JP6831517B2 - How to make electrodes - Google Patents

How to make electrodes Download PDF

Info

Publication number
JP6831517B2
JP6831517B2 JP2017065336A JP2017065336A JP6831517B2 JP 6831517 B2 JP6831517 B2 JP 6831517B2 JP 2017065336 A JP2017065336 A JP 2017065336A JP 2017065336 A JP2017065336 A JP 2017065336A JP 6831517 B2 JP6831517 B2 JP 6831517B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
ultrasonic
heat fusion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017065336A
Other languages
Japanese (ja)
Other versions
JP2018170112A (en
Inventor
弘和 北浦
弘和 北浦
英司 細野
英司 細野
周 豪慎
豪慎 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017065336A priority Critical patent/JP6831517B2/en
Publication of JP2018170112A publication Critical patent/JP2018170112A/en
Application granted granted Critical
Publication of JP6831517B2 publication Critical patent/JP6831517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、固体電解質を用いる電池などの電気化学セル用の電極に関する。 The present invention relates to electrodes for electrochemical cells such as batteries that use solid electrolytes.

携帯機器用の電源をはじめ、自動車や航空機用などの電源として、また、再生可能エネルギーなどにより発電された電力の蓄電用として、電池の重要性はますます大きくなっている。
近年、安全性に優れた全固体電池の電解質として、また、液体電解質を用いる電池において、セパレータあるいは正極側または負極側に設ける電解質層として等、様々な用途に向けて固体電解質の研究が進められている。また、Liを代表とする金属系および合金系の電極は従来の電極に比べて大きな容量が得られることから、期待されており、固体電解質を用いる場合においても有望な電極として開発が進められている。
固体電解質を用いる電池において、金属または合金系電極を用いる場合、固体電解質 / 電極界面の構築が重要となる。このような界面を構築する従来技術として、圧着、蒸着、堆積、熱融着、界面修飾などの手法が用いられている (圧着および蒸着:非特許文献1、熱融着および界面修飾:非特許文献2)。
Batteries are becoming more and more important as power sources for mobile devices, automobiles, aircraft, etc., and for storing electric power generated by renewable energy.
In recent years, research on solid electrolytes has been promoted for various applications such as as an electrolyte for an all-solid-state battery having excellent safety, and as an electrolyte layer provided on a separator or a positive electrode side or a negative electrode side in a battery using a liquid electrolyte. ing. In addition, metal-based and alloy-based electrodes typified by Li are expected because they can obtain a larger capacity than conventional electrodes, and development is being promoted as a promising electrode even when a solid electrolyte is used. There is.
When using a metal or alloy-based electrode in a battery using a solid electrolyte, it is important to construct a solid electrolyte / electrode interface. As a conventional technique for constructing such an interface, methods such as crimping, vapor deposition, deposition, heat fusion, and interface modification are used (crimping and vapor deposition: Non-Patent Document 1, heat fusion and interface modification: non-patent). Document 2).

Electrochem. Commun., 22, 177 (2012)Electrochem. Commun., 22, 177 (2012) Nature Mater. (2016) doi:10.1038/nmat4821Nature Mater. (2016) doi: 10.1038 / nmat4821 Phys.Chme.Chem.Phys., 14, 10008 (2012)Phys.Chme.Chem.Phys., 14, 10008 (2012) J. Mater. Sci., 48, 5846 (2013)J. Mater. Sci., 48, 5846 (2013)

成型された固体電解質に電極を圧着する場合、固体電解質が割れてしまう危険性がある。また、接着面に対して均一に圧力をかけることは難しく、均質な界面を作製するのが困難である。また、接着性に乏しい材料では、この手法は利用できない。一方、蒸着、堆積法は、密着性の高い界面を作製するのに適しているが、真空条件が必要であり、また、堆積速度が遅く堆積可能な面積も限定されることから、時間やコストがかかる。また、界面修飾法でもこれらの手法を用いることが多く、作業工程の増加にもなってしまう。熱融着では、融着しにくい材料などもあり、密着性の高い界面を作るのが難しい(非特許文献2〜4)。
本発明の目的は、これら従来の手法の欠点を有さず、簡単な操作で、電極を固体電解質に密着させる手法を提供することにある。
When the electrode is crimped to the molded solid electrolyte, there is a risk that the solid electrolyte will crack. Further, it is difficult to uniformly apply pressure to the adhesive surface, and it is difficult to prepare a homogeneous interface. In addition, this method cannot be used for materials with poor adhesiveness. On the other hand, the thin-film deposition and deposition methods are suitable for producing an interface with high adhesion, but they require vacuum conditions, and the deposition rate is slow and the area that can be deposited is limited, so that time and cost are required. It takes. In addition, these methods are often used in the interface modification method, which also increases the number of work processes. In heat fusion, it is difficult to create an interface with high adhesion because some materials are difficult to fuse (Non-Patent Documents 2 to 4).
An object of the present invention is to provide a method for bringing an electrode into close contact with a solid electrolyte by a simple operation without having the drawbacks of these conventional methods.

