JP6864501B2 - Hydraulic composition and heat resistant structure - Google Patents

Hydraulic composition and heat resistant structure Download PDF

Info

Publication number
JP6864501B2
JP6864501B2 JP2017040008A JP2017040008A JP6864501B2 JP 6864501 B2 JP6864501 B2 JP 6864501B2 JP 2017040008 A JP2017040008 A JP 2017040008A JP 2017040008 A JP2017040008 A JP 2017040008A JP 6864501 B2 JP6864501 B2 JP 6864501B2
Authority
JP
Japan
Prior art keywords
hydraulic composition
admixture
water
mass
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017040008A
Other languages
Japanese (ja)
Other versions
JP2018145040A (en
Inventor
彦次 兵頭
彦次 兵頭
梶尾 聡
聡 梶尾
貴泰 樋口
貴泰 樋口
勉 石垣
勉 石垣
悠 白井
悠 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Nippo Corp
Original Assignee
Taiheiyo Cement Corp
Nippo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Nippo Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017040008A priority Critical patent/JP6864501B2/en
Publication of JP2018145040A publication Critical patent/JP2018145040A/en
Application granted granted Critical
Publication of JP6864501B2 publication Critical patent/JP6864501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、水硬性組成物及び耐熱構造物に関する。 The present invention relates to hydraulic compositions and heat resistant structures.

焼却炉や、工場におけるヒーター等の熱源の周辺は、その温度が高温と低温(常温)を繰り返し、かつ、このような状況が長期に亘る場合がある。
このため、これらの熱源の周辺の構造物に用いられるコンクリート等の水硬性組成物には、優れた耐熱性が求められている。
耐熱性に優れた水硬性組成物として、特許文献1には、固体へ焼結させた石炭フライアッシュを含むコンクリート混合物に、耐火性を高めるためにプラスチック繊維を使用することを特徴とする耐火性を高めたコンクリート混合物が記載されている。
また、特許文献2には、コンクリートあるいはモルタルに、鋼繊維と、合成高分子材料からなる繊維及び/又はビーズとが添加されてなることを特徴とする高靭性・高耐火性のセメント配合体が記載されている。
一方、コンクリート等の水硬性組成物に配合するための繊維として、ポリプロピレン繊維等が知られている。例えば、特許文献3は、ポリプロピレン系合成樹脂フィラメントであり、個々のフィラメントが分離可能に連結した連糸形状テープの短繊維からなるセメント強化用ポリプロピレン繊維が記載されている。
また、特許文献4には、ポリプロピレン繊維を含む耐熱性に優れた水硬性組成物として、ポルトランドセメント、フライアッシュ、火成岩からなる細骨材、火成岩からなる粗骨材、ポリプロピレン繊維、水、及び、減水剤を含むことを特徴とする水硬性組成物が記載されている。
さらに、コンクリート等の水硬性組成物に、高炉スラグ微粉末等の混和材を配合することも知られている。例えば、特許文献5には、細骨材、粗骨材、セメント、前記セメントよりも粒子の小さい混和材(シリカヒューム、高炉スラグ微粉末、石灰石微粉末および石英片岩微粉末からなる群から選択された少なくとも1種)、減水剤および水をミキサー内で混練して得られる高強度透水性コンクリートであって、前記細骨材の配合割合が、前記粗骨材の18重量%以下であることを特徴とする高強度透水性コンクリートが記載されている。
In the vicinity of heat sources such as incinerators and heaters in factories, the temperature repeats high temperature and low temperature (normal temperature), and such a situation may continue for a long period of time.
Therefore, hydraulic compositions such as concrete used for structures around these heat sources are required to have excellent heat resistance.
As a water-hardening composition having excellent heat resistance, Patent Document 1 describes fire resistance, which comprises using plastic fibers in a concrete mixture containing coal fly ash sintered into a solid to enhance fire resistance. A concrete mixture with an increased content is listed.
Further, Patent Document 2 describes a highly tough and highly refractory cement compound characterized by adding steel fibers and fibers and / or beads made of a synthetic polymer material to concrete or mortar. Are listed.
On the other hand, polypropylene fibers and the like are known as fibers to be blended in hydraulic compositions such as concrete. For example, Patent Document 3 describes a polypropylene-based synthetic resin filament, which is a polypropylene fiber for cement reinforcement, which is composed of short fibers of a continuous yarn-shaped tape in which individual filaments are separably connected.
Further, Patent Document 4 describes Portland cement, fly ash, fine aggregate made of igneous rock, coarse aggregate made of igneous rock, polypropylene fiber, water, and water, as hydraulic compositions containing polypropylene fiber and having excellent heat resistance. A hydraulic composition characterized by containing a water reducing agent is described.
Further, it is also known to add an admixture such as blast furnace slag fine powder to a hydraulic composition such as concrete. For example, Patent Document 5 is selected from the group consisting of fine aggregate, coarse aggregate, cement, and admixture having smaller particles than the cement (silica fume, blast furnace slag fine powder, limestone fine powder, and quartz slab fine powder). (At least one type), a high-strength water-permeable concrete obtained by kneading a water reducing agent and water in a mixer, and the compounding ratio of the fine aggregate is 18% by weight or less of the coarse aggregate. The characteristic high-strength water-permeable concrete is described.

特開2001−328855号公報Japanese Unexamined Patent Publication No. 2001-328855 特開2002−193654号公報JP-A-2002-193654 特開平9−86984号公報Japanese Unexamined Patent Publication No. 9-86984 特開2016−160161号公報Japanese Unexamined Patent Publication No. 2016-160161 特開2000−239052号公報Japanese Unexamined Patent Publication No. 2000-239052

