JP6765666B2 - Three-dimensional object manufacturing equipment, three-dimensional object manufacturing method and program - Google Patents

Three-dimensional object manufacturing equipment, three-dimensional object manufacturing method and program Download PDF

Info

Publication number
JP6765666B2
JP6765666B2 JP2016137857A JP2016137857A JP6765666B2 JP 6765666 B2 JP6765666 B2 JP 6765666B2 JP 2016137857 A JP2016137857 A JP 2016137857A JP 2016137857 A JP2016137857 A JP 2016137857A JP 6765666 B2 JP6765666 B2 JP 6765666B2
Authority
JP
Japan
Prior art keywords
dimensional object
shape
laminated portion
dimensional
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016137857A
Other languages
Japanese (ja)
Other versions
JP2018008403A (en
Inventor
浩也 田中
浩也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2016137857A priority Critical patent/JP6765666B2/en
Publication of JP2018008403A publication Critical patent/JP2018008403A/en
Application granted granted Critical
Publication of JP6765666B2 publication Critical patent/JP6765666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、立体物製造装置、立体物製造方法及びプログラムに関する。 The present invention relates to a three-dimensional object manufacturing apparatus, a three-dimensional object manufacturing method, and a program.

近年、立体物を製造可能ないわゆる3Dプリンタが普及しつつある。
3Dプリンタによれば、物の表面のみならず、複雑な内部構造を印刷し、造形することが可能である。
なお、このような3Dプリンティングに関する技術は、例えば特許文献1に記載されている。
In recent years, so-called 3D printers capable of manufacturing three-dimensional objects have become widespread.
According to a 3D printer, it is possible to print and model not only the surface of an object but also a complicated internal structure.
A technique related to such 3D printing is described in, for example, Patent Document 1.

特開2013−086289号公報Japanese Unexamined Patent Publication No. 2013-086289

ここで、一般の製造物においては、製造物の品質保証等を目的として、個々の製造物の品質評価が行われている。3Dプリンタによる製造物においても、品質評価を行うことが有用であり、3Dプリンタによる製造物の品質評価プロセスでは、3Dプリンタによって製造された製造物が、元となる3次元データを正確に再現しているか否かを検査・検証することが重要となる。
しかしながら、3Dプリンタの製造物を品質評価する現在の技術は、製造物を事後的にCT(Computed Tomography)スキャンあるいはMRI(Magnetic Resonance Imaging)等で内部構造を調べ、元となる3次元データと照合するといった方法を用いることが一般的である。ところが、CTスキャナやMRIは非常に高価であり、品質評価に用いることは現実的ではない上、立体物の製造と評価とがプロセスとして分断している現在の品質評価の形態は非効率である。
このように、従来の技術においては、3Dプリンタによる製造物の品質評価を適切に行うことが困難であった。
Here, in general products, quality evaluation of individual products is performed for the purpose of quality assurance of the products. It is also useful to perform quality evaluation on products manufactured by 3D printers, and in the quality evaluation process of products manufactured by 3D printers, the products manufactured by 3D printers accurately reproduce the original 3D data. It is important to inspect and verify whether or not it is.
However, the current technology for quality evaluation of 3D printer products is to examine the internal structure of the product by CT (Computed Tomography) scan or MRI (Magnetic Resonance Imaging) after the fact and collate it with the original 3D data. It is common to use a method such as However, CT scanners and MRIs are very expensive, it is not realistic to use them for quality evaluation, and the current form of quality evaluation, in which the production and evaluation of three-dimensional objects are separated as a process, is inefficient. ..
As described above, in the conventional technique, it is difficult to appropriately evaluate the quality of the product by the 3D printer.

本発明は、このような従来の実情に鑑みてなされたものであり、3Dプリンタによる製造物の品質評価をより適切に行うことを目的とする。 The present invention has been made in view of such conventional circumstances, and an object of the present invention is to more appropriately evaluate the quality of a product by a 3D printer.

上記目的を達成するため、本発明の一態様の立体物製造装置は、
立体物の形状を表す3次元形状データに基づいて、前記立体物を構成する積層要素を積層することにより当該立体物を造形する立体物造形手段と、
前記立体物造形手段によって造形されている前記立体物の積層部分の形状を表すデータを取得する形状取得手段と、
前記形状取得手段によって取得された前記立体物の積層部分の形状を表すデータと、当該積層部分に対応する前記3次元形状データとを対応付けることにより、当該立体物の品質を示す品質情報を生成する品質情報生成手段と、
を備えることを特徴とする。
In order to achieve the above object, the three-dimensional object manufacturing apparatus of one aspect of the present invention is
Based on the three-dimensional shape data representing the shape of the three-dimensional object, the three-dimensional object modeling means for modeling the three-dimensional object by laminating the laminated elements constituting the three-dimensional object, and
A shape acquisition means for acquiring data representing the shape of the laminated portion of the three-dimensional object formed by the three-dimensional object modeling means, and a shape acquisition means.
By associating the data representing the shape of the laminated portion of the three-dimensional object acquired by the shape acquisition means with the three-dimensional shape data corresponding to the laminated portion, quality information indicating the quality of the three-dimensional object is generated. Quality information generation means and
It is characterized by having.

本発明によれば、3Dプリンタによる製造物の品質評価をより適切に行うことができる。 According to the present invention, the quality evaluation of a product by a 3D printer can be performed more appropriately.

本発明の一実施形態に係る立体物製造装置のハードウェア構成を示す模式図である。It is a schematic diagram which shows the hardware structure of the three-dimensional object manufacturing apparatus which concerns on one Embodiment of this invention. 立体物製造装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the three-dimensional object manufacturing apparatus. 積層部分に欠損箇所が発生している状態を示す模式図であり、図3(A)はCADデータから生成されたボクセルモデルを示す図、図3(B)は積層部分の3次元画像から変換されたボクセルモデルを示す図である。It is a schematic diagram which shows the state which the defective part occurs in the laminated part, FIG. 3A is a figure which shows the voxel model generated from CAD data, and FIG. 3B is conversion from the 3D image of a laminated part. It is a figure which shows the voxel model which was made. 立体物製造装置が実行する立体物製造処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the three-dimensional object manufacturing process executed by the three-dimensional object manufacturing apparatus. 立体物製造処理のステップS7で実行される部分評価処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the partial evaluation process executed in step S7 of a three-dimensional object manufacturing process. 立体物製造処理のステップS13で実行される全体評価処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the whole evaluation process executed in step S13 of a three-dimensional object manufacturing process. 立体物の製造と切り離して部分評価処理及び全体評価処理が行われる場合の処理(品質評価処理)の流れを説明するフローチャートである。It is a flowchart explaining the flow of the process (quality evaluation process) when the partial evaluation process and the whole evaluation process are performed separately from the production of a three-dimensional object.

以下、本発明の実施形態について、図面を用いて説明する。
[第1実施形態]
[構成]
図1は、本発明の一実施形態に係る立体物製造装置1のハードウェア構成を示す模式図である。
図1に示すように、立体物製造装置1は、データ処理部10と、立体物造形部20とを備えている。
データ処理部10は、PC(Personal Computer)や組み込み型のマイコン等の情報処理装置によって構成される。本実施形態においては、データ処理部10をPCによって構成するものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
[Constitution]
FIG. 1 is a schematic view showing a hardware configuration of a three-dimensional object manufacturing apparatus 1 according to an embodiment of the present invention.
As shown in FIG. 1, the three-dimensional object manufacturing apparatus 1 includes a data processing unit 10 and a three-dimensional object modeling unit 20.
The data processing unit 10 is composed of an information processing device such as a PC (Personal Computer) or an embedded microcomputer. In the present embodiment, the data processing unit 10 is configured by a PC.

データ処理部10は、立体物の設計データであるCAD(Computer Aided Dsign)データから、立体物造形部20における3Dプリンタヘッドのツールパスを表すスライスデータを生成する。また、データ処理部10は、造形中の立体物における積層部分の形状を取得し、当該立体物の品質を示すデータを生成する。なお、本実施形態における立体物製造装置1では、造形材料に加え、立体物に組み込まれる回路を形成するための金属材料や電子部品等、造形材料以外のものが積層されて立体物が製造される。以下、これら造形材料及び造形材料以外の積層物を総称して、「積層要素」と呼ぶ。 The data processing unit 10 generates slice data representing the tool path of the 3D printer head in the three-dimensional object modeling unit 20 from the CAD (Computer Aided Design) data which is the design data of the three-dimensional object. In addition, the data processing unit 10 acquires the shape of the laminated portion of the three-dimensional object being modeled and generates data indicating the quality of the three-dimensional object. In the three-dimensional object manufacturing apparatus 1 of the present embodiment, in addition to the three-dimensional object, a three-dimensional object is produced by laminating materials other than the three-dimensional object, such as a metal material and an electronic component for forming a circuit incorporated in the three-dimensional object. To. Hereinafter, these modeling materials and laminates other than the modeling materials are collectively referred to as "laminated elements".

具体的には、データ処理部10は、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、入力部14と、出力部15と、記憶部16と、通信部17と、を備えている。 Specifically, the data processing unit 10 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, an input unit 14, an output unit 15, and a storage unit. A 16 and a communication unit 17 are provided.

CPU11は、ROM12または記憶部16に記憶されたプログラムに従って各種の処理を実行する。
ROM12は、立体物製造装置1を制御するための各種プログラムを記憶する。
RAM13には、CPU11が各種の処理を実行するためのデータ等が記憶される。
The CPU 11 executes various processes according to a program stored in the ROM 12 or the storage unit 16.
The ROM 12 stores various programs for controlling the three-dimensional object manufacturing apparatus 1.
The RAM 13 stores data and the like for the CPU 11 to execute various processes.

入力部14は、キーボードあるいはマウス等のポインティングデバイスによって構成され、ユーザの指示操作に応じて各種情報を入力する。
出力部15は、ディスプレイやスピーカによって構成され、CPU11の制御に従って、情報の表示や音声の出力を行う。
記憶部16は、ハードディスク等の記憶装置によって構成され、立体物製造装置1で使用される各種データやプログラムを記憶する。
通信部17は、USB(Universal Serial Bus)ケーブル等の通信ケーブルや、インターネット等の通信ネットワークを介して他の装置との通信を行う。
The input unit 14 is composed of a pointing device such as a keyboard or a mouse, and inputs various information according to a user's instruction operation.
The output unit 15 is composed of a display and a speaker, and displays information and outputs audio under the control of the CPU 11.
The storage unit 16 is composed of a storage device such as a hard disk, and stores various data and programs used in the three-dimensional object manufacturing device 1.
The communication unit 17 communicates with other devices via a communication cable such as a USB (Universal Serial Bus) cable or a communication network such as the Internet.

立体物造形部20は、熱溶解積層(FDM:Fused Deposition Modeling)方式あるいは光造形方式の3Dプリンタによって構成される。本実施形態においては、立体物造形部20は、熱溶解積層方式の3Dプリンタであるものとする。
具体的には、立体物造形部20は、基台部21と、天板部22と、上下動軸23a〜23cと、アーム24a〜24cと、ヘッド駆動部221と、3Dプリンタヘッド222と、撮像部223と、台座224と、台座駆動部225とを備えている。
The three-dimensional object modeling unit 20 is composed of a 3D printer of a fused deposition modeling (FDM) method or a stereolithography method. In the present embodiment, the three-dimensional object modeling unit 20 is a fused deposition modeling 3D printer.
Specifically, the three-dimensional object modeling unit 20 includes a base unit 21, a top plate unit 22, vertical moving shafts 23a to 23c, arms 24a to 24c, a head drive unit 221 and a 3D printer head 222. It includes an image pickup unit 223, a pedestal 224, and a pedestal drive unit 225.

本実施形態における立体物造形部20は、基台部21から天板部22に向けて垂直に起立する3つの上下動軸23a〜23cに沿って、3Dプリンタヘッド222を支持するアーム24a〜24cが上下動することにより、立体物を積層造形するデルタ型の3Dプリンタである。また、立体物造形部20は、データ処理部10によって生成された制御データに基づいて、ヘッド駆動部221の制御の下、3Dプリンタヘッド222から造形材料を吐出し、造形物を出力(立体物を製造)する。さらに、立体物造形部20は、天板部22に台座224の方向を撮像する撮像部223を備えており、画像取得制御部52(後述)の制御に従って、造形材料が1層積層される毎等、所定のタイミングで、台座224に造形された立体物の積層部分の画像を撮像部223によって取得する。なお、立体物造形部20において、台座224は台座駆動部225によって水平面に対する傾きや垂直方向の位置等が調整される。即ち、立体物造形部20においては、撮像部223が、造形中の立体物における積層部分を複数の方向から撮像することが可能となっている。
立体物造形部20の構成については、以下の機能的構成の説明において詳述する。
The three-dimensional object modeling portion 20 in the present embodiment has arms 24a to 24c that support the 3D printer head 222 along three vertical moving shafts 23a to 23c that stand vertically from the base portion 21 toward the top plate portion 22. This is a delta type 3D printer that stacks and models three-dimensional objects by moving up and down. Further, the three-dimensional object modeling unit 20 discharges the modeling material from the 3D printer head 222 under the control of the head drive unit 221 based on the control data generated by the data processing unit 10, and outputs the modeled object (three-dimensional object). To manufacture). Further, the three-dimensional object modeling unit 20 is provided with an image pickup unit 223 that images the direction of the pedestal 224 on the top plate unit 22, and each time one layer of the modeling material is laminated under the control of the image acquisition control unit 52 (described later). Etc., at a predetermined timing, the image pickup unit 223 acquires an image of the laminated portion of the three-dimensional object formed on the pedestal 224. In the three-dimensional object modeling unit 20, the pedestal 224 is adjusted by the pedestal drive unit 225 in inclination with respect to the horizontal plane, a position in the vertical direction, and the like. That is, in the three-dimensional object modeling unit 20, the image pickup unit 223 can image the laminated portion of the three-dimensional object being modeled from a plurality of directions.
The configuration of the three-dimensional object modeling unit 20 will be described in detail in the following description of the functional configuration.

