JP6740993B2 - Inner resin lining thin-walled steel pipe and method for manufacturing the same - Google Patents
Inner resin lining thin-walled steel pipe and method for manufacturing the same Download PDFInfo
- Publication number
- JP6740993B2 JP6740993B2 JP2017221416A JP2017221416A JP6740993B2 JP 6740993 B2 JP6740993 B2 JP 6740993B2 JP 2017221416 A JP2017221416 A JP 2017221416A JP 2017221416 A JP2017221416 A JP 2017221416A JP 6740993 B2 JP6740993 B2 JP 6740993B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- rolling
- screw
- thin
- jis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 180
- 239000010959 steel Substances 0.000 title claims description 180
- 239000011347 resin Substances 0.000 title claims description 42
- 229920005989 resin Polymers 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000000034 method Methods 0.000 title description 16
- 238000005096 rolling process Methods 0.000 claims description 89
- 239000000314 lubricant Substances 0.000 claims description 12
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 9
- 239000010962 carbon steel Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 6
- 230000001771 impaired effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000010730 cutting oil Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000003672 processing method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
- Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Description
本発明は、主に水道用配管に用いられる内面樹脂ライニング薄肉鋼管およびその製造方法に関するものである。 The present invention relates to an inner surface resin lined thin-walled steel pipe mainly used for water pipes and a method for manufacturing the same.
上水道などの水道用鋼管には、JIS G 3452に規定された配管用炭素鋼管(以下、「JIS規定の鋼管」ともいう)が用いられる。その配管用炭素鋼管の管端部には、管外面にねじ(雄ねじ)が形成されたねじ部が設けられ、内面にねじ(雌ねじ)が形成された管継手を介して、隣接する配管用炭素鋼管と接合される。ねじには、JIS B 0202の管用平行ねじ(以下、「JIS規定の平行ねじ」ともいう)、あるいは、JIS B 0203の管用テーパねじ(以下、「JIS規定のテーパねじ」ともいう)が用いられる(以下、両者を合わせて、「JIS規定のねじ」ともいう)。 As a steel pipe for waterworks and the like, a carbon steel pipe for piping specified in JIS G 3452 (hereinafter, also referred to as "JIS specified steel pipe") is used. The pipe end of the carbon steel pipe for pipes is provided with a threaded portion having a screw (male thread) formed on the outer surface of the pipe, and a carbon pipe for adjoining pipes is connected through a pipe joint having a screw (female thread) formed on the inner surface. Joined with steel pipe. For the screw, a JIS B 0202 parallel pipe screw (hereinafter also referred to as "JIS standard parallel screw") or a JIS B 0203 pipe taper screw (hereinafter also referred to as "JIS standard taper screw") is used. (Hereinafter, both will be collectively referred to as "JIS prescribed screw").
このようなJIS G 3452に規定された配管用炭素鋼管に対して、外径は同じであるが、厚さ(肉厚)を薄くした鋼管(薄肉鋼管)が軽量化鋼管として提案されるようになってきた。 As compared with such a carbon steel pipe for piping specified in JIS G 3452, a steel pipe (thin steel pipe) having the same outer diameter but a reduced thickness (wall thickness) is proposed as a lightweight steel pipe. It's coming.
その際、鋼管外面にねじ(雄ねじ)を形成するには、鋼管をチェザーという刃で切削加工してねじ山を形成する切削ねじが長年主流であったが、ねじ部での鋼管肉厚の減少が不可避であり、特に、薄肉鋼管に適用した場合には、ねじ谷底部の肉厚が極めて薄くなり、切削加工が困難になったり、ねじ接合部の強度が低下して、耐震性が著しく低下してしまったりするという問題があった。 At that time, in order to form a screw (male thread) on the outer surface of the steel pipe, a cutting screw that forms a screw thread by cutting the steel pipe with a blade called a checker has been the mainstream for many years, but the thickness of the steel pipe at the thread portion is reduced. Is inevitable, especially when applied to thin-walled steel pipes, the wall thickness at the bottom of the thread root becomes extremely thin, making it difficult to cut, and the strength of the threaded joint decreases, resulting in a significant decrease in seismic resistance. There was a problem that it did.
これに対して、近年、転造ローラーという外面にねじ山が形成されたローラー(転造工具)を鋼管に押し当てて、塑性加工によりねじ山を形成する転造ねじが普及しつつある。転造ねじは、切削ねじと異なり、ねじ谷底部の鋼管の厚さが確保されるので、ねじ接合部の強度が高くなり、薄肉鋼管に適用した場合でも、十分な耐震性を有することができるという利点がある。 On the other hand, in recent years, a rolling screw in which a roller (rolling tool) having a thread formed on the outer surface of a rolling roller is pressed against a steel pipe to form the thread by plastic working is becoming widespread. Unlike the cutting screw, the rolling screw secures the thickness of the steel pipe at the root of the thread, so the strength of the threaded joint is high, and even when applied to thin-walled steel pipe, it can have sufficient earthquake resistance. There is an advantage that.
上記のような転造ねじを形成する方法には、図1(a)に示すように、鋼管を回転させながら、鋼管の端から徐々に転造ローラー(転造工具、たとえば5個)の間に送りこんでいく、いわゆる「歩み転造」と、図1(b)に示すように、鋼管に対して、通常3個の回転する転造ローラー(転造工具)をそれぞれ同時に寄せていく、いわゆる「寄せ転造」とがある。 As shown in FIG. 1( a ), the method for forming the rolling screw as described above includes gradually rotating the steel pipe from the end of the steel pipe to a space between rolling rollers (rolling tools, for example, 5). So-called "step rolling", in which three rolling rollers (rolling tools) that normally rotate are simultaneously moved toward the steel pipe, as shown in FIG. 1(b). There is "group rolling".
このような転造ねじに関して、特許文献1には、JIS B 0202に規定された厚さに対して、厚さを70%〜50%に薄くした薄肉鋼管に中子を挿入して、規定のねじ山形状を得る方法が開示されている。薄肉鋼管の場合、歩み転造では、JIS B 0202やJIS B 0203に規定された形状にねじ山が盛り上がらず、ねじ山不良を招くが、この問題は、特許文献1によれば、中子を挿入することで解決できるとしている。 Regarding such a rolled screw, in Patent Document 1, a core is inserted into a thin-walled steel pipe whose thickness is reduced to 70% to 50% with respect to the thickness specified in JIS B 0202, and A method of obtaining a thread profile is disclosed. In the case of a thin-walled steel pipe, in step rolling, the thread does not rise in the shape defined in JIS B 0202 or JIS B 0203, which causes a thread failure, but according to Patent Document 1, the problem is It is said that the problem can be solved by inserting it.
