JP6835357B2 - Resin duct - Google Patents

Resin duct Download PDF

Info

Publication number
JP6835357B2
JP6835357B2 JP2017085822A JP2017085822A JP6835357B2 JP 6835357 B2 JP6835357 B2 JP 6835357B2 JP 2017085822 A JP2017085822 A JP 2017085822A JP 2017085822 A JP2017085822 A JP 2017085822A JP 6835357 B2 JP6835357 B2 JP 6835357B2
Authority
JP
Japan
Prior art keywords
duct
resin
fiber
pressure loss
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017085822A
Other languages
Japanese (ja)
Other versions
JP2018184978A (en
Inventor
則諒 河合
則諒 河合
博朗 藤田
博朗 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Plastics Co Ltd
Original Assignee
Kuraray Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Plastics Co Ltd filed Critical Kuraray Plastics Co Ltd
Priority to JP2017085822A priority Critical patent/JP6835357B2/en
Publication of JP2018184978A publication Critical patent/JP2018184978A/en
Application granted granted Critical
Publication of JP6835357B2 publication Critical patent/JP6835357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Duct Arrangements (AREA)

Description

本発明は、住宅の換気・空調用ダクト用に使用される、フレキシブル性に富み、施工性が良好であり、圧力損失が小さい樹脂ダクトに関する。 The present invention relates to a resin duct used for a ventilation / air conditioning duct of a house, which is rich in flexibility, has good workability, and has a small pressure loss.

従来より、流体と流体が流れる固体表面の間の摩擦による圧力損失を減少させるため、流体が流れる固体表面に凹凸を付与する技術が検討されている。特に、住宅業界では、ダクト内に空気を通して換気・空調を行うシステムが多く採用されており、住宅内を縦横無尽に配管されるダクトの圧力損失低減が強く求められている。ダクトの圧力損失が低減されることで、使用する換気・空調システムが小型化でき、省エネルギー化、居住空間の拡張を見込むことができる。同時に、工期短縮や作業の安全性の観点から、ダクトが軽量で操作性に優れることが求められている。 Conventionally, in order to reduce the pressure loss due to friction between the fluid and the solid surface through which the fluid flows, a technique for imparting unevenness to the solid surface through which the fluid flows has been studied. In particular, in the housing industry, many systems that ventilate and air-condition by passing air through the duct are adopted, and there is a strong demand for reducing the pressure loss of the duct that is piped in the house in all directions. By reducing the pressure loss of the duct, the ventilation / air conditioning system used can be miniaturized, energy saving, and expansion of the living space can be expected. At the same time, from the viewpoint of shortening the construction period and work safety, the duct is required to be lightweight and excellent in operability.

流体が流れる固体表面に圧力損失を低減する技術が用いられるホースとして、特許文献1には、内管表面に管軸方向に垂直に角型の凹凸を付けた管について記載されており、埋設時に外部からかかる土圧に耐えるために、外力に対して変形しにくい性質(剛性)のある樹脂、例えばナイロン12のような樹脂が使用されている。しかし剛性のある樹脂を使用すると、住宅の換気・空調用配管として使用するにはフレキシブル性が満足出来るものではなく、カット作業が困難であることから、施工性の観点で満足できるものではない。また、角型の凹凸であることから、ゴミや埃が凹部に溜まりやすくなり、ダクト内でのカビの発生に繋がるため、住宅のように容易に掃除ができない用途で使用するには満足出来るものではない。
特許文献2は硬質樹脂管の内管表面に管軸方向に平行に三角形状の凹凸を付けた管について記載されているが、硬質樹脂管であることから、フレキシブル性がなく、カット作業が困難であり、住宅の換気・空調用配管として使用するにはフレキシブル性、施工性の観点で満足できるものではない。また、凹凸のピッチが狭いため、住宅の換気・空調用配管として使用するには圧力損失特性が満足できるものではない。
また、特許文献3は不織布を使用した可とう性管材の技術が記載されており、不織布が使用されていることから、フレキシブル性、施工性は満足できるものである。しかし、圧力損失を低減させるためには、内面に凹凸がないフラットな状態が好ましいとしているため、住宅の換気・空調用配管として使用するには圧力損失特性が満足できるものではない。
As a hose in which a technique for reducing pressure loss is used on a solid surface through which a fluid flows, Patent Document 1 describes a hose having square irregularities on the inner pipe surface perpendicular to the pipe axis direction, and at the time of burying. In order to withstand the soil pressure applied from the outside, a resin having a property (rigidity) that is not easily deformed by an external force, for example, a resin such as nylon 12 is used. However, when a rigid resin is used, the flexibility is not satisfactory for use as a ventilation / air-conditioning pipe for a house, and the cutting work is difficult, so that the workability is not satisfactory. In addition, since it has square irregularities, dust and dirt tend to collect in the recesses, which leads to the generation of mold in the duct, so it is satisfactory for use in applications that cannot be easily cleaned, such as houses. is not it.
Patent Document 2 describes a pipe having triangular irregularities parallel to the pipe axis on the inner pipe surface of the hard resin pipe, but since it is a hard resin pipe, it is not flexible and cutting work is difficult. Therefore, it is not satisfactory from the viewpoint of flexibility and workability when used as a ventilation / air conditioning pipe for a house. In addition, since the pitch of the unevenness is narrow, the pressure loss characteristics are not satisfactory for use as piping for ventilation and air conditioning in a house.
Further, Patent Document 3 describes a technique of a flexible pipe material using a non-woven fabric, and since the non-woven fabric is used, flexibility and workability are satisfactory. However, in order to reduce the pressure loss, it is preferable that the inner surface is flat with no unevenness, so that the pressure loss characteristics are not satisfactory for use as a ventilation / air conditioning pipe for a house.

