、実施形態で例示した橋梁基礎施工に限らず、鋼管矢板による岸壁、突堤、防波堤、河川護岸、道路擁壁等の施工、更には通常の鋼管杭(単管形態)による様々な建造物の杭基礎の施工にも適用でき、とりわけ杭頭位置から50m以上の深さにある硬質支持層Ghへの根入れを要する大深度施工に好適である。 The construction method of the steel pipe pile of the present invention is not limited to the bridge foundation construction exemplified in the embodiment, but also the construction of quays, jetties, breakwaters, river revetments, road retaining walls, etc. using steel pipe sheet piles, and ordinary steel pipe piles (single pipe). It can also be applied to the construction of pile foundations of various buildings according to the form), and is particularly suitable for large-depth construction that requires rooting in the hard support layer Gh at a depth of 50 m or more from the pile head position.

1 鋼管矢板(鋼管杭)
1a 継手
2 ケリーバ
3 ドリリングバケット
4 エアスイベル機構
4a 軸体
4b 筒体
40 環状流路
41 エアホース接続口
42 エアー送給路
43 突っ張り具
5 ダウンザホールハンマ
51 拡径式ハンマビット
6 エアコンプレッサー(圧縮空気供給源)
10 橋梁基礎
10a 外周壁体
C コンクリート
d 硬質支持層の杭頭位置からの深さ
Gh 硬質支持層
M クローラクレーン(アースドリル掘削機)
V バイブロハンマ
1 Steel pipe sheet pile (steel pipe pile)
1a Fittings 2 Keriba 3 Drilling bucket 4 Air swivel mechanism 4a Shaft body 4b Cylinder body 40 Circular flow path 41 Air hose connection port 42 Air supply path 43 Strut tool 5 Down the hole hammer 51 Expanded diameter hammer bit 6 Air compressor (compressed air supply source)
10 Bridge foundation 10a Outer wall body C Concrete d Depth of hard support layer from pile head position Gh Hard support layer M Crawler crane (earth drill excavator)
V Vibro Hammer

Claims (6)

鋼管杭を先端が硬質支持層に到達するまで地中へ埋入させると共に、アースドリル掘削機に保持されたケリーバの下端に取り付けたドリリングバケットの回転及び昇降操作により、該鋼管杭内の土砂を排出する第一工程と、
前記鋼管杭内の土砂の略全量を排出後、前記ドリリングバケットを取り外したケリーバの下端にエアスイベル機構を介して、拡径式ハンマビットを備えたダウンザホールハンマを取り付けると共に、該エアスイベル機構と圧縮エアー供給源との間にダウンザホールハンマ作動用のエアーホースを接続する第二工程と、
前記ケリーバに取り付けたダウンザホールハンマを前記鋼管杭内に挿入して着底させ、該ダウンザホールハンマの作動によって硬質支持層を所定深度まで拡径掘削すると共に、その拡径掘削に伴って鋼管杭の先端側を硬質支持層内へ自重で嵌入させる第三工程と、
前記鋼管杭の先端側が硬質支持層内の所定深度に達したのち、ダウンザホールハンマを抜出した該鋼管杭内にコンクリートを打設する第四工程と、
を順次経ることを特徴とする鋼管杭の施工方法。
The steel pipe pile is embedded in the ground until the tip reaches the hard support layer, and the earth and sand in the steel pipe pile is removed by rotating and raising and lowering the drilling bucket attached to the lower end of the keriba held by the earth drill excavator. The first process of discharging and
After discharging almost all of the earth and sand in the steel pipe pile, a down-the-hole hammer equipped with a diameter-expanding hammer bit is attached to the lower end of the Keriba from which the drilling bucket has been removed via an air swivel mechanism, and the air swivel mechanism and compressed air are supplied. The second process of connecting the air hose for operating the down-the-hole hammer between the source and
The down-the-hole hammer attached to the keriba is inserted into the steel pipe pile to land on the bottom, and the hard support layer is excavated to a predetermined depth by the operation of the down-the-hole hammer, and the tip of the steel pipe pile is excavated along with the enlarged excavation. The third step of fitting the side into the hard support layer by its own weight,
After the tip end side of the steel pipe pile reaches a predetermined depth in the hard support layer, the fourth step of placing concrete in the steel pipe pile from which the down-the-hole hammer is extracted, and
A method of constructing steel pipe piles, which is characterized by sequentially passing through.
前記エアスイベル機構は、上下端をケリーバ及びダウンザホールハンマに同心状に連結させる軸体に、外周にエアホース接続口を有する筒体が相対回転自在に気密に外嵌し、該軸体と筒体との間に構成された環状流路に、前記エアホース接続口と軸体側のエアー送給路とが連通すると共に、筒体外側の周方向に等配する複数箇所に、半径方向に出退作動する突っ張り具が設けられてなる請求項1に記載の鋼管杭の施工方法。 In the air swivel mechanism, a cylinder having an air hose connection port on the outer periphery is airtightly fitted to a shaft body that concentrically connects the upper and lower ends to a keriva and a down-the-hole hammer so that the shaft body and the cylinder body can be connected to each other. The air hose connection port and the air supply path on the shaft body side communicate with each other through the annular flow path formed between them, and the tensions that move in and out in the radial direction at a plurality of locations evenly distributed in the circumferential direction on the outside of the cylinder. The method for constructing a steel pipe pile according to claim 1, wherein the tool is provided. 硬質支持層が杭頭位置から50m以上の深さにある請求項1又は2に記載の鋼管杭の施工方法。 The method for constructing a steel pipe pile according to claim 1 or 2, wherein the hard support layer is at a depth of 50 m or more from the pile head position. 前記第一工程は、鋼管杭をバイブロハンマの起振力で地中に打ち込んだのち、該鋼管杭内の土砂を前記バケットによって排出するものである請求項1〜3のいずれかに記載の鋼管杭の施工方法。 The steel pipe pile according to any one of claims 1 to 3, wherein in the first step, a steel pipe pile is driven into the ground by a vibrating force of a vibro hammer, and then the earth and sand in the steel pipe pile is discharged by the bucket. Construction method. 前記鋼管杭が相互の継手を介して連結しつつ複数本を順次並列に打ち込む鋼管矢板である請求項1〜4のいずれかに記載の鋼管杭の施工方法。 The method for constructing a steel pipe pile according to any one of claims 1 to 4, wherein the steel pipe piles are steel pipe sheet piles in which a plurality of steel pipe piles are sequentially driven in parallel while being connected via mutual joints. 複数本の鋼管矢板を環状に配列するように水上から水底地盤に順次打込んで橋梁基礎の外周壁体を形成する請求項5に記載の鋼管杭の施工方法。 The method for constructing a steel pipe pile according to claim 5, wherein a plurality of steel pipe sheet piles are sequentially driven from the water into the bottom ground so as to be arranged in a ring shape to form an outer wall body of a bridge foundation.
JP2018207482A 2018-11-02 2018-11-02 Construction method of steel pipe pile Active JP6886717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018207482A JP6886717B2 (en) 2018-11-02 2018-11-02 Construction method of steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018207482A JP6886717B2 (en) 2018-11-02 2018-11-02 Construction method of steel pipe pile