本発明者らは、上記目的で鋭意研究を重ねた結果、電極材料を固体電解質上に熱融着させる際に、同時に超音波を照射することにより、固体電解質上に密着性の高い金属または合金系電極を作製することができ、当該電極−固体電解質構造体を用いて構成した電気化学セルにおいて、電極−固体電解質界面の内部抵抗が小さく、また、良好な電気化学特性が得られることを見出した。 As a result of intensive studies for the above purpose, the present inventors have conducted a metal or alloy having high adhesion on the solid electrolyte by simultaneously irradiating ultrasonic waves when the electrode material is thermally fused onto the solid electrolyte. It was found that a system electrode can be produced, the internal resistance of the electrode-solid electrolyte interface is small, and good electrochemical characteristics can be obtained in the electrochemical cell constructed by using the electrode-solid electrolyte structure. It was.

具体的には、本発明者らは、固体電解質として、Li1+xAlyGe2-y(PO4)3(以下LAGPとする)、および、Al doped-Li7La3Zr2O12(以下LLZとする)を用い、超音波はんだごて(図1)を用いて、Li金属を熱溶融するとともに、超音波を印可しつつ、当該固体電解質上に融着させることにより、Li金属電極を形成することで、密着性の高い、均一なLi/固体電解質界面が形成され(図3)、その結果、Li金属を単に加熱溶融させる、通常の熱融着に比べ、Li/固体電解質界面の抵抗を著しく低減させることができ(図4、5)、また、このようにして作製された対称セルLi/LLZ/Liが、長期間、安定してLiの電気化学的溶解・析出を行うことが可能である(図6)ことを見出した。
本発明は、本発明者らによるこれらの知見に基づいてなされたものである。
Specifically, the present inventors use Li 1 + x Al y Ge 2-y (PO 4 ) 3 (hereinafter referred to as LAGP) and Al doped-Li 7 La 3 Zr 2 O 12 as solid electrolytes. The Li metal is thermally melted using an ultrasonic soldering iron (Fig. 1) using (hereinafter referred to as LLZ), and the Li metal is fused onto the solid electrolyte while applying ultrasonic waves. By forming the electrodes, a uniform Li / solid electrolyte interface with high adhesion is formed (Fig. 3), and as a result, the Li / solid electrolyte is compared with the usual heat fusion in which the Li metal is simply heated and melted. The resistance at the interface can be significantly reduced (Figs. 4 and 5), and the symmetrical cells Li / LLZ / Li produced in this way stably electrochemically dissolve and precipitate Li for a long period of time. It was found that it is possible to do (Fig. 6).
The present invention has been made based on these findings by the present inventors.

すなわち、本出願は、以下の発明を提供するものである。
〈1〉電極材料を固体電解質上に熱融着させ、固体電解質上に金属または合金系電極を形成させることで、電極/固体電解質構造体を製造する方法であって、電極材料を固体電解質上に熱融着させる際に、超音波を印可することを特徴とする方法。
〈2〉〈1〉の方法により電極/固体電解質構造体を製造し、得られた電極/固体電解質構造体を他の構成要素と組み合わせて、電気化学セルを製造する方法。
〈3〉電気化学セルが電池であることを特徴とする、〈2〉に記載の方法。
〈4〉電気化学セルが全固体電池であることを特徴とする、〈2〉に記載の方法。
〈5〉電気化学セルが金属−空気電池であることを特徴とする、〈2〉に記載の方法。
That is, the present application provides the following inventions.
<1> A method for producing an electrode / solid electrolyte structure by heat-sealing an electrode material onto a solid electrolyte and forming a metal or alloy-based electrode on the solid electrolyte. The electrode material is placed on the solid electrolyte. A method characterized in that ultrasonic waves are applied when heat-sealing to a metal.
<2> A method for producing an electrode / solid electrolyte structure by the method of <1>, and combining the obtained electrode / solid electrolyte structure with other components to produce an electrochemical cell.
<3> The method according to <2>, wherein the electrochemical cell is a battery.
<4> The method according to <2>, wherein the electrochemical cell is an all-solid-state battery.
<5> The method according to <2>, wherein the electrochemical cell is a metal-air battery.