特開2002−188762号公報JP-A-2002-188762 特開平4−351389号公報Japanese Unexamined Patent Publication No. 4-351389 特開2014−129838号公報Japanese Unexamined Patent Publication No. 2014-129838

本発明の目的は、フレキシブル性に富み、施工性が良好であり、圧力損失が小さい樹脂ダクトを提供することである。 An object of the present invention is to provide a resin duct which is rich in flexibility, has good workability, and has a small pressure loss.

本発明者等は上記目的を達成すべく鋭意検討した結果、少なくとも不織布を含む帯状体からなる肉部と、熱可塑性硬質樹脂からなるリング状または螺旋状の芯材からなり、内面が特定の凹凸形状を有する樹脂ダクトが圧力損失を小さくできることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have formed a meat portion made of a band-shaped body including at least a non-woven fabric and a ring-shaped or spiral core material made of a thermoplastic hard resin, and the inner surface has specific unevenness. The present invention has been completed by finding that a resin duct having a shape can reduce pressure loss.

すなわち、本発明は少なくとも不織布を含む帯状体からなる肉部と、熱可塑性硬質樹脂からなる螺旋状の芯材からなり、以下(1),(2)の構造を満たす樹脂ダクトである。(1)ダクト内面の凸部頂点の繰り返し単位をX(mm)とした時、5mm≦X≦25mmであること、
(2)ダクト内面の凸部間の窪みの深度をZ(mm)、ダクト内径をID(mm)とした時、0.01≦Z/ID≦0.05であること。
That is, the present invention is a resin duct composed of at least a meat portion made of a strip containing a non-woven fabric and a spiral core material made of a thermoplastic hard resin, and satisfying the structures (1) and (2) below. (1) When the repeating unit of the apex of the convex portion on the inner surface of the duct is X (mm), 5 mm ≦ X ≦ 25 mm.
(2) When the depth of the depression between the protrusions on the inner surface of the duct is Z (mm) and the inner diameter of the duct is ID (mm), 0.01 ≦ Z / ID ≦ 0.05.

さらに本発明は、好ましくは熱可塑性硬質樹脂がオレフィン系熱可塑性樹脂である上記の樹脂ダクトであり、さらに好ましくは樹脂ダクトの外側にさらに断熱層が積層された上記の樹脂ダクトである。 Further, the present invention is preferably the above-mentioned resin duct in which the thermoplastic hard resin is an olefin-based thermoplastic resin, and more preferably the above-mentioned resin duct in which a heat insulating layer is further laminated on the outside of the resin duct.

本発明の樹脂ダクトは内面に特定の凹凸形状を有するため、流体の圧力損失が小さくなる。そのため、換気・空調システムを選定する際、より小型化でき、省エネルギー化、居住空間の拡張を見込むことができる。 Since the resin duct of the present invention has a specific uneven shape on the inner surface, the pressure loss of the fluid is reduced. Therefore, when selecting a ventilation / air conditioning system, it is possible to make it smaller, save energy, and expand the living space.

本発明の樹脂ダクトの好ましい態様の一つを示す一部断面模式図。A partial cross-sectional schematic diagram showing one of the preferred embodiments of the resin duct of the present invention.

図1は、本発明の樹脂ダクトの好ましい態様の一つを示す一部断面模式図であり、樹脂ダクトは、不織布の片面もしくは両面に樹脂フィルムが積層された帯状態からなる管肉部と熱可塑性硬質樹脂からなる螺旋状の芯材が溶融接着によって一体化されている。 FIG. 1 is a partial cross-sectional schematic view showing one of the preferred embodiments of the resin duct of the present invention. The resin duct has a tube meat portion and heat in a band state in which a resin film is laminated on one side or both sides of a non-woven fabric. A spiral core material made of a plastic hard resin is integrated by melt bonding.

本発明の樹脂ダクトの帯状体からなる肉部を構成する不織布としては、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレートなどの繊維成形性の熱可塑性樹脂から得られる合成繊維から形成されているのが芯材との溶着接着性、リサイクルの点で好ましい。特に、柔軟性、汎用性、加工性の点からポリプロピレンとポリエチレンの混合紡糸繊維あるいは複合紡糸繊維であって繊維表面にポリエチレンが存在している繊維からなる不織布またはポリエチレン繊維とポリプロピレン繊維との混合物からなる不織布、ポリエチレンテレフタレートとポリエチレンの混合紡糸繊維あるいは複合紡糸繊維であって繊維表面にポリエチレンが存在している繊維からなる不織布またはポリエチレン繊維とポリエチレンテレフタレート繊維との混合物からなる不織布がダクト成形性の点で最適である。この場合、低融点ポリマーあるいは低融点ポリマー繊維が熱バインダー成分として働き、不織布の形状固定、さらには芯材との熱融着性をもたらす。特に、上記したポリエチレン成分を低融点成分として用いた複合紡糸繊維あるいは混合紡糸繊維のように、低融点ポリマーと高融点ポリマーからなり、低融点ポリマーが繊維表面に存在している繊維を熱バインダー繊維として用いるのも好適な例である。この場合には、繊維表面に存在する低融点ポリマーが溶けて芯材と接着することとなる。 As the non-woven fabric constituting the meat portion made of the strip-shaped body of the resin duct of the present invention, the core material is formed of synthetic fibers obtained from a fiber-moldable thermoplastic resin such as polypropylene, polyethylene, or polyethylene terephthalate. It is preferable in terms of welding adhesion and recycling. In particular, from the viewpoint of flexibility, versatility, and processability, a non-woven fabric consisting of a mixed spun fiber of polypropylene and polyethylene or a composite spun fiber in which polyethylene is present on the fiber surface or a mixture of polyethylene fiber and polypropylene fiber. Non-woven fabric, a mixed spun fiber of polyethylene terephthalate and polyethylene, or a non-woven fabric made of a composite spun fiber in which polyethylene is present on the fiber surface, or a non-woven fabric made of a mixture of polyethylene fiber and polyethylene terephthalate fiber has duct formability. Is the best. In this case, the low melting point polymer or the low melting point polymer fiber acts as a heat binder component to fix the shape of the non-woven fabric and further provide heat-sealing property with the core material. In particular, a fiber composed of a low melting point polymer and a high melting point polymer, such as a composite spinning fiber or a mixed spinning fiber using the above-mentioned polyethylene component as a low melting point component, and a fiber in which the low melting point polymer is present on the fiber surface is a thermal binder fiber. It is also a good example to use as. In this case, the low melting point polymer existing on the fiber surface melts and adheres to the core material.