Publications (2)

Publication Number Publication Date
JP2020070687A JP2020070687A (en) 2020-05-07
JP6886717B2 true JP6886717B2 (en) 2021-06-16

Family

ID=70547335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018207482A Active JP6886717B2 (en) 2018-11-02 2018-11-02 Construction method of steel pipe pile

Country Status (1)

Country Link
JP (1) JP6886717B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176806B (en) * 2020-10-16 2021-10-29 于胜泉 Stable road soft foundation treatment method and matched soft foundation treatment construction system
CN113293760A (en) * 2021-06-09 2021-08-24 中铁建预制构件研发咨询(上海)有限公司 Precast pile construction method and precast pile construction equipment
CN113669003B (en) * 2021-08-05 2023-12-15 深圳宏业基岩土科技股份有限公司 Construction method for wall protection pore-forming in deep filled stone and silt region
CN114250797A (en) * 2021-12-29 2022-03-29 中铁十九局集团有限公司 Underwater concrete bottom sealing construction method for steel sheet pile cofferdam in deep water area
CN114438998A (en) * 2022-02-14 2022-05-06 中交第三航务工程局有限公司 Steel pipe pile rock-socketed construction process under complex geological conditions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448987A (en) * 1987-08-14 1989-02-23 Harada Kensetsu Kk Method of shaft excavation construction and shell open-close type drilling bucket
JP5871367B2 (en) * 2011-04-22 2016-03-01 システム計測株式会社 Drilling rig
JP6319935B2 (en) * 2011-12-21 2018-05-09 株式会社横山基礎工事 Tubing pile driving method
JP6077986B2 (en) * 2013-12-13 2017-02-08 株式会社高知丸高 Obstacle ground pile placing device and method of placing a steel pipe pile on the obstacle ground
JP6562831B2 (en) * 2015-12-16 2019-08-21 Jfeシビル株式会社 Earth and sand removal bucket and earth and sand removal method

Also Published As

Publication number Publication date
JP2020070687A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6886717B2 (en) Construction method of steel pipe pile
JP6774132B1 (en) Construction method of steel pipe pile
CN109653682B (en) Drill bit with adjustable drill diameter and hole digging machine
CN110629747A (en) Full-casing full-rotation construction process for pile foundation under complex geological conditions
JP2013002039A (en) Air hammer device for drilling
CN111472356A (en) Larsen steel sheet pile sleeve obstacle clearing and pile pulling construction method
JP6319935B2 (en) Tubing pile driving method
JP2007332559A (en) Removal method for existing underground pile
JP4478348B2 (en) Steel pipe pile driving method and apparatus
KR102178354B1 (en) Pile pullout apparatus
KR100880365B1 (en) Excavating apparatus for excavating enlarged hole under the bottom of waters on which jacket facility structure is installed
KR101582166B1 (en) Excavating bit having air-hammer and screw for excavating ground composed by earth, sand, soft rock and boulder
KR100419973B1 (en) Ground drilling rigs and method without raising dust
JP3165997B2 (en) Casting method and equipment for sheet piles
JP7145087B2 (en) wing excavator
JP4000004B2 (en) Shaft excavation method and excavation equipment by earth auger
JP4074198B2 (en) How to remove existing piles
JP2003082663A (en) Pile driving equipment
JP3221895B2 (en) Construction method of large-diameter underground wall body and excavation equipment for burying pipes
JP2020169455A (en) Construction method of soil cement continuous wall
KR20160028565A (en) A Displacement Bored Pile Method with Impermeable and Detachable Casing Shoe
JP3037609B2 (en) Drilling rig
JP2003082689A (en) Execution method for foundation of steel pipe pile
JP2015113683A (en) Obstruction ground pile driving device and method for driving steel pipe pile into obstruction ground
JP6877762B2 (en) Drilling equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6886717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250