[立体物製造装置1の機能的構成]
次に、立体物製造装置1の機能的構成について説明する。
図2は、立体物製造装置1の機能的構成を示すブロック図である。
図2に示すように、立体物製造装置1において、データ処理部10は、CPU11の機能として、造形データ取得部111と、画像取得制御部112と、積層制御部113と、台座制御部114と、造形物評価部115とを備え、記憶部16において、造形データ記憶部71と、品質データ記憶部72とが形成される。また、立体物造形部20は、上述したように、ヘッド駆動部221と、3Dプリンタヘッド222と、撮像部223と、台座224と、台座駆動部225とを備えている。
[Functional configuration of three-dimensional object manufacturing device 1]
Next, the functional configuration of the three-dimensional object manufacturing apparatus 1 will be described.
FIG. 2 is a block diagram showing a functional configuration of the three-dimensional object manufacturing apparatus 1.
As shown in FIG. 2, in the three-dimensional object manufacturing apparatus 1, the data processing unit 10 includes a modeling data acquisition unit 111, an image acquisition control unit 112, a stacking control unit 113, and a pedestal control unit 114 as functions of the CPU 11. , A model evaluation unit 115 is provided, and a model data storage unit 71 and a quality data storage unit 72 are formed in the storage unit 16. Further, as described above, the three-dimensional object modeling unit 20 includes a head drive unit 221, a 3D printer head 222, an image pickup unit 223, a pedestal 224, and a pedestal drive unit 225.

造形データ記憶部71には、立体物製造装置1において製造される立体物を造形するためのデータ(CADデータ)が記憶される。本実施形態において、立体物を造形するためのデータ(CADデータ)には、立体物に組み込まれる電子部品や回路の配置データを含めることができる。 The modeling data storage unit 71 stores data (CAD data) for modeling a three-dimensional object manufactured by the three-dimensional object manufacturing apparatus 1. In the present embodiment, the data (CAD data) for modeling the three-dimensional object can include the arrangement data of the electronic components and circuits incorporated in the three-dimensional object.

品質データ記憶部72は、立体物製造装置1において製造される立体物の品質を示すデータが記憶される。品質データ記憶部72に記憶された立体物の品質を示すデータは、立体物の出荷時等に、立体物に埋め込まれるRFID(Radio Frequency Identifier)や立体物の付属品であるリムーバブルメディア等に記憶され、立体物と共に提供される。即ち、立体物の品質を示すデータは、製造された立体物の鑑定書あるいは品質保証書として利用することができる。 The quality data storage unit 72 stores data indicating the quality of the three-dimensional object manufactured by the three-dimensional object manufacturing apparatus 1. The data indicating the quality of the three-dimensional object stored in the quality data storage unit 72 is stored in the RFID (Radio Frequency Identification Identifier) embedded in the three-dimensional object, the removable media which is an accessory of the three-dimensional object, etc. And provided with the three-dimensional object. That is, the data indicating the quality of the three-dimensional object can be used as an appraisal certificate or a quality guarantee certificate of the manufactured three-dimensional object.

造形データ取得部111は、立体物製造装置1において作成されたCADデータあるいは不図示のネットワーク等を介して他の装置から送信されたCADデータを取得し、造形データ記憶部71に記憶する。また、造形データ取得部111は、取得したCADデータに基づいて、サーフェス(立体物の表面)を多角形メッシュで近似するSTL形式のデータ(立体物の造形データであるSTLデータ)を生成する。さらに、造形データ取得部111は、生成したSTLデータに基づいて、3Dプリンタヘッド222のツールパスを表すスライスデータを生成する。このとき、造形データ取得部111は、スライスデータとして、造形される立体物の内部構造を表すボクセルモデルを生成する。 The modeling data acquisition unit 111 acquires CAD data created by the three-dimensional object manufacturing apparatus 1 or CAD data transmitted from another apparatus via a network (not shown) or the like, and stores the CAD data in the modeling data storage unit 71. Further, the modeling data acquisition unit 111 generates STL format data (STL data which is modeling data of a three-dimensional object) that approximates a surface (surface of a three-dimensional object) with a polygonal mesh based on the acquired CAD data. Further, the modeling data acquisition unit 111 generates slice data representing the tool path of the 3D printer head 222 based on the generated STL data. At this time, the modeling data acquisition unit 111 generates voxel models representing the internal structure of the three-dimensional object to be modeled as slice data.

本実施形態において、造形データ取得部111によってスライスデータを生成する場合、立体物の製造者等が意図するタイミングで、積層部分の撮像を指示するコマンドを付加することが可能となっている。即ち、スライスデータにおいて、立体物を製造するために3Dプリンタヘッド222によって積層要素を積層するツールパスを表すデータ列に、撮像部223によって積層部分の画像を撮像するためのデータ(コマンド)を任意に配置することが可能となっている。撮像部223によって積層部分の画像を撮像するためのデータ(コマンド)は、立体物の製造者が、製造時に品質を確認したいと考える立体物の部分について、該当するスライスデータの位置に配置すること等が可能である。 In the present embodiment, when the modeling data acquisition unit 111 generates slice data, it is possible to add a command instructing imaging of the laminated portion at a timing intended by the manufacturer of the three-dimensional object or the like. That is, in the slice data, the data (command) for capturing the image of the laminated portion by the imaging unit 223 is arbitrarily added to the data string representing the tool path for laminating the laminated elements by the 3D printer head 222 in order to manufacture the three-dimensional object. It is possible to place it in. The data (command) for capturing the image of the laminated portion by the imaging unit 223 shall be arranged at the position of the corresponding slice data for the portion of the three-dimensional object for which the manufacturer of the three-dimensional object wants to confirm the quality at the time of manufacturing. Etc. are possible.

画像取得制御部112は、立体物の造形中に、当該立体物の積層部分の画像を撮像部223によって取得する。このとき、画像取得制御部112は、台座制御部114に対し、台座224の水平方向に対する傾きや垂直方向の位置等を変化させる指示を出力し、立体物の積層部分を複数の方向から撮像した画像を取得する。そして、画像取得制御部112は、取得した立体物の積層部分における撮像画像(積層部分の形状を表すデータ)を立体物の積層部分を識別する情報(例えば、CADデータにおける位置を表す情報等)と対応付けて、品質データ記憶部72に記憶する。このように取得された撮像画像(多視点の平面画像)を3次元画像として合成することにより、立体物の積層部分における3次元形状を取得することができる。 The image acquisition control unit 112 acquires an image of the laminated portion of the three-dimensional object by the imaging unit 223 during the modeling of the three-dimensional object. At this time, the image acquisition control unit 112 outputs an instruction to the pedestal control unit 114 to change the inclination of the pedestal 224 with respect to the horizontal direction, the position in the vertical direction, and the like, and images the laminated portion of the three-dimensional object from a plurality of directions. Get an image. Then, the image acquisition control unit 112 uses the acquired image (data representing the shape of the stacked portion) in the stacked portion of the three-dimensional object to identify the stacked portion of the three-dimensional object (for example, information indicating the position in the CAD data). Is stored in the quality data storage unit 72 in association with. By synthesizing the captured image (multi-viewpoint plane image) acquired in this way as a three-dimensional image, it is possible to acquire the three-dimensional shape in the laminated portion of the three-dimensional object.

また、本実施形態において、画像取得制御部112が立体物の積層部分の画像を撮像部223によって取得するタイミング(画像取得タイミング)は、(1)スライスデータにおいて画像を撮像するためのデータ(コマンド)が配置されている場合、(2)積層要素の所定層毎(例えば、1層毎あるいは3層毎等)、あるいは、(3)画像取得制御部112が立体物の形状を解析し、形状が複雑な部分が積層されたと判定したタイミング、等とすることができる。 Further, in the present embodiment, the timing (image acquisition timing) for the image acquisition control unit 112 to acquire the image of the laminated portion of the three-dimensional object by the image pickup unit 223 is (1) data (command) for capturing the image in the slice data. ) Is arranged, (2) every predetermined layer of the laminated element (for example, every one layer or every three layers, etc.), or (3) the image acquisition control unit 112 analyzes the shape of the three-dimensional object and forms the shape. Can be the timing at which it is determined that the complicated portions are stacked, and the like.

また、画像取得制御部112は、立体物の造形後に、当該立体物全体の画像を撮像部223によって取得する。このとき、画像取得制御部112は、台座制御部114に対し、台座224の水平方向に対する傾きや垂直方向の位置等を変化させる指示を出力し、立体物全体を複数の方向から撮像した画像を取得する。画像取得制御部112は、取得した立体物全体の画像(立体物全体の形状を表すデータ)を、立体物を識別する情報と対応付けて、品質データ記憶部72に記憶する。このように取得された撮像画像(多視点の平面画像)を3次元画像として合成することにより、立体物全体における3次元形状を取得することができる。 Further, the image acquisition control unit 112 acquires an image of the entire three-dimensional object by the imaging unit 223 after modeling the three-dimensional object. At this time, the image acquisition control unit 112 outputs an instruction to the pedestal control unit 114 to change the inclination of the pedestal 224 with respect to the horizontal direction, the position in the vertical direction, and the like, and captures an image of the entire three-dimensional object from a plurality of directions. get. The image acquisition control unit 112 stores the acquired image of the entire three-dimensional object (data representing the shape of the entire three-dimensional object) in the quality data storage unit 72 in association with the information for identifying the three-dimensional object. By synthesizing the captured image (multi-viewpoint plane image) acquired in this way as a three-dimensional image, it is possible to acquire the three-dimensional shape of the entire three-dimensional object.

積層制御部113は、造形データ取得部111によって生成されたスライスデータに基づいて、3Dプリンタヘッド222を駆動し、立体物を製造するための積層要素の積層を制御する。本実施形態においては、上述したように、積層要素として、造形材料に加え、立体物に組み込まれる回路を形成するための金属材料や電子部品等、造形材料以外のものが積層されて立体物が製造される。そのため、立体物造形部20には、積層される積層要素に対応した複数のノズルを3Dプリンタヘッド222に備えたり、3Dプリンタヘッド222に加えて部品のピックアンドプレース機構を備えたりすることができ、積層制御部113は、スライスデータに基づいて、これらの動作を制御し、立体物の積層要素を逐次積層する。 The stacking control unit 113 drives the 3D printer head 222 based on the slice data generated by the modeling data acquisition unit 111, and controls the stacking of laminated elements for manufacturing a three-dimensional object. In the present embodiment, as described above, as the laminated element, in addition to the modeling material, a metal material for forming a circuit incorporated in the three-dimensional object, an electronic component, and other materials other than the modeling material are laminated to form the three-dimensional object. Manufactured. Therefore, the three-dimensional object modeling unit 20 may be provided with a plurality of nozzles corresponding to the laminated elements to be laminated in the 3D printer head 222, or may be provided with a component pick-and-place mechanism in addition to the 3D printer head 222. The stacking control unit 113 controls these operations based on the slice data, and sequentially stacks the stacking elements of the three-dimensional object.

また、積層制御部113は、画像取得制御部112によって、立体物の積層部分の画像が取得される場合、立体物の積層を一時停止し、画像取得制御部112による画像取得を妨げない位置に3Dプリンタヘッド222を退避させる。
さらに、積層制御部113は、造形物評価部115から積層を停止させる指示が入力された場合、製造中の立体物の積層を停止する。
台座制御部114は、画像取得制御部112の指示に応じて、台座駆動部225を制御することにより台座224の水平方向に対する傾きや垂直方向の位置等を変化させる。
Further, when the image acquisition control unit 112 acquires an image of the laminated portion of the three-dimensional object, the stacking control unit 113 suspends the lamination of the three-dimensional objects at a position that does not interfere with the image acquisition by the image acquisition control unit 112. The 3D printer head 222 is retracted.
Further, the stacking control unit 113 stops the stacking of the three-dimensional object being manufactured when an instruction to stop the stacking is input from the modeled object evaluation unit 115.
The pedestal control unit 114 controls the pedestal drive unit 225 in response to an instruction from the image acquisition control unit 112 to change the inclination of the pedestal 224 with respect to the horizontal direction, the position in the vertical direction, and the like.

造形物評価部115は、画像取得制御部112によって取得された撮像画像に基づいて、製造対象の立体物の積層部分毎及び立体物全体について品質を評価し、評価結果を品質データ記憶部72に記憶する。具体的には、造形物評価部115は、製造対象の立体物の積層部分を評価するための部分評価処理を実行する。即ち、部分評価処理において、造形物評価部115は、画像取得制御部112によって取得された多視点の平面画像である撮像画像を、3次元画像として合成する。また、造形物評価部115は、合成した3次元画像をボクセルモデルに変換し、造形データ取得部111によって生成された同一の積層部分のボクセルモデルと比較する。そして、造形物評価部115は、同一の積層部分について、3次元画像から変換されたボクセルモデルと、造形データ取得部111によって生成されたボクセルモデル(CADデータから生成されたボクセルモデル)との一致度合いが基準とする条件(部分評価条件)よりも低い場合、造形される立体物の品質が基準を満たしていないと判定する。本実施形態においては、造形物評価部115は、部分評価処理において、造形される立体物の品質が基準を満たしていないと判定した場合、エラー停止処理として、積層制御部113に対して、製造中の立体物の積層を停止させる指示を出力すると共に、出力部15のディスプレイに、立体物の品質が基準を満たしていない旨のメッセージを表示する。なお、このとき、造形物評価部115が出力部15のスピーカから警報音やエラーである旨の音声メッセージを出力することとしてもよい。なお、この部分評価処理の結果は、品質データ記憶部72に記憶される。 The modeled object evaluation unit 115 evaluates the quality of each laminated portion of the three-dimensional object to be manufactured and the entire three-dimensional object based on the captured image acquired by the image acquisition control unit 112, and outputs the evaluation result to the quality data storage unit 72. Remember. Specifically, the modeled object evaluation unit 115 executes a partial evaluation process for evaluating the laminated portion of the three-dimensional object to be manufactured. That is, in the partial evaluation process, the model evaluation unit 115 synthesizes the captured image, which is a multi-viewpoint plane image acquired by the image acquisition control unit 112, as a three-dimensional image. In addition, the model evaluation unit 115 converts the synthesized three-dimensional image into a voxel model, and compares it with the voxel model of the same laminated portion generated by the model data acquisition unit 111. Then, the model evaluation unit 115 matches the boxel model converted from the three-dimensional image with the boxel model (boxel model generated from the CAD data) generated by the model data acquisition unit 111 for the same laminated portion. If the degree is lower than the standard condition (partial evaluation condition), it is determined that the quality of the three-dimensional object to be modeled does not meet the standard. In the present embodiment, when the modeled object evaluation unit 115 determines in the partial evaluation process that the quality of the three-dimensional object to be modeled does not satisfy the standard, it manufactures the stacked control unit 113 as an error stop process. An instruction to stop stacking the three-dimensional objects inside is output, and a message indicating that the quality of the three-dimensional objects does not meet the standard is displayed on the display of the output unit 15. At this time, the modeled object evaluation unit 115 may output an alarm sound or a voice message indicating an error from the speaker of the output unit 15. The result of this partial evaluation process is stored in the quality data storage unit 72.