不織布を構成する繊維として、ガラス繊維やロックウール等の無機繊維を使用することも可能であるが、無機繊維は切断時に繊維切断片が空気中に飛散することから作業環境の悪化を招き、好ましいとは言えない。さらに作業時や設置後に大きな衝撃が加えられた場合に、上記無機繊維の繊維片が場合によってはダクト内に侵入し、ダクト内の気体に混入することもあることから好ましいとは言えない。 It is also possible to use inorganic fibers such as glass fiber and rock wool as the fibers constituting the non-woven fabric, but the inorganic fibers are preferable because the fiber cut pieces are scattered in the air at the time of cutting, which causes deterioration of the working environment. It can not be said. Further, when a large impact is applied during work or after installation, the fiber pieces of the inorganic fibers may invade the duct in some cases and may be mixed with the gas in the duct, which is not preferable.

不織布の目付けとしては、30〜200 g/m2 のものが良く、更には70〜120 g/m2 のものが好適である。不織布としては、スパンボンド不織布、メルトブローン不織布、湿式不織布、水絡不織布、ニードルパンチ不織布等のいずれでも良いが、特にスパンボンド不織布が強度の点から好ましい。構成する繊維の太さとしては、1〜5 dtex の範囲が、ダクト成形性の点で好ましい。The basis weight of the nonwoven fabric may include the 30 to 200 g / m 2, and more are preferred those 70~120 g / m 2. The non-woven fabric may be any of spunbonded non-woven fabric, melt blown non-woven fabric, wet non-woven fabric, water-related non-woven fabric, needle punch non-woven fabric and the like, but spun-bonded non-woven fabric is particularly preferable from the viewpoint of strength. The thickness of the constituent fibers is preferably in the range of 1 to 5 dtex from the viewpoint of duct moldability.

樹脂ダクトを曲げた際に管肉部がダクト内面に突出することを防止したい場合には、不織布の両面または片面に樹脂フィルムを積層してもよい。不織布に積層する樹脂フィルムとしては、オレフィン系樹脂からなることが好ましい。積層するフィルムの厚みはフレキブル性を有するのであれば限定されるものではないが、柔軟性を重要視する場合には、厚みが100μm以下であることが好ましい。 If it is desired to prevent the pipe meat portion from protruding to the inner surface of the duct when the resin duct is bent, a resin film may be laminated on both sides or one side of the non-woven fabric. The resin film to be laminated on the non-woven fabric is preferably made of an olefin resin. The thickness of the film to be laminated is not limited as long as it has flexibility, but when flexibility is important, the thickness is preferably 100 μm or less.

本発明の樹脂ダクトの芯材を構成する樹脂としては、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ポリエチレンテレフタレートで代表されるポリエステル系樹脂、ナイロン6 で代表されるポリアミド系樹脂、アクリル、ポリスチレン等のビニル系樹脂等の熱可塑性樹脂が挙げられ、なかでも炭素原子と水素原子、またはこれらの原子と酸素原子から構成された硬質の熱可塑性樹脂が好適であり、代表的にはポリエチレン、ポリエステル、ポリプロピレン、ポリスチレンなどが挙げられる。特に硬度、耐候性、汎用性などの点からポリプロピレン、ポリエチレンが好適であり、さらに、ポリエチレンが最適である。 Examples of the resin constituting the core material of the resin duct of the present invention include polyolefin resins such as polypropylene and polyethylene, polyester resins typified by polyethylene terephthalate, polyamide resins typified by nylon 6, and vinyls such as acrylic and polystyrene. Examples thereof include thermoplastic resins such as based resins, and among them, hard thermoplastic resins composed of carbon atoms and hydrogen atoms, or these atoms and oxygen atoms are preferable, and polyethylene, polyester, polypropylene, etc. are typically used. Examples include polypropylene. In particular, polypropylene and polyethylene are preferable from the viewpoint of hardness, weather resistance, versatility, etc., and polyethylene is more suitable.

ダクト内面の凹凸形状としては、ダクトを長さ方向に展開した際に以下(1)、(2)を満たすものである。
(1)ダクト内面の凸部頂点の繰り返し単位をX(mm)とした時、5mm≦X≦25mm、
(2)ダクト内面の凸部間の窪みの深度をZ(mm)、ダクト内径をID(mm)とした時、0.01≦Z/ID≦0.05。
The uneven shape of the inner surface of the duct satisfies the following (1) and (2) when the duct is unfolded in the length direction.
(1) When the repeating unit of the apex of the convex portion on the inner surface of the duct is X (mm), 5 mm ≦ X ≦ 25 mm,
(2) When the depth of the depression between the protrusions on the inner surface of the duct is Z (mm) and the inner diameter of the duct is ID (mm), 0.01 ≦ Z / ID ≦ 0.05.

上記(1)において、ダクト内面の凸部頂点の繰り返し単位X(mm)が上記範囲にある樹脂ダクトは、流体の圧力損失が小さくなる。しかし、繰り返し単位X(mm)が5mm未満となる場合は、凸部の形状が鋭くなることから、圧力損失が大きくなり、流体を流す際の抵抗が増えるため、適切でない。また、25mmを越える場合には、圧力損失が大きくなり、流体を流す際の抵抗が増えるため、適切でない。
繰り返し単位X(mm)は5〜13(mm)の間にあることがより好適である。
In the above (1), the resin duct in which the repeating unit X (mm) of the apex of the convex portion on the inner surface of the duct is in the above range has a small fluid pressure loss. However, when the repeating unit X (mm) is less than 5 mm, the shape of the convex portion becomes sharp, so that the pressure loss becomes large and the resistance when flowing the fluid increases, which is not appropriate. On the other hand, if it exceeds 25 mm, the pressure loss becomes large and the resistance when flowing the fluid increases, which is not appropriate.
More preferably, the repeating unit X (mm) is between 5 and 13 (mm).