本発明において採用した、熱融着の際に超音波を印可する方法(以下、超音波援用熱融着法という)では、数秒という非常に短時間で、密着性の高い電極/固体電解質界面を形成することが可能である。
また、本発明により、密着性の高い電極/固体電解質界面が形成され、当該界面の抵抗が低減されることによって、これを用いて構成される電気化学セル全体としての抵抗を低減することが可能となり、レート特性を向上することが可能となる。
また、本発明により形成される電極/固体電解質界面は、電気化学的に安定であり、これを用いることにより、長期間安定な充放電特性を有する電池が得られる。
In the method of applying ultrasonic waves at the time of heat fusion (hereinafter referred to as ultrasonic-assisted heat fusion method) adopted in the present invention, an electrode / solid electrolyte interface having high adhesion can be obtained in a very short time of several seconds. It is possible to form.
Further, according to the present invention, an electrode / solid electrolyte interface having high adhesion is formed, and the resistance of the interface is reduced, so that the resistance of the entire electrochemical cell constructed by using the interface can be reduced. Therefore, it is possible to improve the rate characteristics.
Further, the electrode / solid electrolyte interface formed by the present invention is electrochemically stable, and by using this, a battery having stable charge / discharge characteristics for a long period of time can be obtained.

本発明において使用した、超音波はんだごての写真。A photograph of an ultrasonic soldering iron used in the present invention. (a)ホットプレートを用いた熱融着法、および、(b)超音波はんだごてを用いた超音波援用熱融着法により、LLZペレット上に融着したLi金属の写真。Photographs of Li metal fused onto LLZ pellets by (a) heat fusion method using a hot plate and (b) ultrasonic assisted heat fusion method using an ultrasonic soldering iron. (a)ホットプレートを用いた熱融着法、および、(b)超音波はんだごてを用いた超音波援用熱融着法により融着した、Li/LLZの破断面の走査型電子顕微鏡(SEM)写真。A scanning electron microscope with a fracture surface of Li / LLZ fused by (a) a heat fusion method using a hot plate and (b) an ultrasonically assisted heat fusion method using an ultrasonic soldering iron. SEM) Photo. (a)Au/LAGP/Au、(b)ホットプレートを用いた熱融着法により融着したLi/LAGP/Au、および、(c)超音波はんだごてを用いた超音波援用熱融着法により融着したLi/LAGP/Auのインピーダンスプロット。円弧の右端の値が全体の抵抗を意味する。(A) Au / LAGP / Au, (b) Li / LAGP / Au fused by a heat fusion method using a hot plate, and (c) ultrasonically assisted heat fusion using an ultrasonic soldering iron. Impedance plot of Li / LAGP / Au fused by the method. The value at the right end of the arc means the total resistance. (a)ホットプレートを用いた熱融着法、および、(b)超音波はんだごてを用いた超音波援用熱融着法により融着した、Li/LLZ/Liのインピーダンスプロット。Impedance plot of Li / LLZ / Li fused by (a) heat fusion method using a hot plate and (b) ultrasonic assisted heat fusion method using an ultrasonic soldering iron. (a)ホットプレートを用いた熱融着法、および、(b)超音波はんだごてを用いた超音波援用熱融着法により融着した、Li/LLZ/Liの定電流分極測定結果を示す図。0.1mA/cm2の電流を30分毎に方向を逆転して流している。The results of constant current polarization measurement of Li / LLZ / Li fused by (a) heat fusion method using a hot plate and (b) ultrasonic assisted heat fusion method using an ultrasonic soldering iron. The figure which shows. A current of 0.1 mA / cm 2 is flowing in the reverse direction every 30 minutes. 各温度と各超音波出力でスライドガラス上にLi金属を超音波援用熱融着法にて接着させたときの光学写真(超音波の振動数は60kHzに固定)。Optical photograph of Li metal bonded to a slide glass at each temperature and each ultrasonic output by an ultrasonic-assisted heat fusion method (ultrasonic frequency is fixed at 60 kHz). 240℃、5Wの超音波出力の条件でLi金属をスライドガラス上に接着させたときの光学写真。Optical photograph of Li metal bonded on a slide glass under the condition of ultrasonic output of 240 ° C and 5W.