特許文献1に記載されているコンクリート混合物、及び、特許文献2に記載されているセメント配合体は、火災の際の高温による、部材の剥げ落ちや表面の爆裂等が起こりにくいものである。すなわち、これらは火災時等の一時的な高温(特に、火炎による非常な高温)に対する耐熱性(耐火性)に優れたものである。
一方、特許文献4に記載されている水硬性組成物は、周辺の温度が高温(例えば、摂氏数百度程度)と低温(例えば、気温と同じ温度)を繰り返し、かつ、このような状況が長期に亘る場合においても、爆裂や強度低下等の劣化が起こりにくい、耐熱性に優れたものである。
本発明は、周辺の温度が高温と低温(常温)を繰り返し、かつ、このような状況が長期に亘る場合において、爆裂や強度低下等の劣化が起こりにくい、耐熱性に優れた水硬性組成物を提供することを目的とする。
The concrete mixture described in Patent Document 1 and the cement compound described in Patent Document 2 are less likely to cause peeling of members or explosion of the surface due to high temperature at the time of fire. That is, they are excellent in heat resistance (fire resistance) against a temporary high temperature (particularly, an extremely high temperature due to a flame) such as in the event of a fire.
On the other hand, in the hydraulic composition described in Patent Document 4, the ambient temperature is repeatedly high (for example, about several hundred degrees Celsius) and low temperature (for example, the same temperature as the air temperature), and such a situation is long-term. Even in the case of, it is excellent in heat resistance that deterioration such as explosion and decrease in strength is unlikely to occur.
INDUSTRIAL APPLICABILITY The present invention is a hydraulic composition having excellent heat resistance, in which deterioration such as explosion and strength decrease is unlikely to occur when the ambient temperature is repeatedly high and low (normal temperature) and such a situation continues for a long period of time. The purpose is to provide.

本発明者は、上記課題を解決するために鋭意検討した結果、ポルトランドセメント、特定のポゾラン質混和材、特定の細骨材、特定の粗骨材、ポリプロピレン繊維、水、及び、セメント分散剤を含む水硬性組成物によれば、上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[6]を提供するものである。
[1] ポルトランドセメント、ブレーン比表面積が3,000〜20,000cm/gのポゾラン質混和材、火成岩からなる細骨材、火成岩からなる粗骨材、ポリプロピレン繊維、水、及び、セメント分散剤を含む水硬性組成物であって、上記ポゾラン質混和材が、高炉スラグ微粉末、火山灰微粉末、又は、シリカの含有率が70質量%以上である非晶質シリカ粉末であることを特徴とする水硬性組成物。
[2] 上記細骨材及び上記粗骨材を構成する各火成岩が、玄武岩又は安山岩である前記[1]に記載の水硬性組成物。
[3] 上記ポリプロピレン繊維は、直径が20dtex以下でかつ長さが24mm以下であるフィラメントの5〜100本が、連糸形状を有して、分離可能な連結部で接合されてなるものである前記[1]又は[2]に記載の水硬性組成物。
[4] 上記ポルトランドセメントと上記ポゾラン質混和材の合計量中の上記ポゾラン質混和材の割合が15〜60質量%であり、かつ、上記水硬性組成物1m中の上記ポリプロピレン繊維の配合量が0.455〜4.55kg/mである前記[1]〜[3]のいずれかに記載の水硬性組成物。
[5] 上記セメント分散剤が、AE減水剤又は高性能AE減水剤である前記[1]〜[4]のいずれかに記載の水硬性組成物。
[6] 前記[1]〜[5]のいずれかに記載の水硬性組成物の硬化体であるコンクリートによって、表面を含む部分が形成されていることを特徴とする耐熱構造物。
As a result of diligent studies to solve the above problems, the present inventor has found Portland cement, a specific pozzolanic admixture, a specific fine aggregate, a specific coarse aggregate, polypropylene fiber, water, and a cement dispersant. The present invention has been completed by finding that the above-mentioned object can be achieved by the hydraulic composition containing the mixture.
That is, the present invention provides the following [1] to [6].
[1] Portland cement, pozzolanic admixture with a brain specific surface area of 3,000 to 20,000 cm 2 / g, fine aggregate made of igneous rock, coarse aggregate made of igneous rock, polypropylene fiber, water, and cement dispersant. The pozzolanic admixture is characterized by being a blast furnace slag fine powder, a volcanic ash fine powder, or an amorphous silica powder having a silica content of 70% by mass or more. A hydraulic composition to be made.
[2] The hydraulic composition according to the above [1], wherein the fine aggregate and each igneous rock constituting the coarse aggregate are basalt or andesite.
[3] The polypropylene fiber is formed by joining 5 to 100 filaments having a diameter of 20 dtex or less and a length of 24 mm or less at a separable connecting portion having a continuous thread shape. The hydraulic composition according to the above [1] or [2].
[4] The ratio of the pozzolanid admixture to the total amount of the Portland cement and the pozzolanic admixture is 15 to 60% by mass, and the blending amount of the polypropylene fiber in 1 m 3 of the hydraulic composition. The hydraulic composition according to any one of the above [1] to [3], wherein the content is 0.455 to 4.55 kg / m 3.
[5] The hydraulic composition according to any one of the above [1] to [4], wherein the cement dispersant is an AE water reducing agent or a high-performance AE water reducing agent.
[6] A heat-resistant structure characterized in that a portion including a surface is formed by concrete which is a cured product of the hydraulic composition according to any one of the above [1] to [5].

本発明の水硬性組成物は、周辺の温度が高温と低温(常温)を繰り返し、かつ、このような状況が長期に亘る場合において、爆裂したり、強度(例えば、圧縮強度)が低下するといった劣化が起こりにくい、耐熱性に優れたものである。 The hydraulic composition of the present invention explodes or loses strength (for example, compressive strength) when the ambient temperature repeats high temperature and low temperature (normal temperature) and such a situation continues for a long period of time. It is resistant to deterioration and has excellent heat resistance.

連糸形状を有するポリプロピレン繊維を、繊維が延びる方向に対して垂直な方向に切断した状態を示す断面図である。It is sectional drawing which shows the state which cut the polypropylene fiber which has a continuous thread shape in the direction perpendicular to the direction in which the fiber extends.