長さ方向に展開したダクト内面の凸部頂点の繰り返し単位X(mm)は拡大倍率が8倍以上のマイクロスコープまたは目盛付きルーペで観察し、その凸部頂点間の距離を測定する方法で求めることができる。 The repeating unit X (mm) of the convex apex of the inner surface of the duct developed in the length direction is obtained by observing with a microscope or a graduated loupe having a magnification of 8 times or more and measuring the distance between the convex apex. be able to.

上記(2)において、ダクト内面の凸部間の窪みの深度Z(mm)が上記範囲にある樹脂ダクトは、流体の圧力損失が小さくなる。
しかし、窪みの深度Z(mm)とダクト内径ID(mm)との関係Z/IDが0.01未満となる場合は、管内を指先で触れて観察しても内面がほぼフラットで、凹凸状態が殆ど存在していないことが分かると共に、流体の圧力損失が大きくなり、流体を流す際の抵抗が増えるため適切でない。また、窪みの深度Z(mm)とダクト内径ID(mm)との関係Z/IDが0.05を超える場合には、流体の圧力損失が大きくなり、流体を流す際の抵抗が増えるため適切でない。
窪みの深度Z(mm)とダクト内径ID(mm)との関係Z/IDは、0.015〜0.023の範囲であることが好適であり、さらに、0.018〜0.023にあることがより好適である。
In the above (2), the resin duct in which the depth Z (mm) of the depression between the protrusions on the inner surface of the duct is in the above range has a small fluid pressure loss.
However, when the relationship Z / ID between the depth Z (mm) of the depression and the inner diameter ID (mm) of the duct is less than 0.01, the inner surface is almost flat and uneven even when the inside of the pipe is touched with a fingertip and observed. Is not appropriate because it turns out that there is almost no such thing, and the pressure loss of the fluid increases and the resistance when the fluid flows increases. Further, when the relationship Z / ID between the depth Z (mm) of the depression and the inner diameter ID (mm) of the duct exceeds 0.05, the pressure loss of the fluid increases and the resistance when the fluid flows increases, which is appropriate. Not.
The relationship Z / ID between the depth Z (mm) of the recess and the inner diameter ID (mm) of the duct is preferably in the range of 0.015 to 0.023, and further in the range of 0.018 to 0.023. Is more preferable.

ダクト内側の凸部間の窪みの深度Z(mm)は、長さ方向に展開したダクトの断面形状を拡大倍率が10倍のマイクロスコープで観察し、3つ以上の凸部の頂点を結んだ線と2つ以上の凹部の最も深い点を結んだ線との間の距離を測定する方法で求めることができる。
また、ダクト内径ID(mm)は、最小目盛り0.1mmのテーパーゲージをホース内部に挿入して測定した値(ダクト内面で向かい合う凸部間の距離)に、上記で求めた窪みの深度Z(mm)の2倍の値を加えることで求めることができる。
For the depth Z (mm) of the depression between the convex parts inside the duct, the cross-sectional shape of the duct developed in the length direction was observed with a microscope with a magnification of 10 times, and the vertices of three or more convex parts were connected. It can be determined by measuring the distance between the line and the line connecting the deepest points of two or more recesses.
Further, the duct inner diameter ID (mm) is a value measured by inserting a taper gauge having a minimum scale of 0.1 mm into the hose (distance between the convex portions facing each other on the inner surface of the duct), and the depth Z of the recess obtained above ( It can be obtained by adding a value twice as large as (mm).

樹脂ダクトに断熱材を被覆することで、断熱性を有する樹脂ダクトとすることができる。断熱層は、樹脂ダクト内を流れる気体の熱が外部に奪われたり、あるいは外部の熱が樹脂ダクト内に伝わらないようにするためのもので、同断熱材には、ポリウレタンフォームやポリエチレン発泡体などの熱可塑性発泡体、ポリエチレン繊維やポリエステル繊維からなるフェルトなどの熱可塑性繊維材、ガラス繊維やロックウールからなる無機繊維材が用いられる。その中でも、柔軟性、作業環境の安全性の観点から、ポリエチレン繊維やポリエステル繊維からなるフェルトなどの熱可塑性繊維材を使用することが好ましい。 By coating the resin duct with a heat insulating material, it is possible to obtain a resin duct having heat insulating properties. The heat insulating layer is for preventing the heat of the gas flowing in the resin duct from being taken to the outside or being transferred to the inside of the resin duct, and the heat insulating material is made of polyurethane foam or polyethylene foam. Thermoplastic foams such as, thermoplastic fiber materials such as felt made of polyethylene fiber and polyester fiber, and inorganic fiber material made of glass fiber and rock wool are used. Among them, from the viewpoint of flexibility and safety of the working environment, it is preferable to use a thermoplastic fiber material such as felt made of polyethylene fiber or polyester fiber.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下の実施例および比較例においてフレキシブル性、施工性、圧力損失測定および評価は次のようにして行った。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. In the following examples and comparative examples, flexibility, workability, pressure loss measurement and evaluation were performed as follows.