一方、鋼管内面の腐食防止のために、配管用炭素鋼管の内面に樹脂ライニング(例えば、ポリエチレン粉体やポリオレフィン粉体等のライニング)が施された内面樹脂ライニング鋼管が広く使用されている(例えば、特許文献2、3参照)。 On the other hand, in order to prevent corrosion of the inner surface of the steel pipe, an inner resin-lined steel pipe in which a resin lining (for example, a lining of polyethylene powder or polyolefin powder) is applied to the inner surface of a carbon steel pipe for piping is widely used (for example, , Patent Documents 2 and 3).
このような内面樹脂ライニング鋼管でも、軽量化のために、JIS G 3452の規定よりも薄肉化した薄肉鋼管(内面樹脂ライニング薄肉鋼管)が求められるようになっている。 Even for such an inner surface resin-lined steel pipe, in order to reduce the weight, a thin-walled steel pipe (inner-side resin-lined thin-walled steel pipe) having a thickness smaller than that of JIS G 3452 is required.
しかしながら、上述したような、JIS規定の鋼管よりも薄肉化した内面樹脂ライニング薄肉鋼管を製造しようとした場合、以下のような問題が発生する。 However, when an attempt is made to manufacture an inner surface resin-lined thin-walled steel pipe thinner than the JIS-specified steel pipe as described above, the following problems occur.
まず、薄肉鋼管の鋼管端部外面にJIS規定のねじを転造加工によって形成する場合、鋼管の厚さが薄くなるにつれて、鋼管の剛性が低くなるため、転造工具を鋼管外面に押し当てた際に、鋼管がつぶれたり、転造工具の押し込みと同方向の変形が大きくなり、転造工具に対する反力が低下したりする。その結果、ねじ山の形成のために転造工具外周に設けられた凹部への材料の変形・充満(塑性流動)が小さくなって、規定のねじ山形状が形成できないという問題がある。規定のねじ山形状が形成できないと、管内を通過する流体が継手部から漏れたり、継手耐震強度が低下することになる。 First, when a JIS standard screw is formed on the outer surface of the steel pipe end of the thin-walled steel pipe by rolling, the rigidity of the steel pipe decreases as the thickness of the steel pipe decreases, so a rolling tool was pressed against the outer surface of the steel pipe. At that time, the steel pipe is crushed, or the deformation in the same direction as the pushing of the rolling tool becomes large, and the reaction force against the rolling tool decreases. As a result, the deformation and filling (plastic flow) of the material into the recess provided on the outer circumference of the rolling tool due to the formation of the thread becomes small, and there is a problem that the prescribed thread shape cannot be formed. If the prescribed thread shape cannot be formed, the fluid passing through the pipe will leak from the joint, and the seismic strength of the joint will decrease.
この問題に対して、内面樹脂ライニング薄肉鋼管の場合は、前述した特許文献1のように、鋼管端部に中子を挿入して、規定のねじ山形状を得る方法は適用することができない。中子を挿入した場合、少なくとも鋼管内面が中子と高い面圧で接触し、場合によっては回転摺動することによって、鋼管内面の樹脂ライニングが損傷・剥離して、耐食性が大きく低下してしまうからである。仮に、上記のような鋼管内面の樹脂ライニングの損傷・剥離を許容して、転造ねじの形成後に鋼管内面を補修しようとしても、樹脂ライニング(例えば、ポリエチレン)自体の表面エネルギが低いため、補修材が付着ないし固着しにくく、補修できないか、または補修材がはがれてしまい、補修の効果が得られないため、耐食性を発揮することが困難になる。 To solve this problem, in the case of an inner resin lined thin-walled steel pipe, the method of inserting a core into the end of the steel pipe to obtain a prescribed thread shape cannot be applied, as in Patent Document 1 described above. When the core is inserted, at least the inner surface of the steel pipe comes into contact with the core with high surface pressure, and in some cases, the resin slides on the inner surface of the steel pipe due to damage and peeling due to rolling and sliding, which significantly reduces corrosion resistance. Because. Even if the resin lining on the inner surface of the steel pipe as described above is allowed to be damaged or peeled off and the inner surface of the steel pipe is repaired after the rolling screw is formed, the surface energy of the resin lining (for example, polyethylene) itself is low. It is difficult for the material to adhere or adhere, and the repair cannot be performed, or the repair material is peeled off and the repair effect cannot be obtained, so that it becomes difficult to exhibit corrosion resistance.
さらに、薄肉鋼管の転造ねじの形成で顕著になる問題として、図2に示すように、転造加工後のねじ部の鋼管内面に、鋼管外面の螺旋状のねじ山と同じ位相で凹凸が発生することが起きることがあげられる。 Further, as a problem that becomes noticeable when forming a rolled screw of a thin-walled steel pipe, as shown in FIG. 2, unevenness is formed on the inner surface of the steel pipe of the threaded portion after the rolling process in the same phase as the spiral thread of the outer surface of the steel pipe. What happens is that it happens.
このような鋼管内面の凹凸が大きくなると、鋼管内面の樹脂ライニングがその凹凸変形に追随できず、部分的に剥離してしまい、結果的に耐食性が低下してしまうので、内面樹脂ライニング薄肉鋼管と言えなくなる。この現象は、薄肉鋼管の厚さがJIS B 0202に規定された厚さの87.5%未満になると、一段と生じ易くなる。 When such unevenness of the inner surface of the steel pipe becomes large, the resin lining on the inner surface of the steel pipe cannot follow the uneven deformation and is partially peeled off, resulting in a decrease in corrosion resistance. I can't say it. This phenomenon is even more likely to occur when the thickness of the thin steel pipe is less than 87.5% of the thickness specified in JIS B 0202.
また、鋼管内面の樹脂ライニングが剥離しない場合でも、上記のような鋼管内面の凹凸があると、鋼管と管継手との接合部に止水の目的で設けるOリングが、鋼管内面の凹凸によって変形し、密封が不完全となって、継手部の耐食性を低下させる。図3に、典型的なポリエチレン粉体ライニング鋼管の継手部断面を示すが、図3に示すOリングの場合、仮にねじ部内面に凹凸があることを想定すれば、Oリングは確実にその影響を受ける。鋼管の外面に形成されたらせん状のねじ山と同位相に形成された管内面の凹凸が大きい場合、Oリングは、少なくとも一つの突起を乗り越えることになり、止水効果が低下することは容易に推察される。 Even if the resin lining on the inner surface of the steel pipe does not peel off, if there is unevenness on the inner surface of the steel pipe as described above, the O-ring provided for the purpose of stopping water at the joint between the steel pipe and the pipe joint is deformed by the unevenness on the inner surface of the steel pipe. However, the sealing is incomplete, and the corrosion resistance of the joint is reduced. Fig. 3 shows the cross section of the joint of a typical polyethylene powder lined steel pipe. In the case of the O-ring shown in Fig. 3, assuming that the inner surface of the threaded portion is uneven, the O-ring will definitely affect its effect. Receive. If the inner surface of the pipe formed in the same phase as the helical thread formed on the outer surface of the steel pipe has large irregularities, the O-ring will go over at least one protrusion, and the water-stopping effect can easily be reduced. Be inferred.