本発明の水硬性組成物は、ポルトランドセメント、ブレーン比表面積が3,000〜20,000cm/gのポゾラン質混和材、火成岩からなる細骨材、火成岩からなる粗骨材、ポリプロピレン繊維、水、及び、セメント分散剤を含む水硬性組成物であって、上記ポゾラン質混和材が、高炉スラグ微粉末、火山灰微粉末、又は、シリカの含有率が70質量%以上である非晶質シリカ粉末(以下、「非晶質シリカ粉末」ともいう。)であるものである。
なお、本明細書中、「水硬性組成物」の語は、硬化前の組成物、および、組成物が硬化してなる硬化体を包含するものである。
以下、各原料について詳しく説明する。
本発明の水硬性組成物に用いられるポルトランドセメントとしては、特に限定されるものではなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや、高炉セメント、フライアッシュセメント等の混合セメント等が挙げられる。中でも、強度発現性および流動性の観点から、普通ポルトランドセメントまたは中庸熱ポルトランドセメントが好ましく、普通ポルトランドセメントがより好ましい。
The water-hard composition of the present invention comprises Portland cement, a pozzolanic admixture having a brain specific surface area of 3,000 to 20,000 cm 2 / g, a fine aggregate composed of igneous rock, a coarse aggregate composed of igneous rock, polypropylene fiber, and water. , And a water-hard composition containing a cement dispersant, wherein the pozzolanic admixture is a blast furnace slag fine powder, a volcanic ash fine powder, or an amorphous silica powder having a silica content of 70% by mass or more. (Hereinafter, also referred to as "amorphous silica powder").
In the present specification, the term "hydraulic composition" includes a composition before curing and a cured product obtained by curing the composition.
Hereinafter, each raw material will be described in detail.
The Portland cement used in the water-hardening composition of the present invention is not particularly limited, and for example, various Portland cements such as ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, and low heat Portland cement, and blast furnaces. Examples thereof include mixed cement such as cement and fly ash cement. Among them, ordinary Portland cement or moderate heat Portland cement is preferable, and ordinary Portland cement is more preferable, from the viewpoint of strength development and fluidity.

本発明において、ポゾラン質混和材のブレーン比表面積は3,000〜20,000cm/g、好ましくは4,000〜17,000cm/g、より好ましくは5,000〜15,000cm/g、さらに好ましくは5,500〜12,000cm/g、特に好ましくは6,000〜10,000cm/gである。該比表面積が3,000cm/g以上であれば、水硬性組成物の硬化体の耐熱性をより向上することができる。該比表面積が20,000cm/g以下であるポゾラン質混和材は、容易に入手可能である。また、該比表面積が20,000cm/g以下であれば、硬化前の水硬性組成物の流動性をより向上することができる。
本発明において、ポゾラン質混和材としては、高炉スラグ微粉末、火山灰微粉末、又は、非晶質シリカ粉末が挙げられる。
In the present invention, the specific surface area of the brain of the pozzolanic admixture is 3,000 to 20,000 cm 2 / g, preferably 4,000 to 17,000 cm 2 / g, more preferably 5,000 to 15,000 cm 2 / g. , More preferably 5,500 to 12,000 cm 2 / g, and particularly preferably 6,000 to 10,000 cm 2 / g. When the specific surface area is 3,000 cm 2 / g or more, the heat resistance of the cured product of the hydraulic composition can be further improved. Pozzolanic admixtures having a specific surface area of 20,000 cm 2 / g or less are readily available. Further, when the specific surface area is 20,000 cm 2 / g or less, the fluidity of the hydraulic composition before curing can be further improved.
In the present invention, examples of the pozzolanic admixture include blast furnace slag fine powder, volcanic ash fine powder, and amorphous silica powder.

本発明において、非晶質シリカ粉末中のシリカの含有率は、水硬性組成物のアルカリ骨材反応の抑制や強度発現性の向上の観点から、70質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上である。
また、非晶質シリカ粉末のガラス化率は、水硬性組成物のアルカリ骨材反応の抑制や強度発現性の向上の観点から、90質量%以上、好ましくは93質量%以上、より好ましくは96質量%以上である。
なお、ガラス化率は、Jansenらの以下の文献を参考にしてリートベルト/外部標準(G因子)法を用いて求めた結晶相の合計量(質量%)を100から引いた差分から求めることができる。 D.Jansen et al.、「Does Ordinary Portland Cement contain amorphous phase? A quantitative study using an external standard method」、Powder Diffraction、Vol.26、No.1、pp.31-38
非晶質シリカ粉末としては、例えば、石英ガラスの粉砕物等が挙げられる。
In the present invention, the content of silica in the amorphous silica powder is 70% by mass or more, preferably 80% by mass or more, from the viewpoint of suppressing the alkali-aggregate reaction of the hydraulic composition and improving the strength development. More preferably, it is 90% by mass or more.
The vitrification rate of the amorphous silica powder is 90% by mass or more, preferably 93% by mass or more, more preferably 96, from the viewpoint of suppressing the alkali-aggregate reaction of the hydraulic composition and improving the strength development. It is mass% or more.
The vitrification rate is obtained from the difference obtained by subtracting the total amount (mass%) of the crystal phases obtained by the Rietveld / external standard (G factor) method with reference to the following documents by Jansen et al. Can be done. D. Jansen et al., "Does Ordinary Portland Cement contain amorphous phase? A quantitative study using an external standard method", Powder Diffraction, Vol.26, No.1, pp.31-38
Examples of the amorphous silica powder include crushed quartz glass.

本発明において、ポルトランドセメントと上記ポゾラン質混和材の合計量(100質量%)中の上記ポゾラン質混和材の割合(ポゾラン質混和材として、2種以上を併用する場合はその合計の割合)は、好ましくは15〜60質量%、より好ましくは20〜55質量%、特に好ましくは25〜50質量%である。該割合が15質量%以上であれば、水硬性組成物の硬化体の耐熱性がより向上し、水硬性組成物のアルカリ骨材反応をより抑制することができる。該割合が60質量%以下であれば、水硬性組成物の硬化体の耐熱性および強度がより向上する。
また、ポゾラン質混和材は2種以上を併用してもよく、併用する場合において、各ポゾラン質混和材の質量比は、特に限定されるものではない。
本発明において、高炉スラグ微粉末、火山灰微粉末及び非晶質シリカ粉末以外の混和材(他の混和材)を用いることができる。他の混和材の配合量は、高炉スラグ微粉末、火山灰微粉末及び非晶質シリカ粉末の合計100質量部に対して、強度発現性の低下を避ける観点から、好ましくは20質量部以下、より好ましくは10質量部以下、特に好ましくは5質量部以下である。
他の混和材の例としては、フライアッシュ等が挙げられる。
In the present invention, the ratio of the pozzolanid admixture to the total amount (100% by mass) of the Portland cement and the pozzolanic admixture (when two or more kinds of pozzolanic admixtures are used in combination, the total ratio) is It is preferably 15 to 60% by mass, more preferably 20 to 55% by mass, and particularly preferably 25 to 50% by mass. When the ratio is 15% by mass or more, the heat resistance of the cured product of the hydraulic composition is further improved, and the alkali-aggregate reaction of the hydraulic composition can be further suppressed. When the ratio is 60% by mass or less, the heat resistance and strength of the cured product of the hydraulic composition are further improved.
Further, two or more kinds of pozzolanic admixtures may be used in combination, and when they are used in combination, the mass ratio of each pozzolantic admixture is not particularly limited.
In the present invention, admixtures (other admixtures) other than blast furnace slag fine powder, volcanic ash fine powder and amorphous silica powder can be used. The blending amount of the other admixture is preferably 20 parts by mass or less, based on 100 parts by mass of the total of the blast furnace slag fine powder, the volcanic ash fine powder and the amorphous silica powder, from the viewpoint of avoiding a decrease in strength development. It is preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less.
Examples of other admixtures include fly ash and the like.