<フレキシブル性の評価>
(1)長さ2mの樹脂ダクトを直管状に設置し、その片側の端末を固定する。次に、固定していない側の端末を徐々に固定されている端末側へ曲げていき、樹脂ダクトが偏平する直前まで曲げる。その状態での樹脂ダクトの曲げ半径r(mm)を測定する。
(2)フレキシブル性の評価は以下の基準によって評価した。なお、IDはダクト内径(mm)を表す。
○:r≦2×ID(フレキシブル性が良好であり、施工時の取り回しが容易)
△:2×ID<r≦3×ID(施工時に取りまわしにくさが多少あるが、施工に問題はない)
×:3×ID<r(フレキシブル性が悪く、ダクトとしての使用に適さない)
<Evaluation of flexibility>
(1) A resin duct having a length of 2 m is installed in a straight tubular shape, and the terminal on one side thereof is fixed. Next, the terminal on the non-fixed side is gradually bent toward the fixed terminal side, and is bent until just before the resin duct is flattened. The bending radius r (mm) of the resin duct in that state is measured.
(2) The flexibility was evaluated according to the following criteria. The ID represents the inner diameter of the duct (mm).
◯: r ≦ 2 × ID (good flexibility and easy handling during construction)
Δ: 2 × ID <r ≦ 3 × ID (There is some difficulty in handling during construction, but there is no problem in construction)
×: 3 × ID <r (poor flexibility, not suitable for use as a duct)

<施工性の評価>
施工性は、上記フレキシブル性の評価にダクトのカット性の評価を合わせて評価した。
ダクトのカット性は以下の基準によって評価した。
1.カットに使用する工具が、ハサミやカッターに代表される一般的な工具であるか
○:一般的な工具でカット作業が可能
×:専用の工具を使用しないとカット作業が出来ない
2.カットに使用する工具の点数が少ないか
○:1点の工具でカットが可能
×:2点以上の工具を使用する
施工性の評価は、フレキシブル性の評価およびカット性の評価の結果を使用して、以下の基準によって評価した。
○:評価した3項目全てが○
×:評価した項目の中に少なくとも1項目以上△または×の結果がある
<Evaluation of workability>
The workability was evaluated by combining the evaluation of the flexibility with the evaluation of the cutability of the duct.
The cutability of the duct was evaluated according to the following criteria.
1. 1. Is the tool used for cutting a general tool represented by scissors or a cutter? ○: Cutting work is possible with a general tool ×: Cutting work cannot be performed without using a special tool. Is the number of tools used for cutting small? ○: Can be cut with one tool ×: Use two or more tools For workability evaluation, use the results of flexibility evaluation and cutability evaluation. The evaluation was made according to the following criteria.
○: All three evaluated items are ○
×: There is at least one △ or × result among the evaluated items.

<圧力損失:直管時摩擦損失係数(λ)の測定>
(1)長さ3mの樹脂ダクトを直管状に設置し、その片側の端末に送排風機(株)スイ
デン製「SJF−250−2」)を取り付けると共に、ダクトの両端部から0.5m内側の箇所にΦ8mmの穴をあけて差圧計を取り付ける。次に送排風機から発生する風量を段階的に変化させ、その際の圧力差ΔP(Pa)と相当流速V(m/秒)を測定する。
(2)上記(1)の方法で測定した相当流速V(m/秒)とホースの断面積A(m2)の値を用いて通気量Q(m3/時間)の値を式(1)にしたがって算出する。
式(1) 通気量Q=3,600×V×A
(3)上記(2)で算出された通気量Q(m3/時間)の値と圧力差ΔP(Pa)の値から通気率a(m3/時間/Pa1/2)の値を式(2)にしたがって算出する。
式(2) 通気率a=Q/△P1/2
(4) 上記(3)で算出された通気率a(m3/時間/Pa1/2)の値を用いて圧力損失係数ζを式(3)に従って算出する。
式(3) 圧力損失係数ζ=2/[ρ(a/3,600)2]
なお、ρは空気密度(kg/m3)を表す。
(5)上記(4)で算出された圧力損失係数ζを用いて直管時の摩擦損失係数λを式(4)に従って算出する。
式(4) 摩擦損失係数λ=(ID×ζ)/L
なお、IDはダクト内径(m)で、Lはダクト長(m)を表す。
(6)直管時の摩擦損失係数λは、以下の基準によって評価した。
◎:0.020<λ≦0.045(流体と内管面との摩擦が小さく、流体の圧力損失は殆どない)
○:0.045<λ≦0.060(流体と内管面との摩擦は多少あるが、ホースを使用する際に流体の圧力損失は問題ない)
△:0.060<λ≦0.080(流体と内管面との摩擦があり、ホースを使用する際に流体の圧力損失による流量低下が認められる)
×:0.080<λ(流体と内管面との摩擦が大きいので、ホースを使用する際に流体の圧力損失も大きくなり、ホースの使用に適さない)
<Pressure loss: Measurement of friction loss coefficient (λ) during straight pipe>
(1) A resin duct with a length of 3 m is installed in a straight tube, and a blower / exhaust fan ("SJF-250-2") manufactured by Suiden Co., Ltd. is attached to the terminal on one side of the duct, and 0.5 m inside from both ends of the duct. Make a hole of Φ8mm in the place and attach the differential pressure gauge. Next, the air volume generated from the blower / exhaust fan is changed stepwise, and the pressure difference ΔP (Pa) and the equivalent flow velocity V (m / sec) at that time are measured.
(2) Using the equivalent flow velocity V (m / sec) measured by the method (1) above and the cross-sectional area A (m 2 ) of the hose, the value of the air flow rate Q (m 3 / hour) is calculated by the equation (1). ).
Equation (1) Air volume Q = 3,600 x V x A
(3) From the value of the air volume Q (m 3 / hour) calculated in (2) above and the value of the pressure difference ΔP (Pa), the value of the air permeability a (m 3 / hour / Pa 1/2 ) is expressed by the formula. Calculate according to (2).
Equation (2) Ventilation rate a = Q / ΔP 1/2
(4) The pressure loss coefficient ζ is calculated according to the equation (3) using the value of the air permeability a (m 3 / hour / Pa 1/2 ) calculated in the above (3).
Equation (3) Pressure loss coefficient ζ = 2 / [ρ (a / 3,600) 2 ]
In addition, ρ represents an air density (kg / m 3 ).
(5) Using the pressure loss coefficient ζ calculated in (4) above, the friction loss coefficient λ at the time of straight pipe is calculated according to the equation (4).
Equation (4) Friction loss coefficient λ = (ID × ζ) / L
The ID is the inner diameter of the duct (m), and L is the length of the duct (m).
(6) The friction loss coefficient λ for straight pipes was evaluated according to the following criteria.
⊚: 0.020 <λ ≦ 0.045 (friction between the fluid and the inner pipe surface is small, and there is almost no pressure loss of the fluid)
◯: 0.045 <λ ≦ 0.060 (There is some friction between the fluid and the inner pipe surface, but there is no problem with the pressure loss of the fluid when using the hose)
Δ: 0.060 <λ ≦ 0.080 (There is friction between the fluid and the inner pipe surface, and a decrease in the flow rate due to the pressure loss of the fluid is observed when using the hose)
×: 0.080 <λ (Since the friction between the fluid and the inner pipe surface is large, the pressure loss of the fluid is also large when using the hose, which is not suitable for using the hose)