したがって、鋼管内面の樹脂ライニングが剥離せず、かつOリングの止水機能を損なうことがない程度に、ねじ部の鋼管内面の凹凸量を小さくすることが必要になる。 Therefore, it is necessary to reduce the amount of unevenness on the inner surface of the steel pipe of the threaded portion to the extent that the resin lining on the inner surface of the steel pipe does not peel off and the water blocking function of the O-ring is not impaired.
本発明は、上記のような事情に鑑みてなされたものであり、良好なねじ部(鋼管外面のねじ形状がJIS規定の形状であり、かつ鋼管内面の凹凸量が小さい)を備えた内面樹脂ライニング薄肉鋼管およびその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and an inner surface resin provided with a good threaded portion (the thread shape of the outer surface of the steel pipe is a JIS prescribed shape, and the unevenness of the inner surface of the steel pipe is small) An object of the present invention is to provide a thin-walled steel pipe and a manufacturing method thereof.
本発明者らは、上記課題を解決するために、以下のような検討を行った。 The present inventors conducted the following studies in order to solve the above problems.
まず、JIS規定の鋼管よりも薄肉化した場合に、特許文献1のような中子を用いることなく、鋼管端部外面にJIS規定の形状のねじを、転造によって形成できる鋼管の厚さの範囲を検討した。 First, when the wall thickness of the steel pipe is made thinner than that of the JIS standard, a screw having a JIS standard shape can be formed on the outer surface of the steel pipe by rolling without using a core as in Patent Document 1, Considered the range.
次に、その厚さ範囲を前提にして、ねじ部における鋼管内面の凹凸量について、鋼管内面の樹脂ライニングが剥離せず、かつOリングの止水機能を損なうことがない範囲を見定め、その範囲内に鋼管内面の凹凸量を抑える方法について検討した。 Next, on the premise of the thickness range, for the unevenness of the inner surface of the steel pipe at the threaded portion, determine the range in which the resin lining on the inner surface of the steel pipe does not peel off and the water stop function of the O-ring is not impaired, and the range is determined. A method for suppressing the unevenness on the inner surface of the steel pipe was examined.
本発明は、そのような検討によって得られた知見(詳細は、後述の[発明を実施するための形態]の欄において述べる)に基づいており、以下のような特徴を有している。 The present invention is based on the findings (details will be described in the section of [Modes for carrying out the invention] described later) obtained by such studies, and has the following features.
[1]JIS G 3452に規定された配管用炭素鋼管に対して、外径が同じで、厚さが100%未満78%以上であり、鋼管内面に樹脂ライニングを有し、鋼管端部に、鋼管外面にJIS B 0202またはJIS B 0203に基づく形状のねじを有するねじ部を備え、前記ねじ部の鋼管内面の凹凸量が最大高さRzで200.0μm以下であることを特徴とする内面樹脂ライニング薄肉鋼管。 [1] A carbon steel pipe for piping specified in JIS G 3452 has the same outer diameter, a thickness of less than 100% and 78% or more, a resin pipe lining on the inner surface of the steel pipe, and a steel pipe end portion, An inner surface resin comprising a threaded portion having a thread according to JIS B 0202 or JIS B 0203 on the outer surface of the steel pipe, and the unevenness of the inner surface of the steel pipe of the threaded portion is 200.0 μm or less at a maximum height Rz. Lining thin-walled steel pipe.
[2]JIS G 3452に規定された配管用炭素鋼管に対して、外径が同じで、厚さが87.5%未満78%以上であることを特徴とする前記[1]に記載の内面樹脂ライニング薄肉鋼管。 [2] The inner surface as described in [1] above, which has the same outer diameter and a thickness of less than 87.5% and 78% or more with respect to the carbon steel pipe for piping specified in JIS G 3452. Resin-lined thin-walled steel pipe.
[3]前記[1]または[2]に記載の内面樹脂ライニング薄肉鋼管を製造する方法であって、薄肉鋼管を製造する薄肉鋼管製造工程と、前記薄肉鋼管の内面に樹脂ライニングを形成する内面樹脂ライニング工程と、内面に樹脂ライニングを有する薄肉鋼管の鋼管端部外面にねじを形成するねじ形成工程とを備えることを特徴とする内面樹脂ライニング薄肉鋼管の製造方法。 [3] A method for manufacturing an inner surface resin-lined thin-walled steel pipe according to [1] or [2], which comprises a thin-walled steel pipe manufacturing step for manufacturing a thin-walled steel pipe, and an inner surface for forming a resin lining on the inner surface of the thin-walled steel pipe. A method for manufacturing an inner resin-lined thin-walled steel pipe, comprising: a resin lining step; and a screw forming step of forming a screw on an outer surface of a steel pipe end portion of the thin-walled steel pipe having a resin lining on the inner surface.
[4]前記ねじ形成工程は、転造によってねじを形成する転造ねじ形成工程であり、前記ねじ形成工程において、下記の(A)、(B)、(C)のうちの少なくとも1つを行うことを特徴とする前記[3]に記載の内面樹脂ライニング薄肉鋼管の製造方法。
(A)歩み転造を用い、摩擦係数が0.08以下である潤滑剤を使用する。
(B)歩み転造を用い、転造工具の回転速度を70rpm以下にする。
(C)寄せ転造を用いる。
[4] The thread forming step is a thread forming step for forming a thread by rolling, and in the thread forming step, at least one of the following (A), (B), and (C) is performed. The method for producing an inner surface resin lined thin-walled steel pipe according to the above [3], which is performed.
(A) Step rolling is used, and a lubricant having a friction coefficient of 0.08 or less is used.
(B) Using step rolling, the rotation speed of the rolling tool is set to 70 rpm or less.
(C) Using the rolled rolling.
本発明によれば、良好なねじ部(鋼管外面のねじ形状がJIS規定の形状であり、かつ鋼管内面の凹凸量が小さい)を備えた内面樹脂ライニング薄肉鋼管を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the inner surface resin lining thin-walled steel pipe provided with a favorable screw part (The screw shape of the steel pipe outer surface is a shape of JIS regulation, and the unevenness|corrugation amount of the steel pipe inner surface is small) can be obtained.