本発明に用いられる細骨材及び粗骨材は、火成岩からなるものである。火成岩からなる細骨材及び粗骨材を用いることで、高温の環境下において、爆裂による硬化体の損傷等を防ぐことができる。
火成岩としては、例えば、玄武岩、安山岩、流紋岩、斑レイ岩、閃緑岩、及び花崗岩等が挙げられる。中でも、水硬性組成物の硬化体の耐熱性向上の観点から、玄武岩又は安山岩が好ましく、玄武岩がより好ましい。
本発明の水硬性組成物1m中の火成岩からなる細骨材の配合量は、好ましくは550〜1,000kg/m、より好ましくは800〜950kg/mである。該量が上記数値範囲内であれば、水硬性組成物の混練時及び打設時の作業性や、水硬性組成物の硬化体の耐熱性及び強度が向上する。
本発明の水硬性組成物1m中の火成岩からなる粗骨材の配合量は、好ましくは700〜1,200kg/m、より好ましくは750〜950kg/mである。該量が上記数値範囲内であれば、水硬性組成物の硬化体の耐熱性及び強度が向上する。
The fine and coarse aggregates used in the present invention are made of igneous rock. By using fine aggregate and coarse aggregate made of igneous rock, it is possible to prevent damage to the hardened body due to explosion in a high temperature environment.
Examples of igneous rocks include basalt, andesite, rhyolite, gabbro, diorite, and granite. Among them, basalt or andesite is preferable, and basalt is more preferable, from the viewpoint of improving the heat resistance of the cured product of the hydraulic composition.
The blending amount of the fine aggregate composed of igneous rock in 1 m 3 of the hydraulic composition of the present invention is preferably 550 to 1,000 kg / m 3 , and more preferably 800 to 950 kg / m 3 . When the amount is within the above numerical range, the workability at the time of kneading and casting of the hydraulic composition and the heat resistance and strength of the cured product of the hydraulic composition are improved.
The blending amount of the coarse aggregate composed of igneous rock in 1 m 3 of the hydraulic composition of the present invention is preferably 700 to 1,200 kg / m 3 , and more preferably 750 to 950 kg / m 3 . When the amount is within the above numerical range, the heat resistance and strength of the cured product of the hydraulic composition are improved.

本発明の水硬性組成物は、ポリプロピレン繊維を含むものである。
ポリプロピレン繊維を含むことによって、高温の環境下において、本発明の水硬性組成物の硬化体中のポリプロピレン繊維が溶けて、該硬化体中に空洞が生じ、該空洞を通じて硬化体の内部に発生した水蒸気が外部に放出されるため、爆裂による該硬化体の損傷を防ぐことができる。
本発明で用いられるポリプロピレン繊維は、フィラメントの直径が、好ましくは20dtex(デシテックス)以下、より好ましくは3〜15dtex、特に好ましくは6〜12dtex、かつ、長さが、好ましくは24mm以下、より好ましくは6〜20mm、特に好ましくは10〜18mmのものである。
上記直径が20dtex以下であれば、水硬性組成物の硬化体の強度および耐熱性が向上する。
上記長さが24mm以下であれば、水硬性組成物の混練時及び打設時の作業性や、水硬性組成物の硬化体の強度および耐熱性が向上する。
The hydraulic composition of the present invention contains polypropylene fibers.
By containing the polypropylene fiber, the polypropylene fiber in the cured body of the water-hard composition of the present invention was melted in a high temperature environment, a cavity was formed in the cured body, and a cavity was generated inside the cured body through the cavity. Since the water vapor is released to the outside, damage to the cured product due to explosion can be prevented.
The polypropylene fiber used in the present invention has a filament diameter of preferably 20 dtex (decitex) or less, more preferably 3 to 15 dtex, particularly preferably 6 to 12 dtex, and a length of preferably 24 mm or less, more preferably. It is 6 to 20 mm, particularly preferably 10 to 18 mm.
When the diameter is 20 dtex or less, the strength and heat resistance of the cured product of the hydraulic composition are improved.
When the length is 24 mm or less, the workability at the time of kneading and casting of the hydraulic composition, and the strength and heat resistance of the cured product of the hydraulic composition are improved.