本発明において用いられる固体電解質としては、例えば、上述のLi1+xAlyGe2-y(PO4)3(LAGP)のようなNASICON型構造を有するリチウム含有リン酸化合物、同じく上述のLi7La3Zr2O12(LLZ)等のガーネット型構造を有する化合物、リン酸リチウムに窒素をドープしたLIPON(LiPO4-xNx)とその類似化合物、Li3xLa2/3-xTiO3等のペロブスカイト型構造を有する化合物、Li4SiO4等の酸化物系固体電解質、及び、硫化リンリチウム等の硫化物系固体電解質などのリチウムイオン伝導体、NASICON型構造を有するナトリウム含有リン酸化合物、Na2O-11Al2O3等のβ-アルミナ、及び、硫化リンナトリウム等の硫化物系固体電解質などのナトリウムイオン伝導体が挙げられ、さらに、リチウムイオンやナトリウムイオンに限らず、Mg等他のカチオンや酸化物イオン等のアニオン伝導体にも、本発明は適用可能である。 Examples of the solid electrolyte used in the present invention include a lithium-containing phosphoric acid compound having a NASICON-type structure such as the above-mentioned Li 1 + x Al y Ge 2-y (PO 4 ) 3 (LAGP), and the above-mentioned Li. 7 La 3 Zr 2 O 12 (LLZ) and other compounds with a garnet-type structure, LIPON (LiPO 4-x N x ) in which lithium phosphate is doped with nitrogen and similar compounds, Li 3x La 2 / 3-x TiO compounds having a perovskite structure, such as 3, Li 4 SiO 4 such as an oxide-based solid electrolyte, and a lithium ion conductor, such as sulfide-based solid electrolyte such as phosphoric lithium sulfide, sodium-containing phosphate having a NASICON-type structure Examples include compounds, β-alumina such as Na 2 O-11 Al 2 O 3 , and sodium ion conductors such as sulfide-based solid electrolytes such as sodium phosphorus sulfide. Further, not only lithium ion and sodium ion, but also Mg. The present invention is also applicable to other anionic conductors such as cations and oxide ions.

本発明において用いられる金属または合金系電極としては、例えばLi、Na、Al、K、Sn、Pb、In、Li-In合金、Li-Sn合金、Li-Al合金等からなる電極が挙げられる。 Examples of the metal or alloy-based electrode used in the present invention include electrodes made of Li, Na, Al, K, Sn, Pb, In, Li-In alloy, Li-Sn alloy, Li-Al alloy and the like.

本発明において用いられる超音波援用熱融着法において、超音波は、10〜60kHz程度の周波数のものを2〜10W程度の出力で、1〜3秒程度印可することが好ましく、また、熱融着温度は、各金属または合金の融点に応じて60〜750℃程度であることが好ましい。本発明の実施例においては、このような超音波援用熱融着を実現する手段として、超音波はんだごてを用いているが、これに限られるものではなく、上記超音波を印可することができ、上記熱融着を実現できる手段であれば、適宜のものを使用することができる。 In the ultrasonic-assisted heat fusion method used in the present invention, it is preferable to apply ultrasonic waves having a frequency of about 10 to 60 kHz at an output of about 2 to 10 W for about 1 to 3 seconds, and heat fusion. The landing temperature is preferably about 60 to 750 ° C. depending on the melting point of each metal or alloy. In the embodiment of the present invention, an ultrasonic soldering iron is used as a means for realizing such ultrasonic-assisted heat fusion, but the present invention is not limited to this, and the above-mentioned ultrasonic waves can be applied. Any means can be used as long as it can achieve the above heat fusion.

本発明によって作製される電極/固体電解質構造体は、適宜、他の構成要素と組み合わせることにより、一次電池、二次電池、キャパシタ、電気化学測定用セルなど、各種の電気化学セルに用いることができる。
本発明によって作製される電池としては、例えば、Li負極/リチウムイオン伝導性固体電解質構造体とLi1-xFePO4などの正極とから構成されるリチウムイオン電池などの全固体電池や、空気中の酸素を正極活物質とし、Li負極/リチウムイオン伝導性固体電解質構造体と多孔質カーボンなどの空気極とから構成されるLi−空気電池などの金属−空気電池が挙げられる。
The electrode / solid electrolyte structure produced by the present invention can be used in various electrochemical cells such as primary batteries, secondary batteries, capacitors, and electrochemical measurement cells by appropriately combining with other components. it can.
The battery produced by the present invention includes, for example, an all-solid battery such as a lithium ion battery composed of a Li negative electrode / lithium ion conductive solid electrolyte structure and a positive electrode such as Li 1-x FePO 4, or in the air. Examples thereof include a metal-air battery such as a Li-air battery, which uses the oxygen of the above as a positive electrode active material and is composed of a Li negative electrode / lithium ion conductive solid electrolyte structure and an air electrode such as porous carbon.