<実施例1>
(1)30mm幅に裁断されたポリエステル不織布の両面にポリエチレンが貼り合わせられた帯状体(シンワ製『KD5030WN』)を、外形が54.5mmの製管機上に螺旋状に捲回し、その隣接する側縁同士を500℃の熱風で熱融着することで、管肉部を形成した。
(2)続けて、上記(1)と同じ製管機上において、HDPE(日本ポリエチレン製『HY540』)を単軸押出機(40mmφ、シリンダー温度=200℃、ダイス温度=230℃)を蒲鉾型に押出し、帯状体に熱融着し、製管機の外から冷風および水を当てて60℃までホース状の成形品を冷却した後に、製管機から外して空冷することで、内径53.2mm、凸部の繰り返し単位X=8mm、Z/ID=0.012を有する実施例1の樹脂ダクトを得た。
<Example 1>
(1) A strip-shaped body (“KD5030WN” manufactured by Shinwa) in which polyethylene is bonded to both sides of a polyester non-woven fabric cut to a width of 30 mm is spirally wound on a pipe making machine having an outer diameter of 54.5 mm and adjacent to the strip-shaped body. A tube meat portion was formed by heat-sealing the side edges to each other with hot air at 500 ° C.
(2) Subsequently, on the same tube making machine as in (1) above, HDPE (“HY540” made by Nippon Polyethylene) is squeezed into a single-screw extruder (40 mmφ, cylinder temperature = 200 ° C, die temperature = 230 ° C). The hose-shaped molded product is cooled to 60 ° C by applying cold air and water from the outside of the pipe making machine to the strip-shaped body, and then removed from the pipe making machine and air-cooled to have an inner diameter of 53. A resin duct of Example 1 having 2 mm, a repeating unit of the convex portion X = 8 mm, and Z / ID = 0.012 was obtained.

<実施例2>
実施例1と同様の工程を経て成形品を得た。このとき、製管機のスプリング状の回転棒のひねりを弱くすることで、凸部の繰り返し距離を5mmとした。なお、製管機の外から冷風および水を当てて70℃までホース状の成形品を冷却した後に、製管機から外して空冷することで、内径52.7mm、凸部の繰り返し単位X=5mm、Z/ID=0.017を有する実施例2の樹脂ダクトを得た。
<Example 2>
A molded product was obtained through the same steps as in Example 1. At this time, by weakening the twist of the spring-shaped rotating rod of the pipe making machine, the repeating distance of the convex portion was set to 5 mm. The hose-shaped molded product is cooled to 70 ° C by applying cold air and water from the outside of the pipe making machine, and then removed from the pipe making machine and air-cooled to have an inner diameter of 52.7 mm and a repeating unit of the convex portion X =. A resin duct of Example 2 having 5 mm and Z / ID = 0.017 was obtained.

<実施例3>
実施例1と同様の工程を経て成形品を得た。製管機の外から冷風および水を当てて50℃までホース状の成形品を冷却した後に、製管機から外して空冷することで、内径53.4mm、凸部の繰り返し単位X=8mm、Z/ID=0.010を有する実施例3の樹脂ダクトを得た。
<Example 3>
A molded product was obtained through the same steps as in Example 1. After cooling the hose-shaped molded product to 50 ° C by applying cold air and water from the outside of the pipe making machine, the hose-shaped molded product is removed from the pipe making machine and air-cooled to have an inner diameter of 53.4 mm and a convex repeating unit X = 8 mm. A resin duct of Example 3 having Z / ID = 0.010 was obtained.

<実施例4>
実施例1と同様の工程を経て成形品を得た。なお、外径が79.0mmの製管機を用い、製管機の外から冷風および水を当てて100℃までホース状の成形品を冷却した後に、製管機から外して空冷することで、内径75.5mm、凸部の繰り返し単位X=8mm、Z/ID=0.023を有する実施例4の樹脂ダクトを得た。
<Example 4>
A molded product was obtained through the same steps as in Example 1. By using a pipe making machine with an outer diameter of 79.0 mm, cold air and water are applied from the outside of the pipe making machine to cool the hose-shaped molded product to 100 ° C., and then the hose-shaped molded product is removed from the pipe making machine and air-cooled. The resin duct of Example 4 having an inner diameter of 75.5 mm, a repeating unit of the convex portion X = 8 mm, and Z / ID = 0.023 was obtained.