本発明で用いられるポリプロピレン繊維は、直径が20dtex以下でかつ長さが24mm以下であるフィラメントの5〜100本が、連糸形状を有して、分離可能な連結部で接合されてなるものが好ましい。
ここで、本明細書中、「連糸形状」とは、複数のフィラメントが、顕微鏡で拡大して観察した場合にテープ状となるように、並列に配設された形状をいう。
本発明で用いられる連糸形状を有するポリプロピレン繊維について、図1を参照にしながら説明する。連糸形状を有するポリプロピレン繊維1は、複数の単糸フィラメント2が並列に配設され、各単糸フィラメントが、隣接する単糸フィラメントと連結部3で接合されてなるものである。連結部3は、外力によって割れやすくなっているため、水硬性組成物を混練する際に、適度に分離、解繊される。
このようなポリプロピレン繊維を用いることで、水硬性組成物を混練する際に、ポリプロピレン繊維が、単糸フィラメントからなる繊維または少数(例えば、2〜4本)のフィラメントからなる連糸形状を有する繊維に容易に分離する。その結果、ポリプロピレン繊維を、水硬性組成物の硬化体中に均一に分散させることができる。
The polypropylene fiber used in the present invention is composed of 5 to 100 filaments having a diameter of 20 dtex or less and a length of 24 mm or less, which have a continuous thread shape and are joined at a separable connecting portion. preferable.
Here, in the present specification, the "continuous yarn shape" refers to a shape in which a plurality of filaments are arranged in parallel so as to form a tape when observed by magnifying with a microscope.
The polypropylene fiber having a continuous yarn shape used in the present invention will be described with reference to FIG. In the polypropylene fiber 1 having a continuous yarn shape, a plurality of single yarn filaments 2 are arranged in parallel, and each single yarn filament is joined to an adjacent single yarn filament at a connecting portion 3. Since the connecting portion 3 is easily broken by an external force, it is appropriately separated and defibrated when the hydraulic composition is kneaded.
By using such polypropylene fibers, when the hydraulic composition is kneaded, the polypropylene fibers have a fiber having a single yarn shape or a fiber having a continuous yarn shape consisting of a small number (for example, 2 to 4) filaments. Easy to separate. As a result, the polypropylene fibers can be uniformly dispersed in the cured product of the hydraulic composition.

本発明で用いられる連糸形状を有するポリプロピレン繊維を構成するフィラメントの数は、5〜100本、好ましくは10〜90本、より好ましくは20〜80本である。該数が上記数値範囲内であれば、製造が容易であり、混練によって少数のフィラメントからなる連糸形状のポリプロピレン繊維を、水硬性組成物の硬化体中に均一に分散させることが可能となるため、水硬性組成物の硬化体の強度および耐熱性が向上する。
連糸形状を有するポリプロピレン繊維の具体例としては、例えば、上述の特許文献3(特開平9−86984号公報)に記載されているポリプロピレン繊維が挙げられる。
The number of filaments constituting the polypropylene fiber having a continuous thread shape used in the present invention is 5 to 100, preferably 10 to 90, and more preferably 20 to 80. When the number is within the above numerical range, the production is easy, and the continuous yarn-shaped polypropylene fiber composed of a small number of filaments can be uniformly dispersed in the cured product of the water-hard composition by kneading. Therefore, the strength and heat resistance of the cured product of the water-hard composition are improved.
Specific examples of the polypropylene fiber having a continuous thread shape include the polypropylene fiber described in Patent Document 3 (Japanese Unexamined Patent Publication No. 9-86984) described above.

ポリプロピレン繊維の配合量は、水硬性組成物の全量中の割合として、好ましくは0.05〜0.5体積%、より好ましくは0.08〜0.3体積%、特に好ましくは0.1〜0.25体積%である。該量が0.05体積%以上であれば、水硬性組成物の硬化体の耐熱性を向上させることができる。該量が0.5体積%以下であれば、水硬性組成物の混練時及び打設時の作業性が向上する。
また、本発明の水硬性組成物1m中のポリプロピレン繊維の配合量は、好ましくは0.455〜4.55kg/m、より好ましくは0.728〜2.73kg/m、特に好ましくは0.91〜2.28kg/mである。
The blending amount of the polypropylene fiber is preferably 0.05 to 0.5% by volume, more preferably 0.08 to 0.3% by volume, and particularly preferably 0.1 to 1% by volume as a ratio in the total amount of the water-hard composition. It is 0.25% by volume. When the amount is 0.05% by volume or more, the heat resistance of the cured product of the hydraulic composition can be improved. When the amount is 0.5% by volume or less, the workability at the time of kneading and casting of the hydraulic composition is improved.
Further, the blending amount of the polypropylene fiber in 1 m 3 of the water-hardening composition of the present invention is preferably 0.455 to 4.55 kg / m 3 , more preferably 0.728 to 2.73 kg / m 3 , and particularly preferably 0.728 to 2.73 kg / m 3. It is 0.91 to 2.28 kg / m 3 .

本発明の水硬性組成物は、ポリプロピレン繊維の他に、補強用繊維として他の繊維を含むことができる。補強用繊維が含まれることにより、硬化体の靭性を向上させ、かつ硬化体の収縮を抑制することができる。
他の繊維としては、鋼繊維、ステンレス繊維、およびアモルファス繊維等の金属繊維;ビニロン繊維、ポリエチレン繊維、およびアラミド繊維等の有機繊維、が挙げられる。
The hydraulic composition of the present invention may contain other fibers as reinforcing fibers in addition to polypropylene fibers. By including the reinforcing fibers, the toughness of the cured product can be improved and the shrinkage of the cured product can be suppressed.
Other fibers include metal fibers such as steel fibers, stainless fibers, and amorphous fibers; organic fibers such as vinylon fibers, polyethylene fibers, and aramid fibers.

本発明の水硬性組成物に用いられる水としては、水道水等を使用することができる。
本発明において、水と、ポルトランドセメントと上記ポゾラン質混和材の合計の質量比(水/(ポルトランドセメント+ポゾラン質混和材)の質量比)は、好ましくは0.30〜0.65、より好ましくは0.35〜0.60、特に好ましくは0.40〜0.55である。該比が0.30以上であれば、水硬性組成物の混練時及び打設時の作業性が向上する。該比が0.65以下であれば、強度発現性が向上する。
As the water used in the hydraulic composition of the present invention, tap water or the like can be used.
In the present invention, the total mass ratio of water, Portland cement and the pozzolanic admixture (mass ratio of water / (Portland cement + pozzolantic admixture)) is preferably 0.30 to 0.65, more preferably. Is 0.35 to 0.60, particularly preferably 0.40 to 0.55. When the ratio is 0.30 or more, the workability at the time of kneading and casting of the hydraulic composition is improved. When the ratio is 0.65 or less, the strength development is improved.