以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

実施例1.LAGPへのLi金属の接着
固体電解質として、Li1+xAlyGe2-y(PO4)3(LAGP)を用い、通常の熱融着法、および、本発明による超音波援用熱融着法により、当該固体電解質上にLi金属電極を形成した。各融着は、Arガスで満たされたグローブボックス中で、以下の手順で行った。
(1)通常の熱融着法(ホットプレートによる融着)
230℃に加熱したホットプレート上にΦ10mmのLi金属を張り付けたCuメッシュを設置し、その上にAu電極を片側にスパッタリングしたLAGPペレットを、Au電極を上側にして設置した。LAGPペレットをピンセットで押し、3分程度保持してLi金属が溶融したのを確認した後にホットプレート上から取り除き冷却を行った。
(2)超音波援用熱融着法
超音波援用熱融着を行う手段として、超音波はんだごて(図1)(メーカー名:黒田テクノ株式会社、品番:サンボンダ USM-560、超音波発振周波数:60kHz±5kHz、超音波発振出力:1〜12 W、ヒーター温度設定:200〜500℃)を用いた。
LAGPペレット上にマスキングテープにてΦ10mmのマスキングを行った。ヒーターを240℃に設定し、加熱されたコテ先にLi金属を乗せ、LAGPペレットに接触させた後に60kHz、5Wの超音波を1秒程度印加して接着を行った。
Example 1. Adhesion of Li Metal to LAGP Using Li 1 + x Al y Ge 2-y (PO 4 ) 3 (LAGP) as a solid electrolyte, a conventional heat fusion method and ultrasonically assisted heat fusion according to the present invention. By the method, a Li metal electrode was formed on the solid electrolyte. Each fusion was performed in a glove box filled with Ar gas by the following procedure.
(1) Normal heat fusion method (fusing with a hot plate)
A Cu mesh with a Φ10 mm Li metal attached was placed on a hot plate heated to 230 ° C., and LAGP pellets sputtered with an Au electrode on one side were placed on the Cu mesh with the Au electrode facing up. The LAGP pellets were pressed with tweezers and held for about 3 minutes to confirm that the Li metal had melted, and then removed from the hot plate for cooling.
(2) Ultrasonic-assisted heat fusion method As a means for performing ultrasonic-assisted heat fusion, an ultrasonic soldering iron (Fig. 1) (Manufacturer name: Kuroda Techno Co., Ltd., Product number: Sanbonda USM-560, Ultrasonic oscillation frequency : 60kHz ± 5kHz, ultrasonic oscillation output: 1 to 12 W, heater temperature setting: 200 to 500 ° C) was used.
Φ10 mm was masked on the LAGP pellets with masking tape. The heater was set to 240 ° C., Li metal was placed on the heated iron tip, and after contacting with LAGP pellets, 60 kHz, 5 W ultrasonic waves were applied for about 1 second to perform adhesion.