その結果、従来の内面樹脂ライニング鋼管と比べて、同等の継手耐震強度を有しながら、鋼管の重量を低減することが可能となり、配管の作業性や施工性を改善することができる。さらに、構造物への付加的な荷重を軽減することで、構造物全体の耐震強度にも余裕を与えることが可能となる。また、ねじ部の加工においては、中子の利用を省略することが可能となり、ねじ加工設備のトータルコスト削減や加工時間短縮による生産能率向上を図ることができる。 As a result, compared with the conventional inner surface resin lined steel pipe, it is possible to reduce the weight of the steel pipe while having the same joint seismic strength, and it is possible to improve workability and workability of the pipe. Furthermore, by reducing the additional load on the structure, it is possible to give a margin to the seismic strength of the entire structure. Further, in the processing of the screw portion, the use of the core can be omitted, so that the total cost of the screw processing equipment can be reduced and the production efficiency can be improved by shortening the processing time.
前述したように、ここでは、本発明を想到した経過を中心にして述べる。 As mentioned above, the description will focus on the process of the present invention.
なお、本発明では、JIS規定の鋼管(配管用炭素鋼管)を基準にして、その薄肉化を図ったわけであるが、以下では、JIS規定の鋼管のうち、呼び径25A(外径34mm、肉厚3.2mm)の鋼管を基準にして、その薄肉化を検討した場合を代表例として述べる。 In the present invention, the thinning of the JIS standard steel pipe (carbon steel pipe for piping) was attempted. However, in the following, among the JIS standard steel pipes, the nominal diameter 25A (outer diameter 34 mm, wall thickness A typical example will be described in the case of studying thinning based on a steel pipe having a thickness of 3.2 mm).
ちなみに、本発明においては、JIS規定の鋼管の厚さは、JIS G 3452:2014の表4における「厚さ」のことであり、その際の「厚さの許容差」については(+0%、−12.5%)と見なしている。 By the way, in the present invention, the thickness of the JIS-specified steel pipe is the “thickness” in Table 4 of JIS G 3452:2014, and the “thickness tolerance” at that time is (+0%, -12.5%).
まず、JIS規定の鋼管よりも薄肉化した場合に、特許文献1のような中子を用いることなく、鋼管端部外面にJIS規定のねじを転造によって形成できる鋼管の厚さの範囲を検討した。 First, when the wall thickness is made thinner than the JIS standard steel pipe, the range of the thickness of the steel pipe in which the JIS standard screw can be formed by rolling on the outer surface of the steel pipe end without using the core as in Patent Document 1 is examined. did.
具体的には、呼び径25A(外径34mm、肉厚3.2mm)の鋼管を基準鋼管とし、外径は基準鋼管と同じ34mmにして、基準鋼管の厚さts(3.2mm)に対して厚さtを薄くした(すなわち、厚さの比t/tsを小さくした)。ねじはJIS規定のテーパねじとし、装置が小型で済む歩み転造でねじの形成を行った。潤滑剤は切削油を用い、転造工具の回転速度は88rpmとした。なお、中子は用いなかった。 Specifically, a steel pipe having a nominal diameter of 25 A (outer diameter 34 mm, wall thickness 3.2 mm) is used as a reference steel pipe, and the outer diameter is set to 34 mm, which is the same as the reference steel pipe, with respect to the thickness ts (3.2 mm) of the reference steel pipe. To reduce the thickness t (that is, reduce the thickness ratio t/ts). The screw was a taper screw specified by JIS, and the screw was formed by step rolling, which requires a small device. Cutting oil was used as the lubricant, and the rotation speed of the rolling tool was 88 rpm. No core was used.
図4に、厚さの比を小さくした場合のねじ部断面形状の一例を示す。図4(a)は厚さの比100%(t/ts=1.0)、図4(b)は厚さの比78%(t/ts=0.78)、図4(c)は厚さの比66%(t/ts=0.66)である。 FIG. 4 shows an example of the cross-sectional shape of the threaded portion when the thickness ratio is reduced. 4A shows a thickness ratio of 100% (t/ts=1.0), FIG. 4B shows a thickness ratio of 78% (t/ts=0.78), and FIG. The thickness ratio is 66% (t/ts=0.66).
図4に示すように、厚さの比78%(t/ts=0.78)の場合は、厚さの比100%(t/ts=1.0)と同じように、JIS規定のねじが形成されている。これに対して、厚さの比66%(t/ts=0.66)の場合は、JIS規定のねじが形成できていない。 As shown in FIG. 4, when the thickness ratio is 78% (t/ts=0.78), the screw ratio specified by JIS is the same as the thickness ratio of 100% (t/ts=1.0). Are formed. On the other hand, in the case where the thickness ratio is 66% (t/ts=0.66), the screw specified by JIS cannot be formed.
この結果等から、JIS規定の鋼管の厚さに比べて100%未満78%以上の厚さであれば、特許文献1のような中子を用いることなく、鋼管端部外面にJIS規定のねじを転造によって形成できると判断した。 From these results, if the thickness of the steel pipe is less than 100% and 78% or more of the thickness of the JIS-compliant steel pipe, the JIS-compliant screw is attached to the outer surface of the steel pipe end without using the core as in Patent Document 1. It was judged that they could be formed by rolling.
次に、その厚さ範囲(JIS規定の鋼管の厚さに比べて100%未満78%以上の厚さ)を前提にして、ねじ部の鋼管内面の凹凸量について、鋼管内面の樹脂ライニングが剥離せず、かつOリングの止水機能を損なうことがない範囲を検討した。なお、鋼管内面の凹凸量は、ねじ部全体を基準長さにして、最大高さRz(JIS B 0601:2001)で評価した。 Next, assuming that thickness range (less than 100% and 78% or more of the thickness of the JIS-compliant steel pipe), the resin lining on the steel pipe inner surface is peeled off for the amount of unevenness of the steel pipe inner surface of the threaded portion. The range was investigated without causing the O-ring to impair the water blocking function. The unevenness of the inner surface of the steel pipe was evaluated by the maximum height Rz (JIS B 0601:2001) with the entire threaded portion as a reference length.
その結果、ねじ部の鋼管内面の凹凸量Rzが200.0μm以下であれば、鋼管内面の樹脂ライニングが剥離せず、かつOリングの止水機能を損なうことがないと判断された(詳細は後述する)。 As a result, it was determined that when the unevenness amount Rz of the inner surface of the steel pipe of the threaded portion was 200.0 μm or less, the resin lining on the inner surface of the steel pipe did not peel off and the water-stopping function of the O-ring was not impaired (for details, See below).
そこで、ねじ部の鋼管内面の凹凸量Rzを200.0μm以下に抑える方法について検討した。 Then, the method of suppressing the unevenness amount Rz of the inner surface of the steel pipe of the threaded portion to 200.0 μm or less was examined.