<実施例5>
実施例1と同様の工程を経て成形品を得た。なお、製管機の外からの冷風および水を止め、ホース状の成形品が120℃で製管機から外して空冷することで、内径50.5mm、凸部の繰り返し単位X=8mm、Z/ID=0.040を有する実施例5の樹脂ダクトを得た。
<Example 5>
A molded product was obtained through the same steps as in Example 1. By stopping the cold air and water from the outside of the pipe making machine, removing the hose-shaped molded product from the pipe making machine at 120 ° C. and air-cooling it, the inner diameter is 50.5 mm, and the repeating unit of the convex portion X = 8 mm, Z. A resin duct of Example 5 having / ID = 0.040 was obtained.

<実施例6>
実施例1と同様の工程を経て成形品を得た。なお、外径が81.9mmの製管機を用い、製管機の外から冷風および水を当てて90℃までホース状の成形品を冷却した後に、製管機から外して空冷することで、内径79.0mm、凸部の繰り返し単位X=13mm、Z/ID=0.018を有する実施例6の樹脂ダクトを得た。
<Example 6>
A molded product was obtained through the same steps as in Example 1. Using a pipe making machine with an outer diameter of 81.9 mm, cool the hose-shaped molded product to 90 ° C by applying cold air and water from the outside of the pipe making machine, and then remove it from the pipe making machine and air-cool it. A resin duct of Example 6 having an inner diameter of 79.0 mm, a repeating unit of the convex portion X = 13 mm, and Z / ID = 0.018 was obtained.

<実施例7>
実施例1と同様の工程を経て成形品を得た。なお、外径が158.0mmの製管機を用い、製管機の外から冷風および水を当てて90℃までホース状の成形品を冷却した後に、製管機から外して空冷することで、内径155.0mm、凸部の繰り返し単位X=25mm、Z/ID=0.015を有する実施例1の樹脂ダクトを得た。
<Example 7>
A molded product was obtained through the same steps as in Example 1. Using a pipe making machine with an outer diameter of 158.0 mm, cool the hose-shaped molded product to 90 ° C by applying cold air and water from the outside of the pipe making machine, and then remove it from the pipe making machine and air-cool it. A resin duct of Example 1 having an inner diameter of 155.0 mm, a convex repeating unit X = 25 mm, and Z / ID = 0.015 was obtained.

<比較例1>
実施例1と同様の工程を経て成形品を得た。このとき、製管機のスプリング状の回転棒のひねりを弱くすることで、凸部の繰り返し距離を4mmとした。ホース状の成形品の冷却条件は実施例1と同様の条件とした。最終的に、内径53.2mm、凸部の繰り返しX単位=4mm、Z/ID=0.011を有する比較例1の樹脂ダクトを得た。
<Comparative example 1>
A molded product was obtained through the same steps as in Example 1. At this time, by weakening the twist of the spring-shaped rotating rod of the pipe making machine, the repeating distance of the convex portion was set to 4 mm. The cooling conditions for the hose-shaped molded product were the same as in Example 1. Finally, a resin duct of Comparative Example 1 having an inner diameter of 53.2 mm, a repeating X unit of the convex portion = 4 mm, and Z / ID = 0.011 was obtained.

<比較例2>
実施例1と同様の工程を経て成形品を得た。このとき、製管機のスプリング状の回転棒のひねりを強くすることで、凸部の繰り返し距離を27mmとした。ホース状の成形品の冷却条件は実施例1と同様の条件とした。最終的に、内径53.2mm、凸部の繰り返し単位X=27mm、Z/ID=0.013を有する比較例2の樹脂ダクトを得た。
<Comparative example 2>
A molded product was obtained through the same steps as in Example 1. At this time, by strengthening the twist of the spring-shaped rotating rod of the pipe making machine, the repeating distance of the convex portion was set to 27 mm. The cooling conditions for the hose-shaped molded product were the same as in Example 1. Finally, a resin duct of Comparative Example 2 having an inner diameter of 53.2 mm, a repeating unit of the convex portion X = 27 mm, and Z / ID = 0.013 was obtained.

<比較例3>
実施例1と同様の工程を経て成形品を得た。なお、製管機の外から冷風および水を当てて130℃までホース状の成形品を冷却した後に、製管機から外して空冷することで、内径49.5mm、凸部の繰り返し単位X=8mm、Z/ID=0.051を有する比較例3の樹脂ダクトを得た。
<Comparative example 3>
A molded product was obtained through the same steps as in Example 1. The hose-shaped molded product is cooled to 130 ° C. by applying cold air and water from the outside of the pipe making machine, and then removed from the pipe making machine and air-cooled to have an inner diameter of 49.5 mm and a repeating unit of the convex portion X =. A resin duct of Comparative Example 3 having 8 mm and Z / ID = 0.051 was obtained.

<比較例4>
実施例1と同様の工程を経て成形品を得た。なお、製管機の外から冷風および水を当てて50℃までホース状の成形品を冷却した後に、製管機から外して空冷することで、内径53.9mm、凸部の繰り返し単位X=8mm、Z/ID=0.006を有する比較例2の樹脂ダクトを得た。
<Comparative example 4>
A molded product was obtained through the same steps as in Example 1. The hose-shaped molded product is cooled to 50 ° C by applying cold air and water from the outside of the pipe making machine, and then removed from the pipe making machine and air-cooled to have an inner diameter of 53.9 mm and a repeating unit of the convex portion X =. A resin duct of Comparative Example 2 having 8 mm and Z / ID = 0.006 was obtained.

実施例1〜7に示すように、ダクト内面の凸部頂点の繰り返し単位X、およびZ/IDが本発明の範囲であると、得られる樹脂ダクトは圧力損失特性に優れたものとなる。
一方、比較例1のようにダクト内面の凸部頂点の繰り返し単位Xが5mm未満の場合、比較例2のようにXが20mmを超える場合、比較例3のようにZ/IDが0.05を超える場合、比較例4のようにZ/IDが0.01未満の場合はいずれも圧力損失特性が劣ったものとなる。
As shown in Examples 1 to 7, when the repeating unit X and Z / ID of the apex of the convex portion on the inner surface of the duct are within the range of the present invention, the obtained resin duct has excellent pressure loss characteristics.
On the other hand, when the repeating unit X of the convex apex of the inner surface of the duct is less than 5 mm as in Comparative Example 1, when X exceeds 20 mm as in Comparative Example 2, Z / ID is 0.05 as in Comparative Example 3. If the Z / ID is less than 0.01 as in Comparative Example 4, the pressure loss characteristics are inferior.