実施例2.LLZへのLi金属の接着
固体電解質として、Al doped-Li7La3Zr2O12(LLZ)を用い、通常の熱融着法、および、本発明による超音波援用熱融着法により、当該固体電解質上にLi金属電極を形成した。各融着は、Arガスで満たされたグローブボックス中で、以下の手順で行った。なお、LLZにおけるAlのドープは、LLZのガーネット型構造を安定化させるために行われたものである。
(1)通常の熱融着法(ホットプレートによる融着)
230℃に加熱したホットプレート上にLLZペレットを設置し、その上にΦ10mmのディスク状Li金属を設置し、Cuメッシュ越しに上からピンセットで押した。3分程度保持してLi金属が溶融したのを確認した後にホットプレート上から取り除き冷却を行った。逆側も同様にしてLi金属を融着させ、Li/LLZ/Liセルを作製した。
(2)超音波援用熱融着法
超音波援用熱融着を行う手段として、超音波はんだごて(図1)を用いた。
LLZペレット上にマスキングテープにてΦ10mmのマスキングを行った。ヒーターを240℃に設定し、加熱されたコテ先にLi金属を乗せ、LLZペレットに接触させた後に60kHz、5Wの超音波を1秒程度印加して接着を行った。逆側も同様にしてLi金属を融着させ、Li/LLZ/Liセルを作製した。
図2に、ホットプレートにより(a)、または超音波援用熱融着法により(b)、LLZ上にLiを融着させた時の写真を示す。
LLZはLi金属と反応し難い固体電解質として知られており(非特許文献3、非特許文献4)、図2ではどちらも一見融着しているように見えるが、ホットプレートで融着させた場合は簡単に剥がすことが可能である。一方、超音波援用熱融着法を用いて融着させた場合は簡単には剥がれなくなった。これは超音波により、固体電解質表面が活性化され、Li/固体電解質間での反応が促進されるためと考えられる。
図3に、Li / LLZ破断面の電子顕微鏡写真を示す。ホットプレートで融着させた場合(a)は、Li/LLZ界面に空隙が多くみられる。一方で、超音波援用熱融着法を用いて融着させた場合(b)には、密着性の高い均一な界面が構築できていることが見て取れる。
Example 2. Adhesion of Li Metal to LLZ Al doped-Li 7 La 3 Zr 2 O 12 (LLZ) is used as the solid electrolyte, and the heat fusion method according to the present invention and the ultrasonic assisted heat fusion method according to the present invention are used. A Li metal electrode was formed on the solid electrolyte. Each fusion was performed in a glove box filled with Ar gas by the following procedure. The doping of Al in LLZ was performed to stabilize the garnet-type structure of LLZ.
(1) Normal heat fusion method (fusing with a hot plate)
LLZ pellets were placed on a hot plate heated to 230 ° C, a disc-shaped Li metal of Φ10 mm was placed on it, and pressed with tweezers from above through the Cu mesh. After holding for about 3 minutes and confirming that the Li metal had melted, it was removed from the hot plate and cooled. Li metals were fused in the same manner on the opposite side to prepare Li / LLZ / Li cells.
(2) Ultrasonic assisted heat fusion method An ultrasonic soldering iron (Fig. 1) was used as a means for performing ultrasonic assisted heat fusion.
Φ10 mm was masked on the LLZ pellets with masking tape. The heater was set to 240 ° C., Li metal was placed on the heated iron tip, and after contacting with the LLZ pellet, 60 kHz, 5 W ultrasonic waves were applied for about 1 second to perform adhesion. Li metals were fused in the same manner on the opposite side to prepare Li / LLZ / Li cells.
FIG. 2 shows a photograph when Li is fused onto the LLZ by a hot plate (a) or an ultrasonically assisted heat fusion method (b).
LLZ is known as a solid electrolyte that does not easily react with Li metal (Non-Patent Documents 3 and 4), and both seem to be fused in FIG. 2, but they were fused on a hot plate. If it is, it can be easily peeled off. On the other hand, when it was fused using the ultrasonic-assisted heat fusion method, it could not be easily peeled off. It is considered that this is because the surface of the solid electrolyte is activated by ultrasonic waves and the reaction between the Li / solid electrolyte is promoted.
FIG. 3 shows an electron micrograph of the fracture surface of Li / LLZ. When fused with a hot plate (a), many voids are found at the Li / LLZ interface. On the other hand, in the case of fusion using the ultrasonic-assisted heat fusion method (b), it can be seen that a uniform interface with high adhesion can be constructed.

実施例3.インピーダンス測定
実施例1及び2に記載の熱融着法及び超音波援用熱融着法により作製したLi/LAGP/Au及びLi/LLZ/Liセルを、それぞれグローブボックス中でプラスチックフィルムおよび密閉瓶に封入し、グローブボックス中から取り出して、30℃に温めた恒温槽内でインピーダンス測定を行った。交流電圧は10mV,周波数範囲は100mHz〜1MHzとした。
図4に、LAGPの両面にAu電極をスパッタリングしたAu/LAGP/Au、ホットプレートでLiを融着したLi/LAGP/Au、および超音波援用融着法によりLiを融着したLi/LAGP/Auのインピーダンスプロットを示す。インピーダンスプロットにおける円弧の右端の値が、セル全体の抵抗を意味する。
Au/LAGP/Au(a)ではLAGP固体電解質自体の抵抗が観測でき、約930オームの抵抗が観測された。Li/LAGP/AuではこれにLi/LAGP界面の抵抗が加わり、ホットプレートで融着した場合(b)は約4300オームの抵抗となった。一方で、超音波援用熱融着法で融着した場合(c)は、約1250オームの抵抗となり、Li/LAGP界面の抵抗を著しく低減することができたことが分かる。
図5に、ホットプレートにより(a)、または超音波援用熱融着法により(b)融着したLi/LLZ/Liのインピーダンスプロットを示す。
LAGP同様に、超音波援用熱融着法を用いることにより、Li/LLZ界面の抵抗を著しく低減することができたことが分かる。
Example 3. Impedance measurement Li / LAGP / Au and Li / LLZ / Li cells produced by the heat fusion method and the ultrasonic-assisted heat fusion method described in Examples 1 and 2 are placed in a plastic film and a closed bottle in a glove box, respectively. The film was sealed, taken out of the glove box, and the impedance was measured in a constant temperature bath heated to 30 ° C. The AC voltage was 10 mV and the frequency range was 100 mHz to 1 MHz.
In FIG. 4, Au / LAGP / Au in which Au electrodes are sputtered on both sides of LAGP, Li / LAGP / Au in which Li is fused on a hot plate, and Li / LAGP / in which Li is fused by an ultrasonic-assisted fusion method. The impedance plot of Au is shown. The value at the right end of the arc in the impedance plot means the resistance of the entire cell.
In Au / LAGP / Au (a), the resistance of the LAGP solid electrolyte itself was observed, and a resistance of about 930 ohms was observed. In Li / LAGP / Au, the resistance at the Li / LAGP interface was added to this, and when fused on a hot plate (b), the resistance was about 4300 ohms. On the other hand, when fused by the ultrasonic-assisted thermal fusion method (c), the resistance was about 1250 ohms, indicating that the resistance at the Li / LAGP interface could be significantly reduced.
FIG. 5 shows an impedance plot of Li / LLZ / Li fused by a hot plate (a) or by an ultrasonically assisted thermal fusion method (b).
It can be seen that the resistance at the Li / LLZ interface could be significantly reduced by using the ultrasonic-assisted heat fusion method as in LAGP.