その際、薄肉鋼管として、上述した基準鋼管(呼び径25A(外径34mm、厚さ3.2mm))に対する厚さの比が78%の鋼管(外径34mm、厚さ2.5mm)を用いた。ねじはJIS規定のテーパねじとし、歩み転造でねじの形成を行った。 At that time, as the thin-walled steel pipe, a steel pipe (outer diameter 34 mm, thickness 2.5 mm) having a thickness ratio of 78% with respect to the reference steel pipe (nominal diameter 25 A (outer diameter 34 mm, thickness 3.2 mm)) is used. I was there. The screw was a taper screw defined by JIS, and the screw was formed by step rolling.
その結果、基本的には、鋼管外面にJIS規定のねじ山形状を形成するのに必要な量を超えた材料の塑性流動、すなわち、転造工具側への過剰な材料の充満・流れ込みを抑制することがポイントであるとわかった。 As a result, basically, plastic flow of the material that exceeds the amount required to form the JIS-standard screw thread shape on the outer surface of the steel pipe, that is, excessive filling and flowing of material into the rolling tool side is suppressed. I found that the point was to do.
図5に、使用する潤滑剤と、ねじ部内面の凹凸形状の関係の一例を示す。図5(a)は切削油(摩擦係数0.1〜0.3)を使用した場合、図5(b)は固形潤滑剤(摩擦係数0.04〜0.06)を使用した場合である。なお、転造工具の回転速度は505rpmとした。 FIG. 5 shows an example of the relationship between the lubricant used and the uneven shape of the inner surface of the threaded portion. FIG. 5A shows the case where cutting oil (friction coefficient 0.1 to 0.3) is used, and FIG. 5B shows the case where solid lubricant (friction coefficient 0.04 to 0.06) is used. .. The rolling speed of the rolling tool was 505 rpm.
図5に示すように、切削油(摩擦係数0.1〜0.3)を使用した場合に比べて、固形潤滑剤(摩擦係数0.04〜0.06)を使用した場合は、鋼管内面の凹凸量Rzが300.0μmから120.0μmに軽減していることがわかる。 As shown in FIG. 5, compared with the case of using the cutting oil (friction coefficient 0.1 to 0.3), the inner surface of the steel pipe when the solid lubricant (friction coefficient 0.04 to 0.06) is used It can be seen that the unevenness amount Rz is reduced from 300.0 μm to 120.0 μm.
この鋼管内面の凹凸量の軽減によって、初期内径約29.0mm(初期内半径約14.5mm)の鋼管の凹部と凸部の変形量差、すなわち鋼管の内周長変化による歪の差分Δ0.18mm/14.5mm=0.012と1.2%の歪差を軽減できた。一般に、樹脂に対する1%の歪差は十分大きいことから、鋼管内面の凹凸部での局所的な1.2%の歪差低減は、鋼管内面ライニングの剥離防止に非常に効果的と言える。 By reducing the amount of unevenness on the inner surface of the steel pipe, the difference in deformation amount between the concave portion and the convex portion of the steel pipe having the initial inner diameter of about 29.0 mm (initial inner radius of about 14.5 mm), that is, the difference in strain Δ0. 18 mm/14.5 mm=0.0012, which is a 1.2% difference in strain. In general, since the strain difference of 1% with respect to the resin is sufficiently large, it can be said that the local reduction of the strain difference of 1.2% at the uneven portion of the inner surface of the steel pipe is very effective in preventing the peeling of the inner lining of the steel pipe.
同様に、Oリングの変形量に関し、線径3.5mmのOリングの場合、機能発揮のためのつぶし代は0.46±0.14mmであり、図3に示したOリングに対し、鋼管内面の凹凸量Rzが300.0μmある場合、つぶし代の許容偏差を超える径差があることは、止水効果を発揮しない懸念があることがわかる。一方、摩擦を低減した場合、つぶし代の許容範囲内にあることがいえる。 Similarly, regarding the amount of deformation of the O-ring, in the case of the O-ring having a wire diameter of 3.5 mm, the crushing margin for exhibiting the function is 0.46±0.14 mm, which is smaller than that of the O-ring shown in FIG. When the inner surface unevenness amount Rz is 300.0 μm, it can be understood that there is a concern that the water blocking effect will not be exhibited if there is a diameter difference that exceeds the allowable deviation of the crushing margin. On the other hand, when the friction is reduced, it can be said that the crushing margin is within the allowable range.
この結果等から、摩擦係数が0.08以下である潤滑剤を使用することによって、転造工具側への過剰な材料の充満・流れ込みを抑制して(すなわち、ねじ部外面が盛り上がる傾向を緩和して)、鋼管内面の凹凸量Rzを200.0μm以下にすることができ、内面樹脂ライニング鋼管の被覆機能やOリング機能に特に不具合なく、ねじ転造成形を行うことができると判断された。ただし、転造工具のスリップ等を考えて、潤滑剤の摩擦係数は0.03以上であることが好ましい。 From these results, by using a lubricant with a friction coefficient of 0.08 or less, excessive filling and inflow of material to the rolling tool side can be suppressed (that is, the tendency that the outer surface of the screw part rises is reduced. Then, it was determined that the unevenness amount Rz on the inner surface of the steel pipe can be set to 200.0 μm or less, and the thread rolling can be performed without any particular problems in the covering function and the O-ring function of the inner surface resin-lined steel pipe. .. However, the friction coefficient of the lubricant is preferably 0.03 or more in consideration of slipping of the rolling tool.
図6に、転造工具の回転速度と、ねじ部内面の凹凸形状の関係の一例を示す。図6(a)は転造工具の回転速度を505rpmとした場合、図6(b)は転造工具の回転速度を88rpmとした場合である。なお、潤滑剤は切削油を使用した。 FIG. 6 shows an example of the relationship between the rotation speed of the rolling tool and the uneven shape of the inner surface of the threaded portion. 6A shows the case where the rolling speed of the rolling tool is 505 rpm, and FIG. 6B shows the case where the rotational speed of the rolling tool is 88 rpm. Cutting oil was used as the lubricant.
図6に示すように、転造工具の回転速度を505rpmにした場合に比べて、転造工具の回転速度を88rpmにした場合は、鋼管内面の凹凸量Rzが340.0μmから230.0μmに軽減していることがわかる。 As shown in FIG. 6, when the rotation speed of the rolling tool is set to 88 rpm as compared with the case where the rotation speed of the rolling tool is set to 505 rpm, the unevenness amount Rz of the inner surface of the steel pipe is changed from 340.0 μm to 230.0 μm. You can see that it is reduced.
この結果等から、転造工具の回転速度を70rpm以下にすることによって、転造工具側への過剰な材料の充満・流れ込みを抑制して、鋼管内面の凹凸量Rzを200.0μm以下にすることができ、内面樹脂ライニング鋼管の被覆機能やOリング機能に特に不具合なく、ねじ転造成形を行うことができると判断された。ただし、生産性を考えると、転造工具の回転速度40rpm以上にすることが好ましい。 From these results and the like, by controlling the rotation speed of the rolling tool to 70 rpm or less, it is possible to suppress the excessive filling and inflow of the material into the rolling tool side and reduce the unevenness amount Rz of the inner surface of the steel pipe to 200.0 μm or less. It was determined that the thread rolling can be performed without any particular problems in the coating function and the O-ring function of the inner surface resin lined steel pipe. However, in view of productivity, it is preferable to set the rotation speed of the rolling tool to 40 rpm or more.