本発明の水硬性組成物に用いられるセメント分散剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系等の、減水剤、AE減水剤、高性能減水剤および高性能AE減水剤等が挙げられる。中でも、水硬性組成物の流動性、施工性、及び強度発現性の観点から、AE減水剤又は高性能AE減水剤が好ましく、AE減水剤がより好ましく、本発明において、ポゾラン質混和材として高炉スラグ微粉末を用い、かつ、AE減水剤を用いることが特に好ましい。
減水剤(通常、液状)の配合量は、ポルトランドセメントと上記ポゾラン質混和材の合計量100質量部に対して、好ましくは0.1〜3.0質量部、より好ましくは0.3〜2.0質量部、特に好ましくは0.5〜1.5質量部である。該量が0.1質量部以上であれば、減水性能が向上し、水硬性組成物の混練時及び打設時の作業性が向上する。該量が3.0質量部以下であれば、強度発現性が向上する。
Examples of the cement dispersant used in the hydraulic composition of the present invention include lignin-based, naphthalene sulfonic acid-based, melamine-based, polycarboxylic acid-based, and other water reducing agents, AE water reducing agents, high-performance water reducing agents, and high-performance AE water reducing agents. Agents and the like can be mentioned. Among them, from the viewpoint of fluidity, workability, and strength development of the hydraulic composition, an AE water reducing agent or a high-performance AE water reducing agent is preferable, and an AE water reducing agent is more preferable. It is particularly preferable to use slag fine powder and an AE water reducing agent.
The amount of the water reducing agent (usually liquid) to be blended is preferably 0.1 to 3.0 parts by mass, more preferably 0.3 to 2 parts by mass with respect to 100 parts by mass of the total amount of Portoland cement and the pozolanic admixture. It is 0.0 parts by mass, particularly preferably 0.5 to 1.5 parts by mass. When the amount is 0.1 part by mass or more, the water reducing performance is improved, and the workability at the time of kneading and casting of the hydraulic composition is improved. When the amount is 3.0 parts by mass or less, the strength development is improved.

本発明の水硬性組成物を硬化してなる硬化体(コンクリート)は、周辺の温度が高温(例えば、摂氏数百度程度)と低温(例えば、気温;0〜40℃程度)を数時間〜数週間単位で繰り返し、かつ、繰り返しの回数が多数(例えば、数百回〜1,100回程度)であっても、爆裂等による損傷が生じにくく、また、強度の低下が起こりにくいものである。本発明の水硬性組成物は耐熱性に優れており、耐熱構造物の表面を含む部分等に好適に使用することができる。 The cured product (concrete) obtained by curing the hydraulic composition of the present invention has a high ambient temperature (for example, about several hundred degrees Celsius) and a low temperature (for example, temperature; about 0 to 40 ° C.) for several hours to several hours. Even if it is repeated on a weekly basis and the number of repetitions is large (for example, about several hundred times to 1,100 times), damage due to explosion or the like is unlikely to occur, and the strength is unlikely to decrease. The hydraulic composition of the present invention has excellent heat resistance and can be suitably used for a portion including the surface of a heat-resistant structure.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)普通ポルトランドセメント:太平洋セメント社製
(2)高炉スラグ微粉末(混和材):ブレーン比表面積8,000cm/g
(3)非晶質シリカ粉末(混和材):石英ガラスの粉砕品(シリカの含有率90質量%以上、ガラス化率99質量%以上、ブレーン比表面積6,000cm/g)
(4)細骨材A:玄武岩砕砂
(5)細骨材B:安山岩砕砂
(6)細骨材C:山砂
(7)粗骨材A:玄武岩砕石
(8)粗骨材B:安山岩砕石
(9)粗骨材C:砂岩砕石
(10)ポリプロピレン繊維:直径10dtex、長さ12mmであるフィラメント50本が、連糸形状を有して、分離可能な連結部で接合されてなるもの(萩原工業社製);比重0.91
(11)AE減水剤(セメント分散剤;表1中の「分散剤」):フローリックSV10(液状;フローリック社製)
(12)高性能AE減水剤(セメント分散剤;表1中の「分散剤」):フローリックSF500S(液状;フローリック社製)
(13)水:上水道水
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[Material used]
(1) Ordinary Portland cement: Taiheiyo Cement Co., Ltd. (2) Blast furnace slag fine powder (admixture): Brain specific surface area 8,000 cm 2 / g
(3) Amorphous silica powder (admixture): crushed quartz glass (silica content 90% by mass or more, vitrification rate 99% by mass or more, brain specific surface area 6,000 cm 2 / g)
(4) Fine aggregate A: Basalt crushed sand (5) Fine aggregate B: Anshan rock crushed sand (6) Fine aggregate C: Mountain sand (7) Coarse aggregate A: Basalt crushed stone (8) Coarse aggregate B: Anshan rock crushed stone (9) Coarse aggregate C: Crushed sand rock (10) Polypropylene fiber: 50 filaments having a diameter of 10 dtex and a length of 12 mm are joined by a separable connecting portion having a continuous thread shape (Hagiwara). (Made by Kogyo Co., Ltd.); Specific gravity 0.91
(11) AE water reducing agent (cement dispersant; "dispersant" in Table 1): Floric SV10 (liquid; manufactured by Floric)
(12) High-performance AE water reducing agent (cement dispersant; "dispersant" in Table 1): Floric SF500S (liquid; manufactured by Floric)
(13) Water: Tap water

[実施例1]
上記各材料を表1に示される配合割合で混練して、水硬性組成物を調製した。なお、表1中、「細骨材率」の単位は「%」である。
混練は、パン型ミキサを使用して、以下の方法で行った。
普通ポルトランドセメント、高炉スラグ微粉末、細骨材、粗骨材をパン型ミキサに投入して、15秒間空練りした後、水および混和剤を投入して、2分間混練し、さらにポリプロピレン繊維を投入して、1分間混練した。
得られた水硬性組成物を10×10×40cmの型枠に流し込み、20℃で24時間前置き後、脱型し、20℃で27日間水中養生し、供試体を得た。
[Example 1]
Each of the above materials was kneaded at the blending ratio shown in Table 1 to prepare a hydraulic composition. In Table 1, the unit of "fine aggregate ratio" is "%".
Kneading was carried out by the following method using a pan-type mixer.
Ordinary Portland cement, blast furnace slag fine powder, fine aggregate, and coarse aggregate are put into a pan-type mixer and kneaded for 15 seconds, then water and an admixture are added and kneaded for 2 minutes, and polypropylene fibers are further added. It was added and kneaded for 1 minute.
The obtained hydraulic composition was poured into a mold of 10 × 10 × 40 cm, placed in advance at 20 ° C. for 24 hours, then demolded, and cured in water at 20 ° C. for 27 days to obtain a specimen.

