JP6759813B2 - 処理装置、表示システム、表示方法、及びプログラム - Google Patents

処理装置、表示システム、表示方法、及びプログラム Download PDF

Info

Publication number
JP6759813B2
JP6759813B2 JP2016149152A JP2016149152A JP6759813B2 JP 6759813 B2 JP6759813 B2 JP 6759813B2 JP 2016149152 A JP2016149152 A JP 2016149152A JP 2016149152 A JP2016149152 A JP 2016149152A JP 6759813 B2 JP6759813 B2 JP 6759813B2
Authority
JP
Japan
Prior art keywords
brightness
level
information
image
scene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016149152A
Other languages
English (en)
Other versions
JP2018017953A (ja
Inventor
亮佑 中越
亮佑 中越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2016149152A priority Critical patent/JP6759813B2/ja
Priority to US15/662,602 priority patent/US10388253B2/en
Publication of JP2018017953A publication Critical patent/JP2018017953A/ja
Application granted granted Critical
Publication of JP6759813B2 publication Critical patent/JP6759813B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Image Generation (AREA)

Description

本発明は、処理装置、表示システム、処理方法、及びプログラムに関する。
特許文献1には、コンピュータグラフィックス(CG)の分野において、3次元の表示対象を立体的に表示する画像表示装置が開示されている。この画像表示装置では、3次元で構成されるオブジェクトのポリゴンデータを、2次元のピクセルデータに変換するレンダリング部を有している。ここで、2次元のピクセルデータは、輝度値データと、奥行き方向の情報を表す奥行データとを、含んでいる。輝度値データは、各画素の座標位置に関連付けて、輝度値及び色(RGB)を表すデータとして構成されている。
特開2005−267185号公報
このようなCG映像を生成するIG(Image Generator)では、各画素の輝度を0から無限大まで任意の値に設定することが可能となる。一方、CG映像を表示する表示装置(ディスプレイ)の明るさには限度がある。また、表示装置のダイナミックレンジ(明るさ、コントラスト)は一定である。よって、CG映像の仮想的な輝度を適切に表示することが困難である。
IGと表示装置とを接続するインターフェース(I/F)において、映像信号にはHDMI(登録商標)(High Definition Multimedia Interface)、DisplayPort、DVI(Digital Visual Interface)、SDI(Serial Digital Interface)等の汎用インターフェースを用いる場合が多く、制御用にはLAN(Local Area Network)やRS―232Cなどの汎用I/Fが用いられることが多い。これらの制御用の汎用I/Fにより、表示装置の明るさを制御することで、ダイナミックレンジを拡張することができる。しかしながら、これらの制御用の汎用I/Fでは、映像におけるフレーム単位で、明るさを制御することが困難である。さらに、ディスプレイの明るさのみの制御では、映像信号の最適化が行われていない。このため、特に暗い映像において、階調性が乏しくなるという問題がある。
本発明は上記の点に鑑みなされたもので、高いダイナミックレンジでCG映像を表示することができる表示システム、処理装置、方法、及び、プログラムを提供することを目的とする。
本発明の一態様にかかる処理装置は、シーンに応じたCG映像を表示するための映像信号を生成するプロセッサを有する処理装置であって、オブジェクトに関するオブジェクト情報に基づいて、レンダリング映像をレンダリングし、前記シーンの明るさ情報に基づいて、正規化レベルと、輝度圧縮レベルと、表示映像のフレームの明るさを設定する明るさ制御信号と、を生成し、前記レンダリング映像において前記輝度圧縮レベルと前記正規化レベルとで規定される輝度圧縮範囲にある画素の輝度を圧縮して、前記レンダリング映像から表示映像の画素データを含む映像信号を生成するものである。
本発明の一態様にかかる表示方法は、シーンに応じたCG映像を表示する表示方法であって、オブジェクトに関するオブジェクト情報に基づいて、レンダリング映像をレンダリングするステップと、前記シーンの明るさ情報に基づいて、正規化レベルと、輝度圧縮レベルと、表示映像のフレームの明るさを設定する明るさ制御信号と、を生成するステップと、前記レンダリング映像において前記輝度圧縮レベルと前記正規化レベルとで規定される輝度圧縮範囲にある画素の輝度を圧縮して、前記レンダリング映像から表示映像の画素データを含む映像信号を生成するステップと、前記明るさ制御信号に応じた明るさで、前記映像信号に基づいた前記CG映像を表示するステップと、を含むものである。
本発明の一態様にかかるプログラムは、シーンに応じたCG映像を表示する映像信号を生成するためのプログラムであって、オブジェクトに関するオブジェクト情報に基づいて、レンダリング映像をレンダリングするステップと、前記シーンの明るさ情報に基づいて、正規化レベルと、輝度圧縮レベルと、表示映像のフレームの明るさを設定する明るさ制御信号と、を生成するステップと、前記レンダリング映像において前記輝度圧縮レベルと正規化レベルとで規定される輝度圧縮範囲にある画素の輝度を圧縮して、前記レンダリング映像から表示映像の画素データを含む映像信号を生成するステップと、をコンピュータに対して実行させるものである。
本発明によれば、高いダイナミックレンジでCG映像を表示することができる表示システム、表示装置、処理装置、表示方法、及びプログラムを提供できる。
HDR対応の表示システムの全体構成を示す図である。 表示システムにおける画像処理の概要を説明するための図である。 処理装置におけるオブジェクト情報を説明するための図である。 晴天時において、シーンの明るさ情報の時間変化を示すグラフである。 曇天時/雨天時において、シーンの明るさ情報の時間変化を示すグラフである。 晴天時において、明るさ情報と正規化レベルと輝度圧縮レベルの時間変化を示すグラフである。 曇天時/雨天時において、明るさ情報と正規化レベルと輝度圧縮レベルの時間変化を示すグラフである。 レンダリング映像の仮想的な輝度と正規化レベルA〜Cを示す図である。 正規化レベルAでのOETF処理を説明するための図である。 正規化レベルBでのOETF処理を説明するための図である。 正規化レベルCでのOETF処理を説明するための図である。 正規化レベルAでのEOTF処理を説明するための図である。 正規化レベルBでのEOTF処理を説明するための図である。 正規化レベルCでのEOTF処理を説明するための図である。 正規化レベルと光源出力の関係を示すグラフである。 明るさ制御信号を伝送する構成の一例を示すブロック図である。
〈表示システム〉