実施例4.定電流分極測定
実施例2に記載の熱融着法及び超音波援用熱融着法により作製したLi/LLZ/Liセルを、それぞれグローブボックス中でプラスチックフィルムおよび密閉瓶に封入し、グローブボックス中から取り出して、30℃に温めた恒温槽内で定電流分極測定を行った。測定は、0.1mA/cm2の電流を30分毎に方向を逆転して流し、100時間の間電圧の変化を観測することにより、行った。
図6に、各Li/LLZ/Liセルにおいて得られた結果を示す。
ホットプレートを用いて融着した場合(a)は、測定開始後すぐに電圧が急激に降下してしまった。これはLiが一部分に集中して析出してしまい、部分的にショートしてしまったためと考えられる。一方、超音波援用熱融着法を用いて融着した場合(b)では、そのような挙動は観測されず、100時間、100回以上の電流の逆転を繰り返しても、一定の振れ幅の電圧を観測することができた。
Example 4. Constant current polarization measurement The Li / LLZ / Li cells produced by the heat fusion method and the ultrasonic-assisted heat fusion method described in Example 2 are sealed in a plastic film and a closed bottle in a glove box, respectively, and in the glove box. The constant current polarization was measured in a constant temperature bath warmed to 30 ° C. The measurement was performed by passing a current of 0.1 mA / cm 2 in the reverse direction every 30 minutes and observing the change in voltage for 100 hours.
FIG. 6 shows the results obtained in each Li / LLZ / Li cell.
In the case of fusion using a hot plate (a), the voltage dropped sharply immediately after the start of measurement. It is considered that this is because Li was concentrated in a part and precipitated, resulting in a partial short circuit. On the other hand, in the case of fusion using the ultrasonic-assisted heat fusion method (b), such behavior is not observed, and even if the current reversal is repeated 100 times or more for 100 hours, the fluctuation width is constant. I was able to observe the voltage.

実施例5.
熱溶融温度と印可する超音波の出力を変えて、スライドガラス上にLi金属を超音波援用熱融着させた。超音波の周波数は、60kHzに固定した。その結果を、図7に示す。
図7から、温度と超音波出力が低いと、Li金属は融着しにくいこと、220℃、1Wくらいからきれいに接着しだすこと、そして、240℃、5Wくらいで十分に接着できることが見て取れる。
図8に示すように、240℃、5Wの条件では、Li金属をスライドガラス上に塗り広げることで、文字のような複雑な形状を形成することも可能である。
Example 5.
Li metal was ultrasonically assisted and heat-sealed on a slide glass by changing the heat melting temperature and the output of ultrasonic waves that could be applied. The ultrasonic frequency was fixed at 60 kHz. The result is shown in FIG.
From FIG. 7, it can be seen that when the temperature and the ultrasonic output are low, the Li metal is difficult to fuse, it starts to adhere cleanly from about 220 ° C. and 1 W, and it can be sufficiently adhered at about 240 ° C. and 5 W.
As shown in FIG. 8, under the conditions of 240 ° C. and 5 W, it is possible to form a complicated shape such as a letter by spreading Li metal on a slide glass.

Claims (5)

電極材料を固体電解質上に熱融着させ、固体電解質上に金属または合金系電極を形成させることで、電極/固体電解質構造体を製造する方法であって、電極材料を固体電解質上に熱融着させる際に、電極材料を熱溶融するとともに、超音波を印可することを特徴とする方法。 A method for producing an electrode / solid electrolyte structure by heat-sealing an electrode material onto a solid electrolyte and forming a metal or alloy-based electrode on the solid electrolyte. The electrode material is heat-fused onto the solid electrolyte. A method characterized in that the electrode material is thermally melted and ultrasonic waves are applied at the time of wearing. 請求項1に記載の方法により電極/固体電解質構造体を製造し、得られた電極/固体電解質構造体を他の構成要素と組み合わせて、電気化学セルを製造する方法。 A method for producing an electrode / solid electrolyte structure by the method according to claim 1, and combining the obtained electrode / solid electrolyte structure with other components to produce an electrochemical cell. 電気化学セルが電池であることを特徴とする、請求項2に記載の方法。 The method according to claim 2, wherein the electrochemical cell is a battery. 電気化学セルが全固体電池であることを特徴とする、請求項2に記載の方法。 The method according to claim 2, wherein the electrochemical cell is an all-solid-state battery. 電気化学セルが金属−空気電池であることを特徴とする、請求項2に記載の方法。 The method of claim 2, wherein the electrochemical cell is a metal-air battery.
JP2017065336A 2017-03-29 2017-03-29 How to make electrodes Active JP6831517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065336A JP6831517B2 (en) 2017-03-29 2017-03-29 How to make electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065336A JP6831517B2 (en) 2017-03-29 2017-03-29 How to make electrodes

Publications (2)

Publication Number Publication Date
JP2018170112A JP2018170112A (en) 2018-11-01
JP6831517B2 true JP6831517B2 (en) 2021-02-17

Family

ID=64020476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065336A Active JP6831517B2 (en) 2017-03-29 2017-03-29 How to make electrodes

Country Status (1)

Country Link
JP (1) JP6831517B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380938B2 (en) * 2018-12-10 2022-07-05 Hyundai Motor Company Method of manufacturing all-solid-state battery with stable interface of lithium anode
CN110233295A (en) * 2019-06-26 2019-09-13 武汉理工大学 A kind of polymer solid lithium battery battery core ultrasound fusion process in situ
CN114497708A (en) * 2021-01-07 2022-05-13 天津理工大学 All-solid-state alkali metal battery and preparation method and application thereof
CN115000354B (en) * 2022-05-30 2024-02-20 高能时代(珠海)新能源科技有限公司 Preparation method and application of sandwich composite electrode

Also Published As

Publication number Publication date
JP2018170112A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
US11043696B2 (en) Metal alloy layers on substrates, methods of making same, and uses thereof
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
EP3361529A1 (en) All-solid-state battery and manufacturing method
KR101862665B1 (en) Method for preparing a solid-state battery by sintering under pulsating current
JP6831517B2 (en) How to make electrodes
CN109565028B (en) Method for producing an electrochemical cell having a lithium electrode, and electrochemical cell
KR101685799B1 (en) Method for manufacturing electrodes for all-solid battery and method for manufacturing all-solid battery
US10763549B2 (en) Method for producing electrochemical cells of a solid-state battery
CN104835984A (en) Manufacturing method of electrode assembly, electrode assembly and battery
WO2011148824A1 (en) Nonaqueous electrolyte battery and method for producing same
JP2016058335A (en) All-solid battery, manufacturing method thereof, and method for recovering capacity
JP6730584B2 (en) All-solid-state battery and method of manufacturing all-solid-state battery
JP2014207174A (en) Method for manufacturing lithium ion battery
JP2008171734A (en) Manufacturing method of thin film battery
Pershina et al. Cathode half-cell of all-solid-state battery, modified with LiPO 3 glass
Tang et al. Lithium-Stable High Lithium Ion Conducting Li1. 4Al0. 4Ge0. 2Ti1. 4 (PO4) 3 Solid Electrolyte
JP2018142439A (en) All-solid battery and manufacturing method of the same, and joint material
FI20207064A1 (en) Method for the manufacture of an energy storage device utilizing lithium and solid inorganic electrolytes
Kitaura et al. Fabrication of Li Metal–Sulfide Solid Electrolyte Interface Using Ultrasonic-Assisted Fusion Welding Process
JP2020095814A (en) Electrode for lithium ion battery, lithium ion battery, and method for manufacturing electrode for lithium ion battery
CN111755733A (en) All-solid-state battery and method for manufacturing same
US20150053889A1 (en) High-Power and High-Energy-Density Lithium Compound Solid-State Cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210113

R150 Certificate of patent or registration of utility model

Ref document number: 6831517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250