(a)高温度履歴繰り返し試験
得られた供試体を耐火炉に入れて、供試体の周辺温度を40℃から980℃となるまで1分程度で昇温した後、980℃の温度を20分間維持した。次いで、供試体の周辺温度が40℃となるまで自然冷却した。これを表2に示す回数となるまで繰り返した後、供試体の表面の損傷について目視観察によって評価を行った。
(b)圧縮強度試験
また、高温度履歴繰り返し試験を行う前の供試体、および高温度履歴繰り返し試験を1,100回行った後の供試体について、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準拠して、コンクリートの圧縮強度を測定した。
得られた測定結果から、残存圧縮強度比({(高温度履歴繰り返し試験を行った後の供試体の圧縮強度/高温度履歴繰り返し試験を行う前の供試体の圧縮強度)×100}(%))を算出した。
(A) High temperature history repeated test Put the obtained specimen in a refractory furnace, raise the ambient temperature of the specimen from 40 ° C to 980 ° C in about 1 minute, and then raise the temperature at 980 ° C for 20 minutes. Maintained. Then, the specimen was naturally cooled until the ambient temperature of the specimen reached 40 ° C. After repeating this until the number of times shown in Table 2 was reached, the damage on the surface of the specimen was evaluated by visual observation.
(B) Compressive strength test For the specimen before the high temperature history repetition test and the specimen after the high temperature history repetition test 1,100 times, "JIS A 1108 (Concrete compressive strength test method) ) ”, The compressive strength of concrete was measured.
From the obtained measurement results, the residual compressive strength ratio ({(compressive strength of the specimen after the high temperature history repetition test / compressive strength of the specimen before the high temperature history repetition test) × 100} (%) )) Was calculated.

[実施例2〜4]
表1に示す各材料を表1に示される配合割合で混練する以外は、実施例1と同様にして供試体を得た。
[実施例5]
高炉スラグ微粉末の代わりにシリカ質粉末を使用する以外は、実施例1と同様にして供試体を得た。
得られた供試体を用いて、実施例1と同様にして、高温度履歴繰り返し試験における評価、及び、残存圧縮強度比の算出を行った。
[Examples 2 to 4]
Specimens were obtained in the same manner as in Example 1 except that each material shown in Table 1 was kneaded at the blending ratio shown in Table 1.
[Example 5]
Specimens were obtained in the same manner as in Example 1 except that a siliceous powder was used instead of the blast furnace slag fine powder.
Using the obtained specimen, evaluation in the high temperature history repetition test and calculation of the residual compressive strength ratio were performed in the same manner as in Example 1.

[比較例1〜2]
上記各材料を表1に示される配合割合で混練する以外は、実施例1と同様にして供試体を得た。
得られた供試体を用いて、実施例1と同様にして高温度履歴繰り返し試験における評価を行った。
[比較例3]
ポリプロピレン繊維を使用しない以外は、実施例1と同様にして供試体を得た。
得られた供試体を用いて、実施例1と同様にして高温度履歴繰り返し試験における評価を行った。
結果を表2に示す。
[Comparative Examples 1-2]
Specimens were obtained in the same manner as in Example 1 except that each of the above materials was kneaded at the blending ratio shown in Table 1.
Using the obtained specimen, the evaluation in the high temperature history repetition test was performed in the same manner as in Example 1.
[Comparative Example 3]
Specimens were obtained in the same manner as in Example 1 except that polypropylene fibers were not used.
Using the obtained specimen, the evaluation in the high temperature history repetition test was performed in the same manner as in Example 1.
The results are shown in Table 2.

表2から、本発明の水硬性組成物(実施例1〜5)の硬化体は、比較例1〜3と比べて高温度履歴を繰り返しても硬化体の損傷が起こりにくく、耐熱性に優れていることがわかる。特に、高炉スラグ微粉末およびAE減水剤を用いた場合(実施例1〜2)の水硬性組成物では、繰り返し回数が1,100回でも、硬化体の損傷は見られなかった。また、本発明の水硬性組成物(実施例1〜5)の硬化体は、残存圧縮強度比が91〜96%であり、強度の低下が起こりにくいことがわかる。特に、高炉スラグ微粉末およびAE減水剤を用いた場合(実施例1〜2)の水硬性組成物では、残存圧縮強度比が95〜96%であり、強度の低下がより起こりにくいことがわかる。 From Table 2, the cured product of the hydraulic composition of the present invention (Examples 1 to 5) is less likely to be damaged even if the high temperature history is repeated as compared with Comparative Examples 1 to 3, and has excellent heat resistance. You can see that. In particular, in the water-hard composition when the blast furnace slag fine powder and the AE water reducing agent were used (Examples 1 and 2), no damage to the cured product was observed even when the number of repetitions was 1,100. Further, it can be seen that the cured product of the hydraulic composition of the present invention (Examples 1 to 5) has a residual compressive strength ratio of 91 to 96%, and the strength is unlikely to decrease. In particular, in the case of using the blast furnace slag fine powder and the AE water reducing agent (Examples 1 and 2), the residual compressive strength ratio is 95 to 96%, and it can be seen that the decrease in strength is less likely to occur. ..

1 連糸形状を有するポリプロピレン繊維
2 フィラメント(単糸)
3 連結部
1 Polypropylene fiber with continuous yarn shape 2 Filament (single yarn)
3 Connection part

Claims (3)