本実施の形態にかかる表示システムは、表示装置の表現できる輝度階調よりも広い輝度階調のデータの映像を表示するための表示システムである。表示システムは、フライトシミュレータやドライブシミュレータ、船舶シミュレータ、建築やインテリアVR(Virtual Reality)などである。ここでは、映像はCG映像であり、表示システムがパイロット訓練用のフライトシミュレータであるとして説明を行う。
表示システムは仮想的なオブジェクト情報に基づいて、CG映像を表示する。例えば、表示システムは、構造物を含む地表データをオブジェクト情報として記憶している。さらに、表示システムは、航空機の機体データ、光源データなどを記憶している。そして、表示システムは、オブジェクト情報等に基づいて、仮想的なレンダリング映像を生成(レンダリング)する。レンダリング映像は、ディスプレイのコントラストよりも大きいダイナミックレンジを有するCG映像である。
表示システムは、レンダリング映像に基づいて、表示用の映像信号を生成する。さらに、表示システムは、予め設定された明るさ情報に基づいて、ディスプレイに表示される表示映像の明るさ制御信号を生成する。そして、表示用の映像信号、及び明るさ制御信号に基づいて、表示装置(ディスプレイ)がCG映像を表示する。
図1に、表示システムの全体構成を示す。表示システム100は、プロジェクタ10と、インターフェース部30と、処理装置40とを備えている。
プロジェクタ10は、HDR対応のディスプレイ(表示装置)であり、動画又は静止画の映像を表示する。表示システム100がフライトシミュレータに用いられている場合、プロジェクタ10は、ユーザ(パイロット)が航空機の窓から見ることができる映像を表示する。例えば、プロジェクタ10は、12ビットのRGBの映像信号に基づいて、映像を表示する。すなわち、プロジェクタ10のRGBの各画素では、0〜4095の階調表示が行われる。なお、以下の説明において、画素データは、RGBの各画素の階調値を示す値となる。
プロジェクタ10は、背面投射型のプロジェクタ(リアプロジェクタ)であり、投射部11と、投射レンズ12と、ミラー13と、スクリーン14とを備えている。なお、本実施の形態では、ディスプレイが背面投射型のプロジェクタ10であるとして説明するが、反射型のプロジェクタ、あるいは、プラズマディスプレイ、液晶ディスプレイ、有機EL(Electroluminescent)ディスプレイなどの他のディスプレイ(表示装置)であってもよい。
投射部11は、スクリーン14上に映像を投射するため、映像信号に基づいて投射光を生成する。例えば、投射部11は、光源11a、及び空間変調器11bを備えている。光源11aは、ランプ、LD(Laser Diode)、又はLED(Light Emitting Diode)などである。空間変調器11bはLCOS(Liquid Crystal On Silicon)パネル、透過型液晶パネル、又は、DMD(Digital Mirror Device)などである。ここでは、光源11aがRGBのLDであり、空間変調器11bはLCOSパネルである。
投射部11は、光源11aからの光を空間変調器11bで変調する。そして、空間変調器11bで変調された光が、投射レンズ12から投射光として出射される。投射レンズ12からの投射光は、ミラー13でスクリーン14の方向に反射されている。投影レンズ12は、複数のレンズを有しており、投射部11からの映像をスクリーン14上に拡大投影する。
例えば、空間変調器11bは、映像信号に含まれる画素データに基づいて、光源11aからの光を変調する。これにより、スクリーン14上の各画素に画素データに応じた光量の光が入射する。そして、スクリーン14で散乱した散乱光がユーザの瞳に入射する。このようにすることでスクリーン14に表示されたCG映像をユーザが視認することができる。
さらに、光源11aは、明るさ制御信号に基づいた光量の光を発生する。すなわち、光源11aの出力は、明るさ制御信号に基づいて制御される。光源11aであるLDの制御としては、電流制御やPWM(Pulse Width Modulation)駆動制御等がある。
処理装置40は、CG映像を生成するIGである。処理装置40は、映像信号、及び明るさ制御信号を生成するための、プロセッサ41とメモリ42とを備えている。なお、図1では、一つのプロセッサ41と一つのメモリ42が示されているが、プロセッサ41とメモリ42は複数設けられていてもよい。
例えば、メモリ42は、画像処理を行うためのコンピュータプログラムが格納されている。そして、プロセッサ41がメモリ42からプログラムを読み出して、実行する。こうすることで、処理装置40は、映像信号、及び明るさ制御信号を生成する。なお、映像信号には、各画素の階調値に対応する画素データが含まれている。映像信号の画素データは、上記のように、12ビットのRGBデータである。さらに、メモリ42は、シミュレーションを行うため、種々の設定やデータを記憶する。
例えば、処理装置40は、CPU(Central Processing Unit)、メモリ、グラフィックカード、キーボード、マウス、入出力ポート(入出力I/F)等を備えたパーソナルコンピュータ(PC)等である。映像入出力に関する入出力ポートは、例えば、HDMI、DisplayPort、DVI、SDI等である。
インターフェース部30は、処理装置40とプロジェクタ10との間にインターフェースを有している。すなわち、インターフェース部30を介して、処理装置40とプロジェクタ10との間で信号が伝送される。具体的には、インターフェース部30は処理装置40の出力ポート、プロジェクタ10の入力ポート、及び、出力ポートと入力ポートを接続するAV(Audio Visual)ケーブル等を備えている。インターフェース部30としては、上記のようにHDMI、DisplayPort、DVI、SDI等の映像信号の汎用I/Fを用いることができる。
〈画像処理の概要〉
以下、本実施の形態にかかる画像処理に概要について、図2を用いて説明する。図2は、処理装置40における処理と、プロジェクタ10で表示される表示映像を説明するための図である。CG処理で生成されるレンダリング映像では、0から無限大に近い値までの仮想的な輝度を設定することができる。このため、図2のグラフIの横軸に示されるように、レンダリング映像の各画素は、0〜無限大に近い値の仮想的な輝度(brightness)、例えば32ビット相当で表現される。
一方、プロジェクタ10は、輝度が有限である。すなわち、プロジェクタ10で表示可能な輝度は、光源11aの出力レベル等に応じて設定される。したがって、レンダリング映像の最大輝度の画素に合わせて、光源11aの出力レベルを設定すると、暗い画素を適切に表示することが困難になる。
そのため、処理装置40は、シーンに応じて、正規化レベル(normalizing level)を設定する。正規化レベルは、映像の1フレームにおける仮想的な輝度の上限に対応するレベルである。処理装置40は、正規化レベルを用いて、レンダリング映像を正規化する。例えば、図2のグラフIに示されるように、処理装置40の各フレームにおける仮想的な輝度の最大値を、1として正規化する。したがって、正規化されたレンダリング映像では、画素データ(linear RGB)は0〜1の範囲で表現される。各フレームが適切な輝度で表示できるよう、正規化レベルはフレームに応じて可変となっている。例えば、処理装置40は、シーンの明るさ情報に応じて正規化レベルを設定する。処理装置40は、正規化されたレンダリング映像に基づいて映像信号を生成する。
さらに、処理装置40は、図2のグラフIIに示すように、正規化レベルに応じた明るさ制御信号を生成する。明るさ制御信号は、光源11aの出力レベル(LD output)に相当する。例えば、明るさ制御信号は、0〜100%の値で示され、100%の時、光源11aが最大出力となる。明るさ制御信号は、フレーム毎に設定される。