本発明の樹脂ダクトは、内面に特定の凹凸形状を有するため、流体の圧力損失特性に優れる。さらにフレキシブル性に富み、施工性が良好であるので、住宅の換気・空調用ダクト用に使用可能である。 Since the resin duct of the present invention has a specific uneven shape on the inner surface, it has excellent fluid pressure loss characteristics. Furthermore, it is highly flexible and has good workability, so it can be used for ventilation and air conditioning ducts in houses.

以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。 As described above, a preferred embodiment of the present invention has been described, but various additions, changes or deletions can be made without departing from the spirit of the present invention, and such additions, changes or deletions are also included in the scope of the present invention. Is done.

Claims (3)

少なくとも不織布を含む帯状体からなる肉部と、熱可塑性硬質樹脂からなる螺旋状の芯材からなり、以下の(1),(2)の構造を満たす樹脂ダクト。
(1)ダクト内面の凸部頂点の繰り返し単位をX(mm)とした時、5mm≦X≦25mmであること、
(2)ダクト内面の凸部間の窪みの深度をZ(mm)、ダクト内径をID(mm)とした時、0.01≦Z/ID≦0.05であること。
A resin duct composed of a meat portion made of a strip containing at least a non-woven fabric and a spiral core material made of a thermoplastic hard resin, and satisfying the following structures (1) and (2).
(1) When the repeating unit of the apex of the convex portion on the inner surface of the duct is X (mm), 5 mm ≦ X ≦ 25 mm.
(2) When the depth of the depression between the protrusions on the inner surface of the duct is Z (mm) and the inner diameter of the duct is ID (mm), 0.01 ≦ Z / ID ≦ 0.05.
熱可塑性硬質樹脂がオレフィン系熱可塑性樹脂であるとを特徴とする請求項1に記載の樹脂ダクト。 Resin ducts of claim 1, the thermoplastic hard resin is characterized that it is an olefin thermoplastic resin. 請求項1または2に記載の樹脂ダクトの外側にさらに断熱層が被覆された樹脂ダクト。 A resin duct in which a heat insulating layer is further coated on the outside of the resin duct according to claim 1 or 2.
JP2017085822A 2017-04-25 2017-04-25 Resin duct Active JP6835357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085822A JP6835357B2 (en) 2017-04-25 2017-04-25 Resin duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085822A JP6835357B2 (en) 2017-04-25 2017-04-25 Resin duct

Publications (2)

Publication Number Publication Date
JP2018184978A JP2018184978A (en) 2018-11-22
JP6835357B2 true JP6835357B2 (en) 2021-02-24

Family

ID=64357149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085822A Active JP6835357B2 (en) 2017-04-25 2017-04-25 Resin duct

Country Status (1)

Country Link
JP (1) JP6835357B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458233B2 (en) * 2020-04-13 2024-03-29 株式会社ブリヂストン composite pipe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4728241Y1 (en) * 1971-12-22 1972-08-26
JPS56149182U (en) * 1980-04-09 1981-11-09
JPS58125782U (en) * 1982-09-16 1983-08-26 東拓工業株式会社 bellows tube
JP2000028083A (en) * 1998-05-06 2000-01-25 Kuraray Plast Co Ltd Compressive duct
JP4495996B2 (en) * 2004-03-31 2010-07-07 積水化学工業株式会社 Synthetic resin double-layer corrugated pipe and method for repairing the pipe through which this corrugated pipe is inserted into an aged existing pipe
US20050241605A1 (en) * 2004-04-29 2005-11-03 Bedwell Donald R Fluid flow surface with indentations
GB0420971D0 (en) * 2004-09-21 2004-10-20 Imp College Innovations Ltd Piping

Also Published As

Publication number Publication date
JP2018184978A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP2007205503A (en) Thermal insulated double-walled pipe
JP6835357B2 (en) Resin duct
JP5721532B2 (en) Insulated double pipe
JP6724284B2 (en) Fiber composite hose
JPH09210291A (en) Heat insulating pipe
US20110183096A1 (en) Foamed Airstream Surface Duct Product
JP2013164541A (en) Soundproof material and soundproof water pipe using the same
JP2018059271A (en) Joint and piping structure
EP1580494A1 (en) Silencer for ventilating duct
JP2008267690A (en) Fireproof or fire-retardant heat insulating resin duct
JP6921512B2 (en) Foam resin tube
JP2017145971A (en) Drain pipe for air conditioning
JP2020084678A (en) Composite structure
KR101949228B1 (en) Heat insulating materials for ducts
JP2000028083A (en) Compressive duct
JP2022177784A (en) Condensation water dropping-preventive heat insulator, condensation water dropping-preventive refrigerant piping and piping structure for water and hot-water supply using the same, and structure for condensation water dropping-preventive building, condensation water dropping-preventive nonwoven fabric, and method for forming condensation water dropping-preventive structure for refrigerant piping using the heat insulator and method for forming condensation water dropping-preventive structure for building member
JP2013181632A (en) Sound-deadening material for drainpipe, method of manufacturing sound-deadening material for drainpipe, and sound-deadening drainpipe
JPH1114129A (en) Flexible duct for air conditioner
JP3156952B2 (en) Non-woven tube and insulated double tube using them
JP2022101244A (en) Tubular heat insulating material and mounting structure thereof
JPS586684Y2 (en) dunnets pipe
WO2023074194A1 (en) Ventilation-type silencer
JP4772300B2 (en) 2-layer duct
JPH08247348A (en) Duct hose
JPH09166278A (en) Heat insulated duct

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6835357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150