ポルトランドセメント、ブレーン比表面積が3,000〜20,000cm/gのポゾラン質混和材、火成岩からなる細骨材、火成岩からなる粗骨材、ポリプロピレン繊維、水、及び、セメント分散剤を含み、かつ、空気量調整剤を含まない水硬性組成物であって、
上記ポゾラン質混和材が、高炉スラグ微粉末であり、
上記細骨材及び上記粗骨材を構成する各火成岩が、玄武岩又は安山岩であり、
上記ポルトランドセメントと上記ポゾラン質混和材の合計量中の上記ポゾラン質混和材の割合が15〜60質量%であり、かつ、上記水硬性組成物1m 中の上記ポリプロピレン繊維の配合量が0.455〜4.55kg/m であり、
上記セメント分散剤が、AE減水剤であることを特徴とする水硬性組成物。
Portland cement, pozzolanic substance admixture Blaine specific surface area of 3,000~20,000cm 2 / g, fine aggregate consisting of igneous rocks, consisting of igneous coarse aggregate, polypropylene fibers, water, and, seen including a cement dispersant And, it is a hydraulic composition that does not contain an air amount adjusting agent.
The above pozzolanic admixture is a blast furnace slag fine powder .
Each igneous rock constituting the fine aggregate and the coarse aggregate is basalt or andesite.
The ratio of the pozzolanic admixture to the total amount of the Portland cement and the pozzolanic admixture is 15 to 60% by mass, and the blending amount of the polypropylene fiber in 1 m 3 of the hydraulic composition is 0. It is 455-4.55 kg / m 3 and
A hydraulic composition , wherein the cement dispersant is an AE water reducing agent.
上記ポリプロピレン繊維は、直径が20dtex以下でかつ長さが24mm以下であるフィラメントの5〜100本が、連糸形状を有して、分離可能な連結部で接合されてなるものである請求項に記載の水硬性組成物。 The polypropylene fibers, 5 to 100 filaments with a diameter of at is 24mm or less or less and length 20dtex is, a continuous thread shape, is made of are joined by separable connecting parts according to claim 1 The hydraulic composition according to. 請求項1又は2に記載の水硬性組成物の硬化体であるコンクリートによって、表面を含む部分が形成されていることを特徴とする耐熱構造物。 A heat-resistant structure characterized in that a portion including a surface is formed by concrete which is a cured product of the hydraulic composition according to claim 1 or 2.
JP2017040008A 2017-03-03 2017-03-03 Hydraulic composition and heat resistant structure Active JP6864501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017040008A JP6864501B2 (en) 2017-03-03 2017-03-03 Hydraulic composition and heat resistant structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017040008A JP6864501B2 (en) 2017-03-03 2017-03-03 Hydraulic composition and heat resistant structure

Publications (2)

Publication Number Publication Date
JP2018145040A JP2018145040A (en) 2018-09-20
JP6864501B2 true JP6864501B2 (en) 2021-04-28

Family

ID=63589453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017040008A Active JP6864501B2 (en) 2017-03-03 2017-03-03 Hydraulic composition and heat resistant structure

Country Status (1)

Country Link
JP (1) JP6864501B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899159A (en) * 1981-12-05 1983-06-13 Mitsuo Sogo Kenkyusho Kk Heat-resistant concrete and manufacture
JPH0542389B2 (en) * 1985-10-21 1993-06-28 Denki Kagaku Kogyo Kk
JP2003171161A (en) * 2001-12-04 2003-06-17 Central Res Inst Of Electric Power Ind Heat resisting, high strength concrete, and production method therefor
JP5010210B2 (en) * 2006-08-25 2012-08-29 電気化学工業株式会社 Cement composition and repair method using the same
JP5501649B2 (en) * 2009-03-31 2014-05-28 電気化学工業株式会社 Cement admixture and cement composition
JP6154114B2 (en) * 2012-10-11 2017-06-28 太平洋プレコン工業株式会社 Refractory cement composition
JP6521607B2 (en) * 2014-10-30 2019-05-29 宇部興産株式会社 High durability mortar and high durability concrete
JP6633282B2 (en) * 2015-03-04 2020-01-22 太平洋セメント株式会社 Hydraulic composition and heat-resistant structure
JP6726941B2 (en) * 2015-07-17 2020-07-22 国立大学法人 岡山大学 COMPOSITION FOR CONCRETE HAVING IMPROVED FROZE DAMAGE, MOLDED ARTICLE FORMED THEREOF, MANUFACTURING METHOD THEREOF, AND QUALITY CONTROL METHOD
JP6803775B2 (en) * 2017-03-03 2020-12-23 太平洋セメント株式会社 Hydraulic composition and heat resistant structure

Also Published As

Publication number Publication date
JP2018145040A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
Canbaz The effect of high temperature on reactive powder concrete
Ayudhya et al. Compressive and splitting tensile strength of autoclaved aerated concrete (AAC) containing perlite aggregate and polypropylene fiber subjected to high temperatures.
JP2011042534A (en) High toughness-high strength mortar composition
Kockal Effects of elevated temperature and re-curing on the properties of mortars containing industrial waste materials
Won et al. Eco-friendly fireproof high-strength polymer cementitious composites
JP2012153539A (en) Explosion prevention super strength precast concrete and method of manufacturing the same
Malaiskiene et al. The influence of mullite wool waste on the properties of concrete and ceramics
Gesoglu et al. Properties of ultra-high performance fiber reinforced cementitious composites made with gypsum-contaminated aggregates and cured at normal and elevated temperatures
JP2014141370A (en) Hydraulic material and cured material of hydraulic material
JP6633282B2 (en) Hydraulic composition and heat-resistant structure
JP6803775B2 (en) Hydraulic composition and heat resistant structure
JP6864501B2 (en) Hydraulic composition and heat resistant structure
Yildizel Mechanical performance of glass fiber reinforced composites made with gypsum, expanded perlite, and silica sand
Dao et al. Investigation of the behaviour of geopolymer mortar after heating to elevated temperatures
Reddy et al. Study of macro mechanical properties of ultra high strength concrete using quartz sand and silica fume
JP2011063488A (en) Self-repair concrete admixture, method for producing the same, and self-repair concrete material using the admixture
Jogl et al. Residual properties of fiberreinforced refractory composites with a fireclay filler
Jatale et al. Performance of self compacting high strength fiber reinforced concrete (SCHSFRC)
Talaei et al. Mechanical properties of fiber-reinforced concrete containing waste porcelain aggregates under elevated temperatures
Charan et al. Comparative study on mechanical properties of basalt fiber reinforced concrete with partial replacement of cement with GGBS
KR101626860B1 (en) High Strength concreat with hybrid fiber
Ushaa et al. Flexural Behavior of Self Compacting Geopolymer Concrete Using Ggbfs With Various Replacements of R-Sand and M-Sand
Ahmad Use of alternative waste materials in producing ultra-high performance concrete
Qureshi et al. Effect of Cement Replacement by Silica Fume on Compressive Strength of Glass Fiber Reinforced Concrete
Oztekin et al. Effect of micro fiber content on workability of self-compacting concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6864501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150