処理装置40は、インターフェース部30を介して、映像信号、及び明るさ制御信号をプロジェクタ10に伝送する。プロジェクタ10は、映像信号、及び明るさ制御信号に応じて、CG映像を表示する。プロジェクタ10は、フレーム毎に、明るさ制御信号に応じて光源11aの出力レベルを変える、そして、プロジェクタ10は、フレーム毎に最適な光源11aの出力レベルで、CG映像を表示する。このようにすることで、図2のグラフIIIのように、ダイナミックレンジを拡張することができる。
〈レンダリング映像と明るさ情報の生成〉
以下、画像処理の詳細について、図を参照して説明する。図3は、処理装置40において、仮想的なオブジェクト情報を説明するための図である。図3に示すように、構造物503aを含む地表503のデータが、メモリ42に格納されている。さらに、光源501、及び機体502のデータが光源情報、及び機体情報として、それぞれメモリ42に格納されている。そして、処理装置40は、仮想的な空間に、光源501、機体502、及び地表503が配置された場合のレンダリング映像を生成する。
光源501は、太陽、星、月などである。さらに、光源501は、ガイドビーコン、蛍光灯、LEDなどの人工光源であってもよい。光源501の光源情報は、位置、角度、大きさ、形状に関する空間的なデータ、及び明るさに関するデータを含んでいる。太陽、星、月などは時間に応じて位置が変化する。
機体502は、ユーザが操縦する航空機に相当する。機体502の機体情報は航空機の大きさ、及び形状に関する空間的なデータを含んでいる。機体502のコックピットには、ユーザの視点506が存在する。機体502の位置はユーザの操縦に応じて変化する。
地表503は構造物503aを含む地面に相当する。構造物503aとしては、滑走路、空港周辺の建物、アンテナなどが挙げられる。地表503のオブジェクト情報は、地面の高低に関する空間的なデータを含んでいる。構造物503aのオブジェクト情報は、構造物503aの位置、大きさ、形状などの空間的なデータを含んでいる。さらに、オブジェクト情報は、地表503や構造物503aの光の反射率に関する光学的なデータを含んでいる。
処理装置40は、光源、機体、構造物503aを含む地表503のオブジェクト情報に基づいて、視点506に入射する入射光の明るさを求める。例えば、処理装置40は、オブジェクトのモデリング、ライティング、シェーディング等の処理を行うことで、レンダリング映像をレンダリングする。すなわち、処理装置40は、レンダリング映像における各画素の仮想的な輝度(brightness)を算出する。なお、レンダリング映像は視点506から所定の画角で切り出された映像である。
ユーザの機体502を操縦するため、操縦桿などを用いて入力操作を行う。処理装置40は、入力に応じた仮想空間上の航空機の機体の変化を計算し、視点の変化を計算する。処理装置40は、仮想空間上の計算された視点における環境光情報を抽出し、明るさ情報を生成する。仮想空間上の計算された視点から見える絵をレンダリングする。
光源501が太陽の場合、光源501からの光は平行光505となる。光源501からの平行光505が構造物503a、地表503に当たって、拡散反射する。そして、構造物503a等のオブジェクト群で拡散反射した拡散反射光が環境光507として、視点506に入射する。
例えば、時間に応じて光源501の角度が変化する(図3中の光源501a)。光源501の角度によって、平行光505が入射する方向が変わる(例えば、平行光505a)。視点506に入射する入射光の明るさが光源501とユーザの視点506との位置関係に応じて変化する。すなわち、時間に応じて、視点506での明るさが異なる。
視点506の周辺の環境光507の強度は、光源501から視点506に直接入射する直接光よりも、構造物503a、地表503からの拡散反射光、および太陽からの直接光を除いた空などで拡散した光によるものが支配的である。この理由は、太陽などからの光のような輝度が無限大に近い直接光を環境光507として用いてしまうと、環境光507の強度が高くなりすぎて不自然な明るさで表示装置に表示されてしまうためである。
例えば、地表503、及び構造物503aが、視点506に対して十分に広い面上に配置されている場合、十分に遠い光源501から視点506までの線とその面(地面)とのなす角度が小さくなると、面における単位面積あたりの受光量が少なくなる。このため、視点506の周辺の環境光507の明るさは暗くなる。
具体的には、朝や夕方では、光源501である太陽から視点506までの線と、地面との成す角度(図3中の角度α1)が小さくなる。一方、昼の状態では、光源501である太陽から視点506までの線と、地面との成す角度(図3中の角度α2)が大きくなる。よって、朝や夕方の方が、昼よりも視点506の周辺の環境光507の明るさが暗くなる。このように、1日の時間に応じてシーンの明るさが変化する。
処理装置40には、時間に応じて変化するシーンの明るさ情報が定義されている。シーンの明るさ情報は、地球上の一日の明るさの変化をシミュレーションすることで求めることができる。例えば、シーンの明るさ情報は、太陽からの平行光505の角度に応じて求めることができる。
晴天時の明るさ情報の例を図4に示す。図4では、横軸が1日(0:00〜24:00)における時間、縦軸がシーンの明るさ情報(Scene Brightness)を示している。時間に応じて、太陽である光源501からの平行光505の入射角度が変わる。正午12時でシーンが最も明るくなり、深夜12時に近づくにつれて暗くなっていく。
具体的には、上記したように正午12時で、光源501と地面との成す角度が最も大きくなる。すなわち、平行光505が地面の垂直方向に近くなっている。よって、地表503において、単位面積当たりの受光量が大きくなり、シーンが明るくなる。図4中の平行光505a、505b都市示すように、正午12時から日の入りに向かうにつれて平行光505の方向が地表503と平行な方向に近くなっていく。日の出から正午12時に向かうにつれて平行光505の方向が地表503と垂直な方向に近くなっている。
また、図5に、曇天時/雨天時のシーンの明るさ情報を示す。曇天時/雨天時でも同様に、正午12時が最も明るくなり、深夜12時に近づくにつれて暗くなっていく。また、同じ時間において、曇天時/雨天時におけるシーンの明るさ情報は、晴天時よりも暗くなっている。すなわち、平行光505の角度が同じであっても、曇天時/雨天時は晴天時よりもシーンが暗くなる。
太陽の位置に応じて、地面に対する平行光505の角度が変わる。処理装置40は、地面に対する平行光505の角度αの関数として、明るさ情報を設定することができる。さらに、処理装置40は、天候に応じて、明るさ情報を設定する。このようにすることで、簡便に明るさ情報を算出することができる。さらに、CG映像の生成前に、シーンの明るさ情報を設定することが可能である。例えば、シミュレーションを行う設定時間に応じて、太陽の角度をシミュレートする。そして、太陽の角度に応じて、プロセッサ41が明るさ情報を予め演算することができる。そして、プロセッサ41は、予め演算した明るさ情報をメモリ42に書き込む。
このように、シーンの明るさ情報(Scene Brightness)は時間とともに変化する。換言すると、明るさ情報はフレーム毎に変化する。そして、1日の明るさ情報が天候に応じて定義されている。例えば、天候毎に、図4、図5に示すグラフのデータが明るさ情報としてメモリ42に格納されている。メモリ42は、明るさ情報のデータをテーブルとして格納していてもよく、関数として格納していてもよい。
上記の説明では、天候を晴天時と、曇天時/雨天時との2つに分類しているが、より細かく天候を分類してもよい。すなわち、天候を3以上に分類してもよい。そして、分類した天候毎に、明るさ情報の時間変化を定義してもよい。このように、シーンの明るさ情報は、天候、及び時間に応じて変化する。さらに、明るさ情報は視点506の高度や季節などによっても変化してもよい。この場合、処理装置40は天候、季節、高度に応じて、時間とともに変化する明るさ情報を生成する。また、1日分の明るさ情報を設定する必要はなく、明るさ情報は、フライトシミュレータでシミュレートする時間分だけ設定されていればよい。よって、ユーザがシミュレートする日時などを入力する場合、処理装置40は、その入力時間に応じて明るさ情報のデータを算出すればよい。