図3は、積層部分に欠損箇所が発生している状態を示す模式図であり、図3(A)はCADデータから生成されたボクセルモデルを示す図、図3(B)は積層部分の3次元画像から変換されたボクセルモデルを示す図である。
立体物の設計においては、図3(A)のように積層されることが予定されているところ、図3(B)においては、積層部分に欠損等が生じており、部分評価処理によって、このような欠損箇所の発生度合いに応じた評価結果(欠損箇所となったボクセルの全体に対する割合等)が取得される。
このように積層部分毎に品質を評価することで、明らかに品質を満たさない造形物の造形が継続されることを防止することができる。
FIG. 3 is a schematic view showing a state in which a defective portion is generated in the laminated portion, FIG. 3A is a diagram showing a voxel model generated from CAD data, and FIG. 3B is a diagram showing a voxel model generated from the CAD data. It is a figure which shows the voxel model converted from the dimensional image.
In the design of a three-dimensional object, it is planned to be laminated as shown in FIG. 3 (A), but in FIG. 3 (B), a defect or the like occurs in the laminated portion, and this is achieved by the partial evaluation process. Evaluation results (ratio of voxels that have become defective parts to the whole, etc.) are acquired according to the degree of occurrence of such defective parts.
By evaluating the quality of each laminated portion in this way, it is possible to prevent the modeling of a modeled object that clearly does not satisfy the quality from being continued.

また、造形物評価部115は、造形が完了した立体物全体を評価するための全体評価処理を実行する。全体評価処理は、積層部分毎に品質を評価したのみでは、全体を積層した場合に立体物に表れる品質(プラスチック素材(ABS樹脂等)であれば造形後に収縮する、あるいは、反る等の形状変化が起きるといったように、高さが設計値よりも低くなる、幅が設計値よりも大きくなる、積層部分が捩れて積層される等)を評価できないため、立体物全体としてのこれらの品質を評価するために実行される。即ち、造形物評価部115は、立体物全体を撮像対象として画像取得制御部112によって取得された多視点の平面画像である撮像画像を、3次元画像として合成する。また、造形物評価部115は、立体物全体の3次元画像を造形データ取得部111によって取得されたCADデータと比較する。このとき、造形物評価部115は、立体物全体の3次元画像及びCADデータを、比較のための所定のデータ形式(例えば、CADデータからボクセルモデルが生成されるまでのいずれかのデータ形式あるいは比較用の他のデータ形式等)に変換した後に比較することができる。そして、造形物評価部115は、立体物全体について、合成された3次元画像と、造形データ取得部111によって取得されたCADデータとの一致度合いが基準とする条件(全体評価条件)よりも低い場合、造形された立体物の品質が基準を満たしていないと判定する。本実施形態においては、造形物評価部115は、全体評価処理において、造形された立体物の品質が基準を満たしていないと判定した場合、エラー表示処理として、出力部15のディスプレイに、立体物の品質が基準を満たしていない旨のメッセージを表示する。なお、このとき、造形物評価部115が出力部15のスピーカから警報音やエラーである旨の音声メッセージを出力することとしてもよい。なお、この全体評価処理の結果は、品質データ記憶部72に記憶される。 In addition, the modeled object evaluation unit 115 executes an overall evaluation process for evaluating the entire three-dimensional object for which modeling has been completed. In the overall evaluation process, if the quality is evaluated for each laminated part, the quality that appears in a three-dimensional object when the whole is laminated (a shape such as shrinkage or warpage after modeling if it is a plastic material (ABS resin, etc.)). Since the height is lower than the design value, the width is larger than the design value, the laminated part is twisted and laminated, etc., such as changes occur, these qualities of the three-dimensional object as a whole cannot be evaluated. Performed to evaluate. That is, the model evaluation unit 115 synthesizes an captured image, which is a multi-viewpoint plane image acquired by the image acquisition control unit 112, as a three-dimensional image with the entire three-dimensional object as an imaging target. Further, the model evaluation unit 115 compares the three-dimensional image of the entire three-dimensional object with the CAD data acquired by the model data acquisition unit 111. At this time, the modeled object evaluation unit 115 converts the three-dimensional image and the CAD data of the entire three-dimensional object into a predetermined data format for comparison (for example, any data format from the CAD data until the voxel model is generated, or It can be compared after conversion to other data formats for comparison, etc.). Then, the model evaluation unit 115 has a lower degree of agreement between the synthesized three-dimensional image and the CAD data acquired by the model data acquisition unit 111 (overall evaluation condition) for the entire three-dimensional object. In this case, it is determined that the quality of the three-dimensional object formed does not meet the standard. In the present embodiment, when the modeled object evaluation unit 115 determines in the overall evaluation process that the quality of the modeled three-dimensional object does not meet the standard, the three-dimensional object is displayed on the display of the output unit 15 as an error display process. Display a message that the quality of the product does not meet the standard. At this time, the modeled object evaluation unit 115 may output an alarm sound or a voice message indicating an error from the speaker of the output unit 15. The result of this overall evaluation process is stored in the quality data storage unit 72.

立体物造形部20のヘッド駆動部221は、造形データ取得部111によって生成されたボクセルモデルに基づいて、3Dプリンタヘッド222の移動と、ノズルからの造形材料の吐出量とを制御する。
3Dプリンタヘッド222は、上下動軸23a〜23cに沿って上下方向に移動可能な3つのアームに支持され、ヘッド駆動部221の制御に従って、ノズルから造形材料を吐出する。
The head drive unit 221 of the three-dimensional object modeling unit 20 controls the movement of the 3D printer head 222 and the discharge amount of the modeling material from the nozzle based on the voxel model generated by the modeling data acquisition unit 111.
The 3D printer head 222 is supported by three arms that can move in the vertical direction along the vertical movement shafts 23a to 23c, and ejects the modeling material from the nozzle under the control of the head drive unit 221.

撮像部223は、デジタルカメラ等の撮像装置によって構成され、天板部22に台座224の方向を撮像可能に設置されている。そして、撮像部223は、造形されている立体物の積層部分や造形が完了した立体物全体の画像(ここでは、平面画像とする)を撮像する。なお、立体物を異なる方向から撮像可能なように、撮像部223を複数備えておくこととしてもよい。
台座224は、立体物が積層造形される台座となる。また、台座224は、台座駆動部225によって、水平面に対する傾きや水平面内における回転、及び、垂直方向の位置が調整される。
The image pickup unit 223 is composed of an image pickup device such as a digital camera, and is installed on the top plate portion 22 so as to be able to image the direction of the pedestal 224. Then, the image pickup unit 223 captures an image (here, a plane image) of the laminated portion of the three-dimensional object being modeled or the entire three-dimensional object that has been modeled. It should be noted that a plurality of imaging units 223 may be provided so that a three-dimensional object can be imaged from different directions.
The pedestal 224 is a pedestal on which three-dimensional objects are laminated. Further, the pedestal drive unit 225 adjusts the inclination of the pedestal 224 with respect to the horizontal plane, the rotation in the horizontal plane, and the position in the vertical direction.

台座駆動部225は、基台部21と台座224との間に設置され、雲台機構によって台座224を支持している。また、台座駆動部225は、基台部21に対して台座224を垂直方向に移動させる伸縮機構を備えている。そして、台座駆動部225は、雲台機構及び伸縮機構を駆動するアクチュエータを備え、台座制御部116から入力される駆動指令信号に従って、台座224の水平面に対する傾きや水平面内における回転、及び、垂直方向の位置を調整する。 The pedestal drive unit 225 is installed between the base unit 21 and the pedestal 224, and supports the pedestal 224 by a pan head mechanism. Further, the pedestal drive unit 225 includes a telescopic mechanism for moving the pedestal 224 in the vertical direction with respect to the base unit 21. The pedestal drive unit 225 includes an actuator for driving the pan head mechanism and the expansion / contraction mechanism, and in accordance with a drive command signal input from the pedestal control unit 116, the pedestal 224 is tilted with respect to the horizontal plane, rotated in the horizontal plane, and in the vertical direction. Adjust the position of.

[動作]
次に、立体物製造装置1の動作を説明する。
[立体物製造処理]
図4は、立体物製造装置1が実行する立体物製造処理の流れを説明するフローチャートである。
立体物製造処理は、立体物製造装置1において、立体物の製造を指示する操作が行われることに対応して開始される。
[motion]
Next, the operation of the three-dimensional object manufacturing apparatus 1 will be described.
[Three-dimensional object manufacturing process]
FIG. 4 is a flowchart illustrating a flow of a three-dimensional object manufacturing process executed by the three-dimensional object manufacturing apparatus 1.
The three-dimensional object manufacturing process is started in response to the operation of instructing the production of the three-dimensional object in the three-dimensional object manufacturing apparatus 1.

ステップS1において、造形データ取得部111は、製造対象の立体物のCADデータを取得する。これに対応して、造形データ取得部111において、当該CADデータに基づいて、造形される立体物の内部構造を表すボクセルモデルが生成される。なお、このとき、造形データ取得部111は、製造対象の立体物のCADデータからSTL形式のデータを生成し、さらに、3Dプリンタヘッド222のツールパスを表すスライスデータとして、ボクセルモデルを生成する。 In step S1, the modeling data acquisition unit 111 acquires CAD data of the three-dimensional object to be manufactured. Correspondingly, the modeling data acquisition unit 111 generates a voxel model representing the internal structure of the three-dimensional object to be modeled based on the CAD data. At this time, the modeling data acquisition unit 111 generates STL format data from the CAD data of the three-dimensional object to be manufactured, and further generates a voxel model as slice data representing the tool path of the 3D printer head 222.

ステップS2において、画像取得制御部112は、立体物製造処理において立体物の積層部分の画像を取得する条件(画像取得条件)の判定を行う。例えば、画像取得制御部112は、立体物の積層部分を撮像部223によって取得するタイミングとして、(1)スライスデータにおいて画像を撮像するためのデータ(コマンド)が配置されている場合に画像を取得する、(2)積層要素の所定層毎(例えば、1層毎あるいは3層毎等)に画像を取得する、(3)画像取得制御部112が立体物の形状を解析し、形状が複雑な部分が積層されたと判定したタイミングで画像を取得する、等のいずれの画像取得条件が設定されているかを判定する。なお、これらの画像取得条件のいずれを設定するかについては、立体物製造処理の開始に先立ち、ユーザが予め設定することが可能である。また、このとき、これらの画像取得条件のうちのいずれか1つ、または、複数を設定することが可能である。本実施形態においては、(2)積層要素の所定層毎(ここでは1層毎とする)に画像を取得する、という画像取得条件が設定されているものとする。 In step S2, the image acquisition control unit 112 determines the conditions (image acquisition conditions) for acquiring an image of the laminated portion of the three-dimensional object in the three-dimensional object manufacturing process. For example, the image acquisition control unit 112 acquires an image when (1) data (command) for capturing an image is arranged in the slice data as a timing for acquiring the laminated portion of the three-dimensional object by the imaging unit 223. (2) Acquire an image for each predetermined layer of the laminated element (for example, for each layer or every three layers), (3) The image acquisition control unit 112 analyzes the shape of the three-dimensional object, and the shape is complicated. It is determined which image acquisition condition is set, such as acquiring an image at the timing when it is determined that the portions are stacked. It should be noted that which of these image acquisition conditions should be set can be set in advance by the user prior to the start of the three-dimensional object manufacturing process. Further, at this time, it is possible to set any one or a plurality of these image acquisition conditions. In the present embodiment, it is assumed that the image acquisition condition (2) that the image is acquired for each predetermined layer of the laminated element (here, for each layer) is set.

ステップS3において、積層制御部113は、造形データ取得部111によって生成されたスライスデータ(ボクセルモデル)に基づいて、3Dプリンタヘッド222を駆動し、1層分の積層要素を積層する。 In step S3, the stacking control unit 113 drives the 3D printer head 222 based on the slice data (voxel model) generated by the modeling data acquisition unit 111, and stacks one layer of laminated elements.

ステップS4において、画像取得制御部112は、立体物の積層部分の画像を撮像部223によって取得するタイミング(画像取得タイミング)であるか否かの判定を行う。
画像取得タイミングである場合、ステップS4においてYESと判定されて、処理はステップS5に移行する。
一方、画像取得タイミングでない場合、ステップS4においてNOと判定されて、処理はステップS10に移行する。
In step S4, the image acquisition control unit 112 determines whether or not it is the timing (image acquisition timing) to acquire the image of the laminated portion of the three-dimensional object by the image pickup unit 223.
If it is the image acquisition timing, YES is determined in step S4, and the process proceeds to step S5.
On the other hand, if it is not the image acquisition timing, NO is determined in step S4, and the process proceeds to step S10.