図7、図8に、転造加工方法と、転造加工後の鋼管の外観(内面の凹凸状態)およびねじ部内面の凹凸形状の関係の一例を示す。図7(a)と図8(a)は歩み転造によってねじ形成を行った場合であり、図7(b)と図8(b)は寄せ転造によってねじ形成を行った場合である。なお、潤滑剤は切削油を用い、転造工具の回転速度は、歩み転造の場合88rpm、寄せ転造の場合200rpmとした。ちなみに、図7(a)と図8(a)の歩み転造は、前述した図6(b)と同じ条件である。 FIG. 7 and FIG. 8 show an example of the relationship between the rolling process method, the appearance of the steel pipe after rolling (concavo-convex state of the inner surface), and the concavo-convex shape of the inner surface of the screw part. FIGS. 7A and 8A show the case where the thread formation is performed by step rolling, and FIGS. 7B and 8B show the case where the screw formation is performed by the offset rolling. Cutting oil was used as the lubricant, and the rotation speed of the rolling tool was 88 rpm for step rolling and 200 rpm for shift rolling. Incidentally, the step rolling of FIGS. 7A and 8A is the same as that of FIG. 6B described above.
図7(a)と図8(a)に示すように、歩み転造によってねじ形成を行った場合は、鋼管内面に凹凸が発生した(凹凸量Rz=230.0μm)。これに対して、図7(b)と図8(b)に示すように、寄せ転造によってねじ形成を行った場合は、鋼管内面に凹凸が発生しなかった(凹凸量Rz=0.0μm)。 As shown in FIGS. 7A and 8A, when threads were formed by step rolling, unevenness was generated on the inner surface of the steel pipe (unevenness amount Rz=230.0 μm). On the other hand, as shown in FIGS. 7(b) and 8(b), when the thread formation was performed by the offset rolling, no unevenness was generated on the inner surface of the steel pipe (unevenness amount Rz=0.0 μm ).
これは、有限要素法を用いた成形模擬解析からわかったことであるが、歩み転造では、図9に示すように、転造中に、転造工具と接触している部位での鋼管内面での管軸方向応力が圧縮となり、管軸方向に波形ひいては鋼管内面の凹凸を形成し易い傾向にある。一方、寄せ転造の場合は、図10に示すように、転造工具との接触部において、管軸方向に引張の応力が作用していることがわかり、上記の波形の発生が抑制される傾向にあり、結果的に鋼管内面の凹凸を軽減するか、もしくは発生を抑制する。よって、寄せ転造の適用が望ましいと解釈される。 This is found from the forming simulation analysis using the finite element method. In step rolling, as shown in FIG. 9, the inner surface of the steel pipe at the portion in contact with the rolling tool during rolling is shown. The stress in the pipe axis direction in Fig. 2 becomes compressed, and the corrugations in the pipe axis direction, and consequently the unevenness on the inner surface of the steel pipe, tend to be formed easily. On the other hand, in the case of offset rolling, as shown in FIG. 10, it is understood that tensile stress acts in the pipe axis direction at the contact portion with the rolling tool, and the occurrence of the above waveform is suppressed. As a result, unevenness on the inner surface of the steel pipe is reduced or the occurrence thereof is suppressed. Therefore, it is construed that the application of group rolling is desirable.
この結果等から、寄せ転造でねじ形成を行うことによって、鋼管内面の凹凸量Rzを200.0μm以下にすることができ、内面樹脂ライニング鋼管の被覆機能やOリング機能に特に不具合なく、ねじ転造成形を行うことができると判断された。 From these results, it is possible to reduce the unevenness amount Rz of the inner surface of the steel pipe to 200.0 μm or less by forming the screw by slip rolling, and there is no particular problem in the covering function and the O-ring function of the inner surface resin lined steel pipe, It was determined that rolling could be performed.
以上は、JIS規定の鋼管のうち、呼び径25A(外径34mm、肉厚3.2mm)の鋼管を基準鋼管として、JIS規定のテーパねじを転造形成した場合であったが、その他のJIS規定の鋼管を基準鋼管とした場合や、JIS規定の平行ねじを転造形成した場合でも、同様のことが言える。 The above is the case where the JIS standard taper screw is formed by rolling the standard 25 mm diameter steel pipe (outer diameter 34 mm, wall thickness 3.2 mm) among the JIS standard steel pipes. The same can be said when the standard steel pipe is used as the standard steel pipe or when the JIS standard parallel thread is formed by rolling.
ここで、前述したように、ねじ部における鋼管内面の凹凸量Rzが200.0μm以下であれば、鋼管内面の樹脂ライニングが剥離せず、かつOリングの止水機能を損なうことがないと判断した点について述べる。 Here, as described above, when the unevenness amount Rz on the inner surface of the steel pipe in the threaded portion is 200.0 μm or less, it is determined that the resin lining on the inner surface of the steel pipe does not peel off and the water blocking function of the O-ring is not impaired. I will describe the points I did.
まず、「鋼管内面の樹脂ライニングが剥離しない」については、ねじ山ピッチが2.3091mmである呼び径25A以上を基準鋼管にして薄肉化する場合は、凹凸量Rzが250.0μm以下であればよいと判断し、ねじ山ピッチが1.8143mmである呼び径15A、20Aを基準鋼管にして薄肉化する場合は、凹凸量Rzが200.0μm以下であればよいと判断した。 First, regarding "the resin lining on the inner surface of the steel pipe does not peel off", when the nominal diameter 25A or more having a thread pitch of 2.3091 mm is used as the reference steel pipe to reduce the thickness, the unevenness amount Rz is 250.0 μm or less. It was judged that the unevenness amount Rz was 200.0 μm or less when thinning the nominal diameters of 15A and 20A having the thread pitch of 1.8143 mm as the reference steel pipe.