さらに、レンダリング映像に基づいて、シーンの明るさ情報を算出することも可能である。例えば、視点506に入射する入射光の総和から明るさ情報を算出することも可能である。具体的には、1枚又は複数のレンダリング映像の平均輝度APL(Average Picture Level)をシーンの明るさ情報とする。すなわち、レンダリング映像の仮想的な輝度(brightness)の平均値をシーンの明るさ情報とすることができる。平均輝度が大きいほど、明るいシーンとなり、平均輝度が小さいほど暗いシーンとなる。この場合、シーンの明るさ情報は、フレーム全体の平均輝度であってもよく、フレームの局所的な平均輝度であってもよい。また、2フレーム以上のレンダリング映像の平均輝度APLを明るさ情報としてもよい。
〈正規化レベルと輝度圧縮レベルの生成〉
処理装置40は、シーンの明るさ情報に基づいて、正規化レベルと輝度圧縮レベルを算出する。図6、及び図7に、0時〜24時までの、正規化レベル(normalizing level)と輝度圧縮レベル(knee level)の変化を示している。図6は晴天時の正規化レベル(一点鎖線)と輝度圧縮レベル(二点鎖線)とを示し、図7は、曇天時/雨天時における正規化レベル(一点鎖線)と輝度圧縮レベル(二点鎖線)とを示している。さらに、図6、図7では、図4、図5に示した明るさ情報を実線で示している。
上記の通り、正規化レベルは、フレームにおける輝度の上限に対応するレベルである。輝度圧縮レベルは、フレームにおいて、輝度の圧縮を行うレベルである。すなわち、レンダリング映像における画素の輝度が輝度圧縮レベル以上であり、正規化レベル以下である場合、輝度の圧縮が行われる。このように、正規化レベル及び輝度圧縮レベルは輝度圧縮を行う輝度圧縮範囲を規定している。
輝度圧縮レベルは、シーンの明るさ情報が大きいほど高くなり、シーンの明るさ情報が小さいほど低くなる。また、正規化レベルは、シーンにおける想定する最大輝度に応じて変化する。なお、シーンの明るさ情報は、レンダリング映像の輝度でもよいが、人間の瞳孔のサイズが明るさで変化するため、瞳孔サイズの変化を考慮した方が効果的である。
明るい昼では、暗い夜に比べて瞳孔のサイズが小さくなる。そして、瞳孔のサイズによって、網膜に入射する光量が変化する。よって、明るい昼では、網膜に入射する光が夜に比べて制限される。夜と昼とで明るさの違いを比較すると、人間が視覚的に感じる明るさの違いは実際の明るさの違いよりも小さくなる。処理装置40は、このような瞳孔サイズの変化を考慮して、正規化レベル及び輝度圧縮レベルを設定する。
正規化レベルは、反射率100%で光を拡散反射する構造物503aからの光(拡散反射光)の明るさを基準として設定される。具体的には、拡散反射光の明るさに対して、光源501から直接視点506に入射する光(直接光)や光源501からの光が鏡面反射されて視点506に入射する光(鏡面反射光)の明るさをどれくらい再現するかで設定される。
昼は、LEDや蛍光灯などの人工光に対して太陽光が桁違いに明るい。昼では、太陽からの直接光や鏡面反射光を適切に再現することが困難になる。このため、拡散反射光の明るさ(100%)に対して、正規化レベルは200%〜400%程度に設定される。一方、夜は環境光が人工光のみで、拡散反射光の明るさは昼に比べて低くなる。このため、拡散反射光の明るさ(100%)に対して、正規化レベルは600%〜4000%程度の範囲に設定される。輝度圧縮レベルは、反射率100%で拡散反射光の明るさとするため、輝度圧縮レベルがプロジェクタ10の表示の基準となる。このようにすることで、正規化レベル、及び輝度圧縮レベルを適切な明るさに設定することができる。
図6に示すように、晴天時の正午12時における正規化レベルを正規化レベルAとし、晴天時の午前3時における正規化レベルを正規化レベルBとする。また、図7に示すように、曇天時/雨天時の正午12時における正規化レベルを正規化レベルCとする。なお、正規化レベルBは曇天時/雨天時の午前3時における正規化レベルと同じとなっている。なお、太陽光が雲で拡散された光や、雲によって地表503に配置された構造物503aからの光が再び地表503に拡散反射する場合をシミュレーションする場合は、正規化レベルBとは異なる正規化レベルを設定してもよい。
正規化レベルA〜Cは、図8のような関係となっている。正規化レベルAが最も大きく、正規化レベルBが最も小さくなっている。正規化レベルBは正規化レベルAと正規化ベルCの間となっている。そして、正規化レベルはフレーム毎に設定される。処理装置40は、各フレームにおいて、正規化レベルでの輝度が1となるように、レンダリング映像を正規化する。
処理装置40は、シーンの明るさ情報に基づいて、正規化レベル、及び輝度圧縮レベルを設定する。そして、処理装置40は、正規化レベル、及び輝度圧縮レベルに基づいて、OETF(Optical-Electro Transfer Function)処理を行う。OETF処理では、光電気伝達関数(OETF)を用いて、輝度情報が電気的な映像信号に変換される。具体的には、処理装置40は、正規化されたレンダリング映像の画素データ(linear RGB)に基づいて、映像信号における画素データ(R’G’B’)を算出する。図9〜図11を用いてOETF処理について説明する。
図9は、正規化レベルAでのOETF処理を示す図である。図10は、正規化レベルBでのOETF処理を示す図である。図11は、正規化レベルCでのOETF処理を示す図である。図9〜図11では、左側のグラフが、レンダリング映像の仮想的な輝度(Brightness)と、正規化されたレンダリング映像の画素データ(linear RGB)の関係を示し、右側のグラフが正規化されたレンダリング映像の画素データ(linear RGB)と映像信号における画素データ(R’G’B’)との関係を示している。したがって、図9〜図11の右側のグラフが光電気伝達関数(OETF)を示している。また、図9〜図11の左側のグラフは共通であるが、正規化レベルA〜Cが異なっている。
正規化レベルA〜Cのそれぞれにおいて、正規化されたレンダリング映像の画素データ(linear RGB)は、0〜1の範囲になる。プロジェクタ10のガンマγは2.222としている。図9〜図11では、輝度圧縮レベルがプロジェクタ10の明るさ60%になるように、OETFのターゲットを0.8(=0.6の(1/γ)乗)としている。なお、(1/γ)=0.45である。輝度圧縮レベルでの画素データ(R’G’B’)が0.8となるよう、OETF処理を行っている。
正規化されたレンダリング映像の画素データ(linear RGB)をxとし、映像信号における画素データ(R’G’B’)をyとすると、光電気伝達関数(OETF)は以下のようになる。
xが輝度圧縮レベルより小さい場合
y=p*x(1/γ
xが輝度圧縮レベル以上の場合
y=a*log(b*x)+c
xが輝度圧縮レベルより小さい場合、送信側の処理装置40が、通常のガンマ補正を行っている。一方、xが輝度圧縮レベル以上となると、処理装置40が、輝度を圧縮するように対数(log)を用いて、映像信号における画素データ(R’G’B’)を算出している。なお、x=0でy=0となり、x=1でy=1となる。また、上記のように、x=輝度圧縮レベル(knee point)でy=0.8となっている。そして、輝度圧縮レベルにおいて、光電気伝達関数が連続するように係数a、b、c、pが設定されている。例えば、傾きが、輝度圧縮レベルの前後で滑らかにつながるように、係数a、b、c、pが設定されている。