ステップS5において、画像取得制御部112は、立体物の積層部分の画像を撮像部223によって取得する。このとき、画像取得制御部112は、台座制御部114に対し、台座224の水平方向に対する傾きや垂直方向の位置等を変化させる指示を出力し、立体物の積層部分を複数の方向から撮像した画像を取得する。本実施形態においては、画像取得制御部112は、台座224の水平方向に対する傾きを変化させ、少なくとも2方向から撮像した立体物の積層部分の画像を取得するものとする。 In step S5, the image acquisition control unit 112 acquires an image of the laminated portion of the three-dimensional object by the image pickup unit 223. At this time, the image acquisition control unit 112 outputs an instruction to the pedestal control unit 114 to change the inclination of the pedestal 224 with respect to the horizontal direction, the position in the vertical direction, and the like, and images the laminated portion of the three-dimensional object from a plurality of directions. Get an image. In the present embodiment, the image acquisition control unit 112 changes the inclination of the pedestal 224 with respect to the horizontal direction, and acquires an image of the laminated portion of the three-dimensional object captured from at least two directions.

ステップS6において、画像取得制御部112は、ステップS5において取得した立体物の積層部分の画像を、当該立体物の積層部分を識別する情報(CADデータにおける位置を表す情報等)と対応付けて、品質データ記憶部72に記憶する。
ステップS7において、造形物評価部115は、製造対象の立体物の積層部分を評価するための部分評価処理を実行する。
In step S6, the image acquisition control unit 112 associates the image of the laminated portion of the three-dimensional object acquired in step S5 with the information for identifying the laminated portion of the three-dimensional object (information indicating the position in the CAD data, etc.). It is stored in the quality data storage unit 72.
In step S7, the modeled object evaluation unit 115 executes a partial evaluation process for evaluating the laminated portion of the three-dimensional object to be manufactured.

ステップS8において、造形物評価部54は、部分評価処理の結果が造形される立体物の品質が基準を満たしていることを示しているか否かの判定を行う。
部分評価処理の結果が造形される立体物の品質が基準を満たしていることを示すものである場合、ステップS8においてYESと判定されて、処理はステップS10に移行する。
一方、部分評価処理の結果が造形される立体物の品質が基準を満たしていることを示すものでない場合、ステップS8においてNOと判定されて、処理はステップS9に移行する。
In step S8, the modeled object evaluation unit 54 determines whether or not the result of the partial evaluation process indicates that the quality of the three-dimensional object to be modeled satisfies the standard.
When the result of the partial evaluation process indicates that the quality of the three-dimensional object to be modeled satisfies the standard, it is determined as YES in step S8, and the process proceeds to step S10.
On the other hand, if the result of the partial evaluation process does not indicate that the quality of the three-dimensional object to be modeled satisfies the standard, NO is determined in step S8, and the process proceeds to step S9.

ステップS9において、造形物評価部54は、エラー停止処理を行い、立体物の積層を停止させると共に、立体物の品質が基準を満たしていない旨のメッセージを表示する。
ステップS9の後、立体物製造処理は終了する。
In step S9, the modeled object evaluation unit 54 performs an error stop process, stops the stacking of the three-dimensional object, and displays a message that the quality of the three-dimensional object does not meet the standard.
After step S9, the three-dimensional object manufacturing process is completed.

ステップS10において、積層制御部113は、立体物の積層が全て終了したか否かの判定を行う。
立体物の積層が全て終了した場合、ステップS10においてYESと判定されて、処理はステップS11に移行する。
一方、立体物の積層が全て終了していない場合、ステップS10においてNOと判定されて、処理はステップS3に移行する。
In step S10, the stacking control unit 113 determines whether or not all the stacking of the three-dimensional objects has been completed.
When all the three-dimensional objects have been laminated, YES is determined in step S10, and the process proceeds to step S11.
On the other hand, if all the three-dimensional objects have not been laminated, NO is determined in step S10, and the process proceeds to step S3.

ステップS11において、画像取得制御部112は、立体物全体の画像を撮像部223によって取得する。本実施形態においては、画像取得制御部112は、台座224の水平方向に対する傾きを変化させ、少なくとも2方向から撮像した立体物全体の画像を取得するものとする。 In step S11, the image acquisition control unit 112 acquires an image of the entire three-dimensional object by the image pickup unit 223. In the present embodiment, the image acquisition control unit 112 changes the inclination of the pedestal 224 with respect to the horizontal direction, and acquires an image of the entire three-dimensional object captured from at least two directions.

ステップS12において、画像取得制御部112は、ステップS11において取得した立体物全体の画像を、当該立体物を識別する情報と対応付けて、品質データ記憶部72に記憶する。
ステップS13において、造形物評価部115は、造形が完了した立体物全体を評価するための全体評価処理を実行する。
In step S12, the image acquisition control unit 112 stores the image of the entire three-dimensional object acquired in step S11 in the quality data storage unit 72 in association with the information for identifying the three-dimensional object.
In step S13, the modeled object evaluation unit 115 executes an overall evaluation process for evaluating the entire three-dimensional object for which modeling has been completed.

ステップS14において、造形物評価部54は、全体評価処理の結果が造形された立体物の品質が基準を満たしていることを示しているか否かの判定を行う。
全体評価処理の結果が造形された立体物の品質が基準を満たしていることを示している場合、ステップS14においてYESと判定されて、立体物製造処理は終了する。なお、このとき、品質の基準を満たす立体物の製造が完了した旨のメッセージを表示することとしてもよい。
一方、全体評価処理の結果が造形された立体物の品質が基準を満たしていることを示していない場合、ステップS14においてNOと判定されて、処理はステップS15に移行する。
In step S14, the modeled object evaluation unit 54 determines whether or not the result of the overall evaluation process indicates that the quality of the modeled three-dimensional object satisfies the standard.
When the result of the overall evaluation process indicates that the quality of the three-dimensional object formed meets the criteria, YES is determined in step S14, and the three-dimensional object manufacturing process ends. At this time, a message indicating that the production of the three-dimensional object satisfying the quality standard has been completed may be displayed.
On the other hand, if the result of the overall evaluation process does not indicate that the quality of the modeled three-dimensional object satisfies the standard, NO is determined in step S14, and the process proceeds to step S15.

ステップS15において、造形物評価部54は、エラー表示処理を行い、出力部15のディスプレイに、立体物の品質が基準を満たしていない旨のメッセージを表示する。
ステップS15の後、立体物製造処理は終了する。
造形処理が実行された結果、立体物の積層部分を識別する情報(CADデータにおける位置を表す情報等)と対応付けられた積層部分の画像のデータ、立体物を識別する情報と対応付けられた立体物全体の画像のデータ、部分評価処理の結果、及び、全体評価処理の結果が、当該立体物の品質を示すデータとして取得される。
In step S15, the modeled object evaluation unit 54 performs an error display process and displays a message on the display of the output unit 15 that the quality of the three-dimensional object does not meet the standard.
After step S15, the three-dimensional object manufacturing process is completed.
As a result of executing the modeling process, the data of the image of the laminated portion associated with the information for identifying the laminated portion of the three-dimensional object (information indicating the position in the CAD data, etc.) and the information for identifying the three-dimensional object were associated with each other. The image data of the entire three-dimensional object, the result of the partial evaluation process, and the result of the overall evaluation process are acquired as data indicating the quality of the three-dimensional object.

[部分評価処理]
次に、立体物製造処理のステップS7で実行される部分評価処理について説明する。
図5は、立体物製造処理のステップS7で実行される部分評価処理の流れを説明するフローチャートである。
[Partial evaluation processing]
Next, the partial evaluation process executed in step S7 of the three-dimensional object manufacturing process will be described.
FIG. 5 is a flowchart illustrating the flow of the partial evaluation process executed in step S7 of the three-dimensional object manufacturing process.

ステップS21において、造形物評価部115は、評価対象となる積層部分について、品質データ記憶部72から多視点の平面画像である撮像画像を読み出す。
ステップS22において、造形物評価部115は、多視点の平面画像である撮像画像を、3次元画像として合成する。
ステップS23において、造形物評価部115は、合成した3次元画像をボクセルモデルに変換する。
In step S21, the modeled object evaluation unit 115 reads out an captured image which is a multi-view plane image from the quality data storage unit 72 for the laminated portion to be evaluated.
In step S22, the model evaluation unit 115 synthesizes the captured image, which is a multi-view plane image, as a three-dimensional image.
In step S23, the model evaluation unit 115 converts the synthesized three-dimensional image into a voxel model.

ステップS24において、造形物評価部115は、ステップS23において変換されたボクセルモデルと、造形データ取得部111によって生成された同一の積層部分のボクセルモデルとを比較する。
ステップS25において、造形物評価部115は、評価対象となる積層部分について、3次元画像から変換されたボクセルモデルと、造形データ取得部111によって生成されたボクセルモデルとの一致度合いが基準とする条件(部分評価条件)を満たしているか否かを判定する。具体的には、評価対象となる積層部分について、3次元画像から変換されたボクセルモデルと、造形データ取得部111によって生成されたボクセルモデルとの一致度合いが部分評価条件よりも低い場合、造形される立体物の品質が基準を満たしていないと判定され、部分評価条件以上である場合、造形される立体物の品質が基準を満たしていると判定される。
In step S24, the model evaluation unit 115 compares the voxel model converted in step S23 with the voxel model of the same laminated portion generated by the model data acquisition unit 111.
In step S25, the modeled object evaluation unit 115 is a condition based on the degree of matching between the voxel model converted from the three-dimensional image and the voxel model generated by the modeled data acquisition unit 111 for the laminated portion to be evaluated. Judge whether or not (partial evaluation condition) is satisfied. Specifically, when the degree of agreement between the voxel model converted from the three-dimensional image and the voxel model generated by the modeling data acquisition unit 111 is lower than the partial evaluation conditions, the laminated portion to be evaluated is modeled. If it is determined that the quality of the three-dimensional object does not meet the standard and is equal to or higher than the partial evaluation condition, it is determined that the quality of the three-dimensional object to be modeled meets the standard.

ステップS26において、造形物評価部115は、ステップS25における判定結果を部分評価処理の結果として、品質データ記憶部72に記憶する。
ステップS26の後、処理は立体物製造処理に戻る。
In step S26, the modeled object evaluation unit 115 stores the determination result in step S25 as the result of the partial evaluation process in the quality data storage unit 72.
After step S26, the process returns to the three-dimensional object manufacturing process.

[全体評価処理]
次に、立体物製造処理のステップS13で実行される全体評価処理について説明する。
図6は、立体物製造処理のステップS13で実行される全体評価処理の流れを説明するフローチャートである。
[Overall evaluation process]
Next, the overall evaluation process executed in step S13 of the three-dimensional object manufacturing process will be described.
FIG. 6 is a flowchart illustrating the flow of the overall evaluation process executed in step S13 of the three-dimensional object manufacturing process.

ステップS31において、造形物評価部115は、立体物全体について、品質データ記憶部72から多視点の平面画像である撮像画像を読み出す。
ステップS32において、造形物評価部115は、多視点の平面画像である撮像画像を、3次元画像として合成する。
ステップS33において、造形物評価部115は、立体物全体について、合成された3次元画像と、造形データ取得部111によって取得されたCADデータとを比較する。
In step S31, the modeled object evaluation unit 115 reads out an captured image which is a multi-view plane image from the quality data storage unit 72 for the entire three-dimensional object.
In step S32, the model evaluation unit 115 synthesizes the captured image, which is a multi-view plane image, as a three-dimensional image.
In step S33, the modeled object evaluation unit 115 compares the synthesized three-dimensional image with the CAD data acquired by the modeled data acquisition unit 111 for the entire three-dimensional object.

ステップS34において、造形物評価部115は、立体物全体について、合成された3次元画像と、造形データ取得部111によって取得されたCADデータとの一致度合いが基準とする条件(全体評価条件)を満たしているか否かを判定する。具体的には、立体物全体について、合成された3次元画像と、造形データ取得部111によって取得されたCADデータとの一致度合いが全体評価条件よりも低い場合、造形された立体物の品質が基準を満たしていないと判定され、全体評価条件以上である場合、造形された立体物の品質が基準を満たしていると判定される。
ステップS35において、造形物評価部115は、ステップS34における判定結果を全体評価処理の結果として、品質データ記憶部72に記憶する。
ステップS35の後、処理は立体物製造処理に戻る。
In step S34, the modeled object evaluation unit 115 sets a condition (overall evaluation condition) based on the degree of agreement between the synthesized three-dimensional image and the CAD data acquired by the modeled data acquisition unit 111 for the entire three-dimensional object. Determine if it is satisfied. Specifically, for the entire three-dimensional object, when the degree of matching between the synthesized three-dimensional image and the CAD data acquired by the modeling data acquisition unit 111 is lower than the overall evaluation condition, the quality of the three-dimensional object formed is high. If it is determined that the criteria are not met and the overall evaluation conditions are exceeded, it is determined that the quality of the modeled three-dimensional object meets the criteria.
In step S35, the modeled object evaluation unit 115 stores the determination result in step S34 as the result of the overall evaluation process in the quality data storage unit 72.
After step S35, the process returns to the three-dimensional object manufacturing process.

これらの処理により、立体物の造形時に、立体物の積層部分の多視点の平面画像が取得され、3次元画像として合成される。そして、CADデータから変換された当該積層部分のボクセルモデルと、合成された3次元画像から変換されたボクセルモデルとが比較され、立体物(積層部分)の品質を示すデータが取得される。
これにより、製造される立体物の積層部分毎に、リアルタイムに品質を評価することが可能となる。
By these processes, a multi-view plane image of the laminated portion of the three-dimensional object is acquired at the time of modeling the three-dimensional object, and is synthesized as a three-dimensional image. Then, the voxel model of the laminated portion converted from the CAD data is compared with the voxel model converted from the synthesized three-dimensional image, and data indicating the quality of the three-dimensional object (laminated portion) is acquired.
This makes it possible to evaluate the quality in real time for each laminated portion of the three-dimensional object to be manufactured.

