JP6830801B2 - Treatment method of wastewater containing oxidizable substances - Google Patents

Treatment method of wastewater containing oxidizable substances Download PDF

Info

Publication number
JP6830801B2
JP6830801B2 JP2016230131A JP2016230131A JP6830801B2 JP 6830801 B2 JP6830801 B2 JP 6830801B2 JP 2016230131 A JP2016230131 A JP 2016230131A JP 2016230131 A JP2016230131 A JP 2016230131A JP 6830801 B2 JP6830801 B2 JP 6830801B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
activated carbon
salt
ferrous
iron salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016230131A
Other languages
Japanese (ja)
Other versions
JP2018086614A (en
Inventor
阿部 久起
久起 阿部
腰塚 哲夫
哲夫 腰塚
隆之 徳丸
隆之 徳丸
朋樹 川岸
朋樹 川岸
貴永 安保
貴永 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
DIA Aqua Solutions Co Inc
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
DIA Aqua Solutions Co Inc
Mitsubishi Chemical Aqua Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, DIA Aqua Solutions Co Inc, Mitsubishi Chemical Aqua Solutions Co Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2016230131A priority Critical patent/JP6830801B2/en
Priority to CN201711202762.XA priority patent/CN108117186B/en
Publication of JP2018086614A publication Critical patent/JP2018086614A/en
Application granted granted Critical
Publication of JP6830801B2 publication Critical patent/JP6830801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、被酸化性物質を含有する廃水の処理方法に関する。更に詳しくは、難分解性の被酸化性物質を含有する廃水の処理方法に関するものである。 The present invention relates to a method for treating wastewater containing an oxidizing substance. More specifically, the present invention relates to a method for treating wastewater containing a persistently decomposable substance to be oxidized.

現代社会では、様々な生産活動において様々な化学物質を含んだ廃水が排出される。これらの化学物質のほとんどは環境にとって有害な物質である。従って、これらの有害な化学物質を含んだ廃水は何らかの処理を行って無害とするか、その含有量を極力ゼロに近づけて排出しなければならない。 In modern society, wastewater containing various chemical substances is discharged in various production activities. Most of these chemicals are harmful to the environment. Therefore, wastewater containing these harmful chemical substances must be treated to make it harmless, or its content must be discharged as close to zero as possible.

有害な化学物質を含有した廃水の処理方法としては、活性汚泥法が一般的である。この方法は、微生物の代謝機能を利用してこれらの有害物質を分解する方法であり、ランニングコストとしては微生物の栄養剤のみを要する安価な方法である。しかし、この方法は、広い敷地が必要であることに加え、微生物の代謝機能を利用して化学物質を分解するために、分解できない難分解性化学物質があることが欠点である。 The activated sludge method is generally used as a method for treating wastewater containing harmful chemical substances. This method is a method of decomposing these harmful substances by utilizing the metabolic function of microorganisms, and is an inexpensive method that requires only microbial nutrients as a running cost. However, this method has the disadvantages that it requires a large site and that there are persistent chemical substances that cannot be decomposed because the chemical substances are decomposed by utilizing the metabolic function of microorganisms.

この微生物で分解できない難分解性化学物質を分解する方法として、オゾン、UV、酸素、過酸化水素、マイクロ波等を利用した方法が開発されている。これらの方法はアドバンスドオキシデーションプロセス(AOP法)と呼ばれている。 As a method for decomposing a persistent chemical substance that cannot be decomposed by this microorganism, a method using ozone, UV, oxygen, hydrogen peroxide, microwaves, or the like has been developed. These methods are called advanced oxidation processes (AOP methods).

このAOP法の中で、過酸化水素と第一鉄塩を利用した方法はフェントン法とよばれ、1890年代にフェントン氏によってその現象が初めて発見された。この方法は、第一鉄イオンと過酸化水素が酸性で反応した時に生成するOHラジカルが、難分解性化学物質を分解することを利用した方法である。 Among these AOP methods, the method using hydrogen peroxide and ferrous salt is called the Fenton method, and the phenomenon was first discovered by Mr. Fenton in the 1890s. This method utilizes the fact that OH radicals generated when ferrous ions react with hydrogen peroxide in an acidic manner decompose persistent chemical substances.

しかしながら、この方法では、第一鉄イオンが過酸化水素と反応し第二鉄イオンとなる副反応も同時に起こる。この第二鉄イオンは過酸化水素と反応して再び第一鉄イオンとなるが、この還元反応は副反応と比べると反応速度が遅いため、廃水中の難分解性化学物質の分解反応が進むにつれてこの第二鉄イオンの量も増え、OHラジカルの生成が次第に減少し、ついに反応が停止してしまう。 However, in this method, a side reaction in which ferrous ions react with hydrogen peroxide to become ferric ions also occurs at the same time. This ferric ion reacts with hydrogen peroxide to become ferric ion again, but since this reduction reaction has a slower reaction rate than the side reaction, the decomposition reaction of persistent chemical substances in waste water proceeds. As the amount of ferric ion increases, the production of OH radicals gradually decreases, and the reaction finally stops.

このフェントン法の反応により生じた第二鉄イオンの第一鉄イオンへの変換を促進し、第一鉄イオンと過酸化水素の反応によるOHラジカルの生成を優先させる触媒として活性炭の利用が提案されている。しかしながら、単に活性炭を添加したフェントン法を実施しても、有機物の分解効率を若干上げるだけで、むしろ活性炭、鉄塩の廃棄物が増加するとの問題があった。 The use of activated charcoal has been proposed as a catalyst that promotes the conversion of ferric ions generated by the reaction of this Fenton method to ferrous ions and prioritizes the generation of OH radicals by the reaction of ferric ions and hydrogen peroxide. ing. However, even if the Fenton method in which activated carbon is simply added is carried out, there is a problem that the waste of activated carbon and iron salts increases only by slightly increasing the decomposition efficiency of organic matter.

例えば、有機性廃水に活性炭を添加後、35%過酸化水素及び硫酸第一鉄を添加して常温で5時間撹拌し、次いで廃水pHを6.2に調整し、沈殿した水酸化鉄及び活性炭をリサイクルする方法が報告されている(例えば、特許文献1参照)。しかし、我々の検討結果によると、この方法は有機性廃水(主成分スチレン、マレイン酸エステル、高級アルコール、pH8.2、COD300ppm)の分解割合が低く、かつ活性炭の劣化が大きく触媒のリサイクルが数回にとどまり、廃棄物の減少効果は小さかった。 For example, after adding activated charcoal to organic wastewater, 35% hydrogen peroxide and ferrous sulfate are added and stirred at room temperature for 5 hours, then the pH of the wastewater is adjusted to 6.2, and precipitated iron hydroxide and activated charcoal are used. A method for recycling hydrogen peroxide has been reported (see, for example, Patent Document 1). However, according to the results of our study, this method has a low decomposition rate of organic wastewater (main component styrene, maleic acid ester, higher alcohol, pH 8.2, COD 300ppm), and the deterioration of activated carbon is large, and the number of catalysts recycled is large. The effect of reducing waste was small.

また、過酸化水素、第一鉄塩または第二鉄塩及び活性炭を添加して有機物を分解する水処理方法において、添加する第一鉄イオンの量に対する活性炭の量を重量比で1〜20倍とし、かつ添加する第一鉄イオンの量に対する返送する汚泥の量を重量比で50〜1300倍とする方法が報告されている(例えば、特許文献2参照)。しかし、この方法は過酸化水素を一括添加することによる触媒の劣化が大きい、返送汚泥中の鉄塩が第二鉄イオンとなっているために過酸化水素と第二鉄イオンの反応によるOHラジカルの発生効率が悪い、及び鉄イオンと活性炭をリサイクルするに従い廃水中の有機物の分解効率が低下するとの問題があり、鉄塩と活性炭に由来する廃棄物の減少効果も小さかった。 Further, in a water treatment method in which hydrogen peroxide, ferrous salt or ferric salt and activated carbon are added to decompose organic substances, the amount of activated carbon is multiplied by 1 to 20 times by weight with respect to the amount of ferrous ions added. A method has been reported in which the amount of sludge returned is 50 to 1300 times by weight with respect to the amount of ferric ions to be added (see, for example, Patent Document 2). However, in this method, the deterioration of the catalyst is large due to the batch addition of hydrogen peroxide. Since the iron salt in the returned sludge is ferric ions, the OH radicals due to the reaction between hydrogen peroxide and ferric ions There is a problem that the efficiency of generating hydrogen peroxide is low and the efficiency of decomposition of organic substances in wastewater decreases as iron ions and activated charcoal are recycled, and the effect of reducing waste derived from iron salts and activated charcoal is also small.

さらに過酸化水素、硫酸第一鉄及び活性炭で有機物含有廃水を処理する方法が報告されている(例えば、特許文献3参照)。ここで、過酸化水素の添加は撹拌しながらゆっくりと添加するのが好ましく、2〜3時間で添加するのが好ましいとされているが、実施例では多量の過酸化水素が添加されており、活性炭の劣化が大きいことが欠点である。また鉄塩を含んだ活性炭のリサイクル処理については何ら記載されていない。 Further, a method for treating organic matter-containing wastewater with hydrogen peroxide, ferrous sulfate and activated carbon has been reported (see, for example, Patent Document 3). Here, it is said that hydrogen peroxide is preferably added slowly with stirring, and it is preferable to add hydrogen peroxide in 2 to 3 hours, but in the examples, a large amount of hydrogen peroxide is added. The disadvantage is that the activated carbon deteriorates significantly. In addition, there is no description about the recycling treatment of activated carbon containing iron salts.

その他にも、過酸化水素、鉄塩及び活性炭による有機物含有廃水の処理法が報告されている(例えば、特許文献4参照)。この公報の実施例には時間をかけて過酸化水素を添加する方法が公開されているが、これによる活性炭の劣化、並びに鉄塩及び活性炭のリサイクルについては何ら公開されていない。また、過酸化水素処理後の第二鉄イオンの第一鉄イオンへの処理についても何ら公開されていない。 In addition, a method for treating organic matter-containing wastewater with hydrogen peroxide, iron salts and activated carbon has been reported (see, for example, Patent Document 4). In the examples of this publication, a method of adding hydrogen peroxide over time is disclosed, but the deterioration of activated carbon due to this and the recycling of iron salts and activated carbon are not disclosed at all. In addition, the treatment of ferric ions into ferric ions after hydrogen peroxide treatment is not disclosed at all.

以上のように、過酸化水素、第一鉄塩及び活性炭で有機物を分解する方法、並びに反応触媒である鉄塩と活性炭のリサイクルついては種々報告されているが、反応触媒のリサイクル回数を飛躍的に増大する方法、鉄イオンを第一鉄イオンとしてリサイクルする方法については何ら報告されていない。 As described above, various reports have been made on the method of decomposing organic substances with hydrogen peroxide, ferrous salt and activated carbon, and the recycling of iron salt and activated carbon as reaction catalysts, but the number of times the reaction catalyst is recycled has been dramatically increased. No reports have been made on how to increase or recycle iron ions as ferrous ions.