図9では、輝度圧縮レベルは、正規化レベルAの半分(0.5)となっている。すなわち、反射率100%の明るさが輝度圧縮レベルに対応し、反射率200%の明るさが正規化レベルAに対応している。x=0.5でy=0.8となる。a=0.664、b=2.017、c=0.798、p=1.218である。0.5〜1の範囲にある画素の輝度は圧縮される。
図10では、輝度圧縮レベルは、正規化レベルBの1/10(0.1)となっている。すなわち、反射率100%の明るさが輝度圧縮レベルに対応し、反射率1000%の明るさが正規化レベルBに対応している。x=0.1でy=0.8となる。a=0.200、b=1.253、c=0.980、p=6.090である。0.1〜1の範囲にある画素の輝度は圧縮される。
図11では、輝度圧縮レベルは、正規化レベルCの1/4(0.25)となっている。すなわち、反射率100%の明るさが輝度圧縮レベルに対応し、反射率400%の明るさが正規化レベルCに対応している。x=0.25でy=0.8となる。a=0.332、b=1.378、c=0.954、p=2.436である。0.25〜1の範囲にある画素の輝度は圧縮される。
なお、図9〜図11では、OETFにおける輝度圧縮レベルでのyを0.8として固定しているが、輝度圧縮レベルでのyの値は0.8に限られるものではない。プロジェクタ10で表示可能な明るさやコントラスト(ダイナミックレンジ)に応じて、適宜設定することができる。例えば、プロジェクタ10のダイナミックレンジが高いほど、輝度圧縮の比率が改善する。よって、プロジェクタ10のダイナミックレンジが高くなるほど、輝度圧縮レベルでのyの値を小さくすることができる。
特に、プロジェクタ10に広いダイナミックレンジが要求されるのは、夜のシーンのような平均輝度(APL)に対して突出して高い輝度レベルを有する画素がある場合、あるいは、平均輝度(APL)に対して突出して低い輝度レベルを有する画素がある場合である。例えば、夜のシーンに対応する暗いシーンでは、図10に示すように、xが0.1〜1.0の範囲で輝度圧縮が行われる。晴天時の昼のシーンに対応する明るいシーンでは、図9に示すように、0.5〜1.0の範囲でしか輝度圧縮が行われない。曇天時/雨天時の昼のシーンに対応する明るさが中間のシーンでは、図11に示すように、0.25〜1.0の範囲で輝度圧縮が行われる。すなわち、レンダリング映像の平均輝度が低いほど、輝度圧縮範囲を大きくなるように、輝度圧縮レベル及び正規化レベルが設定されている。換言すると、シーンの明るさ情報が暗いほど、輝度圧縮範囲を大きくなるように、輝度圧縮レベル及び正規化レベルが設定されている。
〈プロジェクタ10による映像表示〉
そして、処理装置40は、インターフェース部30を介して、画素データ(R’G’B’)を含む映像信号、及び明るさ制御信号を同期してプロジェクタ10に伝送する。ここで、画素データ(R’G’B’)は、RGB12ビットに対応している。
そして、プロジェクタ10がEOTF(Electro-Optical Transfer Function)処理を行う。EOTF処理では、電気光伝達関数を用いて、電気的な映像信号が輝度情報に変換される。具体的には、映像信号の画素データ(R’G’B’)に基づいた輝度で映像が表示されるように、プロジェクタ10の空間変調器11bが光を変調する。このようにすることで、EOTF処理を行うことができる。
図12〜図14を用いてEOTF処理について説明する。図12は、正規化レベルAでのEOTF処理を示している。図13は、正規化レベルBでのEOTF処理を示す図である。図14は、正規化レベルCでのEOTF処理を示す図である。図12〜図14では、左側のグラフが、電気光伝達関数(EOTF)を示しており、右側のグラフが、正規化されたレンダリング映像における画素データ(Linear RGB)と表示映像(Screen Image)における画素の輝度(Screen brightness)との関係を示している。
電気光伝達関数はy=xγとなっている。なお、xは映像信号の画素データ(R’G’B’)であり、yは正規化されたレンダリング映像の画素データ(Linear RGB)である。プロジェクタ10のγ=2.222である。正規化レベルによらず、電気光伝達関数は同じである。
正規化レベルAの場合、レンダリング映像の画素データ(Linear RGB)とプロジェクタ10において表示される表示映像(Screen Image)の輝度(Screen Brightness)の関係は、図12のようになる。レンダリング映像の画素データ(Linear RGB)が輝度圧縮レベル(0.5)未満では、画素データ(Linear RGB)と表示映像の輝度(Screen Brightness)の関係が線形となる線形領域となる。輝度圧縮レベル(0.5)以上では、画素データ(Linear RGB)と表示映像の輝度(Screen Brightness)の関係が対数関数となるように圧縮された圧縮領域となる。線形領域では、圧縮領域よりも傾きが急峻になる。
正規化レベルBの場合、レンダリング映像の画素データ(Linear RGB)とプロジェクタ10において表示される表示映像(Screen Image)の輝度(Screen Brightness)の関係は、図13のようになる。レンダリング映像の画素データ(Linear RGB)が輝度圧縮レベル(0.1)未満では、画素データ(Linear RGB)と表示映像の輝度(Screen Brightness)の関係が線形となる線形領域となる。輝度圧縮レベル(0.1)以上では、画素データ(Linear RGB)と表示映像の輝度(Screen Brightness)の関係が対数関数となるように圧縮された圧縮領域となる。線形領域では、圧縮領域よりも傾きが急峻になる。
正規化レベルCの場合、レンダリング映像の画素データ(Linear RGB)とプロジェクタ10において表示される表示映像(Screen Image)の輝度(Screen Brightness)の関係は、図14のようになる。レンダリング映像の画素データ(Linear RGB)が輝度圧縮レベル(0.25)未満では、画素データ(Linear RGB)と表示映像の輝度の関係が線形となる線形領域となる。輝度圧縮レベル(0.25)以上では、画素データ(Linear RGB)と表示映像の輝度(Screen Brightness)の関係が対数関数となるように圧縮された圧縮領域となる。線形領域では、圧縮領域よりも傾きが急峻になる。
このように正規化レベル、すなわち、シーンの明るさ情報に応じて、圧縮範囲が異なる。明るいシーン(正規化レベルA)では、圧縮範囲が小さくなり、暗いシーン(正規化レベルB)では圧縮範囲が大きくなる。圧縮領域(圧縮範囲)では、線形領域に比べて、階調値の違いによる表示輝度の違いが小さくなる。
さらに、プロジェクタ10は、明るさ制御信号に応じて光源11aを制御する。光源11aの出力(LD output)は、明るさ制御信号に応じて変化する。図15は、正規化レベルと光源11aの出力(LD output)と関係を示すグラフである。明るいシーンほど、正規化レベルが大きくなる。よって、正規化レベルが大きいほど、光源11aの出力(LD output)が大きくなる。反対に、暗いシーンほど、正規化レベルが大きくなる。よって、正規化レベルが小さいほど、光源11aの出力(LD output)が小さくなる。正規化レベルが大きいほど明るいシーンであるため、光源11aの出力が高くなるよう、明るさ制御信号が設定される。
このように、プロジェクタ10において、光源11aの出力は明るさ制御信号に応じて制御される。また、空間変調器11bは、映像信号の画素データ(R’G’B’)に応じて、光源11aからの光を変調する。このようにすることで、プロジェクタ10が適切にCG映像を表示することができる。
明るさ情報はフレーム単位で設定されているため、明るさ制御信号はフレーム単位で最適化されている。これにより、フレーム単位でプロジェクタ10がシーンの明るさに応じた明るさで表示映像を表示することができる。フレーム単位でプロジェクタ10が高いダイナミックレンジでCG映像を表示する。
さらに、輝度圧縮レベル、及び正規化レベルがフレーム毎に可変となっている。よって、レンダリング映像の画素データを適切に圧縮することができる。人間の眼では、フレーム内の暗い領域の方が明るい領域よりも、階調の違いに敏感である。よって、輝度圧縮レベル以上の明るさを圧縮して表示することで、暗い領域の階調数を多く取ることができる。これにより、階調性を高くすることができ、様々なシーンのCG映像を適切に表示することができる。
プロジェクタ10で表示できる明るさには制限があるが、上記の画像処理により、現実世界での人間の視覚に知覚的に同じような効果(眩しさ感)を得るようにすることができる。特に全体が暗い夜のシーンにおいて、人工的な光源がある場合、光源501の眩しさを適切に表現することができるとともに、光源以外の暗い領域の階調を適切に表現することができる。また、明るい昼のシーンである場合、光源11aの出力が高い場合は、広いダイナミックレンジでの表示が可能となる。
このように、処理装置40は、フレーム毎に正規化レベル、輝度圧縮レベル、明るさ制御信号を設定している。これにより、シーンに応じて、適切にCG映像を表示することができる。
〈インターフェース部30の構成例〉
なお、処理装置40は、映像信号のI/Fと異なる外部制御I/Fを介して、明るさ制御信号をプロジェクタ10に伝送してもよい。この場合、インターフェース部30が映像信号用のI/Fと、明るさ制御信号用の外部制御I/Fをそれぞれ有することになる。そして、処理装置40は、映像信号と明るさ制御を同期して、伝送する。
あるいは、処理装置40は、映像信号のI/Fと同じI/Fを介して、明るさ制御信号をプロジェクタ10に伝送してもよい。映像信号のI/Fを用いて明るさ制御信号を伝送する場合、映像信号の一部に明るさ制御信号を埋め込んでもよい。例えば、フレームの先頭の複数画素に対応する画素データに明るさ制御信号を埋め込むことができる。例えば、明るさ制御信号がn(nは1以上の整数)ビットの信号である場合で、先頭n個の画素データの下位1ビットのデータに明るさ制御信号を埋め込めばよい。これにより、表示映像に対する影響を軽減することができる。
あるいは先頭の1画素の画素データに明るさ制御信号を埋め込んでもよい。この場合、先頭画素の画素データを用いずにプロジェクタ10がCG映像を表示すれば、表示映像に対する影響を軽減することができる。あるいは、HDMIやDisplayPortのように、フレーム毎に送信されるパケットに明るさ制御信号を付加することができる。
図16は、明るさ制御信号を伝送するための構成の一例を示す図である。処理装置40は、レンダリング映像生成部140と、パラメータ生成部141、OETF処理部142と、エンコーダ143と、を備えている。プロジェクタ10は、光源11aと、空間変調器11bと、デコーダ113とを備えている。なお、既に説明した処理については適宜説明を省略する。
レンダリング映像生成部140は、オブジェクトをモデリングすることで、レンダリング映像を生成する。レンダリング映像生成部140は、レンダリング映像をパラメータ生成部とOETF処理部142に出力する。
パラメータ生成部141は、レンダリング映像に基づいて、正規化レベル、輝度圧縮レベル、及び明るさ情報を生成する。なお、パラメータ生成部141は、レンダリング映像の平均輝度APLを明るさ情報として算出している。パラメータ生成部141は、レンダリング映像の平均輝度APLに基づいて、輝度圧縮レベルと正規化レベルを算出する。
パラメータ生成部141は、輝度圧縮レベルと正規化レベルをOETF処理部142に出力する。OETF処理部142は、輝度圧縮レベル、及び正規化レベルに基づいて、OETF処理を行う。OETF処理部142は、レンダリング映像の正規化、及び輝度圧縮を行うことで、画素データ(R’G’B’)を含む映像信号を生成する。
パラメータ生成部141は、明るさ情報をエンコーダ143に出力する。エンコーダ143は、明るさ情報に基づいて、明るさ制御信号を生成する。明るさ制御信号を映像信号にエンコードする。例えば、明るさ制御信号は、フレームの先頭画素に付加されている。あるいは、フレーム毎に送信されるパケットに明るさ制御信号が付加されている。
処理装置40は、インターフェース部30を介して、映像信号をプロジェクタ10に伝送する。デコーダ113は、映像信号をデコードして、明るさ制御信号を取り出す。すなわち、デコーダ113は画素データから明るさ制御信号を分離する。そして、デコーダ113は明るさ制御信号を光源11aに出力する。光源11aは、明るさ制御信号に応じて、出力を制御する出力コントローラを有している。
空間変調器11bは、LCOSパネルなどであり、EOTF処理を行う。すなわち、映像信号に含まれる画素データ(R’G’B’)によって、光源11aの光を変調する。これにより、画素データ(R’G’B’)に応じたCG映像が表示される。
なお、明るさ制御信号は、光源11aの出力(%)を示す値であってもよい。また、明るさ制御信号は、正規化レベルに対応するレンダリング映像の仮想的な輝度(brightness)であってもよい。また、処理装置40は、明るさ制御信号ともに、正規化レベル、及び輝度圧縮レベルに関する情報を伝送してもよい。輝度圧縮レベルをプロジェクタ10に伝送することで、電気光伝達関数(EOTF)を光電気伝達関数(OETF)の逆関数にすることが可能となる。これにより、レンダリング映像を適切に再現することができる。
輝度圧縮レベルをプロジェクタ10に伝送することで、電気光伝達関数(EOTF)を光電気伝達関数(OETF)の逆関数をプロジェクタ10側で生成することが可能となる。輝度圧縮前のレンダリング映像の輝度をプロジェクタ10側で復元することが可能となる。これにより、可逆性の輝度圧縮が可能となる。
例えば、輝度圧縮レベルより小さい画素では、y=p*x(1/γ)の逆関数により、圧縮前の輝度を求めることができる。xが輝度圧縮レベル以上の画素では、y=a*log(b*x)+cの逆関数により、圧縮前の輝度を求めることができる。そして、プロジェクタ10で圧縮前の輝度で映像が表示されるように、階調値を生成する。
また、高いダイナミックレンジのプロジェクタ10を用いた場合、明るいシーンでは、輝度圧縮を行わずに表示を行うことも可能である。例えば、図9では、輝度圧縮レベルに対応するOETFのターゲットが0.8となっている。ダイナミックレンジが高いプロジェクタでは、輝度圧縮範囲を狭くすることができるため、OETFのターゲットの値を小さくすることができる。換言すれば、OETFのターゲットの値を小さくすることができるプロジェクタ10を用いる場合、明るいシーンでは、輝度圧縮を行う必要がなくなる。
さらに、処理装置40で生成したCG映像を、複数のプロジェクタ10で表示するようにしてもよい。ユーザの視野を複数に分割して、複数のプロジェクタ10がCG映像を投影するようにすればよい。このようにすることで、表示画面を広くすることができる。この場合、複数のプロジェクタ10で同じ明るさ制御信号を用いるようにすればよい。
処理装置40は、表示装置の表示特性に応じて、輝度圧縮範囲を設定すればよい。例えば、上記の説明では、シーンの明るさが暗いほど、輝度圧縮範囲が大きくなるように、輝度圧縮レベル及び正規化レベルが設定されていたが、シーンの明るさが明るいほど、輝度圧縮範囲が大きくなるように、輝度圧縮レベル及び正規化レベルが設定されていてもよい。
有機ELディスプレイの場合、低輝度側では適切に階調表現することができるが、高輝度側では適切な階調表現が困難となる。すなわち、高輝度側の画素では、階調値の違いに対する輝度の違いが小さくなってしまう。このような場合、シールの明るさが明るいほど輝度圧縮レベルが大きくなるように、処理装置40が、輝度圧縮レベルを設定する。
さらに、高輝度側の輝度を圧縮せずに、低輝度側の輝度を圧縮するようにしてもよい。また、この場合、正規化レベルは、フレームにおける輝度の上限に対応するレベル以外のレベルを設定してもよい。すなわち、処理装置40は、表示装置の表示特性に応じて適切なレベルを正規化レベル、及び輝度圧縮レベルに設定することができる。
上記処理のうちの一部又は全部は、コンピュータプログラムによって実行されてもよい。上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non−transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。そして、メモリ42に格納された命令をプロセッサ41が実行することで、上記の処理が実行される。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限られたものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
10 プロジェクタ
11 投射部
11a 光源
11b 空間変調器
12 投射レンズ
13 ミラー
14 スクリーン
30 インターフェース部
40 処理装置
501 光源
502 機体
503 地表
503a 構造物
505 平行光
506 視点
507 環境光

Claims (10)

  1. シーンに応じたCG映像を表示するための映像信号を生成するプロセッサを有する処理装置であって、
    オブジェクトに関するオブジェクト情報に基づいて、レンダリング映像をレンダリングし、
    前記オブジェクト情報に含まれる前記オブジェクトの光反射率に関するデータに基づいて前記レンダリング映像をレンダリングするときの視点に入射する環境光情報を求め、前記レンダリング映像をレンダリングするときの視点に入射する前記環境光情報から前記シーンの明るさ情報を生成し、
    前記シーンの明るさ情報に基づいて、正規化レベルと、輝度圧縮レベルと、表示映像のフレームの明るさを設定する明るさ制御信号と、を生成し、
    前記レンダリング映像において前記輝度圧縮レベルと前記正規化レベルとで規定される輝度圧縮範囲にある画素の輝度を圧縮して、前記レンダリング映像から表示映像の画素データを含む映像信号を生成する処理装置。
  2. 前記オブジェクト情報仮想空間中の光源を含み、
    前記仮想空間中の光源に関するオブジェクト情報に基づいて、前記視点に入射する環境光情報が生成されていることを特徴とする請求項1に記載の処理装置。
  3. 前記シーンの明るさが暗いほど、前記輝度圧縮範囲が大きくなるように、前記輝度圧縮レベル及び前記正規化レベルが設定されている請求項1、又は2に記載の処理装置。
  4. 前記シーンの明るさが明るいほど、前記輝度圧縮範囲が大きくなるように、前記輝度圧縮レベル及び前記正規化レベルが設定されている請求項1、又は2に記載の処理装置。
  5. 前記明るさ情報が、時間に応じた関数又はテーブルとして設定されている請求項1〜4のいずれか1項に記載の処理装置。
  6. 請求項1〜5のいずれか1項に記載の処理装置と、
    前記映像信号に基づいて前記CG映像を表示する表示装置と、を備えた表示システム。
  7. 前記表示装置が、
    光源装置と、
    前記光源装置からの光を、前記映像信号に基づいて変調する空間変調器と、を備え、
    前記明るさ制御信号に基づいて、前記光源装置の出力が制御されている請求項に記載の表示システム。
  8. 前記プロセッサと前記表示装置とを接続する汎用I/Fをさらに備え、
    前記明るさ制御信号が汎用I/Fを介して、前記プロセッサから前記表示装置に伝送される請求項6、又は7に記載の表示システム。
  9. シーンに応じたCG映像を表示する表示方法であって、
    オブジェクトに関するオブジェクト情報に基づいて、レンダリング映像をレンダリングするステップと、
    前記オブジェクト情報に含まれる前記オブジェクトの光反射率に関するデータに基づいて前記レンダリング映像をレンダリングするときの視点に入射する環境光情報を求め、前記レンダリング映像をレンダリングするときの視点に入射する前記環境光情報から前記シーンの明るさ情報を生成するステップと、
    前記シーンの明るさ情報に基づいて、正規化レベルと、輝度圧縮レベルと、表示映像のフレームの明るさを設定する明るさ制御信号と、を生成するステップと、
    前記レンダリング映像において前記輝度圧縮レベルと前記正規化レベルとで規定される輝度圧縮範囲にある画素の輝度を圧縮して、前記レンダリング映像から表示映像の画素データを含む映像信号を生成するステップと、
    前記明るさ制御信号に応じた明るさで、前記映像信号に基づいた前記CG映像を表示するステップと、を含む表示方法。
  10. シーンに応じたCG映像を表示する映像信号を生成するためのプログラムであって、
    オブジェクトに関するオブジェクト情報に基づいて、レンダリング映像をレンダリングするステップと、
    前記オブジェクト情報に含まれる前記オブジェクトの光反射率に関するデータに基づいて前記レンダリング映像をレンダリングするときの視点に入射する環境光情報を求め、前記レンダリング映像をレンダリングするときの視点に入射する前記環境光情報から前記シーンの明るさ情報を生成するステップと、
    前記シーンの明るさ情報に基づいて、正規化レベルと、輝度圧縮レベルと、表示映像のフレームの明るさを設定する明るさ制御信号と、を生成するステップと、
    前記レンダリング映像において前記輝度圧縮レベルと前記正規化レベルで規定される範囲にある画素の輝度を圧縮して、前記レンダリング映像から表示映像の画素データを含む映像信号を生成するステップと、を
    コンピュータに対して実行させるプログラム。
JP2016149152A 2016-07-29 2016-07-29 処理装置、表示システム、表示方法、及びプログラム Active JP6759813B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016149152A JP6759813B2 (ja) 2016-07-29 2016-07-29 処理装置、表示システム、表示方法、及びプログラム
US15/662,602 US10388253B2 (en) 2016-07-29 2017-07-28 Processing device, display system, display method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149152A JP6759813B2 (ja) 2016-07-29 2016-07-29 処理装置、表示システム、表示方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2018017953A JP2018017953A (ja) 2018-02-01
JP6759813B2 true JP6759813B2 (ja) 2020-09-23

Family

ID=61012252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149152A Active JP6759813B2 (ja) 2016-07-29 2016-07-29 処理装置、表示システム、表示方法、及びプログラム

Country Status (2)

Country Link
US (1) US10388253B2 (ja)
JP (1) JP6759813B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525457B1 (en) * 2018-02-07 2023-12-13 Nintendo Co., Ltd. Method and apparatus for compensating the colorimetry of a projected image
CN110956578B (zh) * 2019-03-13 2020-09-01 深圳市中壬银兴信息技术有限公司 关键大数据模糊化处理方法
JP7277410B2 (ja) * 2020-03-30 2023-05-18 東邦ガスネットワーク株式会社 拡張現実表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430998B2 (ja) * 1999-11-08 2003-07-28 松下電器産業株式会社 画像表示装置および画像表示方法
JP4048870B2 (ja) * 2002-08-06 2008-02-20 セイコーエプソン株式会社 プロジェクタシステム
FR2854719A1 (fr) * 2003-05-07 2004-11-12 Thomson Licensing Sa Procede de traitement d'image visant a ameliorer le contraste dans un panneau d'affichage numerique
JP4506219B2 (ja) * 2004-03-18 2010-07-21 ブラザー工業株式会社 画像表示装置および画像表示システム
JP4475008B2 (ja) * 2004-05-25 2010-06-09 株式会社デンソー 輝度調整装置、表示装置、及びプログラム
JP4626533B2 (ja) * 2006-02-16 2011-02-09 パナソニック株式会社 画像処理装置およびその方法、プログラム、記録媒体
CN101360182B (zh) * 2007-07-31 2010-07-21 深圳Tcl工业研究院有限公司 一种视频图像处理方法
JP4552986B2 (ja) * 2007-08-31 2010-09-29 ソニー株式会社 画像表示装置
US9058510B1 (en) * 2011-07-29 2015-06-16 Rockwell Collins, Inc. System for and method of controlling display characteristics including brightness and contrast
JP5085792B1 (ja) * 2012-02-08 2012-11-28 シャープ株式会社 映像表示装置およびテレビ受信装置
CN105493490B (zh) * 2014-06-23 2019-11-29 松下知识产权经营株式会社 变换方法和变换装置
US9571759B1 (en) * 2015-09-30 2017-02-14 Gopro, Inc. Separate range tone mapping for component images in a combined image
WO2018009917A1 (en) * 2016-07-08 2018-01-11 Manufacturing Resources International, Inc. Controlling display brightness based on image capture device data

Also Published As

Publication number Publication date
US20180033401A1 (en) 2018-02-01
US10388253B2 (en) 2019-08-20
JP2018017953A (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
US11272600B2 (en) Information processing apparatus and information processing method
KR101456874B1 (ko) 이미지 디스플레이에 대한 광 검출, 컬러 표현 모델들, 및 동적 범위의 수정
US10475243B2 (en) Transition between virtual reality and real world
KR102130667B1 (ko) 위치 기반 디스플레이 특성의 환경 적응을 갖춘 전자 디스플레이
US8189003B2 (en) System and method for rendering computer graphics utilizing a shadow illuminator
JP6759813B2 (ja) 処理装置、表示システム、表示方法、及びプログラム
CN105103033A (zh) 控制显示图像的亮度
JP2016149753A (ja) 表示システム、処理装置、表示装置、表示方法、及びプログラム
CN116506993A (zh) 灯光控制方法及存储介质
US10321107B2 (en) Methods, systems, and computer readable media for improved illumination of spatial augmented reality objects
JP7031365B2 (ja) 光環境評価装置、及びプログラム
US20210374982A1 (en) Systems and Methods for Illuminating Physical Space with Shadows of Virtual Objects
US11817063B2 (en) Perceptually improved color display in image sequences on physical displays
US11698530B2 (en) Switch leakage compensation for global illumination
KR102235679B1 (ko) 시각 효과를 가지는 객체를 디스플레이하는 장치 및 방법
WO2019009100A1 (ja) 制御装置、制御方法、およびプログラム
EP4136829B1 (en) Perceptually improved color display in image sequences on physical displays
EP3817376A1 (en) Active screen for large venue and dome high dynamic range image projection
Hernandez-Ibáñez et al. Real-Time Lighting Analysis for Design and Education Using a Game Engine
Olajos et al. Sparse Spatial Shading in Augmented Reality.
Kuehne et al. PHYSICS-BASED SIMULATION OF REALISTIC LIGHTING AND ILLUMINATION FOR NEXT GENERATION GROUND VEHICLE IMAGE GENERATORS
WO2023094872A1 (en) Increasing dynamic range of a virtual production display
WO2023094875A1 (en) Increasing dynamic range of a virtual production display
WO2023094874A1 (en) Increasing dynamic range of a virtual production display
WO2023094882A1 (en) Increasing dynamic range of a virtual production display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6759813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150