また、立体物の造形が完了した後、立体物全体の多視点の平面画像が取得され、3次元画像として合成される。そして、立体物全体の3次元画像が造形データ取得部111によって取得されたCADデータと、合成された3次元画像とが比較され、立体物(全体)の品質を示すデータが取得される。
これにより、積層部分毎の評価では表れない一方、製造された立体物全体に表れる品質を評価することが可能となる。
Further, after the modeling of the three-dimensional object is completed, a multi-view plane image of the entire three-dimensional object is acquired and combined as a three-dimensional image. Then, the CAD data acquired by the modeling data acquisition unit 111 for the three-dimensional image of the entire three-dimensional object is compared with the synthesized three-dimensional image, and data indicating the quality of the three-dimensional object (whole) is acquired.
This makes it possible to evaluate the quality that appears in the entire manufactured three-dimensional object, while it does not appear in the evaluation of each laminated portion.

このように、本実施形態における立体物製造装置1によれば、立体物の製造と製造される立体物の評価とを一体の装置によって効率的に行うことができる。
また、3Dプリンタによる製造物の品質評価をより適切に行うことが可能となる。
また、同一のCADデータから異なる立体物造形部20(3Dプリンタ)によって立体物を製造し、各製造物について上記評価を行うことにより、立体物造形部20の性能を評価することが可能となる。
As described above, according to the three-dimensional object manufacturing apparatus 1 in the present embodiment, the production of the three-dimensional object and the evaluation of the three-dimensional object to be manufactured can be efficiently performed by the integrated apparatus.
In addition, it becomes possible to more appropriately evaluate the quality of the product by the 3D printer.
Further, by manufacturing a three-dimensional object from the same CAD data with different three-dimensional object modeling units 20 (3D printer) and performing the above evaluation for each product, it is possible to evaluate the performance of the three-dimensional object modeling unit 20. ..

[変形例1]
上述の実施形態において、造形中の立体物における積層部分の立体的形状を取得する手段として、天板部22に備えられた撮像部223によって立体物の積層部分を複数の方向から撮像し、複数の撮像画像から立体的形状を構成する場合を例に挙げて説明した。即ち、上述の実施形態においては、天板部22に備えられた撮像部223と、台座224の水平方向に対する傾きや垂直方向の位置等を変化させる台座駆動部225とによって、立体物の積層部分の立体的形状を取得する手段を構成するものとした。
これに対し、立体物の積層部分の形状を取得するために、以下のような手段を用いることも可能である。
[Modification 1]
In the above-described embodiment, as a means for acquiring the three-dimensional shape of the three-dimensional object in the three-dimensional object being modeled, the image pickup unit 223 provided on the top plate portion 22 images the three-dimensional object laminated portion from a plurality of directions. The case where a three-dimensional shape is constructed from the captured image of the above has been described as an example. That is, in the above-described embodiment, the image pickup unit 223 provided on the top plate unit 22 and the pedestal drive unit 225 that changes the inclination of the pedestal 224 with respect to the horizontal direction, the position in the vertical direction, and the like are formed on the laminated portion of the three-dimensional object. It is assumed that the means for acquiring the three-dimensional shape of the above is configured.
On the other hand, in order to acquire the shape of the laminated portion of the three-dimensional object, it is also possible to use the following means.

(1)マイクロボロメータ(赤外線サーモグラフィ)
この場合、撮像部223に代えて、赤外線サーモグラフィカメラを天板部22に設置し、赤外線画像を取得することで実現できる。また、赤外線画像の取得時において、台座駆動部225による台座224の駆動は必ずしも必要ない。このように、赤外線サーモグラフィを用いることで、積層部分の輪郭をより明確に取得できる。
(1) Microbolometer (infrared thermography)
In this case, it can be realized by installing an infrared thermography camera on the top plate portion 22 instead of the imaging unit 223 and acquiring an infrared image. Further, when acquiring an infrared image, it is not always necessary to drive the pedestal 224 by the pedestal driving unit 225. In this way, by using infrared thermography, the contour of the laminated portion can be obtained more clearly.

(2)レーザ距離計(3次元レーザスキャナ)
この場合、撮像部223に代えて、レーザ距離計を天板部22に設置し、レーザによって立体物の積層部分等を走査して得られる画像を取得することで実現できる。また、レーザの走査時において、台座駆動部225による台座224の駆動は必ずしも必要ない。このように、レーザによる走査を行うことで、積層部分表面の正確な立体的形状を直接取得することができる。
(2) Laser rangefinder (3D laser scanner)
In this case, it can be realized by installing a laser range finder on the top plate portion 22 instead of the imaging unit 223 and acquiring an image obtained by scanning a laminated portion of a three-dimensional object or the like with a laser. Further, when scanning the laser, it is not always necessary to drive the pedestal 224 by the pedestal driving unit 225. By scanning with a laser in this way, it is possible to directly acquire an accurate three-dimensional shape of the surface of the laminated portion.

(3)フラットパネル型等のCTスキャナ
この場合、撮像部223に代えて、X線発生器を天板部22に設置し、フラットパネル型のX線検出器を台座224に設置してCT画像を取得することで実現できる。また、台座駆動部225による台座224の駆動は必ずしも必要ない。このように、CT画像を取得することで、積層部分の内部構造を取得することができる。
(3) Flat panel type CT scanner In this case, an X-ray generator is installed on the top plate 22 and a flat panel type X-ray detector is installed on the pedestal 224 instead of the imaging unit 223 for CT images. It can be realized by acquiring. Further, it is not always necessary to drive the pedestal 224 by the pedestal driving unit 225. By acquiring the CT image in this way, the internal structure of the laminated portion can be acquired.

(4)接触式形状測定装置
この場合、撮像部223に代えて、立体物に接触する接触子(探索針等のプローバー)を天板部22に設置し、接触子を降下させて立体物の積層部分表面に順次接触させ、接触子の接触位置を検出することにより、積層部分の立体的形状を表すデータを取得できる。この接触子は、例えば3Dプリンタヘッド222に設置することができる。また、接触子を立体物の積層部分表面に接触させる際に、台座駆動部225による台座224の駆動は必ずしも必要ない。このように、接触子による接触で積層部分表面の立体的形状を測定することで、簡易に積層部分の立体的形状を取得することができる。
(4) Contact-type shape measuring device In this case, instead of the imaging unit 223, a contactor (prober such as a search needle) that contacts a three-dimensional object is installed on the top plate portion 22 and the contactor is lowered to lower the three-dimensional object. Data representing the three-dimensional shape of the laminated portion can be acquired by sequentially contacting the surface of the laminated portion and detecting the contact position of the contactor. This contact can be installed, for example, on the 3D printer head 222. Further, when the contactor is brought into contact with the surface of the laminated portion of the three-dimensional object, it is not always necessary to drive the pedestal 224 by the pedestal driving unit 225. In this way, by measuring the three-dimensional shape of the surface of the laminated portion by contact with the contactor, the three-dimensional shape of the laminated portion can be easily obtained.

また、積層部分の立体的形状を取得するこれらの手段の複数を立体物製造装置1に備えておき、製造物の材料や品質評価の目的等に応じて、これらの手段を切り替えて用いることとしてもよい。例えば、立体物製造装置1の天板部22にツールチェンジャーを備えておき、これらの手段をツールチェンジャーによって切り替えて、積層部分の画像を取得することができる。
これにより、複数の造形材料を用いて立体物を製造する場合や、立体物の品質評価のために、立体物の部分毎に異なる種類の画像データが必要な場合等に、より適切な品質評価を行うことが可能となる。
Further, a plurality of these means for acquiring the three-dimensional shape of the laminated portion are provided in the three-dimensional object manufacturing apparatus 1, and these means are switched and used according to the material of the product, the purpose of quality evaluation, and the like. May be good. For example, a tool changer is provided on the top plate portion 22 of the three-dimensional object manufacturing apparatus 1, and these means can be switched by the tool changer to acquire an image of the laminated portion.
As a result, more appropriate quality evaluation is performed when a three-dimensional object is manufactured using a plurality of modeling materials, or when different types of image data are required for each part of the three-dimensional object for quality evaluation of the three-dimensional object. Can be done.

[変形例2]
上述の実施形態においては、立体物製造処理の工程として、立体物製造装置1による立体物の製造と共に、部分評価処理及び全体評価処理を実行するものとして説明したが、これに限られない。
例えば、立体物製造処理においては、立体物の積層部分の多視点の平面画像を取得し、当該立体物の積層部分を識別する情報(CADデータにおける位置を表す情報等)と対応付けると共に、立体物全体の多視点の平面画像を取得し、造形された立体物を識別する情報と対応付ける。この場合、立体物の積層部分及び全体についての多視点の平面画像が当該立体物と対応付けられた状態となり、この立体物の積層部分及び全体についての多視点の平面画像によって構成されるデータが、立体物の品質を示すオリジナルのデータ(以下、「評価用基本データ」と呼ぶ。)となる。評価用基本データを用いる場合、画像データの状態で立体物の積層部分及び全体と、立体物のCADデータとを比較して評価することができると共に、評価用基本データを適宜データ処理した結果(例えば、部分評価処理、全体評価処理あるいはその他の処理の結果)によって評価することが可能となる。
[Modification 2]
In the above-described embodiment, as the step of the three-dimensional object manufacturing process, the partial evaluation process and the overall evaluation process are executed together with the production of the three-dimensional object by the three-dimensional object manufacturing apparatus 1, but the present invention is not limited to this.
For example, in the three-dimensional object manufacturing process, a multi-view plane image of a three-dimensional object laminated portion is acquired, associated with information for identifying the three-dimensional object laminated portion (information indicating a position in CAD data, etc.), and the three-dimensional object is displayed. The entire multi-view plane image is acquired and associated with the information that identifies the modeled three-dimensional object. In this case, the multi-view plane image of the laminated portion and the whole of the three-dimensional object is in a state of being associated with the three-dimensional object, and the data composed of the multi-view plane image of the laminated portion and the whole of the three-dimensional object is obtained. , Original data indicating the quality of a three-dimensional object (hereinafter referred to as "basic data for evaluation"). When the basic evaluation data is used, it is possible to evaluate by comparing the laminated portion and the whole of the three-dimensional object with the CAD data of the three-dimensional object in the state of the image data, and the result of appropriately processing the basic evaluation data (data processing) ( For example, it is possible to evaluate by a partial evaluation process, a total evaluation process, or the result of other processes).

そして、立体物製造装置1の運用者(製造者)以外の主体によって、評価用基本データを対象として、部分評価処理及び全体評価処理が実行されることにより、製造物である立体物の品質を評価することができる。
即ち、立体物の評価は、立体物の製造工程と切り離し、独立して行うことが可能であり、この場合、部分評価処理及び全体評価処理は、立体物製造装置1とは異なる情報処理装置等において任意のタイミングで実行されることとなる。なお、この場合に用いられる情報処理装置のハードウェア構成としては、図1に示すデータ処理部10と同様の構成を採用することができる。
Then, by an entity other than the operator (manufacturer) of the three-dimensional object manufacturing apparatus 1, a partial evaluation process and an overall evaluation process are executed on the basic evaluation data to improve the quality of the three-dimensional object as a product. Can be evaluated.
That is, the evaluation of the three-dimensional object can be performed independently of the three-dimensional object manufacturing process. In this case, the partial evaluation process and the overall evaluation process are performed by an information processing device or the like different from the three-dimensional object manufacturing device 1. It will be executed at any timing. As the hardware configuration of the information processing device used in this case, the same configuration as that of the data processing unit 10 shown in FIG. 1 can be adopted.

図7は、立体物の製造と切り離して部分評価処理及び全体評価処理が行われる場合の処理(品質評価処理)の流れを説明するフローチャートである。
図7に示すように、品質評価処理が開始されると、情報処理装置は、ステップP1において、立体物の評価用基本データ(立体物の積層部分の多視点の平面画像)に基づいて、部分評価処理を実行する。
また、ステップP2において、情報処理装置は、立体物の評価用基本データ(立体物全体の多視点の平面画像)に基づいて、全体評価処理を実行する。
FIG. 7 is a flowchart illustrating a flow of processing (quality evaluation processing) when a partial evaluation process and an overall evaluation process are performed separately from the production of a three-dimensional object.
As shown in FIG. 7, when the quality evaluation process is started, the information processing apparatus performs a portion in step P1 based on the basic data for evaluation of the three-dimensional object (a multi-view plane image of the laminated portion of the three-dimensional object). Execute the evaluation process.
Further, in step P2, the information processing apparatus executes the overall evaluation process based on the basic data for evaluation of the three-dimensional object (a multi-view plane image of the entire three-dimensional object).

このような処理により、製造物としての立体物について、製造者以外の主体によって、品質(設計との誤差等)を評価することが可能となる。
即ち、第三者による立体物の品質評価を行うことが可能となり、立体物の品質評価に、より高い客観性を持たせることが可能となる。
By such processing, it becomes possible to evaluate the quality (error from the design, etc.) of the three-dimensional object as a product by an entity other than the manufacturer.
That is, it becomes possible for a third party to evaluate the quality of the three-dimensional object, and it is possible to give a higher objectivity to the quality evaluation of the three-dimensional object.

[変形例3]
上述の実施形態において、部分評価処理あるいは全体評価処理等によって得られた立体物の評価結果を、当該立体物製造装置1のキャリブレーションデータとして用いることにより、次回以降の立体物の製造に反映させることができる。
具体的には、1つまたは複数の立体物の評価結果を、当該立体物製造装置1のキャリブレーションデータとして造形処理にフィードバックすることにより、当該立体物製造装置1における造形処理の補正を行う。
[Modification 3]
In the above-described embodiment, the evaluation result of the three-dimensional object obtained by the partial evaluation process, the total evaluation process, or the like is used as the calibration data of the three-dimensional object manufacturing apparatus 1 and reflected in the next and subsequent production of the three-dimensional object. be able to.
Specifically, the evaluation result of one or a plurality of three-dimensional objects is fed back to the modeling process as calibration data of the three-dimensional object manufacturing apparatus 1, thereby correcting the modeling process in the three-dimensional object manufacturing apparatus 1.

即ち、立体物製造装置1に入力されたCADデータからボクセルモデルを生成する過程において、当該立体物製造装置1のキャリブレーションデータに基づく補正を行い、補正後のデータに基づいて、立体物を造形することができる。
これにより、立体物製造装置1において製造される立体物の品質をより高めることができる。
That is, in the process of generating a voxel model from the CAD data input to the three-dimensional object manufacturing apparatus 1, correction is performed based on the calibration data of the three-dimensional object manufacturing apparatus 1, and the three-dimensional object is modeled based on the corrected data. can do.
As a result, the quality of the three-dimensional object manufactured by the three-dimensional object manufacturing apparatus 1 can be further improved.

以上のように構成される立体物製造装置1は、立体物造形部20と、画像取得制御部112によって制御される撮像部223と、造形物評価部115とを備えている。
立体物造形部20は、立体物の形状を表す3次元形状データに基づいて、立体物を構成する積層要素を積層することにより当該立体物を造形する。
撮像部223は、画像取得制御部112の制御によって、立体物造形部20によって造形されている立体物の積層部分の形状(平面形状または3次元形状)を表すデータを取得する。
造形物評価部115は、撮像部223によって取得された立体物の積層部分の形状を表すデータと、当該積層部分に対応する3次元形状データとを対応付けることにより、当該立体物の品質を示す品質情報を生成する。
これにより、製造される立体物の積層部分毎に、品質を評価することが可能となる。
したがって、3Dプリンタによる製造物の品質評価をより適切に行うことが可能となる。
The three-dimensional object manufacturing apparatus 1 configured as described above includes a three-dimensional object modeling unit 20, an imaging unit 223 controlled by an image acquisition control unit 112, and a modeled object evaluation unit 115.
The three-dimensional object modeling unit 20 models the three-dimensional object by laminating the laminated elements constituting the three-dimensional object based on the three-dimensional shape data representing the shape of the three-dimensional object.
The image pickup unit 223 acquires data representing the shape (planar shape or three-dimensional shape) of the laminated portion of the three-dimensional object formed by the three-dimensional object modeling unit 20 under the control of the image acquisition control unit 112.
The model evaluation unit 115 shows the quality of the three-dimensional object by associating the data representing the shape of the laminated portion of the three-dimensional object acquired by the imaging unit 223 with the three-dimensional shape data corresponding to the laminated portion. Generate information.
This makes it possible to evaluate the quality of each laminated portion of the three-dimensional object to be manufactured.
Therefore, it becomes possible to more appropriately evaluate the quality of the product by the 3D printer.

撮像部223は、立体物造形部20によって造形された立体物全体の形状を表すデータを取得する。
造形物評価部115は、撮像部223によって取得された立体物全体の形状を表すデータと、当該立体物全体の3次元形状データとを対応付けることにより、品質情報を生成する。
これにより、積層部分毎の評価では表れない一方、製造された立体物全体に表れる品質を評価することが可能となる。
したがって、3Dプリンタによる製造物の品質評価をより適切に行うことが可能となる。
The image pickup unit 223 acquires data representing the shape of the entire three-dimensional object modeled by the three-dimensional object modeling unit 20.
The modeled object evaluation unit 115 generates quality information by associating the data representing the shape of the entire three-dimensional object acquired by the imaging unit 223 with the three-dimensional shape data of the entire three-dimensional object.
This makes it possible to evaluate the quality that appears in the entire manufactured three-dimensional object, while it does not appear in the evaluation of each laminated portion.
Therefore, it becomes possible to more appropriately evaluate the quality of the product by the 3D printer.

撮像部223は、立体物の形状を表すデータとして立体物の少なくとも一部における3次元形状を特定可能な画像を取得する。
これにより、製造されている立体物の3次元形状が取得されるため、より正確な品質を表す品質情報を生成することができる。
The imaging unit 223 acquires an image capable of specifying the three-dimensional shape of at least a part of the three-dimensional object as data representing the shape of the three-dimensional object.
As a result, the three-dimensional shape of the three-dimensional object being manufactured is acquired, so that quality information indicating more accurate quality can be generated.

撮像部223は、立体物造形部20が積層要素を造形する際に、予め設定された取得タイミングとなった場合、積層部分の形状を表すデータを取得する。
これにより、目的に応じて、適切なタイミングで積層部分の形状を表すデータを取得することが可能となる。
When the three-dimensional object modeling unit 20 models the laminated element, the imaging unit 223 acquires data representing the shape of the laminated portion when the acquisition timing is set in advance.
This makes it possible to acquire data representing the shape of the laminated portion at an appropriate timing according to the purpose.

造形物評価部115は、撮像部223によって取得された立体物の積層部分の形状を表すデータと、3次元形状データとを比較した結果に基づいて、品質情報を生成する。
これにより、設計された立体物と、実際に造形された立体物とを比較し、より正確な品質を表す品質情報を生成することができる。
The model evaluation unit 115 generates quality information based on the result of comparing the data representing the shape of the laminated portion of the three-dimensional object acquired by the image pickup unit 223 with the three-dimensional shape data.
This makes it possible to compare the designed three-dimensional object with the actually modeled three-dimensional object and generate quality information indicating more accurate quality.

造形物評価部115は、撮像部223によって取得された立体物の積層部分の形状を表すデータに基づいて、当該立体物の積層部分を表すボクセルデータを生成し、生成した当該ボクセルデータを、立体物造形部20が当該立体物の積層部分を造形するために使用したボクセルデータと比較した結果に基づいて、品質情報を生成する。
これにより、立体物の3次元形状を、より容易かつ正確に比較することが可能となる。
The model evaluation unit 115 generates voxel data representing the laminated portion of the three-dimensional object based on the data representing the shape of the laminated portion of the three-dimensional object acquired by the imaging unit 223, and the generated voxel data is used as a three-dimensional object. Quality information is generated based on the result of comparison with the voxel data used by the object modeling unit 20 for modeling the laminated portion of the three-dimensional object.
This makes it possible to compare the three-dimensional shapes of three-dimensional objects more easily and accurately.

撮像部223は、複数方向から平面画像を撮像することにより立体物の積層部分の形状を表すデータとして複数の画像を取得し、取得した画像を合成することにより、立体物の形状を示す3次元画像を生成する。
これにより、簡単な構成で3次元画像を取得することが可能となる。
The imaging unit 223 acquires a plurality of images as data representing the shape of the laminated portion of the three-dimensional object by capturing a two-dimensional image from a plurality of directions, and synthesizes the acquired images to show the shape of the three-dimensional object in three dimensions. Generate an image.
This makes it possible to acquire a three-dimensional image with a simple configuration.

立体物製造装置1は、レーザによって立体物を走査することにより、立体物の形状を取得する3次元レーザスキャナを含む。
これにより、積層部分表面の正確な立体的形状を直接取得することができる。
The three-dimensional object manufacturing apparatus 1 includes a three-dimensional laser scanner that acquires the shape of a three-dimensional object by scanning the three-dimensional object with a laser.
As a result, the accurate three-dimensional shape of the surface of the laminated portion can be directly obtained.

立体物製造装置1は、X線発生器とX線検出器とを備え、CT画像を撮像するCTスキャナを含む。
これにより、積層部分の内部構造を取得することができる。
The three-dimensional object manufacturing apparatus 1 includes an X-ray generator and an X-ray detector, and includes a CT scanner that captures a CT image.
As a result, the internal structure of the laminated portion can be obtained.

立体物製造装置1は、赤外線画像を撮像するサーモグラフィカメラを含む。
これにより、積層部分の輪郭をより明確に取得できる。
The three-dimensional object manufacturing apparatus 1 includes a thermography camera that captures an infrared image.
As a result, the contour of the laminated portion can be obtained more clearly.

立体物製造装置1は、立体物に接触する接触子によって立体物の形状を表すデータを取得する形状測定装置を含む。
これにより、簡易に積層部分の立体的形状を取得することができる。
The three-dimensional object manufacturing apparatus 1 includes a shape measuring apparatus that acquires data representing the shape of a three-dimensional object by a contactor that comes into contact with the three-dimensional object.
As a result, the three-dimensional shape of the laminated portion can be easily obtained.

立体物造形部20は、立体物の積層部分の品質が基準よりも低下した場合、立体物の積層を停止する。
これにより、品質を満たさない造形物の造形が継続されることを防止することができる。
When the quality of the laminated portion of the three-dimensional object is lower than the standard, the three-dimensional object modeling unit 20 stops the lamination of the three-dimensional object.
As a result, it is possible to prevent the modeling of a modeled object that does not satisfy the quality from being continued.

造形物評価部115は、立体物の積層部分の品質情報に基づいて、当該積層部分以降の立体物を造形するためのデータを補正する。
これにより、製造される立体物の品質をより高めることができる。
The modeled object evaluation unit 115 corrects the data for modeling the three-dimensional object after the laminated portion based on the quality information of the laminated portion of the three-dimensional object.
Thereby, the quality of the manufactured three-dimensional object can be further improved.

造形物評価部115は、立体物の積層部分の品質情報に基づいて、造形を継続した場合に発生する可能性のあるエラーを予測する。
これにより、品質を満たさない造形物が造形されることを予め把握することが可能となる。
The modeled object evaluation unit 115 predicts an error that may occur when modeling is continued, based on the quality information of the laminated portion of the three-dimensional object.
This makes it possible to know in advance that a modeled object that does not satisfy the quality will be modeled.

立体物の品質情報には、当該立体物の高さの誤差、当該立体物の幅の誤差、当該立体物に発生している捩れの少なくともいずれかを含む。
これにより、積層部分毎の評価には表れ難い立体物全体の品質をより適確に評価することが可能となる。
The quality information of the three-dimensional object includes at least one of an error in the height of the three-dimensional object, an error in the width of the three-dimensional object, and a twist generated in the three-dimensional object.
This makes it possible to more accurately evaluate the quality of the entire three-dimensional object, which is difficult to appear in the evaluation of each laminated portion.

なお、本発明は、本発明の効果を奏する範囲で変形、改良等を適宜行うことができ、上述の実施形態に限定されない。
例えば、上述の実施形態において、立体物製造装置1は3軸のデルタ型3Dプリンタであるものとして説明したが、造形される立体物の画像を撮像することができる構造のものであれば、他の形式の3Dプリンタ(例えば、3Dプリンタヘッドが互いに直交するXYZ軸方向に移動する3軸型の3Dプリンタや、6軸のデルタ型3Dのプリンタ等)によって構成することも可能である。また、立体物製造装置1において用いられる造形材料としては、樹脂、電子部品、回路の配線材料等の他、金属製の立体物を造形する場合には、当該金属材料とすることができる。
The present invention can be appropriately modified, improved, and the like within the range in which the effects of the present invention are exhibited, and is not limited to the above-described embodiment.
For example, in the above-described embodiment, the three-dimensional object manufacturing apparatus 1 has been described as a three-axis delta type 3D printer, but any other device as long as it has a structure capable of capturing an image of the three-dimensional object to be modeled. It is also possible to configure a 3D printer of the above type (for example, a 3-axis type 3D printer in which the 3D printer heads move in the XYZ axis directions orthogonal to each other, a 6-axis delta type 3D printer, etc.). Further, the modeling material used in the three-dimensional object manufacturing apparatus 1 may be a resin, an electronic component, a wiring material for a circuit, or the like, or the metal material when modeling a three-dimensional object made of metal.

また、上述の実施形態においては、台座駆動部225によって台座224の水平面に対する傾きや水平面内における回転、及び、垂直方向の位置を調整可能な3軸型の3Dプリンタを例に挙げて説明したが、これに限られない。
即ち、造形される立体物の画像を異なる方向から撮像することができる構成であれば、台座224が固定された構造であっても、撮像部223を所定箇所に複数設置して立体物を撮像したり、撮像部223の位置及び向きを調整可能な機構を備えることにより、撮像部223が移動して向きを変化させながら立体物を撮像したりする構成としてもよい。
Further, in the above-described embodiment, a 3-axis type 3D printer capable of adjusting the inclination of the pedestal 224 with respect to the horizontal plane, the rotation in the horizontal plane, and the vertical position by the pedestal drive unit 225 has been described as an example. , Not limited to this.
That is, as long as the image of the three-dimensional object to be modeled can be imaged from different directions, even if the pedestal 224 is fixed, a plurality of imaging units 223 are installed at predetermined positions to image the three-dimensional object. Alternatively, by providing a mechanism capable of adjusting the position and orientation of the imaging unit 223, the imaging unit 223 may be configured to move and change the orientation to image a three-dimensional object.

また、立体物の評価のために立体物と対応付けて提供される評価用のデータは、立体物の製造時に取得された画像のみ(例えば、変形例2の評価用基本データ)であってもよいし、部分評価処理及び全体評価処理の結果を含むものであってもよいし、部分評価処理あるいは全体評価処理の一方のみであってもよい。また、全体評価処理の評価結果として、部分評価処理において取得された積層部分毎の誤差を累積した指標(欠損箇所の合計値や形状の歪みの積分値等)を含めることとしてもよい。さらに、部分評価処理の評価結果として、各積層部分におけるCADデータとの誤差の種類(欠損、不要な造形材料の付着、あるいは、位置ずれ等)を属性データとして付加しておき、より詳細な評価を行うために利用することとしてもよい。 Further, even if the evaluation data provided in association with the three-dimensional object for the evaluation of the three-dimensional object is only the image acquired at the time of manufacturing the three-dimensional object (for example, the basic evaluation data of Modification 2). It may include the results of the partial evaluation process and the overall evaluation process, or may be only one of the partial evaluation process and the overall evaluation process. Further, as the evaluation result of the overall evaluation process, an index (total value of defective parts, integral value of shape distortion, etc.) obtained by accumulating errors for each laminated portion acquired in the partial evaluation process may be included. Furthermore, as the evaluation result of the partial evaluation process, the type of error with the CAD data in each laminated portion (deficiency, adhesion of unnecessary modeling material, misalignment, etc.) is added as attribute data for more detailed evaluation. It may be used to do.

また、画像取得のタイミングは、形状が複雑な部分が積層されたと判定したタイミングの他、積層された造形材料の特性(造形材料の柔らかさ等)に基づいて判定することや、立体物の支持構造を解析することにより、支持の強度に基づいて判定すること等が可能である。
また、立体物製造装置1における動作モードとして、造形速度優先のモードと、造形精度優先のモードが存在する場合、画像取得のタイミングをこれらのモードに対応して設定することが可能である。例えば、画像取得のタイミングを積層要素の所定層毎とする場合、造形速度優先のモードであれば積層要素の5層毎、造形精度優先のモードであれば、積層要素の1層毎といった設定とすることができる。
In addition to the timing when it is determined that the parts having complicated shapes are laminated, the timing of image acquisition is determined based on the characteristics of the laminated modeling material (softness of the modeling material, etc.), and the support of the three-dimensional object. By analyzing the structure, it is possible to make a judgment based on the strength of the support.
Further, when there are a mode in which the modeling speed is prioritized and the mode in which the modeling accuracy is prioritized as the operation modes in the three-dimensional object manufacturing apparatus 1, the image acquisition timing can be set corresponding to these modes. For example, when the image acquisition timing is set for each predetermined layer of the laminated element, the setting is such that every 5 layers of the laminated element in the mode of prioritizing the modeling speed and each layer of the laminated element in the mode of prioritizing the modeling accuracy. can do.

また、立体物製造処理において、部分評価処理の結果が造形される立体物の品質が基準を満たしていることを示すものでない場合、ステップS9でエラー停止処理を行うものとしたが、これに限られない。即ち、立体物の品質が基準を満たしている場合であっても、積層部分毎の設計値からの誤差(品質低下の要素)を積算し、造形を継続した場合、立体物の品質が基準を満たさなくなるか否かを予測することにより、エラーを予告することとしてもよい。また、立体物の品質が基準を満たしていることを示すものでない場合であっても、その後の造形によって品質をリカバリできる場合には、造形物評価部115が予定されていた造形のためのデータ(スライスデータ等)を補正することにより、立体物の品質が基準を満たすものになるよう調整することとしてもよい。 Further, in the three-dimensional object manufacturing process, if the result of the partial evaluation process does not indicate that the quality of the three-dimensional object to be modeled satisfies the standard, the error stop process is performed in step S9, but this is limited to this. I can't. That is, even if the quality of the three-dimensional object meets the standard, the quality of the three-dimensional object will be the standard when the error (factor of quality deterioration) from the design value for each laminated part is integrated and the modeling is continued. An error may be foretold by predicting whether or not the condition will not be satisfied. Further, even if the quality of the three-dimensional object does not indicate that it meets the standard, if the quality can be recovered by the subsequent modeling, the modeled object evaluation unit 115 is the data for the planned modeling. By correcting (slice data, etc.), the quality of the three-dimensional object may be adjusted so as to satisfy the standard.

また、画像取得制御部112による画像取得タイミングとして、スライスデータにおいて画像を撮像するためのデータ(コマンド)が配置されている場合を例に挙げて説明したが、これに限られない。即ち、画像取得タイミングを示すデータ(コマンド)は、立体物の製造過程において関係する各種データに含めることができる。例えば、立体物を表すCADデータにおいて、設計者が立体物の製造時に品質の確認を要求する位置を指定しておき、その位置の部分の造形が完了したタイミングで、画像取得制御部112が画像を撮像することとしてもよい。 Further, the case where the data (command) for capturing the image in the slice data is arranged as the image acquisition timing by the image acquisition control unit 112 has been described as an example, but the present invention is not limited to this. That is, the data (command) indicating the image acquisition timing can be included in various data related to the manufacturing process of the three-dimensional object. For example, in CAD data representing a three-dimensional object, the designer specifies a position for which quality confirmation is required at the time of manufacturing the three-dimensional object, and when the modeling of the portion at that position is completed, the image acquisition control unit 112 displays an image. May be imaged.

また、上記実施形態及び各変形例を適宜組み合わせて、本発明を実施することが可能である。
上述の実施形態における処理は、ハードウェア及びソフトウェアのいずれにより実行させることも可能である。
即ち、上述の処理を実行できる機能が立体物製造装置1に備えられていればよく、この機能を実現するためにどのような機能構成及びハードウェア構成とするかは上述の例に限定されない。
上述の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータにネットワークや記憶媒体からインストールされる。
Further, it is possible to carry out the present invention by appropriately combining the above-described embodiment and each modification.
The processing in the above-described embodiment can be executed by either hardware or software.
That is, it suffices that the three-dimensional object manufacturing apparatus 1 is provided with a function capable of executing the above-mentioned processing, and what kind of functional configuration and hardware configuration are used to realize this function is not limited to the above-mentioned example.
When the above processing is executed by software, the programs constituting the software are installed on the computer from a network or a storage medium.

プログラムを記憶する記憶媒体は、装置本体とは別に配布されるリムーバブルメディア、あるいは、装置本体に予め組み込まれた記憶媒体等で構成される。リムーバブルメディアは、例えば、磁気ディスク、光ディスク、または光磁気ディスク等により構成される。光ディスクは、例えば、CD−ROM(Compact Disk−Read Only Memory),DVD(Digital Versatile Disk),Blu−ray Disc(登録商標)等により構成される。光磁気ディスクは、MD(Mini−Disk)等により構成される。また、装置本体に予め組み込まれた記憶媒体は、例えば、プログラムが記憶されているROMやハードディスク等で構成される。 The storage medium for storing the program is composed of a removable medium distributed separately from the main body of the device, a storage medium preliminarily incorporated in the main body of the device, or the like. The removable media is composed of, for example, a magnetic disk, an optical disk, a magneto-optical disk, or the like. The optical disk is composed of, for example, a CD-ROM (Compact Disk-Read Only Memory), a DVD (Digital Versaille Disk), a Blu-ray Disc (registered trademark), or the like. The magneto-optical disk is composed of MD (Mini-Disk) or the like. Further, the storage medium preliminarily incorporated in the apparatus main body is composed of, for example, a ROM or a hard disk in which a program is stored.

1 立体物製造装置、10 データ処理部、11 CPU、12 ROM、13 RAM、14 入力部、15 出力部、16 記憶部、17 通信部、111 造形データ取得部、112 画像取得制御部、113 積層制御部、114 台座制御部、115 造形物評価部、71 造形データ記憶部、72 品質データ記憶部、20 立体物造形部、21 基台部、22 天板部、23a〜23c 上下動軸、24a〜24c アーム、221 ヘッド駆動部、222 3Dプリンタヘッド、223 撮像部、224 台座、225 台座駆動部 1 Three-dimensional object manufacturing equipment, 10 data processing unit, 11 CPU, 12 ROM, 13 RAM, 14 input unit, 15 output unit, 16 storage unit, 17 communication unit, 111 modeling data acquisition unit, 112 image acquisition control unit, 113 stacking Control unit, 114 pedestal control unit, 115 model evaluation unit, 71 model data storage unit, 72 quality data storage unit, 20 three-dimensional object modeling unit, 21 base unit, 22 top plate unit, 23a to 23c vertical movement axis, 24a ~ 24c arm, 221 head drive unit, 222 3D printer head, 223 image pickup unit, 224 pedestal, 225 pedestal drive unit

Claims (18)

立体物の形状を表す3次元形状データに基づいて、前記立体物を構成する積層要素を積層することにより当該立体物を造形する立体物造形手段と、
前記立体物造形手段によって造形されている前記立体物の積層部分の形状を表すデータを取得する形状取得手段と、
前記形状取得手段によって取得された前記立体物の積層部分の形状を表すデータと、当該積層部分に対応する前記3次元形状データとを対応付けることにより、当該立体物の品質を示す品質情報を生成する品質情報生成手段と、
を備え
前記形状取得手段は、前記立体物造形手段が前記積層要素を造形する工程の一部として、前記積層部分の形状を表すデータを取得する取得タイミングについて予め設定された複数の条件のいずれかに適合するか否かを判定し、前記予め設定された複数の条件のいずれかに適合すると判定された場合に、前記積層部分の形状を表すデータを取得することを特徴とする立体物製造装置。
Based on the three-dimensional shape data representing the shape of the three-dimensional object, the three-dimensional object modeling means for modeling the three-dimensional object by laminating the laminated elements constituting the three-dimensional object, and
A shape acquisition means for acquiring data representing the shape of the laminated portion of the three-dimensional object formed by the three-dimensional object modeling means, and a shape acquisition means.
By associating the data representing the shape of the laminated portion of the three-dimensional object acquired by the shape acquisition means with the three-dimensional shape data corresponding to the laminated portion, quality information indicating the quality of the three-dimensional object is generated. Quality information generation means and
Equipped with a,
The shape acquisition means conforms to any of a plurality of preset conditions for acquisition timing for acquiring data representing the shape of the laminated portion as a part of the step of the three-dimensional object modeling means modeling the laminated element. A three-dimensional object manufacturing apparatus, characterized in that it determines whether or not to do so, and when it is determined that any of the plurality of preset conditions is met, data representing the shape of the laminated portion is acquired .
前記形状取得手段は、前記立体物造形手段によって造形された前記立体物全体の形状を表すデータを取得し、
前記品質情報生成手段は、前記形状取得手段によって取得された前記立体物全体の形状を表すデータと、当該立体物全体の前記3次元形状データとを対応付けることにより、前記品質情報を生成することを特徴とする請求項1に記載の立体物製造装置。
The shape acquisition means acquires data representing the shape of the entire three-dimensional object formed by the three-dimensional object modeling means.
The quality information generating means generates the quality information by associating the data representing the shape of the entire three-dimensional object acquired by the shape acquiring means with the three-dimensional shape data of the entire three-dimensional object. The three-dimensional object manufacturing apparatus according to claim 1.
前記形状取得手段は、前記立体物の前記形状を表すデータとして前記立体物の少なくとも一部における3次元形状を特定可能な画像を取得することを特徴とする請求項1または2に記載の立体物製造装置。 The three-dimensional object according to claim 1 or 2, wherein the shape acquisition means acquires an image capable of specifying a three-dimensional shape in at least a part of the three-dimensional object as data representing the shape of the three-dimensional object. Manufacturing equipment. 前記積層部分の形状を表すデータを取得する取得タイミングについて予め設定された複数の条件は、前記立体物を造形する制御のためのデータにおいて前記積層部分の形状を表すデータを取得するためのコマンドが配置されていること、予め設定された積層要素数が積層されたこと、及び、前記積層部分について定義された特定構造を有する部分が積層されたこと、の少なくとも2つを含むことを特徴とする請求項1から3のいずれか1項に記載の立体物製造装置。 The plurality of preset conditions for the acquisition timing for acquiring the data representing the shape of the laminated portion are the commands for acquiring the data representing the shape of the laminated portion in the data for controlling the modeling of the three-dimensional object. It is characterized by including at least two of being arranged, having a preset number of laminated elements laminated, and having a portion having a specific structure defined for the laminated portion laminated. The three-dimensional object manufacturing apparatus according to any one of claims 1 to 3. 前記品質情報生成手段は、前記形状取得手段によって取得された前記立体物の積層部分の形状を表すデータと、前記3次元形状データとを比較した結果に基づいて、前記品質情報を生成することを特徴とする請求項1から4のいずれか1項に記載の立体物製造装置。 The quality information generating means generates the quality information based on the result of comparing the data representing the shape of the laminated portion of the three-dimensional object acquired by the shape acquiring means with the three-dimensional shape data. The three-dimensional object manufacturing apparatus according to any one of claims 1 to 4, which is characterized. 前記品質情報生成手段は、前記形状取得手段によって取得された前記立体物の積層部分の形状を表すデータに基づいて、当該立体物の積層部分を表すボクセルデータを生成し、生成した当該ボクセルデータを、前記立体物造形手段が当該立体物の積層部分を造形するために使用したボクセルデータと比較した結果に基づいて、前記品質情報を生成することを特徴とする請求項1から5のいずれか1項に記載の立体物製造装置。 The quality information generating means generates boxel data representing the laminated portion of the three-dimensional object based on the data representing the shape of the laminated portion of the three-dimensional object acquired by the shape acquiring means, and generates the boxel data. 1. Any one of claims 1 to 5, characterized in that the quality information is generated based on the result of comparison with the boxel data used by the three-dimensional object modeling means to model the laminated portion of the three-dimensional object. The three-dimensional object manufacturing apparatus according to the section. 前記形状取得手段は、複数方向から平面画像を撮像することにより前記立体物の積層部分の形状を表すデータとして複数の画像を取得し、取得した画像を合成することにより、前記立体物の形状を示す3次元画像を生成することを特徴とする請求項1から6のいずれか1項に記載の立体物製造装置。 The shape acquisition means acquires a plurality of images as data representing the shape of the laminated portion of the three-dimensional object by capturing a plane image from a plurality of directions, and synthesizes the acquired images to obtain the shape of the three-dimensional object. The three-dimensional object manufacturing apparatus according to any one of claims 1 to 6, wherein the three-dimensional image shown is generated. 前記形状取得手段は、レーザによって前記立体物を走査することにより、前記立体物の形状を取得する3次元レーザスキャナを含むことを特徴とする請求項1から7のいずれか1項に記載の立体物製造装置。 The solid according to any one of claims 1 to 7, wherein the shape acquiring means includes a three-dimensional laser scanner that acquires the shape of the three-dimensional object by scanning the three-dimensional object with a laser. Product manufacturing equipment. 前記形状取得手段は、X線発生器とX線検出器とを備え、CT画像を撮像するCTスキャナを含むことを特徴とする請求項1から8のいずれか1項に記載の立体物製造装置。 The three-dimensional object manufacturing apparatus according to any one of claims 1 to 8, wherein the shape acquisition means includes an X-ray generator and an X-ray detector, and includes a CT scanner that captures a CT image. .. 前記形状取得手段は、赤外線画像を撮像するサーモグラフィカメラを含むことを特徴とする請求項1から9のいずれか1項に記載の立体物製造装置。 The three-dimensional object manufacturing apparatus according to any one of claims 1 to 9, wherein the shape acquiring means includes a thermography camera that captures an infrared image. 前記形状取得手段は、前記立体物に接触する接触子によって前記立体物の積層部分の形状を表すデータを取得する形状測定装置を含むことを特徴とする請求項1から10のいずれか1項に記載の立体物製造装置。 The method according to any one of claims 1 to 10, wherein the shape acquisition means includes a shape measuring device that acquires data representing the shape of a laminated portion of the three-dimensional object by a contactor that comes into contact with the three-dimensional object. The three-dimensional object manufacturing apparatus described. 前記立体物造形手段は、前記立体物の積層部分の品質が基準よりも低下した場合、前記立体物の積層を停止することを特徴とする請求項1から11のいずれか1項に記載の立体物製造装置。 The three-dimensional object according to any one of claims 1 to 11, wherein the three-dimensional object modeling means stops laminating the three-dimensional object when the quality of the laminated portion of the three-dimensional object is lower than the standard. Product manufacturing equipment. 前記品質情報生成手段は、前記立体物の積層部分の前記品質情報に基づいて、当該積層部分以降の前記立体物を造形するためのデータを補正することを特徴とする請求項1から12のいずれか1項に記載の立体物製造装置。 Any of claims 1 to 12, wherein the quality information generating means corrects data for modeling the three-dimensional object after the laminated portion based on the quality information of the laminated portion of the three-dimensional object. The three-dimensional object manufacturing apparatus according to item 1. 前記品質情報生成手段は、前記立体物の積層部分の前記品質情報に基づいて、造形を継続した場合に発生する可能性のあるエラーを予測することを特徴とする請求項1から13のいずれか1項に記載の立体物製造装置。 One of claims 1 to 13, wherein the quality information generating means predicts an error that may occur when modeling is continued based on the quality information of the laminated portion of the three-dimensional object. The three-dimensional object manufacturing apparatus according to item 1. 前記立体物の前記品質情報には、当該立体物の高さの誤差、当該立体物の幅の誤差、当該立体物に発生している捩れの少なくともいずれかを含むことを特徴とする請求項1から14のいずれか1項に記載の立体物製造装置。 Claim 1 is characterized in that the quality information of the three-dimensional object includes at least one of an error in the height of the three-dimensional object, an error in the width of the three-dimensional object, and a twist generated in the three-dimensional object. The three-dimensional object manufacturing apparatus according to any one of items 14 to 14. 立体物製造装置が実行する立体物製造方法であって、
立体物の形状を表す3次元形状データに基づいて、前記立体物を構成する積層要素を積層することにより当該立体物を造形する立体物造形ステップと、
前記立体物造形ステップにおいて造形されている前記立体物の積層部分の形状を表すデータを取得する形状取得ステップと、
前記形状取得ステップにおいて取得された前記立体物の積層部分の形状を表すデータと、当該積層部分に対応する前記3次元形状データとを対応付けることにより、当該立体物の品質を示す品質情報を生成する品質情報生成ステップと、
を含み、
前記形状取得ステップでは、前記立体物造形ステップにおいて前記積層要素を造形する工程の一部として、前記積層部分の形状を表すデータを取得する取得タイミングについて予め設定された複数の条件のいずれかに適合するか否かを判定し、前記予め設定された複数の条件のいずれかに適合すると判定された場合に、前記積層部分の形状を表すデータを取得することを特徴とする立体物製造方法。
It is a three-dimensional object manufacturing method executed by a three-dimensional object manufacturing apparatus.
Based on the three-dimensional shape data representing the shape of the three-dimensional object, the three-dimensional object modeling step of modeling the three-dimensional object by laminating the laminated elements constituting the three-dimensional object, and
A shape acquisition step for acquiring data representing the shape of the laminated portion of the three-dimensional object formed in the three-dimensional object modeling step, and a shape acquisition step.
By associating the data representing the shape of the laminated portion of the three-dimensional object acquired in the shape acquisition step with the three-dimensional shape data corresponding to the laminated portion, quality information indicating the quality of the three-dimensional object is generated. Quality information generation steps and
Only including,
In the shape acquisition step, as a part of the step of modeling the laminated element in the three-dimensional object modeling step, one of a plurality of preset conditions for acquisition timing for acquiring data representing the shape of the laminated portion is met. A method for manufacturing a three-dimensional object , which comprises determining whether or not to perform the process, and acquiring data representing the shape of the laminated portion when it is determined that any of the plurality of preset conditions is met .
立体物製造装置を制御するコンピュータに、
立体物の形状を表す3次元形状データに基づいて、前記立体物を構成する積層要素を積層することにより当該立体物を造形する立体物造形制御機能と、
前記立体物造形制御機能によって造形されている前記立体物の積層部分の形状を表すデータを取得する形状取得制御機能と、
前記形状取得制御機能によって取得された前記立体物の積層部分の形状を表すデータと、当該積層部分に対応する前記3次元形状データとを対応付けることにより、当該立体物の品質を示す品質情報を生成する品質情報生成機能と、
を実現させ
前記形状取得制御機能は、前記立体物造形制御機能が前記積層要素を造形する工程の一部として、前記積層部分の形状を表すデータを取得する取得タイミングについて予め設定された複数の条件のいずれかに適合するか否かを判定し、前記予め設定された複数の条件のいずれかに適合すると判定された場合に、前記積層部分の形状を表すデータを取得することを特徴とするプログラム。
For computers that control three-dimensional object manufacturing equipment
Based on the three-dimensional shape data representing the shape of the three-dimensional object, the three-dimensional object modeling control function for modeling the three-dimensional object by laminating the laminated elements constituting the three-dimensional object, and
A shape acquisition control function that acquires data representing the shape of the laminated portion of the three-dimensional object that is modeled by the three-dimensional object modeling control function,
By associating the data representing the shape of the laminated portion of the three-dimensional object acquired by the shape acquisition control function with the three-dimensional shape data corresponding to the laminated portion, quality information indicating the quality of the three-dimensional object is generated. Quality information generation function and
Realized ,
The shape acquisition control function is any one of a plurality of preset conditions for acquisition timing for acquiring data representing the shape of the laminated portion as a part of the process in which the three-dimensional object modeling control function forms the laminated element. A program comprising determining whether or not the product conforms to the above, and acquiring data representing the shape of the laminated portion when it is determined that the condition conforms to any of the plurality of preset conditions .
コンピュータに、
立体物の形状を表す3次元形状データに基づいて前記立体物を構成する積層要素が立体物製造装置において積層されている際の積層部分の形状を表すデータと、当該積層部分に対応する前記3次元形状データとに基づいて、当該積層部分の品質を評価する品質評価機能を実現させ
前記積層部分の形状を表すデータは、前記立体物製造装置が前記積層要素を造形する工程の一部として、前記積層部分の形状を表すデータを取得する取得タイミングについて予め設定された複数の条件のいずれかに適合するか否かを判定し、前記予め設定された複数の条件のいずれかに適合すると判定された場合に、前記積層部分の形状を表すデータを取得した結果のデータを含むことを特徴とするプログラム。
On the computer
Data representing the shape of the laminated portion when the laminated elements constituting the three-dimensional object are laminated in the three-dimensional object manufacturing apparatus based on the three-dimensional shape data representing the shape of the three-dimensional object, and the above-mentioned 3 corresponding to the laminated portion. A quality evaluation function that evaluates the quality of the laminated part based on the three-dimensional shape data is realized .
The data representing the shape of the laminated portion is a plurality of conditions preset for acquisition timing for acquiring the data representing the shape of the laminated portion as part of the process of modeling the laminated element by the three-dimensional object manufacturing apparatus. It is determined whether or not the product conforms to any of the above conditions, and when it is determined that the product meets any of the plurality of preset conditions, the data representing the shape of the laminated portion is included . Characterized program.
JP2016137857A 2016-07-12 2016-07-12 Three-dimensional object manufacturing equipment, three-dimensional object manufacturing method and program Active JP6765666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016137857A JP6765666B2 (en) 2016-07-12 2016-07-12 Three-dimensional object manufacturing equipment, three-dimensional object manufacturing method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137857A JP6765666B2 (en) 2016-07-12 2016-07-12 Three-dimensional object manufacturing equipment, three-dimensional object manufacturing method and program

Publications (2)

Publication Number Publication Date
JP2018008403A JP2018008403A (en) 2018-01-18
JP6765666B2 true JP6765666B2 (en) 2020-10-07

Family

ID=60994741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137857A Active JP6765666B2 (en) 2016-07-12 2016-07-12 Three-dimensional object manufacturing equipment, three-dimensional object manufacturing method and program

Country Status (1)

Country Link
JP (1) JP6765666B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945470B2 (en) * 2018-02-23 2021-10-06 株式会社日立製作所 Manufacturing system of additional model and manufacturing method of additional model
JP2019155606A (en) 2018-03-07 2019-09-19 株式会社リコー Modeling apparatus, and modeling system and method
EP3550257A3 (en) 2018-03-16 2019-12-18 Ricoh Company, Ltd. Fabrication system, fabrication estimation system, information processing apparatus, fabricating apparatus, fabricating method, and program
JP2019171770A (en) 2018-03-29 2019-10-10 株式会社リコー Shaping device, and control device and shaping method
US11084225B2 (en) 2018-04-02 2021-08-10 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
JP7056411B2 (en) 2018-06-29 2022-04-19 株式会社リコー Reading device and modeling device
JP7094905B2 (en) * 2019-02-06 2022-07-04 株式会社東芝 Inspection method and system for laminated objects
KR102584982B1 (en) * 2019-04-19 2023-10-04 나노트로닉스 이미징, 인코포레이티드 Systems, methods and media for artificial intelligence process control in additive manufacturing
JP7319627B2 (en) * 2019-08-20 2023-08-02 国立大学法人京都大学 Additional processing device, control method for additional processing device, and control program for additional processing device
KR102591784B1 (en) * 2021-10-29 2023-10-23 한국생산기술연구원 Pre-Simulated Laminating Material Properties Diagnosing Method Using 3D Printing Type Building Materials Feeding Apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334582A (en) * 2000-05-24 2001-12-04 Minolta Co Ltd Three-dimensional molding apparatus and three- dimensional molding process
KR100639139B1 (en) * 2002-06-28 2006-10-30 후지쯔 가부시끼가이샤 Three-dimensional image comparing program, three-dimensional image comparing method, and three-dimensional image comparing device
JP2011085971A (en) * 2009-10-13 2011-04-28 Seiko Epson Corp Apparatus, method, and program for processing image, recording medium, and image processing system
US9855698B2 (en) * 2013-08-07 2018-01-02 Massachusetts Institute Of Technology Automatic process control of additive manufacturing device
US9327537B2 (en) * 2014-06-06 2016-05-03 Xerox Corporation System for adjusting operation of a printer during three-dimensional object printing using an optical sensor
WO2016042810A1 (en) * 2014-09-19 2016-03-24 株式会社東芝 Additive manufacturing device and additive manufacturing method

Also Published As

Publication number Publication date
JP2018008403A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6765666B2 (en) Three-dimensional object manufacturing equipment, three-dimensional object manufacturing method and program
US20210286339A1 (en) Automated 360-degree dense point object inspection
US11141921B2 (en) Systems and methods of machine vision assisted additive fabrication
CN114041168A (en) Automated 360-degree dense point object inspection
JP5648692B2 (en) Shape measuring apparatus, shape measuring method, structure manufacturing method and program
JP5496008B2 (en) Position / orientation measuring apparatus, position / orientation measuring method, and program
US8155774B2 (en) 3D object fabrication methods and systems
JP5429872B2 (en) Method and apparatus for controlling a robot for welding a workpiece
US20160185047A1 (en) Four-in-one three-dimensional copy machine
WO2012053521A1 (en) Optical information processing device, optical information processing method, optical information processing system, and optical information processing program
WO2016177894A1 (en) Additive manufacturing yield improvement
JP5640672B2 (en) 3D MFP and 3D replication method
JP6763993B2 (en) How to detect object boundaries in a 3D printer
JP6384171B2 (en) Defect extraction apparatus and defect extraction method
JP2016097657A (en) Image information processing apparatus, image information processing method and program, and imaging device
JP7158475B2 (en) Systems and methods for build error detection in an additive manufacturing environment
US6999072B2 (en) Data processing method, data processing program and recording medium
JP2017087674A (en) Molding device and control method and program thereof
JP2010133744A (en) Defect detection method, and visual inspection device using the same
JP2003196326A (en) Device and method for creating shape model
JP4245115B2 (en) Circuit board mounting state display method, apparatus, recording medium, and program
KR20190000182A (en) Appartus for product quality evaluation of 3d printer based on image and method thereof
TWI254122B (en) Automatic optical inspection apparatus with compensation function and focusing error compensation method therefor
JP5979202B2 (en) 3D MFP and 3D replication method
JP6963649B2 (en) Image processing device and its control method, and program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200910

R150 Certificate of patent or registration of utility model

Ref document number: 6765666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250