ここで、凹凸量Rzが上記の値(250μm以下、200.0μm以下)であることの物理的意味は、ねじ部において、ねじ形成前は凹凸のない状況から、凹凸が発生した場合の鋼管長手方向の伸び量が3%を越えないことを意味している。このねじ部の伸び量が3%を越えないことの意味合いとしては、テーパねじの転造成形を行うことによって発生する鋼管端部の縮径にともなう鋼管の伸び量が約7%であり、トータル約10%の伸び(これは上限であり、当然ながら小さいほどよい)が内面ライニング(例えば、ポリエチレン)に作用しないことを意図するものであり、ライニング層として鋼管内面に接着したまま剥離せずに残存する限界歪約10%を勘案して算定したものである。 Here, the physical meaning that the amount of unevenness Rz is the above value (250 μm or less, 200.0 μm or less) means that the length of the steel pipe in the case where unevenness occurs in the threaded portion from the situation where there is no unevenness before the thread formation. This means that the elongation in the direction does not exceed 3%. The implication that the amount of elongation of the threaded portion does not exceed 3% is that the amount of elongation of the steel pipe due to the diameter reduction of the steel pipe end that occurs due to the rolling forming of the taper screw is about 7%, and It is intended that an elongation of about 10% (this is the upper limit, and the smaller the better, of course) is that it does not act on the inner surface lining (for example, polyethylene). It is calculated in consideration of the remaining critical strain of about 10%.
一方、「Oリングの止水機能を損なうことがない」については、厳密には、用いるOリングの線径と、ちょうどOリングと接触する鋼管内面位置での凹凸量に依存するため、一概に言えないが、基本的には、Oリングのつぶし代の許容範囲内の凹凸量であることを意味している。具体的には、一例として、線径2.4mmのOリングを用いた場合、JIS規格に基づいて算出すると、つぶし代の基準値は、0.37mm±0.10mmであり、Oリングと接触する位置における鋼管内面の凹凸量Rzが200.0μm以下である必要がある。ちなみに、鋼管内面が平らで凹凸がなければ、Oリングは隙間なく接触するが、鋼管内面に凹凸があるとOリングが鋼管内面に接触しないところが出てくる。 On the other hand, strictly speaking, as to "the water-stopping function of the O-ring is not impaired", it depends on the wire diameter of the O-ring used and the amount of unevenness at the position on the inner surface of the steel pipe that is in contact with the O-ring. Although it cannot be said, it basically means that the amount of unevenness is within the allowable range of the crushing margin of the O-ring. Specifically, as an example, when an O-ring with a wire diameter of 2.4 mm is used, the crushing margin reference value is 0.37 mm±0.10 mm when calculated based on the JIS standard, and it is in contact with the O-ring. It is necessary that the unevenness amount Rz of the inner surface of the steel pipe at the position to be set is 200.0 μm or less. By the way, if the inner surface of the steel pipe is flat and has no irregularities, the O-rings will contact without any gaps, but if the inner surface of the steel pipe has irregularities, the O-ring will not come into contact with the inner surface of the steel pipe.
以上のことから、ねじ部の鋼管内面の凹凸量Rzが200.0μm以下であれば、鋼管内面の樹脂ライニングが剥離せず、かつOリングの止水機能を損なうことがないと判断した。 From the above, it was judged that if the unevenness amount Rz on the inner surface of the steel pipe of the threaded portion is 200.0 μm or less, the resin lining on the inner surface of the steel pipe does not peel off and the water blocking function of the O-ring is not impaired.
そして、上記のような検討結果に基づいて、内面樹脂ライニング薄肉鋼管として、JIS規定の鋼管に比べて、外径が同じで、厚さが100%未満78%以上であり、鋼管内面に樹脂ライニングを有し、鋼管端部に、鋼管外面にJIS規定のねじ(転造ねじ)を有するねじ部を備え、前記ねじ部における鋼管内面の凹凸量Rzが200.0μm以下である内面樹脂ライニング薄肉鋼管を想到した。 Then, based on the above-described examination results, as an inner surface resin-lined thin-walled steel pipe, the outer diameter is the same and the thickness is less than 100% and 78% or more as compared with the JIS-specified steel pipe, and the resin lining is formed on the inner surface of the steel pipe. And an inner surface resin lined thin-walled steel pipe having a threaded portion having a JIS standard screw (rolled screw) on the outer surface of the steel pipe at the end of the steel pipe, and the unevenness amount Rz of the inner surface of the steel pipe at the threaded portion is 200.0 μm or less. Was conceived.
そして、その内面樹脂ライニング薄肉鋼管を製造する方法は、製造対象の薄肉鋼管の厚さと同じ板厚の鋼板を用いて、鍛接法または電縫法によって薄肉鋼管を製造する薄肉鋼管製造工程と、その薄肉鋼管の内面に樹脂ライニングを形成する内面樹脂ライニング工程と、内面に樹脂ライニングを有する薄肉鋼管の鋼管端部外面に転造ねじを形成する転造ねじ形成工程とを設け、転造ねじ形成工程において、下記の(A)、(B)、(C)のうちの少なくとも1つを行うようにすればよい。 Then, the method of manufacturing the inner surface resin lining thin-walled steel pipe, using a steel plate having the same plate thickness as the thickness of the thin-walled steel pipe to be manufactured, a thin-walled steel pipe manufacturing step of manufacturing a thin-walled steel pipe by the forge welding method or the electric resistance welding method, and An inner surface resin lining step of forming a resin lining on the inner surface of the thin-walled steel pipe, and a rolling screw forming step of forming a rolling screw on the outer surface of the steel pipe end of the thin-walled steel pipe having a resin lining on the inner surface are provided. In, at least one of the following (A), (B), and (C) may be performed.
(A)歩み転造を用い、摩擦係数が0.08以下(好ましくは、0.03以上)である潤滑剤を使用する。 (A) Using step rolling, a lubricant having a friction coefficient of 0.08 or less (preferably 0.03 or more) is used.
(B)歩み転造を用い、転造工具の回転速度を70rpm以下(好ましくは、40rpm以上)にする。 (B) Using step rolling, the rotation speed of the rolling tool is 70 rpm or less (preferably 40 rpm or more).
(C)寄せ転造を用いる。 (C) Using the rolled rolling.
このようにすることによって、良好なねじ部(鋼管外面のねじ形状がJIS規定の形状であり、かつ鋼管内面の凹凸量が小さい)を備えた内面樹脂ライニング薄肉鋼管を得ることができる。 By doing so, it is possible to obtain an inner resin-lined thin-walled steel pipe having a good threaded portion (the outer surface of the steel pipe has a shape defined by JIS and the amount of irregularities on the inner surface of the steel pipe is small).
その結果、従来の内面樹脂ライニング鋼管と比べて、鋼管の重量を低減しつつ、同等の継手耐震強度を有することが可能となり、配管の作業性や施工性を改善することができる。また、構造物への負荷も軽減できるので、構造物全体の耐震強度にも余裕を与えることが可能となる。さらに、ねじ部の加工においては、中子の利用を省略することが可能となり、ねじ加工設備のトータルコスト削減や加工時間短縮による生産能率向上を図ることができる。 As a result, compared with the conventional inner surface resin-lined steel pipe, it is possible to reduce the weight of the steel pipe and to have an equivalent joint seismic strength, and improve workability and workability of the pipe. Further, since the load on the structure can be reduced, it is possible to give a margin to the seismic strength of the entire structure. Further, it is possible to omit the use of the core in the processing of the screw portion, and it is possible to improve the production efficiency by reducing the total cost of the screw processing equipment and the processing time.