特開昭56−48290号公報Japanese Unexamined Patent Publication No. 56-48290 特開2008−229415号公報Japanese Unexamined Patent Publication No. 2008-229415 特開昭63−264194号公報Japanese Unexamined Patent Publication No. 63-264194 特開2006−187725号公報Japanese Unexamined Patent Publication No. 2006-187725

このように、被酸化性物質を含んだ廃水の処理方法として、フェントン法に過酸化水素分解効果を持った活性炭を添加する方法が知られている。しかしこれらの方法は活性炭の添加量が多く、また他の処理方法に比べ、処理コストが高く実用化に至っていない。 As described above, as a method for treating wastewater containing an oxidizable substance, a method of adding activated carbon having a hydrogen peroxide decomposition effect to the Fenton method is known. However, these methods add a large amount of activated carbon, and the treatment cost is high as compared with other treatment methods, and they have not been put into practical use.

本発明の目的は、これらの問題を解決して、過酸化水素、鉄塩及び活性炭で、廃水中の難分解性の被酸化性物質を効率よく分解する、被酸化性物質含有廃水の処理方法を提供することにある。即ち、活性炭を使用して難分解性被酸化性物質を分解する場合、1)過酸化水素が無駄に分解する、2)活性炭が劣化する、3)鉄塩が第二鉄塩となり被酸化性物質の分解効率が低下する、4)鉄塩及び活性炭が劣化してリサイクル回数が上がらない、5)鉄塩及び活性炭の産業廃棄物が増大する等の問題があった。本発明の目的は、これらの課題を解決して、短時間で、低コストで、安全に難分解性被酸化性物質を処理する方法を提供することである。 An object of the present invention is a method for treating wastewater containing an oxidizing substance, which solves these problems and efficiently decomposes a persistently decomposable substance in the wastewater with hydrogen peroxide, an iron salt and activated carbon. Is to provide. That is, when decomposing a persistent oxidizable substance using activated charcoal, 1) hydrogen peroxide is wastefully decomposed, 2) activated charcoal is deteriorated, and 3) iron salt becomes ferric salt and is oxidizable. There have been problems such as a decrease in the decomposition efficiency of substances, 4) deterioration of iron salts and activated charcoal, and an increase in the number of recyclings, and 5) an increase in industrial waste of iron salts and activated charcoal. An object of the present invention is to solve these problems and to provide a method for safely treating a persistently degradable oxidizing substance in a short time and at a low cost.

本発明者、これらの課題の解決について鋭意検討した結果、1)過酸化水素の添加速度の制御、2)活性炭の劣化の抑制、3)反応終了後の鉄塩を第二鉄イオンから第一鉄イオンへ変換する、4)第一鉄イオンを含む排水を適正pHで中和する、5)中和処理後に処理水と、水酸化第一鉄等の第一鉄塩を含む鉄塩及び活性炭とを所定時間以内で分離する、6)中和後の水酸化第一鉄等の第一鉄塩を含む鉄塩と活性炭を適正pHに調整し、再溶解させること、7)処理水と水酸化第一鉄等の第一鉄塩を含む鉄塩、活性炭の分離に膜を利用すること、8)回収した第一鉄塩を含む鉄塩と活性炭を反応工程へリサイクルすること、以上の要素を適正に組み合わせることにより、難分解性被酸化性物質含有廃水を鉄塩及び活性炭の廃棄物量を極力少なくし、短時間で、低コストで、安全に処理する方法を見出し本発明に到達した。即ち、本発明は以下のとおりである。 As a result of diligent studies by the present inventor to solve these problems, 1) control of the addition rate of hydrogen peroxide, 2) suppression of deterioration of activated charcoal, and 3) iron salt after completion of the reaction are first derived from ferric ions. Convert to iron ions 4) Neutralize wastewater containing ferrous ions at an appropriate pH 5) Treated water after neutralization treatment, iron salts containing ferrous salts such as ferrous hydroxide, and activated carbon 6) Adjust the iron salt containing ferrous salt such as ferrous hydroxide after neutralization and activated charcoal to an appropriate pH and redissolve, 7) Treated water and water Use a membrane to separate iron salts containing ferrous salts such as ferrous oxide and activated charcoal, 8) Recycle the recovered ferrous salt-containing iron salts and activated charcoal into the reaction process. We have found a method for safely treating persistently decomposable oxidizable substance-containing wastewater by reducing the amount of iron salt and activated charcoal waste as much as possible, in a short time, at low cost, and arrived at the present invention. That is, the present invention is as follows.

[1] 過酸化水素を、鉄塩、活性炭及び被酸化性物質含有廃水を含む反応液に添加し、被酸化性物質を分解させる工程を含む、被酸化性物質含有廃水の処理方法であって、
分解工程における過酸化水素の添加速度(対活性炭に対する質量%/分)を下記式1の範囲とすることを特徴とする、処理方法。

(式中、HFは、活性炭の過酸化水素分解活性である。)
[2] 過酸化水素の添加終了後、反応液を、その残存過酸化水素濃度が20ppm以下となるまで撹拌し、分解工程で副生した第二鉄塩を第一鉄塩へ変換する工程を含む、[1]記載の処理方法。
[3] 変換工程終了後、反応液をpH7.0〜9.0にpH調整する工程を含む、[2]記載の処理方法。
[4] pH調整工程終了後60分以内に反応液を、第一鉄塩を含む鉄塩及び活性炭と、処理水とに分離する工程を含む、[3]記載の処理方法。
[5] 分離工程が、膜ろ過を使用するろ過であることを特徴とする、[4]記載の処理方法。
[6] 分離工程が、中空糸膜を使用するろ過であることを特徴とする、[4]または[5]記載の処理方法。
[7] 第一鉄塩を含む鉄塩及び活性炭を分離後、第一鉄塩を含む鉄塩及び活性炭を処理水で希釈し、pH1.0〜3.0に調整し、第一鉄塩を含む鉄塩を再溶解させ、この希釈液を反応触媒として再利用することを特徴とする、[4]〜[6]のいずれか記載の処理方法。
[8] 過酸化水素を、鉄塩、活性炭及び被酸化性物質含有廃水を含む反応液に添加し、過酸化水素添加終了後、残存過酸化水素が20ppm以下となるまで撹拌し、次いで反応液をpH7.3〜7.8にpH調整し、次いで60分以内に反応液を中空糸膜でろ過し、得られた第一鉄塩を含む鉄塩及び活性炭を処理水で希釈し、pH2.0〜3.0に調整し、この鉄塩と活性炭を次回の反応に再利用することを特徴とし、かつ分解工程における、過酸化水素の添加速度(対活性炭に対する質量%/分)を下記式1の範囲とすることを特徴とする、被酸化性物質含有廃水の処理方法。

(HFは、活性炭の過酸化水素分解活性である。)
[1] A method for treating wastewater containing an oxidizing substance, which comprises a step of adding hydrogen peroxide to a reaction solution containing iron salt, activated carbon and wastewater containing an oxidizing substance to decompose the oxidizing substance. ,
A treatment method characterized in that the addition rate of hydrogen peroxide (mass% / min relative to activated carbon) in the decomposition step is within the range of the following formula 1.

(In the formula, HF is the hydrogen peroxide decomposition activity of activated carbon.)
[2] After the addition of hydrogen peroxide is completed, the reaction solution is stirred until the residual hydrogen peroxide concentration becomes 20 ppm or less, and the ferric salt produced as a by-product in the decomposition step is converted into ferric salt. The processing method according to [1], which includes.
[3] The treatment method according to [2], which comprises a step of adjusting the pH of the reaction solution to pH 7.0 to 9.0 after the conversion step is completed.
[4] The treatment method according to [3], which comprises a step of separating the reaction solution into an iron salt containing a ferrous salt, activated carbon, and treated water within 60 minutes after the completion of the pH adjustment step.
[5] The treatment method according to [4], wherein the separation step is filtration using membrane filtration.
[6] The treatment method according to [4] or [5], wherein the separation step is filtration using a hollow fiber membrane.
[7] After separating the iron salt containing ferrous salt and activated charcoal, the iron salt containing ferrous salt and activated charcoal are diluted with treated water to adjust the pH to 1.0 to 3.0, and the ferrous salt is prepared. The treatment method according to any one of [4] to [6], wherein the iron salt contained therein is redissolved and the diluted solution is reused as a reaction catalyst.
[8] Hydrogen peroxide is added to a reaction solution containing iron salt, activated carbon and waste water containing an oxidizing substance, and after the addition of hydrogen peroxide is completed, the mixture is stirred until the residual hydrogen peroxide becomes 20 ppm or less, and then the reaction solution. The pH was adjusted to 7.3 to 7.8, and then the reaction solution was filtered through a hollow thread film within 60 minutes, and the obtained ferrous salt-containing iron salt and activated carbon were diluted with treated water to obtain pH 2. The iron salt and activated carbon are adjusted to 0 to 3.0 and reused in the next reaction, and the rate of addition of hydrogen peroxide (mass% / minute relative to activated carbon) in the decomposition step is expressed by the following formula. A method for treating wastewater containing an oxidizable substance, which comprises the range of 1.

(HF is the hydrogen peroxide decomposing activity of activated carbon.)

尚、前記式1は、下記を意味する。 The formula 1 means the following.

本発明により、生物処理では難しかった廃水中の難分解性の有機化合物、特に難分解性の被酸化性物質を効率的に分解することができるとともに、活性炭を使用したフェントン法の問題点であった、処理コスト、廃棄物量について、鉄塩及び活性炭の使用量を大幅に削減でき、かつこれらのリサイクル回数を飛躍的に増大できることによって解決した。 INDUSTRIAL APPLICABILITY According to the present invention, persistent organic compounds in wastewater, particularly persistent oxidizable substances, which are difficult to treat by biological treatment, can be efficiently decomposed, and the Fenton method using activated charcoal is a problem. In addition, the treatment cost and the amount of waste have been solved by being able to significantly reduce the amount of iron salts and activated charcoal used, and to dramatically increase the number of times these are recycled.

本発明の方法の一実施態様のフロー図を示す。The flow chart of one Embodiment of the method of this invention is shown. 本発明の方法の一実施態様の装置(活性炭添加フェントン反応設備)を示す。The apparatus (activated carbon addition Fenton reaction equipment) of one Embodiment of the method of this invention is shown. 各被酸化性物質含有量における、過酸化水素の添加速度(%/分)とリサイクル回数の関係を示す。The relationship between the hydrogen peroxide addition rate (% / min) and the number of times of recycling at each oxidizable substance content is shown. 各活性炭の過酸化水素分解活性における、過酸化水素の添加速度(%/分)とリサイクル回数の関係を示す。The relationship between the hydrogen peroxide addition rate (% / min) and the number of times of recycling in the hydrogen peroxide decomposition activity of each activated carbon is shown.

以下に本発明を具体的に説明する。
本発明の一実施態様において、分解工程(1)の反応装置としては、バッチ反応の場合、一般的な攪拌機付のタンクが使用される。連続反応の場合はバッチ反応で使用したタンクを連続で何槽かシリーズに連結する方法、または反応槽内を何槽かに区切ったカスケード方式等、本発明の方法を実施できる形態であれば何でもよい。
The present invention will be specifically described below.
In one embodiment of the present invention, in the case of a batch reaction, a tank with a general stirrer is used as the reaction device in the decomposition step (1). In the case of continuous reaction, any embodiment can carry out the method of the present invention, such as a method of continuously connecting the tanks used in the batch reaction to several tanks in a series, or a cascade method in which the inside of the reaction tank is divided into several tanks. Good.

薬品の添加方法としては、まず反応容器に鉄塩、活性炭及び被酸化性物質含有廃水を所定量添加する。この鉄塩、活性炭及び被酸化性物質含有廃水の添加順序はいずれが先でもよい。鉄塩としては、例えば、硫酸第一鉄(II)、硫酸第二鉄(III)、塩化第一鉄(II)、塩化第二鉄(III)、硝酸第一鉄(II)、硝酸第二鉄(III)、臭化鉄(II)、臭化鉄(II、III)、フッ化鉄(II、III)、水酸化鉄(II、III)、リン酸鉄(II、III)などが挙げられるが、価格、操作性の点から第一鉄塩が好ましく、硫酸第一鉄が特に好ましい。若干反応効率は低下するが、酸化鉄(II)、金属鉄も使用可能である。これらを単独で、又は組み合わせて使用してもよい。鉄塩の使用量には特に制限はなく、必要とされる対象物の処理レベルにより適宜選択されるが、硫酸第一鉄を使用する場合、処理対象物(被酸化性物質含有廃水)に対して0.01〜5質量%である。 As a method of adding chemicals, first, a predetermined amount of iron salt, activated carbon and wastewater containing an oxidizing substance is added to the reaction vessel. The order of adding the iron salt, activated carbon and wastewater containing an oxidizable substance may be any first. Examples of iron salts include ferrous sulfate (II), ferric sulfate (III), ferrous chloride (II), ferric chloride (III), ferrous nitrate (II), and ferric nitrate. Iron (III), iron bromide (II), iron bromide (II, III), iron fluoride (II, III), iron hydroxide (II, III), iron phosphate (II, III), etc. However, ferric salts are preferable from the viewpoint of price and operability, and ferric sulfate is particularly preferable. Iron (II) oxide and metallic iron can also be used, although the reaction efficiency is slightly reduced. These may be used alone or in combination. The amount of iron salt used is not particularly limited and is appropriately selected depending on the required treatment level of the object. However, when ferrous sulfate is used, it is applied to the object to be treated (wastewater containing an oxidizing substance). It is 0.01 to 5% by mass.

本発明で使用する活性炭は、被酸化性物質及び第一鉄イオンと過酸化水素の反応による第二鉄イオンへの変換を抑え、かつ過酸化水素の無駄な分解を抑えられるものであればよく、その由来は特に限定されない。活性炭の原料は、通常、木材、セルロース、のこくず、木炭、ヤシガラ炭、パーム核炭、素灰などの植物質を原料としたもの、泥炭、亜炭、褐炭、瀝青炭、無煙炭などの石炭系鉱物質を原料としたもの、石油残渣、硫酸スラッジ、オイルカーボンなどの石油系鉱物質を原料としたもの、発酵生産の廃菌体を原料としたもの、ポリアクリル(PAN)を原料としたものなどが挙げられるが、その中でも、特に瀝青炭、醸造後の廃菌体、菌体を主成分とする廃水処理の汚泥、おから、PANなどの賦活前の炭化物の窒素濃度が1%以上になる有機物を原料とする活性炭が好適に使用される。また、これらの活性炭に処理を加え、過酸化水素に分解能力を付与する、あるいは向上させて使用することもできる。この活性炭の使用量には特に制限はなく、必要とされる対象物の処理レベルにより適宜選択されるが、処理対象物に対して0.01〜5質量%である。 The activated charcoal used in the present invention may be any as long as it can suppress the conversion of an oxidizable substance and ferrous ions to ferric ions by the reaction of hydrogen peroxide and can suppress the wasteful decomposition of hydrogen peroxide. , The origin is not particularly limited. The raw materials for activated carbon are usually wood, cellulose, scraps, charcoal, coconut husks, palm kernels, raw ash and other vegetable materials, and coal-based minerals such as peat, sub-coal, lignite, bituminous coal and smokeless coal. Quality-based materials, petroleum residues, sulfuric acid sludge, oil carbon and other petroleum-based mineral substances, fermented waste cells, polyacrylic (PAN), etc. Among them, bituminous coal, waste cells after brewing, wastewater treatment sludge containing the cells as the main component, and organic substances such as okara and PAN that have a carbon dioxide concentration of 1% or more before activation. Activated carbon made from the above is preferably used. Further, these activated carbons can be treated to impart or improve the decomposition ability of hydrogen peroxide before use. The amount of this activated carbon used is not particularly limited and is appropriately selected depending on the required treatment level of the object, but is 0.01 to 5% by mass with respect to the object to be treated.

本発明の被酸化性物質含有廃水は、例えば工場や事業所から排出される工業廃水、農業廃水などが挙げられる。これらの被酸化性物質含有廃水中には、ダイオキシン類、各種有機溶剤、含ハロゲン有機溶剤、含硫有機溶媒、含硫化合物、各種界面活性剤、各種アミン類、テトラメチルアンモニウムハイドロオキサイド等の有機アルカリを含む各種窒素化合物や、各種難分解性物質を含む場合がある。 Examples of the oxidizable substance-containing wastewater of the present invention include industrial wastewater and agricultural wastewater discharged from factories and business establishments. In these oxidizable substance-containing wastewater, organic substances such as dioxins, various organic solvents, halogen-containing organic solvents, sulfur-containing organic solvents, sulfur-containing compounds, various surfactants, various amines, and tetramethylammonium hydroxide are included. It may contain various nitrogen compounds including alkali and various persistent substances.

次いで、鉄塩、活性炭及び被酸化性物質含有廃水を含む反応液のpHは、酸性条件であればよいが、好ましくは4〜1の範囲、より好ましくは3.5〜1、更に好ましくは3〜2の範囲である。pH調整には硫酸、塩酸、硝酸等の酸が用いられるが、被酸化性物質の良好な分解率の観点から、硫酸を使用するのが好ましい。 Next, the pH of the reaction solution containing iron salt, activated carbon and wastewater containing an oxidizing substance may be in an acidic condition, but is preferably in the range of 4-1 and more preferably 3.5 to 1, still more preferably 3. It is in the range of ~ 2. Acids such as sulfuric acid, hydrochloric acid, and nitric acid are used for pH adjustment, but sulfuric acid is preferably used from the viewpoint of good decomposition rate of oxidizing substances.

次いで、過酸化水素を添加する。使用する過酸化水素の濃度に特に限定はないが、市販の35%、45%、60%が使用できる。過酸化水素添加量としては要求される排出基準により特に限定されないが、廃水中の被酸化性物質の種類が分かっていればTOD(トータル酸素要求量:被酸化性物質を全て二酸化炭素または水等にするために必要な酸素量)または被酸化性物質の構造が分からない場合はTOC(トータル有機炭素:廃水中の被酸化性物質を二酸化炭素に分解するために必要な酸素量)の量により決定される。廃水中のTODまたはTOCから換算される過酸化水素の0.5〜5倍が使用されるが、好ましくは1〜3倍が使用される。 Then hydrogen peroxide is added. The concentration of hydrogen peroxide used is not particularly limited, but commercially available 35%, 45%, and 60% can be used. The amount of hydrogen peroxide added is not particularly limited by the required emission standards, but if the type of oxidizing substances in the waste water is known, TOD (total oxygen requirement: all oxidizing substances are carbon dioxide or water, etc.) If you do not know the structure of the oxidizable substance, the amount of TOC (total organic carbon: the amount of oxygen required to decompose the oxidizable substance in the waste water into carbon dioxide) It is determined. 0.5 to 5 times, but preferably 1 to 3 times, hydrogen peroxide converted from TOD or TOC in wastewater is used.

過酸化水素の添加量としては、廃水中のCODまたはTOCを所定濃度まで下げるために必要とされる量が添加される。添加方法としては一括で添加せず、所定速度で添加する。一括で添加した場合、過酸化水素の分解触媒である活性炭が劣化し、その被酸化性物質の分解能力が低下してリサイクル使用ができないとの問題がある。また、過酸化水素が活性炭により無駄に酸素に分解して、廃水中の被酸化性物質の分解効率が低下するとの問題がある。これらの問題を解決するための方法について種々検討した結果、活性炭に対してある速度で過酸化水素を添加することにより活性炭の劣化を抑制し、活性炭を飛躍的にリサイクル使用することができることを見出した。即ち、過酸化水素の添加速度(対活性炭に対する質量%/分)は過酸化水素分解活性(HF)との関係で(0.05%/分〜10.5%/分)×HF/26、好ましくは(0.05%/分〜8%/分)×HF/26である。10.5%/分×HF/26を超える速度で過酸化水素を添加すると、被酸化性物質の酸化分解効率が悪く、残存する過酸化水素濃度が高くなる。また、活性炭の劣化が激しく、被酸化性物質の分解効率が急激に低下して活性炭のリサイクル使用がほとんどできないとの問題がある。一方、過酸化水素の添加速度を0.05%/分×HF/26未満とすると、活性炭のリサイクル回数は飛躍的に向上するが、反応時間が非常に長くなる。また、過酸化水素の活性炭による酸素への無駄な分解が優先され被酸化性物質の分解効率が低下するとの問題がある。 As the amount of hydrogen peroxide added, an amount required to reduce the COD or TOC in the wastewater to a predetermined concentration is added. As an addition method, it is not added all at once, but is added at a predetermined rate. When added all at once, there is a problem that activated carbon, which is a decomposition catalyst for hydrogen peroxide, deteriorates, and the decomposition ability of the oxidizable substance decreases, so that it cannot be recycled. Further, there is a problem that hydrogen peroxide is wastefully decomposed into oxygen by activated carbon, and the decomposition efficiency of an oxidizable substance in wastewater is lowered. As a result of various studies on methods for solving these problems, it was found that by adding hydrogen peroxide to activated carbon at a certain rate, deterioration of activated carbon can be suppressed and activated carbon can be dramatically recycled and used. It was. That is, the addition rate of hydrogen peroxide (mass% / min relative to activated carbon) is related to the hydrogen peroxide decomposition activity (HF) (0.05% / min to 10.5% / min) x HF / 26. It is preferably (0.05% / min to 8% / min) x HF / 26. When hydrogen peroxide is added at a rate exceeding 10.5% / min × HF / 26, the oxidative decomposition efficiency of the oxidizing substance is poor and the residual hydrogen peroxide concentration becomes high. Further, there is a problem that the activated carbon is severely deteriorated, the decomposition efficiency of the oxidizable substance is sharply lowered, and the activated carbon cannot be recycled and used. On the other hand, when the addition rate of hydrogen peroxide is less than 0.05% / min × HF / 26, the number of times of recycling of activated carbon is dramatically improved, but the reaction time becomes very long. Further, there is a problem that wasteful decomposition of hydrogen peroxide into oxygen by activated carbon is prioritized and the decomposition efficiency of an oxidizing substance is lowered.

本発明における、活性炭の過酸化水素分解活性(HF)の測定法は以下のとおりである:
(1)1Lのトールビーカーに純水800mlを採取する。
(2)25℃の恒温槽に入れ撹拌する。
(3)31質量%過酸化水素10mLを加える。過酸化水素濃度0.4193(w/v)%。
(4)過酸化水素水溶液の温度が25℃±1℃になったら、粉末活性炭(測定試料)150mgを添加する。
(5)30分後に約20mLサンプリングし、0.45μmフィルターでろ過する。
(6)ろ液5mLをメスピペットで採取し、100mL三角フラスコに入れる。
(7)2N硫酸10mLを加え、撹拌しながら0.02M過マンガン酸カリウム溶液で滴定する。
(8)得られた滴定量(amL)を下記式に挿入し、活性炭(測定試料)の過酸化水素分解活性(HF)を算出する。
The method for measuring the hydrogen peroxide decomposition activity (HF) of activated carbon in the present invention is as follows:
(1) Collect 800 ml of pure water in a 1 L tall beaker.
(2) Place in a constant temperature bath at 25 ° C. and stir.
(3) Add 10 mL of 31 mass% hydrogen peroxide. Hydrogen peroxide concentration 0.4193 (w / v)%.
(4) When the temperature of the hydrogen peroxide aqueous solution reaches 25 ° C. ± 1 ° C., 150 mg of powdered activated carbon (measurement sample) is added.
(5) After 30 minutes, sample about 20 mL and filter with a 0.45 μm filter.
(6) Collect 5 mL of the filtrate with a measuring pipette and put it in a 100 mL Erlenmeyer flask.
(7) Add 10 mL of 2N sulfuric acid and titrate with 0.02 M potassium permanganate solution with stirring.
(8) The obtained titration amount (amL) is inserted into the following formula to calculate the hydrogen peroxide decomposition activity (HF) of the activated carbon (measurement sample).

次いで、鉄塩の第一鉄塩変換工程(2)について記す。本発明方法の反応中に第一鉄イオンは過酸化水素により第二鉄イオンに酸化される。この第二鉄イオンは過酸化水素と反応してOHラジカルを出さず、これが増えてくると廃水中の被酸化性物質の分解効率が低下するとの問題がある。従って、鉄塩をリサイクルするためにはこの第二鉄塩を第一鉄塩にする必要がある。この工程が第一鉄塩変換工程(2)である。この工程は反応工程(1)で過酸化水素を活性炭に対して所定速度で添加終了し、そのまま残存過酸化水素濃度が20ppm以下まで撹拌させることにより第二鉄塩を第一鉄塩に変換できる。過酸化水素添加終了直後、残存過酸化水素濃度が20ppm以下になっている場合はそのまま終了する。 Next, the ferrous salt conversion step (2) of the iron salt will be described. During the reaction of the method of the present invention, ferrous ions are oxidized to ferric ions by hydrogen peroxide. This ferric ion reacts with hydrogen peroxide to not generate OH radicals, and if this amount increases, there is a problem that the decomposition efficiency of oxidizable substances in wastewater decreases. Therefore, in order to recycle the iron salt, it is necessary to convert this ferric salt into a ferric salt. This step is the ferrous salt conversion step (2). In this step, hydrogen peroxide is added to the activated carbon at a predetermined rate in the reaction step (1), and the ferric salt can be converted to ferric salt by stirring the residual hydrogen peroxide concentration to 20 ppm or less. .. Immediately after the addition of hydrogen peroxide is completed, if the residual hydrogen peroxide concentration is 20 ppm or less, the process is terminated as it is.

次いで、中和反応工程(3)について記す。活性炭、第一鉄イオンを含んだ反応液はpH7.0〜9.0、好ましくは7.0〜8.0、より好ましくは7.3〜7.8とし、第一鉄イオンを第一鉄塩、具体的には、水酸化第一鉄とする。pH7.0未満で中和した場合は、鉄塩の不溶化が不十分で反応液中に鉄塩が多く溶存したままとなる。また、pHが9.0を超える場合は、被酸化性物質によっては鉄塩が錯体を形成して再溶解し反応液中に鉄塩が多く溶存したままとなること、活性炭に吸着していたCOD成分が再溶解して反応液中のCOD成分が増大するとの問題がある。中和処理をするためのアルカリ剤としては、NaOH、Ca(OH)、KOH等が使用できる。また、生成した水酸化第一鉄を出来るだけ酸化させないように、攪拌時の空気接触は避けることが好ましい。しかしながら、中和反応工程(3)の「第一鉄塩を含む鉄塩」には、水酸化第一鉄と共に、他の第一鉄塩及び酸化鉄が含まれ得る。 Next, the neutralization reaction step (3) will be described. The reaction solution containing activated carbon and ferrous ions has a pH of 7.0 to 9.0, preferably 7.0 to 8.0, more preferably 7.3 to 7.8, and the ferrous ions are ferrous. A salt, specifically ferrous hydroxide. When neutralized at a pH of less than 7.0, the insolubilization of the iron salt is insufficient and a large amount of the iron salt remains dissolved in the reaction solution. In addition, when the pH exceeded 9.0, depending on the oxidizing substance, the iron salt formed a complex and redissolved, and a large amount of iron salt remained dissolved in the reaction solution, and it was adsorbed on activated carbon. There is a problem that the COD component is redissolved and the COD component in the reaction solution increases. As the alkaline agent for the neutralization treatment, NaOH, Ca (OH) 2 , KOH and the like can be used. In addition, it is preferable to avoid air contact during stirring so as not to oxidize the produced ferrous hydroxide as much as possible. However, the "iron salt containing ferrous salt" in the neutralization reaction step (3) may contain other ferrous salts and iron oxide together with ferrous hydroxide.

次に分離工程(4)について記す。中和処理後5分〜60分以内、好ましくは5分〜30分以内に反応液を、処理水と、活性炭及び水酸化第一鉄等の第一鉄塩を含む鉄塩とに分離する。ここで「分離」は、反応液を、処理水と、活性炭及び第一鉄塩を含む鉄塩とに完全に分離することのみを意図するものでなく、反応液より処理水の一部を分離すること、又は反応液より活性炭及び第一鉄塩を含む鉄塩の一部を分離することを含む。この工程でも生成した水酸化第一鉄を出来るだけ酸化させないように、必要以上の空気接触は避けることが好ましい。中和処理後5分未満の場合は、十分に水酸化第一鉄が沈殿せず、反応液中に鉄分が多く溶存したままとの問題がある。中和処理後60分を超える場合は、活性炭に吸着しているCOD成分が離脱し、廃水中のCOD成分が増大するとの問題がある。水酸化第一鉄及び活性炭は、砂ろ過、加圧浮上分離、遠心分離、ベルトプレス、沈殿池による沈殿、膜ろ過等の一般的な方法により分離されるが、なかでも、処理の連続性や分離性を考慮すると、膜ろ過による分離が好ましい。本発明の膜ろ過で用いられるろ過膜としては、ろ過機能を有するものであれば特に限定されないが、中空糸膜、平膜、チューブラ膜、モノリス型膜等が挙げられる。なかでも容積充填率が高いことから中空糸膜が好ましい。ろ過膜として中空糸膜を用いる場合、その材質としては、セルロース、ポリオレフィン、ポリスルホン、ポリフッ化ビニリデン(PVDF)、ポリ四フッ化エチレン(PTFE)等が挙げられる。なかでも、中空糸膜の材質としては耐薬品性やpH変化に強いことから、ポリフッ化ビニリデン(PVDF)、ポリ四フッ化エチレン(PTFE)が好ましい。ろ過膜としてモノリス型膜を用いる場合は、セラミック製の膜を用いることができる。ろ過膜の形態としては、膜ろ過用のろ過膜を収めた膜モジュールが、例えばハウジング内に膜の一次側と二次側が隔離されるようにろ過膜が固定され、ハウジング内におけるろ過膜の一次側が鉄塩及び活性炭を含む反応液が貯留された貯留タンク等と循環ラインにより連通し、二次側がろ過ポンプと接続されたもの等を用いてもよい。また、膜ろ過用のろ過膜を収めた膜モジュールが、鉄塩及び活性炭を含む反応液が貯留された貯留タンクに直接浸漬された状態で膜ろ過を行える装置でもよい。さらに膜モジュールとしては、ろ過膜の下方に膜面洗浄用の曝気手段を設けたものを用いてもよい。前記曝気手段としては公知のものを採用できる。ろ過膜に形成される微細孔の平均孔としては、0.01〜1.0μmが好ましく、0.05〜0.45μmがより好ましい。前記微細孔の平均孔径が下限値以上であればろ過膜に要する圧力を小さくしやすい。前記微細孔の平均孔径が上限値以下であれば鉄塩及び活性炭の系外への漏出を抑制しやすい。この膜を利用して、反応液は、処理水と、活性炭及び水酸化第一鉄等の第一鉄塩を含む鉄塩とに分離される。この分離された活性炭と第一鉄塩を含む鉄塩は、好ましくは処理水で希釈され、次段の鉄塩再溶解工程に送られる。 Next, the separation step (4) will be described. Within 5 to 60 minutes, preferably 5 to 30 minutes after the neutralization treatment, the reaction solution is separated into treated water and an iron salt containing ferrous salts such as activated carbon and ferrous hydroxide. Here, "separation" is not intended only to completely separate the reaction solution into the treated water and the iron salt containing activated carbon and ferrous salt, but a part of the treated water is separated from the reaction solution. This involves separating a part of the iron salt containing activated carbon and ferrous salt from the reaction solution. It is preferable to avoid unnecessary air contact so as not to oxidize the ferrous hydroxide produced in this step as much as possible. If it is less than 5 minutes after the neutralization treatment, there is a problem that ferrous hydroxide is not sufficiently precipitated and a large amount of iron remains dissolved in the reaction solution. If it exceeds 60 minutes after the neutralization treatment, there is a problem that the COD component adsorbed on the activated carbon is released and the COD component in the wastewater increases. Ferrous hydroxide and activated charcoal are separated by general methods such as sand filtration, pressure flotation separation, centrifugation, belt press, sedimentation by sedimentation pond, membrane filtration, etc. Among them, treatment continuity and In consideration of separability, separation by membrane filtration is preferable. The filtration membrane used in the membrane filtration of the present invention is not particularly limited as long as it has a filtration function, and examples thereof include hollow fiber membranes, flat membranes, tubular membranes, and monolithic membranes. Of these, a hollow fiber membrane is preferable because it has a high volume filling rate. When a hollow fiber membrane is used as the filtration membrane, examples of the material thereof include cellulose, polyolefin, polysulfone, polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE). Of these, polyvinylidene fluoride (PVDF) and polyethylene tetrafluoroethylene (PTFE) are preferable as the material of the hollow fiber membrane because they have chemical resistance and resistance to pH changes. When a monolith type membrane is used as the filtration membrane, a ceramic membrane can be used. As a form of the filtration membrane, a membrane module containing a filtration membrane for membrane filtration is fixed so that the primary side and the secondary side of the membrane are separated from each other in the housing, for example, and the primary side of the filtration membrane in the housing is fixed. A storage tank or the like in which a reaction solution containing iron salt and activated charcoal is stored on the side may be communicated with a circulation line, and a secondary side connected to a filtration pump or the like may be used. Further, a device capable of performing membrane filtration in a state where the membrane module containing the filtration membrane for membrane filtration is directly immersed in the storage tank in which the reaction solution containing iron salt and activated carbon is stored may be used. Further, as the membrane module, one in which an aeration means for cleaning the membrane surface is provided below the filtration membrane may be used. As the aeration means, known ones can be adopted. The average pore size of the micropores formed on the filtration membrane is preferably 0.01 to 1.0 μm, more preferably 0.05 to 0.45 μm. When the average pore diameter of the micropores is at least the lower limit value, the pressure required for the filtration membrane can be easily reduced. When the average pore diameter of the fine pores is not more than the upper limit value, it is easy to suppress the leakage of iron salt and activated carbon to the outside of the system. Using this film, the reaction solution is separated into treated water and an iron salt containing ferrous salts such as activated carbon and ferrous hydroxide. The separated activated carbon and the iron salt containing the ferrous salt are preferably diluted with treated water and sent to the next iron salt remelting step.

次に鉄塩再溶解工程(5)について記す。第一鉄塩を含む鉄塩、及び活性炭含有スラリーをpH1.0〜3.0、好ましくはpH2.0〜3.0にして再溶解させる。pHが1.0未満では酸の使用量が増大すること、pHが3.0を超える場合では活性炭と鉄塩の活性が低下するとの問題点がある。pH調整用の酸としては、塩酸、硫酸、硝酸が使用できるが、好ましくは硫酸が使用される。ここで再溶解された鉄塩、活性炭は、次の廃水処理のための反応に再利用される。 Next, the iron salt redissolving step (5) will be described. The iron salt containing ferrous salt and the activated carbon-containing slurry are redissolved at pH 1.0 to 3.0, preferably pH 2.0 to 3.0. If the pH is less than 1.0, the amount of acid used increases, and if the pH exceeds 3.0, the activities of activated carbon and iron salts decrease. Hydrochloric acid, sulfuric acid, and nitric acid can be used as the acid for adjusting the pH, but sulfuric acid is preferably used. The iron salt and activated carbon redissolved here are reused in the reaction for the next wastewater treatment.

次に本発明の方法を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例によって限定されるものではない。尚、%は、特に断りのない限り、質量%である。 Next, the method of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. In addition,% is mass% unless otherwise specified.

分析方法を以下に示した。
過酸化水素の定量:KMnO滴定法(JIS K 1463に準拠)または過酸化水素試験紙(QUANTOFIX(登録商標)Peroxide 25又は1000(MACHEREY-NAGEL社製))を用いた。
TOC(トータル有機炭素):TOC計(島津製作製TOC−VWS)を用いた。
Fe2+とFe3+の分別定量法:全鉄をICPで分析する。次いで第一鉄Fe2+をフェナントロリン吸光光度法により分析し、第一鉄の割合を計算する。
The analysis method is shown below.
Quantification of hydrogen peroxide: KMnO 4- titration method (based on JIS K 146 3) or hydrogen peroxide test paper (QUANTOFIX® Peroxide 25 or 1000 (manufactured by MACHEREY-NAGEL)) was used.
TOC (total organic carbon): A TOC meter (TOC-VWS manufactured by Shimadzu) was used.
Fractional quantification of Fe 2+ and Fe 3+ : Total iron is analyzed by ICP. Next, ferrous Fe 2+ is analyzed by the phenanthroline absorptiometry to calculate the proportion of ferrous iron.

活性炭の過酸化水素分解活性(HF)測定法:
(1)1Lのトールビーカーに純水800mlを採取する。
(2)25℃の恒温槽に入れ撹拌する。
(3)31質量%過酸化水素10mLを加える。過酸化水素濃度0.4193(w/v)%。
(4)過酸化水素水溶液の温度が25℃±1℃になったら、粉末活性炭(測定試料)150mgを添加する。
(5)30分後に約20mLサンプリングし、0.45μmフィルターでろ過する。
(6)ろ液5mLをメスピペットで採取し、100mL三角フラスコに入れる。
(7)2N硫酸10mLを加え、撹拌しながら0.02M過マンガン酸カリウム溶液で滴定する。
(8)得られた滴定量(amL)を下記式に挿入し、活性炭(測定試料)の過酸化水素分解活性(HF)を算出する。
Method for measuring hydrogen peroxide decomposition activity (HF) of activated carbon:
(1) Collect 800 ml of pure water in a 1 L tall beaker.
(2) Place in a constant temperature bath at 25 ° C. and stir.
(3) Add 10 mL of 31 mass% hydrogen peroxide. Hydrogen peroxide concentration 0.4193 (w / v)%.
(4) When the temperature of the hydrogen peroxide aqueous solution reaches 25 ° C. ± 1 ° C., 150 mg of powdered activated carbon (measurement sample) is added.
(5) After 30 minutes, sample about 20 mL and filter with a 0.45 μm filter.
(6) Collect 5 mL of the filtrate with a measuring pipette and put it in a 100 mL Erlenmeyer flask.
(7) Add 10 mL of 2N sulfuric acid and titrate with 0.02 M potassium permanganate solution with stirring.
(8) The obtained titration amount (amL) is inserted into the following formula to calculate the hydrogen peroxide decomposition activity (HF) of the activated carbon (measurement sample).

[実施例1〜7]
本検討は図1に示したフローに従い、図2に示した活性炭添加フェントン反応設備で実施した。反応条件は、1,4−ジオキサン500ppm(0.25g/500ml、TOC 272ppm)、過酸化水素分解活性26の活性炭(ダイヤアクアソリューションズ(株)製、オルソン)0.8wt%(活性炭換算0.8g/500ml)、FeSO・7HO 600ppm、反応pH2.7〜2.9、過酸化水素 2当量(ジオキサンのTOD基準)、過酸化水素添加速度をそれぞれ0.1%/分(実施例1)、0.2%/分(実施例2)、0.5%/分(実施例3)、1%/分(実施例4)、2%/分(実施例5)、4%/分(実施例6)、8%/分(実施例7)(対活性炭の質量基準)の条件で実施した。
[Examples 1 to 7]
This study was carried out in the activated carbon-added Fenton reaction facility shown in FIG. 2 according to the flow shown in FIG. The reaction conditions were 1,4-dioxane 500ppm (0.25g / 500ml, TOC 272ppm), activated carbon with hydrogen peroxide decomposition activity 26 (Olson, manufactured by Diaaqua Solutions Co., Ltd.) 0.8wt% (activated carbon equivalent 0.8g) / 500ml), FeSO 4 · 7H 2 O 600ppm, reaction PH2.7~2.9, hydrogen peroxide 2 TOD reference equivalents (dioxane), a 0.1% / min of hydrogen peroxide addition rate, respectively (example 1 ), 0.2% / min (Example 2), 0.5% / min (Example 3), 1% / min (Example 4), 2% / min (Example 5), 4% / min (Example 6), 8% / min (Example 7) (based on the mass of activated carbon).

(1)図2のデュランビンに、上記所定量の1,4−ジオキサン、硫酸第一鉄、活性炭、及び水を所定量添加した後、5質量%硫酸を添加してpH2.8に調整し、反応液とした。過酸化水素添加量は1,4−ジオキサンをTOD換算し、その酸素量を過酸化水素に換算し、その2モル当量の過酸化水素を添加した。4質量%過酸化水素を反応液に各添加速度に従ってトータル45.4ml添加した。
(2)過酸化水素添加終了後、60分間撹拌して残存過酸化水素を濃度が20ppm以下となるまで分解して第二鉄塩を第一鉄塩に変換した。
(3)次いで25%NaOHを添加して反応液のpHを7.5に調整した。
(4)pH調整後、60分以内に反応液を遠沈管に移し、遠心分離器(SRX−200(トミー精工(株)製)、ローター:BH−9、遠心力:16,000G(Max)、10,000rpm-20分間)で遠沈分離し、反応液上清(処理水)と第一鉄塩(水酸化第一鉄)及び活性炭を分離した。
(5)分離した第一鉄塩(水酸化第一鉄)及び活性炭を処理水で希釈後、5質量%硫酸でpH2.1に調整し、第一鉄塩(硫酸第一鉄)を再溶解させた。
(6)再溶解後の硫酸第一鉄及び活性炭を次の分解工程(1)に使用した。
残った処理水はTOCを測定し、1,4−ジオキサンの分解率を求めた。結果を表1に示す。
(1) After adding a predetermined amount of 1,4-dioxane, ferrous sulfate, activated carbon, and water to the durambin of FIG. 2, 5% by mass sulfuric acid is added to adjust the pH to 2.8. , The reaction solution was used. As for the amount of hydrogen peroxide added, 1,4-dioxane was converted into TOD, the amount of oxygen thereof was converted into hydrogen peroxide, and 2 molar equivalents of hydrogen peroxide was added. A total of 45.4 ml of 4% by mass hydrogen peroxide was added to the reaction solution according to each addition rate.
(2) After the addition of hydrogen peroxide was completed, the mixture was stirred for 60 minutes to decompose the residual hydrogen peroxide until the concentration became 20 ppm or less, and the ferric salt was converted to ferric salt.
(3) Next, 25% NaOH was added to adjust the pH of the reaction solution to 7.5.
(4) After adjusting the pH, transfer the reaction solution to a centrifuge tube within 60 minutes, and centrifuge (SRX-200 (manufactured by Tomy Seiko Co., Ltd.), rotor: BH-9, centrifugal force: 16,000 G (Max). Centrifuge separation was performed at 10,000 rpm-20 minutes), and the reaction solution supernatant (treated water), ferrous salt (ferrous hydroxide) and activated carbon were separated.
(5) The separated ferrous salt (ferrous hydroxide) and activated carbon are diluted with treated water, adjusted to pH 2.1 with 5% by mass sulfuric acid, and the ferrous salt (ferrous sulfate) is redissolved. I let you.
(6) The redissolved ferrous sulfate and activated carbon were used in the next decomposition step (1).
The TOC of the remaining treated water was measured to determine the decomposition rate of 1,4-dioxane. The results are shown in Table 1.

[実施例8〜11]
1,4−ジオキサン濃度を50ppm(TOC 27ppm)とし、0.4質量%過酸化水素を次の各添加速度に従ってトータル45.4ml添加した。過酸化水素添加速度をそれぞれ0.05%/分(実施例8)、0.5%/分(実施例9)、1%/分(実施例10)、2%/分(実施例11)とした以外、実施例1と同様に行った。結果を表1に示す。
[Examples 8 to 11]
The concentration of 1,4-dioxane was set to 50 ppm (TOC 27 ppm), and 0.4 mass% hydrogen peroxide was added in a total of 45.4 ml according to each of the following addition rates. Hydrogen peroxide addition rates were 0.05% / min (Example 8), 0.5% / min (Example 9), 1% / min (Example 10), 2% / min (Example 11), respectively. However, the same procedure as in Example 1 was carried out. The results are shown in Table 1.

[実施例12〜14]
1,4−ジオキサン濃度を3000ppm(TOC 1632ppm)とし、24質量%過酸化水素を次の各添加速度に従ってトータル45.4ml添加した。過酸化水素添加速度をそれぞれ3%/分(実施例12)、8%/分(実施例13)、10%/分(実施例14)とした以外、実施例1と同様に行った。結果を表1に示す。
[Examples 12 to 14]
The concentration of 1,4-dioxane was set to 3000 ppm (TOC 1632 ppm), and a total of 45.4 ml of 24 mass% hydrogen peroxide was added according to each of the following addition rates. The same procedure as in Example 1 was carried out except that the hydrogen peroxide addition rates were set to 3% / min (Example 12), 8% / min (Example 13) and 10% / min (Example 14), respectively. The results are shown in Table 1.

[比較例1、2]
1,4−ジオキサン濃度を50ppm(TOC 27ppm)とし、0.4質量%過酸化水素を次の各添加速度に従ってトータル45.4ml添加した。過酸化水素添加速度を0.01%/分(比較例1)、12%/分(比較例2)とした以外、実施例1と同様に行った。結果を表1に示す。
[Comparative Examples 1 and 2]
The concentration of 1,4-dioxane was set to 50 ppm (TOC 27 ppm), and 0.4 mass% hydrogen peroxide was added in a total of 45.4 ml according to each of the following addition rates. The same procedure as in Example 1 was carried out except that the hydrogen peroxide addition rate was 0.01% / min (Comparative Example 1) and 12% / min (Comparative Example 2). The results are shown in Table 1.

[比較例3、4]
1,4−ジオキサン濃度を500ppm(TOC 27ppm)とし、1質量%過酸化水素をトータル182ml添加(比較例3)、または4質量%過酸化水素をトータル45.4ml添加(比較例4)した。過酸化水素添加速度を0.04%/分(比較例3)、12%/分(比較例4)とした以外、実施例1と同様に行った。結果を表1に示す。
[Comparative Examples 3 and 4]
The concentration of 1,4-dioxane was set to 500 ppm (TOC 27 ppm), and a total of 182 ml of 1 mass% hydrogen peroxide was added (Comparative Example 3), or a total of 45.4 ml of 4 mass% hydrogen peroxide was added (Comparative Example 4). The same procedure as in Example 1 was carried out except that the hydrogen peroxide addition rate was 0.04% / min (Comparative Example 3) and 12% / min (Comparative Example 4). The results are shown in Table 1.

[比較例5、6]
1、4−ジオキサン濃度を3000ppm(TOC 1632ppm)とし、4質量%過酸化水素をトータル272ml添加(比較例5)、または24質量%過酸化水素をトータル45.4ml添加(比較例6)した。過酸化水素添加速度を0.04%/分(比較例5)、12%/分(比較例6)とした以外、実施例1と同様に行った。結果を表1に示す。
[Comparative Examples 5 and 6]
The concentration of 1,4-dioxane was set to 3000 ppm (TOC 1632 ppm), and a total of 272 ml of 4 mass% hydrogen peroxide was added (Comparative Example 5), or a total of 45.4 ml of 24 mass% hydrogen peroxide was added (Comparative Example 6). The same procedure as in Example 1 was carried out except that the hydrogen peroxide addition rate was 0.04% / min (Comparative Example 5) and 12% / min (Comparative Example 6). The results are shown in Table 1.

尚、表1及び表2の添加量(g/分)は、4質量%過酸化水素(実施例1〜7、15〜26、比較例4、5、7、8)、0.4質量%過酸化水素(実施例8〜11、比較例1、2)、24質量%過酸化水素(実施例12〜14、比較例6)、1質量%過酸化水素(比較例3)の添加速度を表す。TOC分解率(平均)は初回分解率に対して、10%低下までの繰り返しの平均分解率を示す。 The addition amounts (g / min) in Tables 1 and 2 are 4% by mass hydrogen peroxide (Examples 1 to 7, 15 to 26, Comparative Examples 4, 5, 7, 8) and 0.4% by mass. Addition rate of hydrogen peroxide (Examples 8 to 11, Comparative Examples 1 and 2), 24% by mass hydrogen peroxide (Examples 12 to 14, Comparative Example 6), and 1% by mass hydrogen peroxide (Comparative Example 3). Represent. The TOC decomposition rate (average) indicates the repeated average decomposition rate up to a 10% decrease with respect to the initial decomposition rate.

表1に活性炭に対する過酸化水素の添加速度の活性炭リサイクル回数に及ぼす影響について検討した。その結果、過酸化水素添加速度0.05%/分〜10.5%/分の間ではジオキサンの分解率80%台または90%台を維持して、活性炭のリサイクル回数を3回〜100回以上に飛躍的に増大できた。また、図3に過酸化水素の活性炭に対する添加速度(%/分)とリサイクル回数を示した。その結果、リサイクル回数は1,4−ジオキサンの濃度に関係なく過酸化水素の活性炭に対する添加速度に依存することが分かった。
一方、比較例に示したように過酸化水素添加速度0.01%/分、0.04%と非常にゆっくりと添加した場合は、活性炭の劣化は非常に少ないが、過酸化水素が無駄に分解し、1,4−ジオキサンの分解効率が上がらないとの問題点がある。また、過酸化水素添加速度が12%/分の場合は、活性炭の劣化速度が大きく、一回使用で1,4−ジオキサンの分解効率が低下した。
Table 1 examined the effect of the rate of addition of hydrogen peroxide on activated carbon on the number of times activated carbon was recycled. As a result, the decomposition rate of dioxane was maintained in the 80% or 90% range at the hydrogen peroxide addition rate of 0.05% / min to 10.5% / min, and the activated carbon was recycled 3 to 100 times. It was possible to increase dramatically above. In addition, FIG. 3 shows the rate of addition of hydrogen peroxide to activated carbon (% / min) and the number of times of recycling. As a result, it was found that the number of times of recycling depends on the rate of addition of hydrogen peroxide to activated carbon regardless of the concentration of 1,4-dioxane.
On the other hand, as shown in the comparative example, when the hydrogen peroxide addition rate is 0.01% / min and 0.04%, which is very slow, the deterioration of the activated carbon is very small, but the hydrogen peroxide is wasted. There is a problem that it decomposes and the decomposition efficiency of 1,4-dioxane does not increase. Further, when the hydrogen peroxide addition rate was 12% / min, the deterioration rate of the activated carbon was large, and the decomposition efficiency of 1,4-dioxane decreased with one use.

[実施例15〜20、比較例7]
過酸化水素分解活性(HF)13の活性炭1.60g(0.8g×26/13)を使用し、過酸化水素添加速度を活性炭(質量基準)に対して、0.07%/分(実施例15)、0.15%/分(実施例16)、0.35%/分(実施例17)、1.04%/分(実施例18)、3.47%/分(実施例19)、4.80%/分(実施例20)、6.00%/分(比較例7)にした以外は、実施例1と同様に行った。結果を表2に示す。
[Examples 15 to 20, Comparative Example 7]
Using 1.60 g (0.8 g x 26/13) of activated carbon with hydrogen peroxide decomposition activity (HF) 13, the hydrogen peroxide addition rate was 0.07% / min (based on mass) with respect to the activated carbon (mass basis). Example 15), 0.15% / min (Example 16), 0.35% / min (Example 17), 1.04% / min (Example 18), 3.47% / min (Example 19). ), 4.80% / min (Example 20) and 6.00% / min (Comparative Example 7), but the same procedure as in Example 1 was carried out. The results are shown in Table 2.

[実施例21〜26、比較例8]
過酸化水素分解活性(HF)7の活性炭2.97g(0.8g×26/7)を使用し、過酸化水素添加速度を活性炭(質量基準)に対して、0.03%/分(実施例21)、0.10%/分(実施例22)、0.16%/分(実施例23)、0.47%/分(実施例24)、1.57%/分(実施例25)、2.50%/分(実施例26)、3.00%/分(比較例8)にした以外は、実施例1と同様に行った。結果を表2に示す。
[Examples 21 to 26, Comparative Example 8]
Using 2.97 g (0.8 g x 26/7) of activated carbon with hydrogen peroxide decomposition activity (HF) 7, the hydrogen peroxide addition rate was 0.03% / min (based on mass) with respect to the activated carbon (mass basis). Example 21), 0.10% / min (Example 22), 0.16% / min (Example 23), 0.47% / min (Example 24), 1.57% / min (Example 25) ), 2.50% / min (Example 26), and 3.00% / min (Comparative Example 8), but the same procedure as in Example 1 was carried out. The results are shown in Table 2.

表1、2、及び図4に示したように、過酸化水素分解活性(HF)が異なる3種の活性炭を使用して、1,4−ジオキサンの分解と活性のリサイクルの関係を検討した結果、それぞれの活性炭により1,4−ジオキサンの分解率は異なるが、リサイクル回数は次式の過水添加速度範囲において飛躍的に向上することを見出した。 As shown in Tables 1, 2 and 4, the results of examining the relationship between the decomposition of 1,4-dioxane and the recycling of the activity using three types of activated carbon with different hydrogen peroxide decomposition activities (HF). Although the decomposition rate of 1,4-dioxane differs depending on each activated carbon, it was found that the number of times of recycling is dramatically improved in the range of the hydrogen peroxide addition rate of the following equation.

[実施例27〜30、比較例9〜14]
実施例1の条件で過酸化水素添加終了後、撹拌を0分(比較例9)、10分(比較例10)、20分(比較例11)、30分(比較例12)、40分(比較例13)、50分(比較例14)、60分(実施例27)、75分(実施例28)、90分(実施例29)、120分(実施例30)継続し、硫酸第二鉄を硫酸第一鉄に変換した。攪拌終了後の反応液の残存過酸化水素濃度及び第一鉄の割合を測定した。結果を表3に示す。
[Examples 27 to 30, Comparative Examples 9 to 14]
After the addition of hydrogen peroxide under the conditions of Example 1, stirring was performed for 0 minutes (Comparative Example 9), 10 minutes (Comparative Example 10), 20 minutes (Comparative Example 11), 30 minutes (Comparative Example 12), and 40 minutes (Comparative Example 12). Comparative Example 13), 50 minutes (Comparative Example 14), 60 minutes (Example 27), 75 minutes (Example 28), 90 minutes (Example 29), 120 minutes (Example 30). Iron was converted to ferrous sulfate. The residual hydrogen peroxide concentration and the ratio of ferrous iron in the reaction solution after the completion of stirring were measured. The results are shown in Table 3.

表3に示したように、反応終了後、残存過酸化水素を20ppm以下に分解することにより硫酸第二鉄の93%以上を硫酸第一鉄に変換できることが出来た。従って、過酸化水素添加終了後、残存過酸化水素を20ppm以下とすることにより、硫酸第二鉄を硫酸第一鉄に変換し、次いでアルカリで水酸化第一鉄とし、次いで酸で溶解させて硫酸第一鉄としリサイクルさせることができる。 As shown in Table 3, 93% or more of ferric sulfate could be converted to ferrous sulfate by decomposing the residual hydrogen peroxide to 20 ppm or less after the reaction was completed. Therefore, after the addition of hydrogen peroxide is completed, ferric sulfate is converted to ferrous sulfate by reducing the residual hydrogen peroxide to 20 ppm or less, then ferric hydroxide is converted to ferrous sulfate with an alkali, and then dissolved with an acid. It can be recycled as ferrous sulfate.

[実施例31〜37、比較例15〜20]
過酸化水素添加後終了後、次いで硫酸第二鉄の硫酸第一鉄への変換工程の終了後、25質量%NaOH溶液により、反応液pHを5.6(比較例15)、6.0(比較例16)、6.5(比較例17)、7.0(実施例31)、7.3(実施例32)、7.5(実施例33)、7.8(実施例34)、8.0(実施例35)、8.8(実施例36)、9.0(実施例37)、9.3(比較例18)、9.7(比較例19)、10.6(比較例20)に調整した以外、実施例1と同様に行った。鉄塩の回収率及び廃水TOC(ppm)を測定した。結果を表4に示す。
[Examples 31 to 37, Comparative Examples 15 to 20]
After completion after the addition of hydrogen peroxide, and then after the completion of the step of converting ferric sulfate to ferrous sulfate, the pH of the reaction solution was adjusted to 5.6 (Comparative Example 15) and 6.0 (Comparative Example 15) with a 25 mass% NaOH solution. Comparative Example 16), 6.5 (Comparative Example 17), 7.0 (Example 31), 7.3 (Example 32), 7.5 (Example 33), 7.8 (Example 34), 8.0 (Example 35), 8.8 (Example 36), 9.0 (Example 37), 9.3 (Comparative Example 18), 9.7 (Comparative Example 19), 10.6 (Comparison) The procedure was the same as in Example 1 except that the adjustment was made in Example 20). The iron salt recovery rate and wastewater TOC (ppm) were measured. The results are shown in Table 4.

表4に示したように第一鉄塩への変換工程後の鉄塩回収のための中和処理工程のpHとしては、特にpH7.3〜7.8において良好な鉄塩回収及びTOC除去効果が得られた。一方、pH6.51以下では硫酸鉄が十分水酸化第一鉄とならず、pH8.02以上では水酸化第一鉄の再溶解があり、pH9.31以上では鉄塩回収及び廃水TOC削減共に良好な効果が得られなかった。 As shown in Table 4, the pH of the neutralization treatment step for iron salt recovery after the conversion step to ferrous salt is particularly good at pH 7.3 to 7.8, and has a good iron salt recovery and TOC removal effect. was gotten. On the other hand, at pH 6.51 or lower, iron sulfate does not sufficiently become ferrous hydroxide, at pH 8.02 or higher, ferrous hydroxide is redissolved, and at pH 9.31 or higher, both iron salt recovery and wastewater TOC reduction are good. No effect was obtained.

[実施例38〜42、比較例21〜23]
鉄塩回収のための中和工程において、25質量%NaOHにてpH7.52に調整後、5分(実施例38)、15分(実施例39)、30分(実施例40)、45分(実施例41)、60分(実施例42)、75分(比較例21)、90分(比較例22)、120分(比較例23)間放置した後、廃水のTOC(ppm)を測定した以外、実施例33と同様に行った。結果を表5に示す。
[Examples 38 to 42, Comparative Examples 21 to 23]
In the neutralization step for iron salt recovery, after adjusting the pH to 7.52 with 25 mass% NaOH, 5 minutes (Example 38), 15 minutes (Example 39), 30 minutes (Example 40), 45 minutes. After leaving for (Example 41), 60 minutes (Example 42), 75 minutes (Comparative Example 21), 90 minutes (Comparative Example 22), 120 minutes (Comparative Example 23), the TOC (ppm) of wastewater was measured. The procedure was the same as in Example 33. The results are shown in Table 5.

表5に示したように、中和工程において中和後の放置時間によって一旦吸着されたTOC成分は、徐々に廃水中に離脱し増大する。また溶存酸素等により水酸化第一鉄が一部水酸化第二鉄への変換するおそれがある。従って、中和処理後60分以内で活性炭及び水酸化第一鉄を分離し、TOCの離脱を防ぎ、水酸化第二鉄への変換を防止することが好ましい。より好ましくは30分以内で分離することである。 As shown in Table 5, the TOC component once adsorbed by the standing time after neutralization in the neutralization step gradually separates into the wastewater and increases. In addition, ferrous hydroxide may be partially converted to ferric hydroxide due to dissolved oxygen or the like. Therefore, it is preferable to separate the activated carbon and ferrous hydroxide within 60 minutes after the neutralization treatment to prevent the TOC from leaving and the conversion to ferric hydroxide. More preferably, it is separated within 30 minutes.

[実施例43〜46、比較例24〜28]
中和工程終了後、回収工程で分離された活性炭及び水酸化第一鉄は、次の再溶解工程で活性炭及び硫酸第一鉄に再生される。再溶解工程のpHを1.0(比較例24)、1.5(比較例25)、2.0(実施例43)、2.5(実施例44)、2.9(実施例45)、3.0(実施例46)、3.5(比較例26)、3.7(比較例27)、4.0(比較例28)に調整し、溶解鉄の回収を測定した以外は、実施例40と同様に実施した。結果を表6に示す。
[Examples 43 to 46, Comparative Examples 24 to 28]
After the completion of the neutralization step, the activated carbon and ferrous hydroxide separated in the recovery step are regenerated into activated carbon and ferrous sulfate in the next remelting step. The pH of the redissolution step was 1.0 (Comparative Example 24), 1.5 (Comparative Example 25), 2.0 (Example 43), 2.5 (Example 44), 2.9 (Example 45). , 3.0 (Example 46), 3.5 (Comparative Example 26), 3.7 (Comparative Example 27), 4.0 (Comparative Example 28), except that the recovery of molten iron was measured. It was carried out in the same manner as in Example 40. The results are shown in Table 6.

表6に記したように、再溶解pH2.0〜3.0の間で90%以上の鉄が回収された。一方、再溶解pH3.3以上では大幅に鉄の回収率が低下した。 As shown in Table 6, 90% or more of iron was recovered between redissolved pH 2.0 and 3.0. On the other hand, when the redissolved pH was 3.3 or higher, the iron recovery rate was significantly reduced.

[実施例47、48]
中和処理後、限外ろ過膜(実施例47)、精密ろ過(MF)膜(実施例48)を使用した以外は、実施例45と同様に行った。結果を表7に示す。
[Examples 47 and 48]
After the neutralization treatment, the same procedure as in Example 45 was carried out except that the ultrafiltration membrane (Example 47) and the microfiltration (MF) membrane (Example 48) were used. The results are shown in Table 7.

表7に示したように、限外ろ過膜及びMF膜により鉄塩と活性炭の回収は可能であった。 As shown in Table 7, iron salts and activated carbon could be recovered by the ultrafiltration membrane and the MF membrane.

[実施例49]
実施例41で回収した水酸化第一鉄と活性炭に、実施例48で回収した処理水の一部を添加し、次いで5%硫酸でpH2.0に調整し再溶解させ、2回目の反応に利用した。2回目の反応条件は実施例2と同様である。結果を表8に示す。
[Example 49]
A part of the treated water recovered in Example 48 was added to the ferrous hydroxide and activated carbon recovered in Example 41, then adjusted to pH 2.0 with 5% sulfuric acid and redissolved for the second reaction. used. The second reaction conditions are the same as in Example 2. The results are shown in Table 8.

表8に示したように、リサイクルした触媒は、実施例2と同様の活性を示した。 As shown in Table 8, the recycled catalyst showed the same activity as in Example 2.

本発明により、生物処理では難しかった廃水中の難分解性の被酸化性物質を効率的に分解することができる。また、本発明の方法は、鉄塩及び活性炭の使用量を大幅に削減でき、かつそれらのリサイクル回数を飛躍的に増大できることから、活性炭を使用したフェントン法の問題点であった、処理コスト及び廃棄物量を大幅に低減することができ、工業的な廃水の処理方法として優れている。 INDUSTRIAL APPLICABILITY According to the present invention, a persistently decomposable substance in wastewater, which was difficult in biological treatment, can be efficiently decomposed. In addition, the method of the present invention can significantly reduce the amount of iron salt and activated carbon used, and can dramatically increase the number of times of recycling thereof, which is a problem of the Fenton method using activated carbon. The amount of waste can be significantly reduced, which is excellent as an industrial wastewater treatment method.

1 スターラー
2 恒温槽
3 電子天秤
4 チューブポンプ
5 デュランビン
6 過酸化水素
7 pH調整用硫酸
8 pH調整用苛性ソーダ
9 pH電極
10 pHコントローラー
1 Stirrer 2 Constant temperature bath 3 Electronic balance 4 Tube pump 5 Durambin 6 Hydrogen peroxide 7 Sulfuric acid for pH adjustment 8 Caustic soda for pH adjustment 9 pH electrode 10 pH controller

Claims (8)

過酸化水素を、鉄塩、活性炭及び被酸化性物質含有廃水を含む反応液に添加し、被酸化性物質を分解させる工程を含む、被酸化性物質含有廃水の処理方法であって、
分解工程における過酸化水素の添加速度(対活性炭に対する質量%/分)を下記式1の範囲とすることを特徴とする、処理方法。

(式中、HFは、活性炭の過酸化水素分解活性であり、

で表され、活性炭の過酸化水素分解活性(HF)の測定法は以下のとおりである:
(1)1Lのトールビーカーに純水800mlを採取する。
(2)25℃の恒温槽に入れ撹拌する。
(3)31質量%過酸化水素10mLを加える。過酸化水素濃度0.4193(w/v)%。
(4)過酸化水素水溶液の温度が25℃±1℃になったら、粉末活性炭(測定試料)150mgを添加する。
(5)30分後に約20mLサンプリングし、0.45μmフィルターでろ過する。
(6)ろ液5mLをメスピペットで採取し、100mL三角フラスコに入れる。
(7)2N硫酸10mLを加え、撹拌しながら0.02M過マンガン酸カリウム溶液で滴定する。
(8)得られた滴定量(amL)を上記式に挿入し、活性炭(測定試料)の過酸化水素分解活性(HF)を算出する。)
A method for treating wastewater containing an oxidizing substance, which comprises a step of adding hydrogen peroxide to a reaction solution containing iron salt, activated carbon and wastewater containing an oxidizing substance to decompose the oxidizing substance.
A treatment method characterized in that the addition rate of hydrogen peroxide (mass% / min relative to activated carbon) in the decomposition step is within the range of the following formula 1.

(In the formula, HF is, Ri hydrogen peroxide decomposition activity der of activated carbon,

The method for measuring the hydrogen peroxide decomposition activity (HF) of activated carbon is as follows:
(1) Collect 800 ml of pure water in a 1 L tall beaker.
(2) Place in a constant temperature bath at 25 ° C. and stir.
(3) Add 10 mL of 31 mass% hydrogen peroxide. Hydrogen peroxide concentration 0.4193 (w / v)%.
(4) When the temperature of the hydrogen peroxide aqueous solution reaches 25 ° C. ± 1 ° C., 150 mg of powdered activated carbon (measurement sample) is added.
(5) After 30 minutes, sample about 20 mL and filter with a 0.45 μm filter.
(6) Collect 5 mL of the filtrate with a measuring pipette and put it in a 100 mL Erlenmeyer flask.
(7) Add 10 mL of 2N sulfuric acid and titrate with 0.02 M potassium permanganate solution with stirring.
(8) The obtained titer of (AML) was inserted into the above equation, we calculate the activated carbon hydrogen peroxide decomposition activity (measurement sample) (HF). )
過酸化水素の添加終了後、反応液を、その残存過酸化水素濃度が20ppm以下となるまで撹拌し、分解工程で副生した第二鉄塩を第一鉄塩へ変換する工程を含む、請求項1記載の処理方法。 After the addition of hydrogen peroxide is completed, the reaction solution is stirred until the residual hydrogen peroxide concentration becomes 20 ppm or less, and the ferric salt produced as a by-product in the decomposition step is converted into ferric salt. Item 1. The processing method according to Item 1. 変換工程終了後、反応液をpH7.0〜9.0にpH調整する工程を含む、請求項2記載の処理方法。 The treatment method according to claim 2, further comprising a step of adjusting the pH of the reaction solution to pH 7.0 to 9.0 after completion of the conversion step. pH調整工程終了後60分以内に反応液を、第一鉄塩を含む鉄塩及び活性炭と、処理水とに分離する工程を含む、請求項3記載の処理方法。 The treatment method according to claim 3, further comprising a step of separating the reaction solution into an iron salt containing a ferrous salt, activated carbon, and treated water within 60 minutes after the completion of the pH adjustment step. 分離工程が、膜ろ過を使用するろ過であることを特徴とする、請求項4記載の処理方法。 The processing method according to claim 4, wherein the separation step is filtration using membrane filtration. 分離工程が、中空糸膜を使用するろ過であることを特徴とする、請求項4または5記載の処理方法。 The treatment method according to claim 4 or 5, wherein the separation step is filtration using a hollow fiber membrane. 第一鉄塩を含む鉄塩及び活性炭を分離後、第一鉄塩を含む鉄塩及び活性炭を処理水で希釈し、pH1.0〜3.0に調整し、第一鉄塩を含む鉄塩を再溶解させ、この希釈液を反応触媒として再利用することを特徴とする、請求項4〜6のいずれか記載の処理方法。 After separating the iron salt containing ferrous salt and activated charcoal, the iron salt containing ferrous salt and activated charcoal are diluted with treated water to adjust the pH to 1.0 to 3.0, and the iron salt containing ferrous salt is adjusted. The treatment method according to any one of claims 4 to 6, wherein the diluted solution is redissolved and the diluted solution is reused as a reaction catalyst. 過酸化水素を、鉄塩、活性炭及び被酸化性物質含有廃水を含む反応液に添加し、過酸化水素添加終了後、残存過酸化水素が20ppm以下となるまで撹拌し、次いで反応液をpH7.3〜7.8にpH調整し、次いで60分以内に反応液を中空糸膜でろ過し、得られた第一鉄塩を含む鉄塩及び活性炭を処理水で希釈し、pH2.0〜3.0に調整し、この第一鉄塩を含む鉄塩と活性炭を次回の反応に再利用することを特徴とし、かつ分解工程における、過酸化水素の添加速度(対活性炭に対する質量%/分)を下記式1の範囲とすることを特徴とする、被酸化性物質含有廃水の処理方法。

(HFは、活性炭の過酸化水素分解活性であり、

で表され、活性炭の過酸化水素分解活性(HF)の測定法は以下のとおりである:
(1)1Lのトールビーカーに純水800mlを採取する。
(2)25℃の恒温槽に入れ撹拌する。
(3)31質量%過酸化水素10mLを加える。過酸化水素濃度0.4193(w/v)%。
(4)過酸化水素水溶液の温度が25℃±1℃になったら、粉末活性炭(測定試料)150mgを添加する。
(5)30分後に約20mLサンプリングし、0.45μmフィルターでろ過する。
(6)ろ液5mLをメスピペットで採取し、100mL三角フラスコに入れる。
(7)2N硫酸10mLを加え、撹拌しながら0.02M過マンガン酸カリウム溶液で滴定する。
(8)得られた滴定量(amL)を上記式に挿入し、活性炭(測定試料)の過酸化水素分解活性(HF)を算出する。)
Hydrogen peroxide is added to the reaction solution containing iron salt, activated carbon and waste water containing an oxidizing substance, and after the addition of hydrogen peroxide is completed, the mixture is stirred until the residual hydrogen peroxide becomes 20 ppm or less, and then the reaction solution is adjusted to pH 7. The pH was adjusted to 3 to 7.8, then the reaction solution was filtered through a hollow thread membrane within 60 minutes, the obtained iron salt containing ferrous salt and activated carbon were diluted with treated water, and the pH was 2.0 to 3. It is characterized by adjusting to 0.0 and reusing the iron salt containing this ferrous salt and activated carbon for the next reaction, and the rate of addition of hydrogen peroxide in the decomposition step (mass% / min with respect to activated carbon). Is a method for treating wastewater containing an oxidizable substance, which comprises the range of the following formula 1.

(HF is, Ri hydrogen peroxide decomposition activity der of activated carbon,

The method for measuring the hydrogen peroxide decomposition activity (HF) of activated carbon is as follows:
(1) Collect 800 ml of pure water in a 1 L tall beaker.
(2) Place in a constant temperature bath at 25 ° C. and stir.
(3) Add 10 mL of 31 mass% hydrogen peroxide. Hydrogen peroxide concentration 0.4193 (w / v)%.
(4) When the temperature of the hydrogen peroxide aqueous solution reaches 25 ° C. ± 1 ° C., 150 mg of powdered activated carbon (measurement sample) is added.
(5) After 30 minutes, sample about 20 mL and filter with a 0.45 μm filter.
(6) Collect 5 mL of the filtrate with a measuring pipette and put it in a 100 mL Erlenmeyer flask.
(7) Add 10 mL of 2N sulfuric acid and titrate with 0.02 M potassium permanganate solution with stirring.
(8) The obtained titer of (AML) was inserted into the above equation, we calculate the activated carbon hydrogen peroxide decomposition activity (measurement sample) (HF). )
JP2016230131A 2016-11-28 2016-11-28 Treatment method of wastewater containing oxidizable substances Active JP6830801B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016230131A JP6830801B2 (en) 2016-11-28 2016-11-28 Treatment method of wastewater containing oxidizable substances
CN201711202762.XA CN108117186B (en) 2016-11-28 2017-11-27 Method for treating wastewater containing oxidizable substance and apparatus for treating wastewater containing oxidizable substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016230131A JP6830801B2 (en) 2016-11-28 2016-11-28 Treatment method of wastewater containing oxidizable substances

Publications (2)

Publication Number Publication Date
JP2018086614A JP2018086614A (en) 2018-06-07
JP6830801B2 true JP6830801B2 (en) 2021-02-17

Family

ID=62227918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230131A Active JP6830801B2 (en) 2016-11-28 2016-11-28 Treatment method of wastewater containing oxidizable substances

Country Status (2)

Country Link
JP (1) JP6830801B2 (en)
CN (1) CN108117186B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214004A (en) * 2018-06-11 2019-12-19 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment method, and water treatment device
CN110078184A (en) * 2019-05-11 2019-08-02 中铁二十一局集团第六工程有限公司 Patina/active carbon compound coagulant preparation method and be used for tunnel sewage treatment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714515B2 (en) * 1987-04-23 1995-02-22 三菱重工業株式会社 Chemical cleaning waste liquid treatment method
JP3539435B2 (en) * 1993-12-09 2004-07-07 三菱瓦斯化学株式会社 Manufacturing method of high performance carbon material
JP2003266081A (en) * 2002-03-14 2003-09-24 Unitika Ltd Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater
JP2004074088A (en) * 2002-08-21 2004-03-11 Mitsubishi Gas Chem Co Inc Treatment method for waste liquid containing chemical polishing liquid
WO2006002054A2 (en) * 2004-06-15 2006-01-05 Randy Eugene Condit Hydrogen peroxide based water treatment system and method
JP2006187725A (en) * 2005-01-06 2006-07-20 Mitsubishi Gas Chem Co Inc Waste treatment method
JP5215578B2 (en) * 2007-03-16 2013-06-19 オルガノ株式会社 Water treatment method and water treatment apparatus
CN101597114B (en) * 2009-03-27 2012-06-06 哈尔滨工业大学 Methods for oxidizing and degrading organic contaminants in water by utilizing multiphase catalyst to strengthen Fenton technology
EP2478957A1 (en) * 2011-01-25 2012-07-25 Norit Nederland B.V. Production of catalytically active activated carbon
US20120211426A1 (en) * 2011-02-17 2012-08-23 Oronzo Santoro Method and system for treating a contaminated fluid
CN103449598A (en) * 2013-08-12 2013-12-18 上海电力学院 Treatment method of ethylene diamine tetraacetic acid (EDTA) boiler cleaning wastewater of power plant

Also Published As

Publication number Publication date
CN108117186B (en) 2021-07-16
CN108117186A (en) 2018-06-05
JP2018086614A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6331186B2 (en) Waste water treatment apparatus, treatment method, and waste water treatment system
US11459258B2 (en) Method for treatment and disinfection of industrial effluents
JP2022535730A (en) PFAS treatment scheme using separation and electrochemical exclusion
JP2022063837A (en) Processing method of waste water simultaneously containing ammonia-nitrogen of high concentration and organic constructs
US20150315054A1 (en) System for treating coal gasification wastewater, and method for treating coal gasification wastewater
CN105461135B (en) A kind of organic petrochemical industry wastewater preprocessing process of high-concentration hardly-degradable
CA2575867A1 (en) Chemical and process for cleaning membranes
JP7283088B2 (en) Water treatment method and water treatment equipment
WO2013146852A1 (en) Method for membrane-treating formaldehyde-containing discharge water
JP6830801B2 (en) Treatment method of wastewater containing oxidizable substances
Amr et al. Simultaneous removal of COD and color from municipal landfill leachate using Ozone/Zinc sulphate oxidation process
JP5350870B2 (en) Method for reducing CODCr of waste liquid generated during production of silicone monomer
JP2007029825A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
JP2014012281A (en) Method for treating drainage containing formaldehyde with membrane
JP2003126861A (en) Method and apparatus for water treatment
JP2019171367A (en) Method for treating waste liquid containing acidic aggregate and water treatment apparatus
Sindhi et al. COD removal of different industrial wastewater by Fenton oxidation process
JP5526640B2 (en) Method and apparatus for treating water containing biologically indegradable organic matter
CN107596922B (en) Combined chemical cleaning method for removing membrane pollution and controlling byproduct generation
CN211644870U (en) Device for treating low-concentration COD wastewater
CN105366836A (en) Process and device for circulating multi-dimensional catalyzing advanced oxidation treatment of oily wastewater
CN108311160B (en) Iron reduction catalyst, water treatment apparatus, and water treatment method
JP7082871B2 (en) Iron reduction catalyst and water treatment equipment, and water treatment method
JP2021137805A (en) Water treatment method and water treatment apparatus
EP3447030A1 (en) Process of treatment of agroindustrial waste water by reaction of acidification with addition of strong acids

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210127

R150 Certificate of patent or registration of utility model

Ref document number: 6830801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250