特に、肉厚がJIS規定の鋼管の厚さの87.5%未満78%以上の厚さである内面樹脂ライニング薄肉鋼管では、ねじ部の鋼管内面の凹凸が大きくなって、鋼管内面の樹脂ライニングが剥離したり、Oリングの止水機能を損なったりしやすいが、上記のように、良好なねじ部を形成できるようになり、軽量化による効果も大きいことから、上述した効果が顕著に現れる。 In particular, the inner surface resin lining having a wall thickness of less than 87.5% and 78% or more of the thickness of the JIS-compliant steel pipe has a large unevenness on the inner surface of the steel pipe at the threaded portion, and the resin lining on the inner surface of the steel pipe becomes large. Easily peels off or impairs the water blocking function of the O-ring, but as described above, it becomes possible to form a good threaded portion, and the effect of weight reduction is great, so that the above-mentioned effect is remarkable. ..
Claims (4)
鋼管内面に樹脂ライニングを有し、
鋼管端部に、鋼管外面にJIS B 0202またはJIS B 0203に基づく形状のねじを有するねじ部を備え、
前記ねじ部の鋼管内面の凹凸量が最大高さRzで200.0μm以下であることを特徴とする内面樹脂ライニング薄肉鋼管。 With respect to the carbon steel pipe for piping specified in JIS G 3452, the outer diameter is the same, and the thickness is less than 100% and 78% or more,
Has a resin lining on the inner surface of the steel pipe,
The steel pipe end portion is provided with a threaded portion having a screw having a shape based on JIS B 0202 or JIS B 0203 on the outer surface of the steel pipe,
An inner surface resin-lined thin-walled steel pipe, wherein the amount of irregularities on the inner surface of the steel pipe of the threaded portion is 200.0 μm or less at the maximum height Rz.
薄肉鋼管を製造する薄肉鋼管製造工程と、
前記薄肉鋼管の内面に樹脂ライニングを形成する内面樹脂ライニング工程と、
内面に樹脂ライニングを有する薄肉鋼管の鋼管端部外面にねじを形成するねじ形成工程とを備えることを特徴とする内面樹脂ライニング薄肉鋼管の製造方法。 A method for producing a thin-walled steel pipe with an inner resin lining according to claim 1 or 2,
A thin-walled steel pipe manufacturing process for manufacturing a thin-walled steel pipe,
An inner surface resin lining step of forming a resin lining on the inner surface of the thin steel pipe,
And a screw forming step of forming a screw on an outer surface of a steel pipe end portion of a thin-walled steel pipe having a resin lining on an inner surface thereof.
前記ねじ形成工程において、下記の(A)、(B)、(C)のうちの少なくとも1つを行うことを特徴とする請求項3に記載の内面樹脂ライニング薄肉鋼管の製造方法。
(A)歩み転造を用い、摩擦係数が0.08以下である潤滑剤を使用する。
(B)歩み転造を用い、転造工具の回転速度を70rpm以下にする。
(C)寄せ転造を用いる。 The screw forming step is a rolling screw forming step of forming a screw by rolling.
The method for producing an inner surface resin lined thin-walled steel pipe according to claim 3, wherein at least one of the following (A), (B), and (C) is performed in the thread forming step.
(A) Step rolling is used, and a lubricant having a friction coefficient of 0.08 or less is used.
(B) Using step rolling, the rotation speed of the rolling tool is set to 70 rpm or less.
(C) Using the rolled rolling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017221416A JP6740993B2 (en) | 2017-11-17 | 2017-11-17 | Inner resin lining thin-walled steel pipe and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017221416A JP6740993B2 (en) | 2017-11-17 | 2017-11-17 | Inner resin lining thin-walled steel pipe and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019090517A JP2019090517A (en) | 2019-06-13 |
JP6740993B2 true JP6740993B2 (en) | 2020-08-19 |
Family
ID=66836142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017221416A Active JP6740993B2 (en) | 2017-11-17 | 2017-11-17 | Inner resin lining thin-walled steel pipe and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6740993B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08219368A (en) * | 1995-02-10 | 1996-08-30 | Kitz Corp | Pipe end corrosion resistant structure |
JP2003176882A (en) * | 2001-12-11 | 2003-06-27 | Hitachi Metals Ltd | Corrosion-resistant tube fitting |
JP2011220431A (en) * | 2010-04-08 | 2011-11-04 | Ck Metals Co Ltd | Corrosion proof pipe joint |
JP5394438B2 (en) * | 2010-10-14 | 2014-01-22 | シーケー金属株式会社 | Pipe fitting with torque control function |
-
2017
- 2017-11-17 JP JP2017221416A patent/JP6740993B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019090517A (en) | 2019-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3205918B1 (en) | Threaded joint for steel pipes | |
EP1332308B8 (en) | Open type wedgethread connection | |
JP6696055B2 (en) | Manufacturing method of composite pipe | |
EP1296088A1 (en) | Taper threaded joint | |
CA2947536C (en) | Threaded joint for steel pipes | |
CA2675894C (en) | Threaded pipe connection | |
JP2007205361A (en) | Steel pipe screwed joint | |
MX2008012234A (en) | Tubular threaded joint. | |
US8973953B2 (en) | Seal between pipe sections | |
JP2010522855A (en) | Ultra-high torque dope-free screw joint | |
US10274112B2 (en) | Threaded connection | |
US8246086B2 (en) | Low cost, high performance pipe connection | |
US20170321826A1 (en) | Single lead wedgethread connection | |
JP6740993B2 (en) | Inner resin lining thin-walled steel pipe and method for manufacturing the same | |
JP4551462B2 (en) | Loose Flange Flare Pipe Joint Sealing Improvement Method, Flare End Face Angle Control Method, Loose Flange Flare Pipe Joint, Loose Flange Flare Pipe Steel Pipe, Loose Flange Flare Pipe Steel Manufacturing Method, and Steel Pipe Joining Method | |
JP6942186B2 (en) | Connection pipe and its manufacturing method | |
US9644771B1 (en) | Threaded coupling | |
JP7092200B2 (en) | Manufacturing method of steel pipe | |
US20170159853A1 (en) | Threaded connection | |
US12018777B2 (en) | Threaded connection for steel pipe | |
JP5394438B2 (en) | Pipe fitting with torque control function | |
JP3668094B2 (en) | Pipe fitting | |
WO2024171885A1 (en) | Threaded joint | |
JP2011220431A (en) | Corrosion proof pipe joint | |
CN112824642A (en) | Buttress thread joint with high anti-thread gluing performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180502 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180509 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200623 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200706 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6740993 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |